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Introduction
Impulse response function (IRF) for horizon h € No:
0" = B [E[Yepn| D = 1, Xe] — E[Yesn| De = 0, X¢]]

where we observe {(Y:, X;, D) : t € T} and Dy is a discrete policy
variable.
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where we observe {(Y;, X;, D) : t € T} and Dy is a discrete policy
variable.

» Effect of monetary policy decision on macroeconomic aggregates;
D, € {-0.50,—0.25,0.00,40.25,40.50}
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Impulse response function (IRF) for horizon h € No:
03" = E[E[Yers| De = 1, X] — E[Yers| D = 0.X]]

where we observe {(Y;, X;, D) : t € T} and Dy is a discrete policy
variable.

» Effect of monetary policy decision on macroeconomic aggregates;
D, € {-0.50,—0.25,0.00,40.25,40.50}
» Random forest to predict inflation (Medeiros et al., 2021)

» Price impact of order submission in financial markets;
D, € {"USD 1M sell","no order submission”,"USD 1M buy"}

» Recurrent neural networks to predict high-frequency price changes
(Lucchese et al., 2024; Zhang et al., 2019)

Our contribution: bring ML-based estimation approaches for
cross-sectional data (Chernozhukov et al., 2018) to a time series setting.
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Plug-in estimator

1. Estimate nuisance functions (conditional expectations) using an
appropriate ML algorithm: E[Y; 14Dy = d, X;]
2. Estimate the impulse response function:
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Figure: True and estimated IRF across 1’000 simulated samples using Random
Forest
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Element 1 - Correct for plug-in bias

Recover the quantity of interest as
40— e[ (20:50)]
where Zt(h) = (Yien, X¢, D) and

g (Z}h); ro) —E[Yyin|De = 1, Xe] — E[Yern|De = 0, X:]
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Element 1 - Correct for plug-in bias

Recover the quantity of interest as
40— e[ (20:50)]
where Zt(h) = (Yien, X¢, D) and

g (Z}h); ro> —E[Yyin|De = 1, Xe] — E[Yern|De = 0, X:]
D,
P = X4
1- D,
11— Pr[D; = 1]X]

(Yt+h - E[YH;,\Dt = 1aXt])

(Yern — E[Yern| De = 0, Xe])

Neyman orthogonality: small deviations from the true nuisance functions
(cond. expectations and probabilities) have no first-order effect on the

estimation of 9(()'7)
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Neyman orthogonal estimator

1. Estimate nuisance functions using appropriate ML algorithms:
f= (niz[vt+,,\Dt =d, X, Pr[D; = 1|Xt]>
2. Estimate the impulse response function:

o = 177 7 >e(2)

teT
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Element 2 - Cross-fitting to mitigate overfitting

z{

zin
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1. Estimate nuisance functions using appropriate ML algorithms on S,
Sp, Sui = (I@[Yt+h|Dt = d, X, Pr[D, = 1|Xt])

2. Estimate the impulse response function on S3:
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1. Estimate nuisance functions using appropriate ML algorithms on S,
Sp, Sui = (I@[Yt+h|Dt = d, X, Pr[D, = 1|Xt])

2. Estimate the impulse response function on S3:

sy 1 (h). p
04 —@Zg(zt f)

teTs

3. Repeat steps 1. and 2. and obtain IRF estimate: %ZLI ég’)
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Double machine learning estimator

Consistent and asymptotic normally distributed IRF estimator converging
at parametric rate when combining:

» Element 1: Neyman orthogonality
» Element 2: K-fold cross-fitting

Figure: True and estimated IRF across 1’000 simulated samples using Random
Forest
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Valid inference across different sample sizes

Table: Simulation results for horizon h = 0 for different sample sizes

Neyman orthogonal + Cross-fitting Plug-in Neyman orthogonal
T | Bias std(fy) RMSE Cy(95%) | Bias std(d) RMSE Cp(95%) | Bias std(dy) RMSE Cy(95%)
125 | 0.053 0.797  0.799 0.945 | 0.360 0.455  0.580 0.511 | 0.263 0.413  0.490 0.707
250 | 0.060 0.398  0.402 0.949 | 0.285 0.300 0.413 0.514 | 0.208 0.278  0.347 0.732
500 | 0.030 0.220 0.222 0.954 | 0.219 0.196  0.294 0.464 | 0.142 0.183  0.232 0.776
1'000 | 0.029 0.144  0.147 0.931 | 0.182 0.139  0.229 0.422 | 0.103 0.131  0.167 0.784
8'000 | 0.006 0.042  0.042 0.966 | 0.176 0.048  0.182 0.016 | 0.040 0.042  0.058 0.853

8/26



Comaprison to local projections
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Summary of key assumptions

> g (Zt(h); F0> satisfies assumptions for the central limit theorem for
a-mixing processes.
» Machine learners converge fast enough to the true nuisance

functions y: product of their Ly-norm approximation error
converges at rate v/ T.

> Zt(h) is a-mixing such that after removing k1 observations between
training and inference sample, they become asymptotically
independent.

10/26



Theoretical result

Theorem
Given the stochastic process S = {Zt(h) it €T}, define K > 2

sub-sequences S; = {Zt(h) ite T,-}. Define the estimator as

o = Z Tilg00 it

i=1

Z( hF5>

teTi

~[7i

where the nuisance functions fg_i are estimated using the sub-sequence
S_i={Z" t e T_}. It holds that

VT —6) 5w (0, V") .
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Conclusion and outlook

» Semiparametric estimator that opens up the possibility to use
machine learning approaches to estimate IRFs

» Provide theoretical results of the estimator’'s asymptotic consistency
and normality

» Simulation results and empirical application provide evidence of
finite sample performance of the estimator

> Restriction: estimator requires a discrete policy variable D; (or
appropriate discretization)

» Work-in-progress: partially linear local projections estimator that
relaxes this restriction

Yt+h = QSh)Dt + m(Xt) + €t+h
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Further references

» Adamek, Smeekes, and Wilms (2024): inference for high-dimensional
penalized local projections

» Paranhos (2025): generalized random forest for locally linear local
projections in a panel setting

» Hauzenberger, Huber, Klieber, and Marcellino (2025): impulse
response functions computed from Bayesian neural networks

» Angrist, Jorda, and Kuersteiner (2018) and Jorda and Taylor (2016):
use inverse probability weighting to estimate IRFs

» Coulombe and Klieber (2025): plug-in estimator with random forests
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Plug-in bias

lllustrative decomposition of the plug-in estimator:
~ 1
VT (- 00) fﬁ Z (8(2::T0) — 60)

t—IE Ye|Dy =1, X¢
;(Prwt_l‘xt]( [vel )

1— D¢

“ihm - =0)

+ “empirical process’ + “reminder”

Neyman orthogonality: 8,E[g(Z:; o + r(I" — o))]

r=0
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Simulation study data generating process

Y: = b(Xt) + (Dt — 0.5) 7(X¢) + v Y1 + €,

with
-1
eo(Xe) = (146700 4+ eer)
b(X:t) = 0.5 ((X1,t + X2t + X3,6) " + (Xae + X5,6) ™)
T(Xe) = (Xa,e + Xoe + X3,6) T — (Xaye + Xs,e) T
and

et = 0t(t, ¢t ~N(0,1) and U$=W+BIC$_1+52€T$_1
P q

Xe =Y AXe i+ > Muj+u,  ue~N(0,0%h)
i=1 j=1

Dt‘Xt ~ Ber (eg(Xt))
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Assumptions |

Assumption
For some 3 > 2, the following conditions hold.

1. The stochastic process G is weakly stationary.

2. For thehvariance it holds that ,
0< Vé ) — limr_ o Var [\%T DT & (Z,E ), h; ro)].

B
3. G is uniformly Lg-bounded, i.e. sup;cE Ug (Zt(h), h; r0>‘ i| < 00.

4. G is a-mixing, with coefficients a(s), s € N, satisfying 322, a(s)(#=2)/8 < o,
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Assumptions |l

Assumption
Let the realization set be E(Th), which is a shrinking neighborhood of the true nuisance
functions Ty = (uo(d, x, h), eo(x)). Let {At}7>1 and {d7}7>1 be sequences of
positive constants converging to zero.
Define the statistical rates r,, T = sup;c7 Sup = [|1(Dt, Xe, h) — po(Ds, Xt, h)|l,
T
and re, T = supicT Sup__—(n lle(Xt) — eo(Xt)|l,. Let C be a fixed strictly positive
-T

constant. For all i =1,...,K and h € Ny, the following conditions hold.

1. The nuisance function estimators fsﬂ. belong to E(ﬁ) with probability at least

1- A7
2. For g > 2, we have SUP¢cT SUP , =(h) l(De, Xe, h) — po(De, Xe, h)||; < € < o0
-T

and supee7sup___ [le(Xe) — eo(Xe)ll, < € < oo,
=

3. r, T <dr, re,T <1 and ru, T e, T < T71/267'.

4. SupreT SUP,__(n) le(X:) —1/2|| <1/2—n for0<n <1
-T

5. sup,cr E [(YH,, — uo(d, Xe, h))? | Xe, Dy = d] <& < oo
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Assumptions Il

Assumption

For all t € T and h € Ng we have that
E[Yern|Xe, Dt = d, {Z - u € T, u < t}] = E[Yyup|Xe, D¢ = d] and
E[De|Xe, {Z8 : u € T, u < t}] = E[D] Xi].
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Assumptions |V

Assumption
For d € {0,1}, h € Ng and some scalar constant p > 1 the following conditions hold.
1. kr = O(T).
2. The nuisance functions po(d, x, h), eo(x) and the functions
u(d, x, h),e(x) € 5(7{') are measurable.
3. Forforr>pand1l/r=1/r" +1/r", we have
SUPtcT ||5UPM€:(h) (N’(dv Xtr h) - /"O(dv Xt: h))||2r’ < oo and
-T
sup;cr lleo(Xe) — Dellp,n < oo.

4. Forg>pandl/q=1/q +1/q", we have
sup;e [Isup, _—(n (e(Xt) — eo(Xe))ll2q < 00 and
=T
supser || Ye — po(De, X, h)”zq” < oo.

5. The stochastic process S = {Zt(h) 1t € T} is a-mixing with coefficients a(s),
satisfying for T — oo that o (k7)¥ = o(T~1), where 1) = 1/p — 1/ min(r, q).
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Variance estimator |

Assumption
The following conditions hold.
1. There are some f/;<ed finite constants C and r > 4 such that
supteTE Hg (Zt( ), h; Fg)‘ ] < C.

2. There exists a measurable function m(z) such that suprc=, |g(z, h;T)| < m(z),
where for some finite constant D, sup,cy E[m(Z:)?] < D.

3. For g > 2 and some fixed strictly positive and finite constant C we have
suprer || Yellg < C.
4. For some scalar 0 < by < b, < 1/2 it holds that:

4.1 The bandwidth mt is a function of the sample size such that
lim7_ 00 mT = 00 and for T — oo it holds that T—bmm+ = o(1).

4.2 T < 6TT_b’ and re,T < 5TT_b'.
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Variance estimator |l

Theorem

Given the stochastic process S = {Zt(h) . t € T}, define the sub-sequences S; for
i=1,...,K > 2. Furthermore, define vt(h) =g (Zt(h), h; Fo> — 08’7). Let

w(s,mr) =1—s/(my + 1), where my is a bandwidth parameter. Moreover, define

the following Newey and West (1987) type variance estimators for each sub-sequence
as

‘75(;'7): |71—.| (Z 57,, +2Z w(s, mr) Z AUL),, ‘75/1,,1’ s)‘

teT; t€77 s

The variance estimator is finally defined as

As T — oo it holds that

with measure P.
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Empirical results (Angrist et al., 2018)

Percentage points [pp]
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