

Competing digital monies

Jon Frost (*Bank for International Settlements (BIS)*), Jean-Charles Rochet (*Toulouse School of Economics (TSE)*), Hyun Song Shin (*BIS*) and Marianne Verdier (*Université Paris-Panthéon-Assas*)

*AEA meetings, paper session on Digital Money
Philadelphia, 3 January 2026*

The views expressed here are those of the authors and do not necessarily reflect those of the BIS or the Autorité de contrôle prudentiel et de résolution (ACPR).

Motivation

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- New forms of digital money have started to compete with cash and bank deposits : digital platform tokens and central bank digital currencies (CBDCs).
- Retail fast payment systems (FPS) offer very efficient ways to transfer commercial bank money. They link banks and, sometimes, non-bank payment service providers (PSPs) in a single system.
- How are these new payment solutions going to transform the industrial organisation of payment systems ?
 - Payment systems could become fragmented in competing walled gardens
 - or they could become more efficient, integrated and accessible.

What we do

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- We integrate two-sided markets theory into payment economics.
- We model competition between a bank and a platform (=digital platform token issuer).
- We compare the equilibrium of the payment system in three different contexts :
 - status quo (walled gardens),
 - new public infrastructure (central bank-operated FPS),
 - new public money (CBDC).

Our results

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- 1) When payment systems are not interoperable (walled gardens), access to accounts and trade volumes are inefficiently low.
- 2) When a fast payment system enforces interoperability, financial exclusion disappears at the cost of some degree of disintermediation by PSPs and (surprisingly) **higher** intermediation fees for merchants.
- 3) CBDCs and FPS are essentially equivalent and enable to achieve a superior outcome to the laissez-faire approach in terms of welfare.

Fast payment systems in practice

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- Many countries have already implemented FPS : UPI in India, Pix in Brazil, SPEI in Mexico, SINPE Móvil in Costa Rica...
- These FPS offer immediate transfer of funds on a 24x7 basis between end users (P2P) and businesses (P2B and B2B).
- They are often, but not always, operated by central banks.
- Merchant fees are very low and users fees are often nil.
- FPS have contributed to a spectacular increase in financial inclusion, notably in Latin American countries (Aurazo et al. 2025).

- **Current examples of live / pilot CBDCs** : the Central Bank of The Bahamas (CBOB) with the SandDollar, the Bank of Jamaica (BOJ) with JAM-DEX, the People's Bank of China (PBC) with the e-CNY (pilot) and the Central Reserve Bank of Peru (BCRP) with Dinero Digital.
- **Similarities** : emerging market and developing economies, with under-served regions (i.e. gaps in financial inclusion).
- **Central bank objective** : common aim is to increase financial inclusion (by reducing either the cost of opening an account or the price of financial services).
- **Different design parameters** : technical architecture, interoperability with existing payment systems, know-your-customer (KYC) requirements to open an account, fee structure, account limits...
- **Competition and retail CBDCs** : in each case, retail (client-facing) services are offered by private sector banks and/or PSPs.

Relation with the literature

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- **Literature on CBDCs** : surveyed by Auer et al. (2022). Largely focused on macroeconomic implications of CBDCs for monetary policy and financial stability. We focus instead on the industrial organisation aspects of CBDCs.
- **Literature on interoperability in platform markets** : surveyed by Bianchi et al. (2022).
- **Literature on interoperability and CBDCs** : Brunnermeier and Payne (2022), Ahnert, Hoffmann and Monnet (2025).

This presentation

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- The model
- Walled gardens
- Impact of a fast payment system
- Impact of a CBDC
- Discussion
- Conclusion

The model

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- Continuum of buyers and sellers located on Hotelling lines.
- Two trading modes : b (brick and mortar) and p (online platform).
- Simplifying assumption : same gains from trade in each environment : α .
- Share r goes to buyers and share $(1 - r)$ to sellers.
- Single-homing on both sides (one trading mode and one intermediary).
- We make two assumptions :
 - (H1) $t_B > r\alpha$ (implies multi-homing too costly for consumers)
 - (H2) $t_B t_S > r(1 - r)\alpha^2$ (implies concavity of profits+multi-homing too costly for merchants)

Walled gardens : assumptions

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- Only two intermediaries : b (bank) and p (platform).
- Charge fixed fees f_b and f_p to sellers but nothing to buyers.
- Transport costs $t_B x$ for buyers and $t_S x$ for sellers, where x represents the “distance” between the service offered by the intermediary and the service desired by the user.
- Platform requires specific payment instrument for online trading.

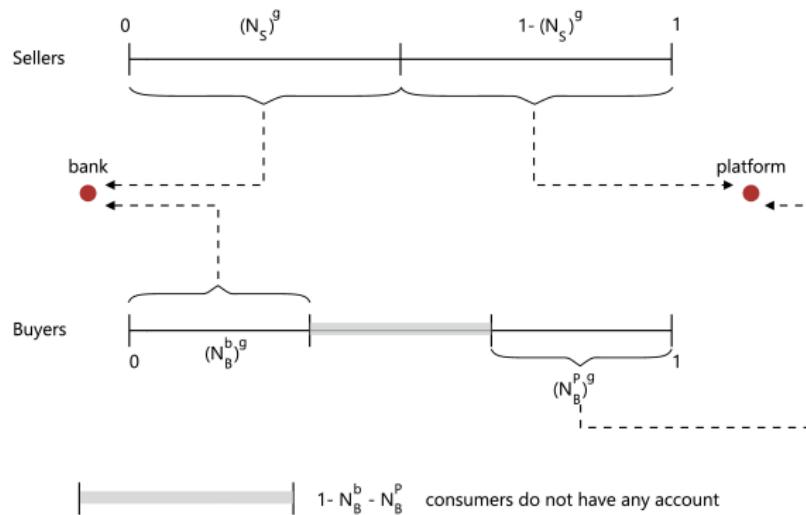
Illustration : walled gardens

Unrestricted

Introduction

Literature

Roadmap


Model and
walled
gardens

FPS

CBDC

Conclusion

Payment systems with walled gardens Figure 1

Source: Authors' elaboration.

Properties of walled gardens

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- Number of bank depositors increases with number of brick and mortar merchants :

$$N_B^b = \frac{r\alpha}{t_B} N_S$$

- Number of platform users increases with number of online merchants :

$$N_B^p = \frac{r\alpha(1 - N_S)}{t_B}$$

- Equilibrium is inefficient :

- financial exclusion : $1 - \frac{r\alpha}{t_B}$ consumers have no accounts,
- low volume of trade : $V^G = \frac{r\alpha}{2t_B}$,
- merchant fees : $f^b = f^p = t_S - \frac{r(1-r)\alpha^2}{t_B}$.

Introducing a fast payment system

Introduction
Literature
Roadmap
Model and walled gardens
FPS
CBDC
Conclusion

We model an FPS as a system ensuring the transfer of money between any private accounts at zero cost.

New intermediaries (non-bank PSPs) provide universal access for zero fees but the quality of service w.r.t. the intermediaries is reduced by a factor $q \in (0, 1)$.

- Number of bank depositors decreases :

$$N_B^b = \frac{r\alpha}{t_B} (1 - q) N_S$$

- Equilibrium is more efficient :

- financial exclusion disappears,
- the market share of financial intermediaries on the consumer side is reduced by a factor $(1 - q)$,
- maximum volume of trade : $V^F = 1$,
- merchant fees increase : $f^b = f^p = t_S - \frac{r(1-r)(1-q)^2\alpha^2}{t_B}$,
- the profits of the intermediaries increase.

A CBDC as an alternative form of money

We model the (retail) CBDC as electronic cash : all consumers can pay with it for free, but the quality of service w.r.t. the intermediaries is reduced by a factor $q \in (0, 1)$ determined by the central bank.

- Many similarities between CBDC and FPS : universal access to digital payments at no cost.
- However there are differences : CBDC transfers public money while FPS transfers commercial bank money. Moreover, only regulated intermediaries have access to the CBDC (not the PSPs).
- We assume that these intermediaries offer CBDC payment services at no fee for users, but with a fee for merchants.
- **Equivalence result** : if quality of service is the same as with an FPS, a CBDC is equivalent (in our model) to an FPS.

Discussion : comparing FPS and CBDC

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

Both systems have a lot in common :

- Improve financial inclusion
- Increase trade opportunities

But they also have important specificities :

- Public money vs commercial money
- FPS more inclusive than CBDC

Design and architecture matter a lot.

Discussion : design possibilities

Introduction
Literature
Roadmap
Model and
walled
gardens
FPS
CBDC
Conclusion

- The CBDC is distributed by incumbent intermediaries, in addition to PSPs
 - Consumers trade off between a full service account with a maximum quality of service and a CBDC wallet
 - In that case, the risk of disintermediation is less acute because incumbent intermediaries keep the management of CBDC deposits, which might be used as reserves
 - The quality of service q may be controlled by the central bank
- The CBDC is integrated within an existing FPS
 - This solution avoids a costly duplication of infrastructure
 - One potential drawback could be the concentration of risks (such as cyber risk) in one infrastructure
- CBDC and disintermediation
 - The trade-off for public authorities is between disintermediation which increases for a higher q and financial inclusion (more buyers and sellers benefit from a higher quality of service)

Conclusion

Introduction

Literature

Roadmap

Model and
walled
gardens

FPS

CBDC

Conclusion

- Our results suggest that public provision of payment infrastructure (FPS or CBDC) will affect market structure and pricing in the market for payment services.
- A CBDC or a FPS could improve financial inclusion in emerging market and developing economies but (in our model) at the expense of higher merchant fees.
- This new organisation of payment systems can create complex trade-offs between competition, financial inclusion and qualities of service.