
Semiparametric inference for impulse response
functions using double/debiased machine learning

Daniele Ballinari & Alexander Wehrli

Swiss National Bank

ASSA 2026

Disclaimer: The views, opinions, findings, and conclusions or recommendations
expressed in this paper are strictly those of the authors. They do not
necessarily reflect the views of the Swiss National Bank (SNB). The SNB takes
no responsibility for any errors or omissions in, or for the correctness of, the
information contained in this paper.

1 / 26



Introduction
Impulse response function (IRF) for horizon h ∈ N0:

θ
(h)
0 = E [E[Yt+h|Dt = 1,Xt ]− E[Yt+h|Dt = 0,Xt ]]

where we observe {(Yt ,Xt ,Dt) : t ∈ T } and Dt is a discrete policy
variable.

▶ Effect of monetary policy decision on macroeconomic aggregates;
Dt ∈ {−0.50,−0.25, 0.00,+0.25,+0.50}

▶ Random forest to predict inflation (Medeiros, Vasconcelos, Álvaro
Veiga, & Zilberman, 2021)

▶ Price impact of order submission in financial markets;
Dt ∈ {“USD 1M sell”, “no order submission”, “USD 1M buy”}

▶ Recurrent neural networks to predict high-frequency price changes
(Lucchese, Pakkanen, & Veraart, 2024; Zhang, Zohren, & Roberts,
2019)

Our contribution: bring ML-based estimation approaches for
cross-sectional data (Chernozhukov et al., 2018) to a time series setting.

Further references
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Plug-in estimator
1. Estimate nuisance functions (conditional expectations) using an

appropriate ML algorithm: Ê[Yt+h|Dt = d ,Xt ]

2. Estimate the impulse response function:

θ̂
(h)
RA =

1
|T |

∑
t∈T

Ê[Yt+h|Dt = 1,Xt ]− Ê[Yt+h|Dt = 0,Xt ]

Figure: True and estimated IRF across 1’000 simulated samples using Random
Forest
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Element 1 - Correct for plug-in bias

Recover the quantity of interest as

θ
(h)
0 = E

[
g
(
Z

(h)
t ; Γ0

)]
where Z

(h)
t = (Yt+h,Xt ,Dt) and

g
(
Z

(h)
t ; Γ0

)
=E[Yt+h|Dt = 1,Xt ]− E[Yt+h|Dt = 0,Xt ]

+
Dt

Pr[Dt = 1|Xt ]
(Yt+h − E[Yt+h|Dt = 1,Xt ])

− 1 − Dt

1 − Pr[Dt = 1|Xt ]
(Yt+h − E[Yt+h|Dt = 0,Xt ])

Neyman orthogonality: small deviations from the true nuisance functions
(cond. expectations and probabilities) have no first-order effect on the
estimation of θ(h)0

Neyman orthogonality
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Neyman orthogonal estimator
1. Estimate nuisance functions using appropriate ML algorithms:

Γ̂ =
(
Ê[Yt+h|Dt = d ,Xt ], P̂r[Dt = 1|Xt ]

)
2. Estimate the impulse response function:

θ̂
(h)
DR =

1
|T |

∑
t∈T

g
(
Z

(h)
t ; Γ̂

)

Figure: True and estimated IRF across 1’000 simulated samples using Random
Forest
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Element 2 - Cross-fitting to mitigate overfitting

S1 S2

kT

S3

kT

S4

Z
(h)
1 Z

(h)
T. . .

1. Estimate nuisance functions using appropriate ML algorithms on S1,
S2, S4: Γ̂ =

(
Ê[Yt+h|Dt = d ,Xt ], P̂r[Dt = 1|Xt ]

)
2. Estimate the impulse response function on S3:

θ̂
(h)
S3

=
1

|T3|
∑
t∈T3

g
(
Z

(h)
t ; Γ̂

)

3. Repeat steps 1. and 2. and obtain IRF estimate: 1
4

∑4
i=1 θ̂

(h)
Si
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Double machine learning estimator

Consistent and asymptotic normally distributed IRF estimator converging
at parametric rate when combining:
▶ Element 1: Neyman orthogonality
▶ Element 2: K -fold cross-fitting

Figure: True and estimated IRF across 1’000 simulated samples using Random
Forest
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Valid inference across different sample sizes

Table: Simulation results for horizon h = 0 for different sample sizes

Neyman orthogonal + Cross-fitting Plug-in Neyman orthogonal
T Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.053 0.797 0.799 0.945 0.360 0.455 0.580 0.511 0.263 0.413 0.490 0.707
250 0.060 0.398 0.402 0.949 0.285 0.300 0.413 0.514 0.208 0.278 0.347 0.732
500 0.030 0.220 0.222 0.954 0.219 0.196 0.294 0.464 0.142 0.183 0.232 0.776

1’000 0.029 0.144 0.147 0.931 0.182 0.139 0.229 0.422 0.103 0.131 0.167 0.784
8’000 0.006 0.042 0.042 0.966 0.176 0.048 0.182 0.016 0.040 0.042 0.058 0.853

Details simulation

8 / 26



Comaprison to local projections
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(a) Nonlinear DGP
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(b) Linear DGP

0 1 2 3 4 5
h

0.4

0.2

0.0

0.2

0.4

0.6

0.8

IR
F

(h)
0

DML
LP

(c) Linear DGP with interactions 9 / 26



Summary of key assumptions

▶ g
(
Z

(h)
t ; Γ0

)
satisfies assumptions for the central limit theorem for

α-mixing processes.
▶ Machine learners converge fast enough to the true nuisance

functions Γ0: product of their L2-norm approximation error
converges at rate

√
T .

▶ Z
(h)
t is α-mixing such that after removing kT observations between

training and inference sample, they become asymptotically
independent.

Assumptions
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Theoretical result

Theorem
Given the stochastic process S = {Z (h)

t : t ∈ T }, define K ≥ 2
sub-sequences Si =

{
Z

(h)
t : t ∈ Ti

}
. Define the estimator as

θ̂(h) =
K∑
i=1

|Ti |
T

θ̂
(h)
Si

with

θ̂
(h)
Si

=
1
|Ti |

∑
t∈Ti

g
(
Z

(h)
t , h; Γ̂S−i

)
,

where the nuisance functions Γ̂S−i are estimated using the sub-sequence
S−i = {Z (h)

t : t ∈ T−i}. It holds that

√
T (θ̂(h) − θ

(h)
0 )

d→ N
(
0,V (h)

0

)
.
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Conclusion and outlook

▶ Semiparametric estimator that opens up the possibility to use
machine learning approaches to estimate IRFs

▶ Provide theoretical results of the estimator’s asymptotic consistency
and normality

▶ Simulation results and empirical application provide evidence of
finite sample performance of the estimator

▶ Restriction: estimator requires a discrete policy variable Dt (or
appropriate discretization)

▶ Work-in-progress: partially linear local projections estimator that
relaxes this restriction

Yt+h = θ
(h)
0 Dt +m(Xt) + ϵt+h

12 / 26
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Further references

▶ Adamek, Smeekes, and Wilms (2024): inference for high-dimensional
penalized local projections

▶ Paranhos (2025): generalized random forest for locally linear local
projections in a panel setting

▶ Hauzenberger, Huber, Klieber, and Marcellino (2025): impulse
response functions computed from Bayesian neural networks

▶ Angrist, Jordà, and Kuersteiner (2018) and Jordà and Taylor (2016):
use inverse probability weighting to estimate IRFs

▶ Coulombe and Klieber (2025): plug-in estimator with random forests

Back to Introduction

17 / 26



Plug-in bias

Illustrative decomposition of the plug-in estimator:

√
T

(
θ̂ − θ0

)
=

1
√
T

∑
t∈T

(
g(Zt ; Γ0)− θ0

)
−

1
√
T

∑
t∈T

( Dt

P̂r[Dt = 1|Xt ]
(Yt − Ê[Yt |Dt = 1,Xt ])

−
1 − Dt

1 − P̂r[Dt = 1|Xt ]
(Yt − Ê[Yt |Dt = 0,Xt ])

)
+ “empirical process” + “reminder”

Neyman orthogonality: ∂rE[g(Zt ; Γ0 + r(Γ̂− Γ0))]

∣∣∣∣
r=0

= 0

Back
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Simulation study data generating process

Yt = b(Xt) + (Dt − 0.5) τ(Xt) + γYt−1 + ϵt ,

with

e0(Xt) =
(
1 + e−X1,t + e−X2,t

)−1

b(Xt) = 0.5
(
(X1,t + X2,t + X3,t)

+ + (X4,t + X5,t)
+
)

τ(Xt) = (X1,t + X2,t + X3,t)
+ − (X4,t + X5,t)

+

and

ϵt = σtζt , ζt ∼ N (0, 1) and σ2
t = ω + β1ζ

2
t−1 + β2σ

2
t−1

Xt =

p∑
i=1

AiXt−i +

q∑
j=1

Mjut−j + ut , ut ∼ N (0, σ2
u In)

Dt |Xt ∼ Ber (e0(Xt))

Back
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Assumptions I

Assumption
For some β > 2, the following conditions hold.

1. The stochastic process G is weakly stationary.

2. For the variance it holds that
0 < V

(h)
0 = limT→∞ Var

[
1√
T

∑
t∈T g

(
Z

(h)
t , h; Γ0

)]
.

3. G is uniformly Lβ-bounded, i.e. supt∈T E
[∣∣∣g (

Z
(h)
t , h; Γ0

)∣∣∣β] <∞.

4. G is α-mixing, with coefficients α(s), s ∈ N, satisfying
∑∞

s=1 α(s)
(β−2)/β <∞.
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Assumptions II

Assumption
Let the realization set be Ξ

(h)
T , which is a shrinking neighborhood of the true nuisance

functions Γ0 = (µ0(d , x , h), e0(x)). Let {∆T }T≥1 and {δT }T≥1 be sequences of
positive constants converging to zero.
Define the statistical rates rµ,T = supt∈T sup

µ∈Ξ
(h)
T

∥µ(Dt ,Xt , h)− µ0(Dt ,Xt , h)∥2

and re,T = supt∈T sup
e∈Ξ

(h)
T

∥e(Xt)− e0(Xt)∥2. Let C be a fixed strictly positive

constant. For all i = 1, ...,K and h ∈ N0, the following conditions hold.

1. The nuisance function estimators Γ̂S−i
belong to Ξ

(h)
T with probability at least

1 −∆T .

2. For q > 2, we have supt∈T sup
µ∈Ξ

(h)
T

∥µ(Dt ,Xt , h)− µ0(Dt ,Xt , h)∥q ≤ C <∞

and supt∈T sup
e∈Ξ

(h)
T

∥e(Xt)− e0(Xt)∥q ≤ C <∞.

3. rµ,T ≤ δT , re,T ≤ δT and rµ,T · re,T ≤ T−1/2δT .

4. supt∈T sup
e∈Ξ

(h)
T

∥e(Xt)− 1/2∥∞ ≤ 1/2 − η for 0 < η < 1.

5. supt∈T E
[
(Yt+h − µ0(d ,Xt , h))

2 |Xt ,Dt = d
]
≤ ϵ2d <∞
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Assumptions III

Assumption
For all t ∈ T and h ∈ N0 we have that
E[Yt+h|Xt ,Dt = d , {Z (0)

u : u ∈ T , u < t}] = E[Yt+h|Xt ,Dt = d ] and
E[Dt |Xt , {Z (0)

u : u ∈ T , u < t}] = E[Dt |Xt ].
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Assumptions IV

Assumption
For d ∈ {0, 1}, h ∈ N0 and some scalar constant p ≥ 1 the following conditions hold.

1. kT = O(T ).

2. The nuisance functions µ0(d , x , h), e0(x) and the functions
µ(d , x , h), e(x) ∈ Ξ

(h)
T are measurable.

3. For for r > p and 1/r = 1/r ′ + 1/r ′′, we have
supt∈T ∥sup

µ∈Ξ
(h)
T

(µ(d ,Xt , h)− µ0(d ,Xt , h))∥2r′<∞ and

supt∈T ∥e0(Xt)− Dt∥2r′′ <∞.

4. For q > p and 1/q = 1/q′ + 1/q′′, we have
supt∈T ∥sup

e∈Ξ
(h)
T

(e(Xt)− e0(Xt))∥2q′<∞ and

supt∈T ∥Yt − µ0(Dt ,Xt , h)∥2q′′ <∞.

5. The stochastic process S = {Z (h)
t : t ∈ T } is α-mixing with coefficients α(s),

satisfying for T → ∞ that α (kT )
ψ = o(T−1), where ψ = 1/p − 1/min(r , q).

Back
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Variance estimator I

Assumption
The following conditions hold.

1. There are some fixed finite constants C and r > 4 such that
supt∈T E

[∣∣∣g (
Z

(h)
t , h; Γ0

)∣∣∣r] < C .

2. There exists a measurable function m(z) such that supΓ∈ΞT
|g(z, h; Γ)| < m(z),

where for some finite constant D, supt∈T E[m(Zt)2] < D.

3. For q > 2 and some fixed strictly positive and finite constant C we have
supt∈T ∥Yt∥q ≤ C .

4. For some scalar 0 < bm < br ≤ 1/2 it holds that:

4.1 The bandwidth mT is a function of the sample size such that
limT→∞ mT = ∞ and for T → ∞ it holds that T−bmmT = o(1).

4.2 rµ,T ≤ δTT
−br and re,T ≤ δTT

−br .

24 / 26



Variance estimator II

Theorem
Given the stochastic process S = {Z (h)

t : t ∈ T }, define the sub-sequences Si for
i = 1, ...,K ≥ 2. Furthermore, define v

(h)
t = g

(
Z

(h)
t , h; Γ0

)
− θ

(h)
0 . Let

w(s,mT ) = 1 − s/(mT + 1), where mT is a bandwidth parameter. Moreover, define
the following Newey and West (1987) type variance estimators for each sub-sequence
as

V̂
(h)
Si

=
1
|Ti |

∑
t∈Ti

(v̂
(h)
S−i ,t

)2 + 2
mT∑
s=1

w(s,mT )
∑

t∈Ti,s

v̂
(h)
S−i ,t

v̂
(h)
S−i ,t−s

 .

The variance estimator is finally defined as

V̂ (h) =
K∑
i=1

|Ti |
T

V̂
(h)
Si

As T → ∞ it holds that ∣∣∣V̂ (h) − V
(h)
0

∣∣∣ p→ 0

with measure P.
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Empirical results (Angrist et al., 2018)
(a) Federal Funds Rate
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(b) Unemployment Rate
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