

Euro Area Output Gaps and the Transmission of Common Shocks

Jointly modeling output gaps using a multicycle
Beveridge-Nelson decomposition.

Tino Berger¹, Sebastian Hienzsch¹, and Benjamin Wong²

January 3, 2026

¹University of Göttingen

³Monash University

What are we doing?

Jointly estimate output gaps of the four largest European economies, which are consistent with the aggregate euro area output gap.

What are we doing?

Jointly estimate output gaps of the four largest European economies, which are consistent with the aggregate euro area output gap.

Why does it matter?

Transmission of common shocks work through the member economies with possibly large and significant spillovers across the euro area.

What are we doing?

Jointly estimate output gaps of the four largest European economies, which are consistent with the aggregate euro area output gap.

Why does it matter?

Transmission of common shocks work through the member economies with possibly large and significant spillovers across the euro area.

How are we doing it?

Propose multicycle trend-cycle decomposition using a prior on the signal-to-noise ratio.

Stabilization Policy and the Output Gap

- Output gap is **central policy input** to the formulation of stabilization policy in the euro-area.
- Conceptually, **the output gap is defined as deviations from potential output.**

Stabilization Policy and the Output Gap

- Output gap is **central policy input** to the formulation of stabilization policy in the euro-area.
- Conceptually, **the output gap is defined as deviations from potential output.**

But how do we measure potential output and the output gap?

Beveridge Nelson Decomposition

- Assume we have a nonstationary time series y_t with a trend component τ_t that follows random walk with constant drift μ and a cyclical component c_t .

$$y_t = \tau_t + c_t \quad (1)$$

- Beveridge and Nelson (1981) define trend as

$$\tau_t = \lim_{j \rightarrow \infty} E_t[y_{t+j} - j \cdot \mu] \quad (2)$$

$$= y_t + \lim_{J \rightarrow \infty} \sum_{j=1}^J E[\Delta y_{t+j} - \mu]. \quad (3)$$

and cycle as

$$c_t = y_t - \tau_t \quad (4)$$

- We need to specify a **forecasting model** to estimate the long-horizon conditional expectation.

Jointly targeting multiple BN cycles

- **Jointly modeling** multiple cycles requires large information set
→ *use BVAR with Minnesota-type shrinkage*
- We separate choice of degree of shrinkage for full VAR system from targeting multiple cycles

Jointly targeting multiple BN cycles

- **Jointly modeling** multiple cycles requires large information set
→ use *BVAR with Minnesota-type shrinkage*
- We separate choice of degree of shrinkage for full VAR system from targeting multiple cycles
- **Approach:** Specify a **prior on the signal-to-noise ratio** of the respective BN cycle of interest.

Jointly targeting multiple BN cycles

- **Jointly modeling** multiple cycles requires large information set
→ use *BVAR with Minnesota-type shrinkage*
- We separate choice of degree of shrinkage for full VAR system from targeting multiple cycles
- **Approach:** Specify a **prior on the signal-to-noise ratio** of the respective BN cycle of interest.
- **Intuition:** If included variables do not add information, system is shrunk towards univariate BN decomposition with a smooth trend

Data and Estimation

- Specify joint multicountry model¹ for four largest euro area economies²
- includes *real GDP*, *hours worked*, the *unemployment rate* and *inflation* for each economy from 2000Q1 to 2025Q2.
- Prior on signal-to-noise ratio is set to $\delta_0 = 10\%$.

► Shrinkage prior

¹16-variable BVAR(4)

²Germany, France, Italy, and Spain.

The Euro Area Output Gaps

Euro Area Output Gaps from Multicycle BN model

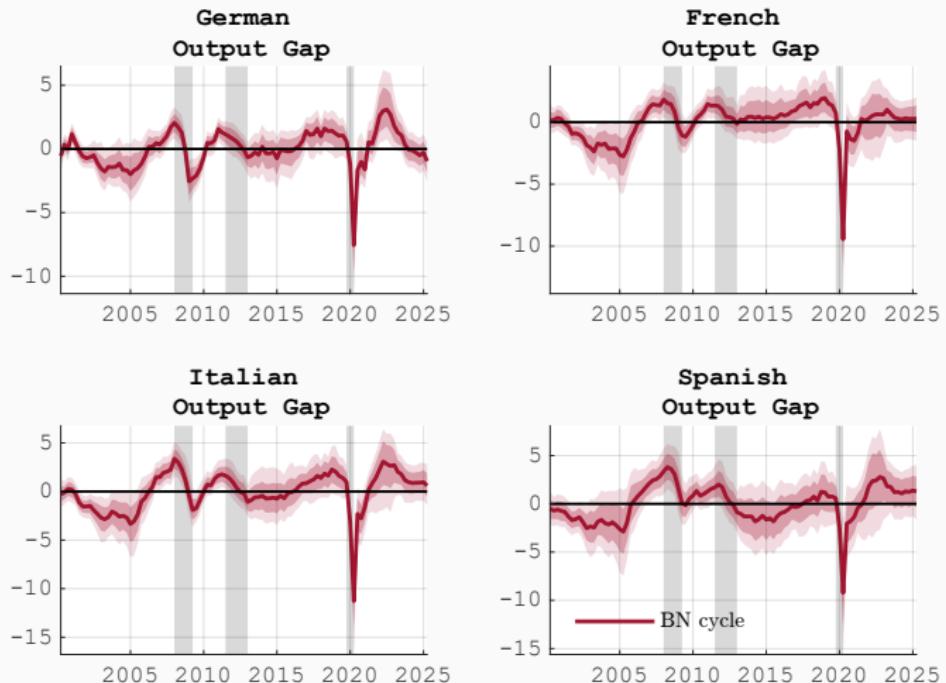


Figure 1: The euro-area output gaps. 90% credible sets given by dotted lines.

Informational decomposition of German Output Gap

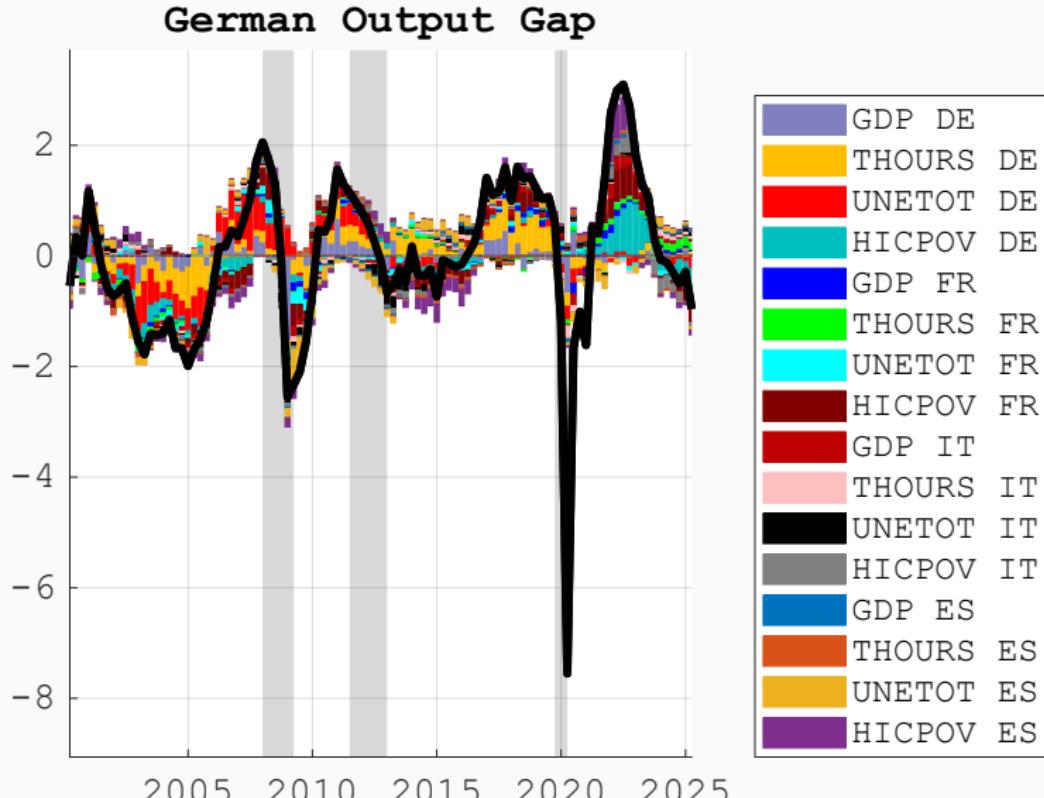


Figure 2: Information drivers of the German output gap

Transmission and spillovers of common shocks

Think of common shocks

- Global (policy) uncertainty shocks
- Global energy price shocks

Transmission and spillovers of common shocks

Think of common shocks

- Global (policy) uncertainty shocks
- Global energy price shocks

Model is based on VAR so whole **SVAR toolkit** at the ready

Transmission and spillovers of common shocks

Think of common shocks

- Global (policy) uncertainty shocks
- Global energy price shocks

Model is based on VAR so whole **SVAR toolkit** at the ready

- By writing each output gap $c_{i,t}$ as **function of structural shocks**, we can attribute dynamic causal effects

$$c_{ij,t} = - \sum_{l=0}^{t-1} \mathbf{s}_k \mathbf{F}^{l+1} (\mathbf{I} - \mathbf{F})^{-1} \mathbf{H} \mathbf{A} \mathbf{s}_j' \mathbf{s}_j \epsilon_{t-l}. \quad (5)$$

where $\mathbf{e}_t = \mathbf{A} \epsilon_t$ with $\mathbf{A} \mathbf{A}' = \Sigma$.

Transmission and spillovers of common shocks

Think of common shocks

- Global (policy) uncertainty shocks
- Global energy price shocks

Model is based on VAR so whole **SVAR toolkit** at the ready

- By writing each output gap $c_{i,t}$ as **function of structural shocks**, we can attribute dynamic causal effects

$$c_{ij,t} = - \sum_{l=0}^{t-1} \mathbf{s}_k \mathbf{F}^{l+1} (\mathbf{I} - \mathbf{F})^{-1} \mathbf{H} \mathbf{A} \mathbf{s}_j' \mathbf{s}_j \epsilon_{t-l}. \quad (5)$$

where $\mathbf{e}_t = \mathbf{A} \epsilon_t$ with $\mathbf{A} \mathbf{A}' = \Sigma$.

- Obtain cross-correlations of euro area output gaps **conditional on a common shock**.

Transmission and spillovers of common shocks

Think of common shocks

- Global (policy) uncertainty shocks
- Global energy price shocks

Model is based on VAR so whole **SVAR toolkit** at the ready

- By writing each output gap $c_{i,t}$ as **function of structural shocks**, we can attribute dynamic causal effects

$$c_{ij,t} = - \sum_{l=0}^{t-1} \mathbf{s}_k \mathbf{F}^{l+1} (\mathbf{I} - \mathbf{F})^{-1} \mathbf{H} \mathbf{A} \mathbf{s}_j' \mathbf{s}_j \epsilon_{t-l}. \quad (5)$$

where $\mathbf{e}_t = \mathbf{A} \epsilon_t$ with $\mathbf{A} \mathbf{A}' = \Sigma$.

- Obtain cross-correlations of euro area output gaps **conditional on a common shock**.
- Estimate **impulse responses** of euro area output gaps to common shocks.

Conclusion

Contribution

- Propose a **multicycle** extension to the BN decomposition.
- Present a joint model of euro area output gaps **fully accounting for cross-country dynamics/interlinkages**.

Conclusion

Contribution

- Propose a **multicycle** extension to the BN decomposition.
- Present a joint model of euro area output gaps **fully accounting for cross-country dynamics/interlinkages**.
- Analyzing the **transmission and spillovers of common shocks** across EA output gaps.

Contribution

- Propose a **multicycle** extension to the BN decomposition.
- Present a joint model of euro area output gaps **fully accounting for cross-country dynamics/interlinkages**.
- Analyzing the **transmission and spillovers of common shocks** across EA output gaps.

Thank you for your attention!

Data

The empirical application makes use of the large macroeconomic euro area dataset *EA_MD_QD* by Barigozzi and Lissone (2024). Table 1 gives an overview on the series used in the different specification and the respective data transformation. The *baseline* model only GDP growth and hours worked.

Table 1: Transformations. 1 - log level 2 - log differenced 3 - differenced.

Variable	Economy	Model	Transformation
Real GDP	EA9 economies	<i>baseline, robustness</i>	2
Empl	EA9 economies	<i>robustness</i>	2
Hours	EA9 economies	<i>baseline</i>	1
Unempl	EA9 economies	<i>baseline</i>	2
HICP	EA9 economies	<i>baseline</i>	2
Interest rate	Aggregate EA	<i>robustness</i>	0

Output gap measurement

Different approaches in the literature

- Estimation of potential output using production functions (Havik et al., 2014)
- Trend-cycle decompositions using statistical filter or state-space models (Hodrick and Prescott, 1997, Hamilton, 2018, Morley and Piger, 2012, Barigozzi and Luciani, 2023)

Our approach

- Potential output is output that should prevail in an economy **in absence of any cyclical shocks**
- The BN decomposition assumes the long-horizon conditional expectation of a time series only reflects trend

BN decomposition

Consider forecasting model

$$(\Delta \mathbf{X}_t - \mu) = \mathbf{F}(\Delta \mathbf{X}_{t-1} - \mu) + \mathbf{H}\mathbf{e}_t \quad (6)$$

Derive long-run forecast

$$E_t(\Delta \mathbf{X}_{t+1} - \mu) = \mathbf{F}(\Delta \mathbf{X}_t - \mu)$$

$$E_t(\Delta \mathbf{X}_{t+2} - \mu) = \mathbf{F}^2(\Delta \mathbf{X}_t - \mu)$$

$$\vdots \quad \vdots$$

$$E_t(\Delta \mathbf{X}_{t+j} - \mu) = \mathbf{F}^j(\Delta \mathbf{X}_t - \mu)$$

Given stationarity and eq. (6), we can write the cumulative sum at time t of expected future deviations of the vector process from its unconditional mean as

$$E_t \sum_{h=1}^{\infty} (\Delta \mathbf{X}_{t+h} - \mu) = \mathbf{F}(\mathbf{I} - \mathbf{F})^{-1}(\Delta \mathbf{X}_t - \mu). \quad (7)$$

Forecasting Model

- Set up medium scale Bayesian VAR as forecasting model

$$(\Delta \mathbf{X}_t - \mu) = \mathbf{F}(\Delta \mathbf{X}_{t-1} - \mu) + \mathbf{H}\mathbf{e}_t \quad (8)$$

- Hence, BN trend and cycle are given by (see Morley and Wong, 2020)

$$\tau_t = y_t + \mathbf{F}(\mathbf{I} - \mathbf{F})^{-1}(\Delta \mathbf{X}_t - \mu) \quad (9)$$

$$\mathbf{c}_t = -\mathbf{F}(\mathbf{I} - \mathbf{F})^{-1}(\Delta \mathbf{X}_t - \mu) \quad (10)$$

- Note each cycle $c_{i,t}$ fully decomposes into the forecast errors of all the K variables, i.e. $c_{i,t} = \sum_{j=1}^K c_{ij,t}$, where

$$c_{ij,t} = - \sum_{l=0}^{t-1} \mathbf{s}_k \mathbf{F}^{l+1} (\mathbf{I} - \mathbf{F})^{-1} \mathbf{H} \mathbf{s}_j' \mathbf{s}_j \mathbf{e}_{t-l}. \quad (11)$$

Shrinkage priors for VAR coefficients

Estimate VAR coefficient $\Phi_j, j = 1, \dots, p$ using **Minnesota-type shrinkage prior**. Specifically, we set

$$E[\phi_j^{*ik}] = 0 \quad (12)$$

$$Var[\phi_j^{*ik}] = \begin{cases} \frac{\lambda^2}{j^2} & , \text{ if } i=k \\ \frac{\lambda^2}{j^2} \frac{\sigma_i^2}{\sigma_k^2} & , \text{ otherwise.} \end{cases} \quad (13)$$

The Signal-to-Noise Ratio and the Output Gap

- Signal-to-noise ratio $\delta = \sigma_{\Delta_T}^2 / \sigma_{\varepsilon}^2$ is key concept in trend-cycle decompositions
- Lets assume an AR(p) as a competing forecasting model for Δy_t

$$\Delta y_t = \mu + \sum_{j=1}^p \phi_j (\Delta y_{t-j} - \mu) + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2) \quad (14)$$

- There exists a direct mapping from the sum of autoregressive coefficients $\phi(1)$ to δ (see Kamber et al., 2018)

$$\delta = (1 - \phi(1))^{-2}$$

Informational and structural decomposition

We can derive the share of forecast error $c_{ij,t}$ of the j th variable in \mathbf{x}_t on the cycle $c_{i,t}$ while $\Delta y_{i,t}$ still has the k th position in \mathbf{x}_t

$$c_{ij,t} = - \sum_{l=0}^{t-1} \mathbf{s}_k \mathbf{F}^{l+1} (\mathbf{I} - \mathbf{F})^{-1} \mathbf{H} \mathbf{s}_j' \mathbf{s}_j \mathbf{e}_{t-l}. \quad (15)$$

Note that the cycle $c_{i,t}$ fully decomposes into the forecast errors of all the K variables contained in \mathbf{x}_t

$$c_{i,t} = \sum_{j=1}^K c_{ij,t} \quad (16)$$

To attribute dynamic causal effect in the interpretation of the cycle, we need to write $c_{i,t}$ as a function of orthogonal structural shocks

$$c_{ij,t} = - \sum_{l=0}^{t-1} \mathbf{s}_k \mathbf{F}^{l+1} (\mathbf{I} - \mathbf{F})^{-1} \mathbf{H} \mathbf{A} \mathbf{s}_j' \mathbf{s}_j \epsilon_{t-l}. \quad (17)$$

where $\mathbf{e}_t = \mathbf{A} \epsilon_t$ with $\mathbf{A} \mathbf{A}' = \Sigma$.

Cross-correlations of Output Gaps

- Recall the VAR model and the definition of the BN cycle

$$(\Delta \mathbf{X}_t - \mu) = \mathbf{F}(\Delta \mathbf{X}_{t-1} - \mu) + \mathbf{H}\epsilon_t$$

$$c_{i,t} = -\mathbf{s}_k \mathbf{F}(\mathbf{I} - \mathbf{F})^{-1}(\Delta \mathbf{X}_t - \mu)$$

- We know from Morley (2002) that $\mathbf{F}(\mathbf{I} - \mathbf{F})^{-1}(\Delta \mathbf{X}_t - \mu)$ contains the estimated BN cycles
- Berger et al. (2022) show that the variances of estimated BN cycles can be calculated as

$$\boldsymbol{\Psi} = \mathbf{F}(\mathbf{I} - \mathbf{F})^{-1} \boldsymbol{\Omega} [(\mathbf{I} - \mathbf{F})^{-1}]' \mathbf{F}'$$

where $\boldsymbol{\Omega}$ is the variance of $\Delta \mathbf{X}_t$ and $\text{vec}(\boldsymbol{\Omega}) = [\mathbf{I} - \mathbf{F} \otimes \mathbf{F}]^{-1} \text{vec}(\mathbf{Q})$, where

$$\mathbf{Q} = \begin{bmatrix} \boldsymbol{\Sigma} & \mathbf{0} & \dots \\ \mathbf{0} & \mathbf{0} & \ddots \\ \vdots & \ddots & \ddots \end{bmatrix}$$

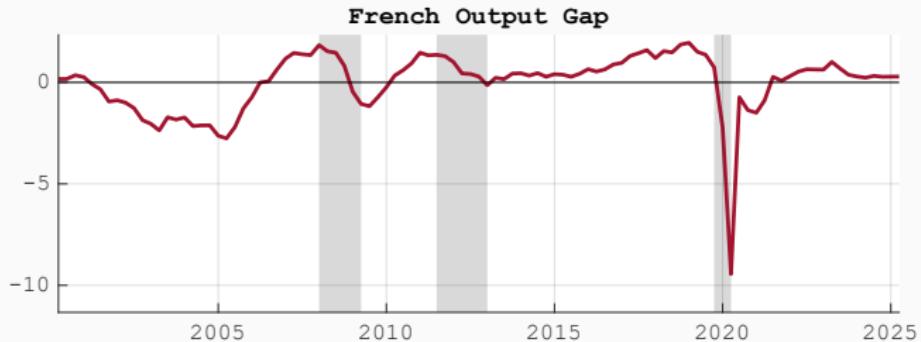
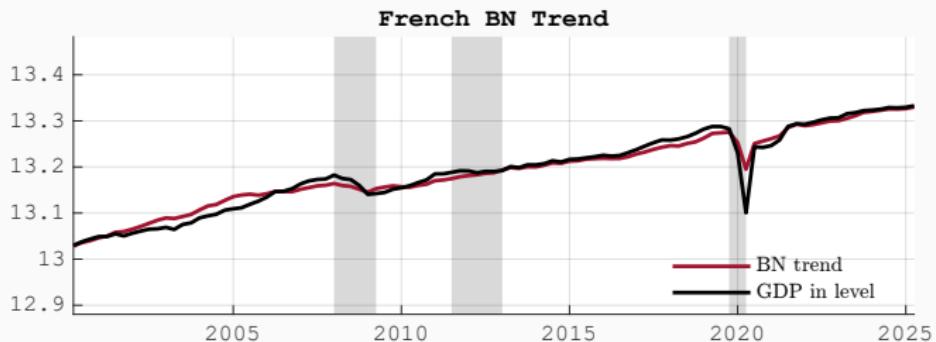
- finally, normalize cross-covariance matrix $\boldsymbol{\Psi}$ into cross-correlation matrix ψ

German Output Gap

Figure 3: German baseline results.

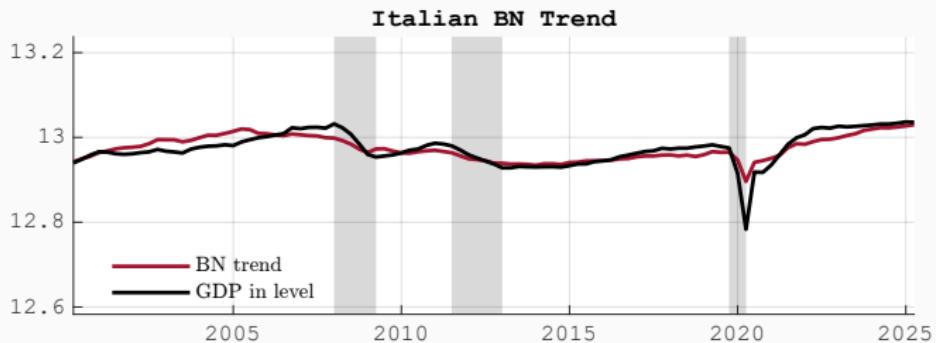
French Output Gap

Figure 4: French baseline results.



Italian Output Gap

Figure 5: Italian baseline results.



Spanish Output Gap

Figure 6: Spanish baseline results.

