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Motivation:

Many many risk factors have been found to "explain" the
cross-section of expected asset returns.

It is hard to comprehend that so many factors can explain the cross
section of asset returns which more than hints at problems with the
employed two pass Fama-MacBeth (FM) procedure.

It has been documented for about twenty years, parallel to the weak
instrument literature, that the risk premia on many risk factors are
not well identified so their FM t-tests cannot be taken at face value.
Awareness is currently emerging that this provides a major obstacle
for empirical asset pricing.

The identification issues similarly arise for bond pricing models.
Identification strength is further reduced because asset pricing models
are misspecified and identification conditions are more stringent in
misspecified models compared to correctly specified models.

Using a large cross-section of individuals asset returns alleviates
identification issues compared to a small number of portfolio returns.
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Review talk of papers on the topics of:

@ Identification issues and robust inference for beta pricing with linear
factor model: Kleibergen (JOE, 2009), Kleibergen and Zhan (JOE,
2015, JF 2020, JFEC 2018), Kleibergen, Kong and Zhan (JFEC,
2023)

@ Risk premia from the cross-section of individual assets: Kleibergen
and Zhan (JOE, 2025)

e Dynamic affine term structure model: Kleibergen and Kong (JOE,
2025)

@ Misspecification and identification: Kleibergen and Zhan (QE, 2025
+ working paper)
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Outline:

Beta asset pricing with linear factor model

Fama-MacBeth two-pass procedure

Cross-sectional R?

Risk premia from the cross-section of individual asset returns
Different factors stand out when using assets vs portfolios
Dynamic Affine Term Structure Model (DATSM)

Misspecification and identification

Conclusions
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Beta asset pricing with linear factor model

Premia on risk factors result from linear factor model:
pr,=E(Rit) = Ao+ Birr, i=1,...N,

where Ag is the zero-beta return, As the k-dimensional risk premium
vector on the k risk factors, B, is a k-dimensional vector that results from
a time-series regression of the i-th asset return on the k risk factors and
Ri + is the excess return on the i-th asset at time t.

Linear asset pricing started with the Capital Asset Pricing Model (CAPM).

The one risk factor, market return, from the CAPM is too limited to
explain the cross-section of asset returns.

Many many additional risk factors have therefore been discovered using
the Fama MacBeth (1973, FM) two pass procedure:
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Fama MacBeth (1973, FM) two pass procedure:

The FM two pass procedure estimates the risk premia on the betas
associated with the k x 1 dimensional risk factor f;, t=1,..., T, in two
steps (passes):

© Time-series regressions: Estimate the betas, p;, i =1,..., N, of
the N factor models:

Rit=ci+ f{B;+ vir, t=1,...,T,

with v; ; the error term, using linear regression to obtain Bi.
@ Cross-section regression: For B = (B,...By) . R=(F...7),
F = %Zthl R; +, estimate Ag and Af in:

R =1inA +B/\f + v,

using linear regression, with 1y the N-dimensional vector of ones.
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For asset returns, it is common to use portfolio returns, like, for example,
the 25 Fama-French size and book to market sorted portfolios and
extensions thereof.

These portfolio returns exhibit a very strong factor structure: 95% of their
variation is explained by the largest three principal components in data
from Lettau and Ludvigson (2001):

Scree plot of the ten largest principal components of the twenty-five
Fama-French size and book to market sorted portfolios (1-st PC>2K)
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Factors thus have to correlate with the largest three principal components
to have meaningful risk premia.
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Risk premia from FM two-pass procedure are, however, gauged using:

@ cross-sectional R? of the second-pass regression

@ t-statistics of the risk premia estimates

Large and significant values of these measures are considered to be
indicative of relevant risk premia.
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Cross-sectional R?

The cross-sectional R? of the second pass regression is (very) sensitive to
the factor structure:

Simulated density function of cross-sectional R? using data calibrated to 25
size and book-to-market sorted portfolio with three Fama-French factors

one, two, three authentic factors one, two, three irrelevant factors

The cross-sectional R? is large due to factor structure irrespective of
whether the factors in the FM two-pass procedure capture it.
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Lettau and Ludvigson (2001) find a significant risk premium for the
interaction between the (lagged) consumption-wealth ratio and
consumption growth:

Risk premium A¢ in multi-factor models for LL (2001)

Risk factors Risk factors
Ac cay Acxcay Rn SMB HML
Af 0.02 -0.13 0.06 1.33 047 1.46
FMt 0.20 -0.43 3.13 0.83 0.94 3.24
Shanken t 0.15 -0.31 2.25 0.78 0.94 3.22
cross-section R2 0.698 0.803
Pseudo-R? 0.105 0.946

Pseudo-R? shows low percentage of the variation explained in the first
pass regression when using Ac, cay, AcXcay, as risk factors.

Pseudo-R? is large when using the three Fama-French factors.

Low Pseudo-R? indicates that high cross-section R? and significant
t-statistic on Acxcay are spurious despite their large values.

Large cross-section R? results from the strong factor structure shown by
the scree plot.
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one-minus p-value plots using Lettau-Ludvigson (2001) for:
Identification robust: FAR (dotted), FLR (dashed),
FLM (solid-plusses), FJLM (dash-dotted)
Non-robust: Shanken t (solid), MLE t (points)

e

risk premium on Ac X cay using
(Ac, cay, Acxcay) as factors

risk premium of r,, using
(fuw, SMB, HML) as factors
rww - similar p-values for identification robust and non-robust tests.
Ac X cay : Shanken t-test rejects zero with 5% significance, identification

robust tests do not reject any risk premium at 5%.
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The cross-sectional R? and t-tests for Lettau-Ludvigson (2001) illustrate
that they set a too low bar for gauging risk factors.

These results similarly apply to many other papers in asset pricing and
partly explain the zoo of risk factors that have been proposed.

The identification robust tests show that just a few risk factors matter.

One of the reasons for the poor identification of risk premia is the usage of
portfolios which average over the betas of the individual assets because of
which there is often too little variation in the betas.

This is alleviated when using individuals assets instead of portfolios.
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market betas estimated using portfolios vs. stocks
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Risk premia from the cross-section of individual asset returns

For individual assets, it is convenient to use a short panel set up where N
is large and T is small, to capture time variation of the risk premia.

We then care about the ex post risk premia:
Af = )\pOp,f + f— E(ft)v

with f the average of the factors and A, ¢ the population risk premia.
Since T is small, B from ‘Ehe first pass of the FM two pass procedure is not
consistent, and similarly Af, we have to correct for estimation noise for
consistent ex-post risk premia estimation.

Shanken (1992) bias-adjusted estimator:

-1, _

~ Al ~ N _
)\f,Shanken = (,B MLN,B - ¥w2 Q[:[:l) ﬁ MlN Rv

with @? estimator of the approximate common variance across assets, Qrf
factor covariance (matrix).
Raponi, Robotti, and Zaffaroni (2020) construct the covariance matrix of

)\f,Shanken-
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Continuous Updating Estimator

The continuous updating estimator (CUE) of Af can be written as
(=so-called k-class notation of limited information maximum likelihood
estimator):

A A I\l _
Arcve = (BMup =1, Qet) MR
with g . the smallest root of the characteristic polynomial:
1 0 Y A
FF
Recall that:

-1
2 arooa o N, N =
Af,Shanken = <ﬁ Mz,\,,B - 76&)2 QFI-}> :B MLNR.

Kleibergen, Kong and Zhan () Identification of risk premia ASSA Philadelphia 2026 15 / 41



Since we have many assets, the beta-pricing moment condition will only
hold approximately and there will be misspecification because of
unobserved priced risk factors.

The object of interest is then no longer the ex-post risk premia but the
pseudo-true value which is the minimizer of the (conditional) population
objective function.

For the CUE:
B,MlNB ~ Fmin QE/—}
is guaranteed to be positive definite because y,; is always exceeded by
the smallest eigenvalue of QFFB/MLNB.
For the Shanken estimator, it is, however, not ensured that

N ~ N 5
:B MlN:B - ?C‘)QQFI-}v

is positive definite so Raponi, Robotti, and Zaffaroni (2020) apply
shrinkage when invertibility is at stake.
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Five tests on ex post risk premium/pseudo true value and when
they are valid:

@ t test by Shanken (1992) and Raponi, Robotti, and Zaffaroni (2020):
» Strong identification, no unobserved priced factors

@ t test based on CUE:

» Strong identification, unobserved priced factors

FAR test based on the CUE objective function:

» Weak identification, no unobserved priced factors

LM test based on the score/derivative of the CUE objective function:
» Weak identification, unobserved priced factors (double robust)
o LR test based on combining FAR and LM:

» Weak identification, no unobserved priced factors.

Kleibergen, Kong and Zhan () Identification of risk premia ASSA Philadelphia 2026 17 / 41



Simulation experiment illustrating size and power of these five tests on the
pseudo-true value:

Rejection frequencies of tests of
Ho : Af = 1 for correct beta pricing
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Rejection frequencies of tests of Hy : A7 = 1 for misspecified
beta pricing with priced unobserved risk factors
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Market risk premium in Fama-French three factor model (FF3)

[NTENCTNRIRING o]

1975 1980 1985 1990 1995

Bias-adjusted estimates and 95% confidence sets from the t-test
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95% confidence sets from the LM test

2005
Point estimates vs. average market return

Note periods of indefiniteness of BIMLNB — #(212 Qg7 because of which
signs of CUE and bias-adjusted estimator differ
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Different risk factors stand out when using assets vs portfolios

Risk premia from the CUE and the LM test in
Fama-French (2018) 6 factor model, monthly data
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Risk premia from the CUE and the LM test in FF6, monthly data
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Positive risk premia mostly on market, SMB and UMD and much less so
on HML, RMW and CMA
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o Identification of (pseudo-true values of) risk premia markedly
improves when using cross-section of assets compared to portfolios

@ More research needed to determine which risk factors stand out in the
cross-section of individual asset returns
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Dynamic Affine Term Structure Model (DATSM)

Identification issues of risk premia also appear in DATSMs where, for r;
the one period short rate and A; the market price of risk, the pricing kernel
is assumed exponential affine in innovation factors v; ~; ;4 N(0,%,) :

1
M1 = exp <—ft - 5/\;7& /\/Z Vt+1>

with the market price of risk A; an affine function of X; :

1
Ae =32 (Ao+Ave),

where Ag and A7 are a k-dimensional vector and k X k dimensional matrix
resp., and the k-dimensional vector of state variables X; results from a
VAR(1):

Xig1 = U+ PX¢ + Viq1.
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For ri+1 n the one-period excess holding return of a n-period bond at t +1,
(ft+1,n, Vt+1) jointly normal, DATSM implies, see Adrian et al (2013):

n 1
Et (res1n) = B (Ao + A1 Xe) — §Var(rt+1,n)r
with ﬁ(”) =X tcov(Vert, ret1n)-

Decomposing, re+1,n — Et (fe+1,n) into a component correlated with viq
and an uncorrelated component e;11, ,, and subtracting the time-series

average:

Feyin = ,B(H)/ (A1 X:) + ﬁ(n),‘_/t—i—l + & 11,0
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Stacking the equations for N different maturities:
Ret1 = B (A1 Xt) + BVes1 + €11,

. _ _ 1 _ _
Wlth Rt+1 = (rt+1,1 ‘e rt+1vN)’, [3 = (:B( ) .. .ﬁ(n))l, e = (etvl e eth)/,
brings out the close resemblance with the beta-pricing model for the return
on assets:

re+1 = BAr + Bfey1 + urta,

where r; is an N-dimensional vector with asset returns, B the N x k
dimensional beta matrix and F; a k-dimensional vector of risk factors.
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The similarity extends to the reduced rank structure that these models
impose:

DATSM:  Ry1= B (Al : /k> ( Xe )+et

Vi1

beta-pricing: rip1 = B (Af : /k) ( 1 ) + uy,

fry1

where the N x 2k and N x (k + 1) dimensional matrices f8 (Al ; Ik> and

B (A ; Ik) are each at most of rank k.
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The reduced rank structures imply the probability limits:

X\ X X\
DATSM: T Lo Rf( Vi1 ) [% Lo ( Vi1 ) ( Vet )

(10

1Y 1 1Y
oricing: LT 1yT
beta-pricing: TZt:l fe+1 ( Fii1 ) [T L1 < Fii1 ) ( Fei1 ) ] 7

()

so resp. the k smallest and the smallest singular values of these matrices
are zero.
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Plots of

15 ¢

selected excess returns Adrian et al (2013) (multiplied by 1200); level, slope and curvature
factors; and one macro factor (real economy, purple dashed curve)
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: 1T Xe \ |17 Xe X\
The (log) singular values of + 3,4 Rt( Orit ) TZt:l( Vei1 )( Per1 ) show that

from the fourth onwards they become rather small which indicates weak identification so the

test for rank 4 does not reject.

25
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7
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B with t-statistics: five factors (Adrian et al (2013))
Kleibergen-Paap (2006) rank statistic testing Hp : rank(f)=4: 1.6561 [0.9764].

By B, By Bs

©) 20.0094 0.0031 ~0.0008 0.0002 0.0000
(-2.5280) | (1.7589) | (-1.0449) | (0.3049) | (0.0244)

() -0.0213 0.0057 -0.0007 -0.0003 0.0002
(-2.7020) | (1.4951) | (-0.4025) | (-0.2417) | (0.1914)

3) -0.0446 0.0070 0.0010 -0.0005 -0.0001
(-2.5995) | (0.8482) | (0.2859) | (-0.2049) | (-0.0689)

(4) -0.0656 0.0048 0.0024 0.0000 -0.0003
(-2.4084) | (0.3670) | (0.4316) | (0.0037) | (-0.0919)

(5) -0.0843 0.0003 0.0028 0.0007 -0.0001
(-2.2751) | (0.0142) | (0.3704) | (0.1205) | (-0.0121)

(6) -0.1011 -0.0059 0.0022 0.0010 0.0003
(-2.2199) | (-0.2674) | (0.2370) | (0.1529) | (0.0611)

@) -0.1164 -0.0130 0.0008 0.0010 0.0006
(-2.2279) | (-05139) | (0.0775) | (0.1265) | (0.0949)

(8) -0.1305 -0.0206 -0.0011 0.0005 0.0005
(-2.2842) | (-0.7455) | (-0.0913) | (0.0589) | (0.0831)

(9) -0.1435 -0.0284 -0.0033 -0.0003 0.0002
(-2.3772) | (-0.9723) | (-0.2623) | (-0.0386) | (0.0273)

(10) -0.1556 -0.0361 -0.0056 -0.0015 -0.0005
(-2.4936) | (-1.1969) | (-0.4306) | (-0.1578) | (-0.0685)

(11) -0.1669 -0.0436 -0.0078 -0.0028 -0.0014
(-2.6142) | (-1.4126) | (-0.5894) | (-0.2901) | (-0.1975)

Ho:p; =0. | 338170 84.6685 8.7455 65.0716 23.0805
p-value [0.0004] [0.0000] [0.6454] [0.0000] [0.0172]
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Three step estimation procedure

Akin to the Fama-MacBeth two pass procedure, Adrian et al (2013)
propose a three step estimation procedure:
© Estimate:
Xer1 = p+ DPXe + veya,
by least squares to obtainA i, P, Ve, t=1,..., T and 3,
@ Use that #; = X; — fi — ®X;_1, to estimate:

rern = " +dV' X, + ﬁ(”)/9t+1 + €t+1,n,

A

by least squares to obtain 4", d(") and ,8 ,n=1,...,N.
@ Construct 3= (3 ... a(M)" B = (B(l) ﬁ(N))’

d = (aW ...y, g = (gV...a") for g = g)(B, £, L),
n=1,..., N, and estimate Ag and A1 using:
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Identification robust test procedures

Because we can't reject a reduced rank value of the B matrix, t-tests
resulting from the three step estimation procedure are unreliable.

We therefore need identification robust test procedures for testing
hypotheses on the risk premia in Aj.

Because A7 is a k X k matrix of risk premia, the focus is on identification
robust procedures for specific elements of them.

When the hypothesis of interest is phrased on all elements of a row or
column of Ay, the distribution of the subset factor Anderson-Rubin (AR)
statistic is bounded by a x>(K(N — (K — 1)) distributed random variable
under a Kronecker product covariance structure.

For data from Adrian et al (2013), pre-tests for a Kronecker product
structure covariance matrix do not reject at 5% significance.

Adrian et al (2013) use risk factors extracted using PCA. When using too
few, the subset AR statistic always rejects at 5% significance so there is
misspecification.
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e |8.1} 18t PCA facter {h.1) 18t PCA factor

Joint confidence sets from the sFAR test for the (three) risk premia on one factor
in three factor model. Left: 1-3 PCA risk factors, right: 1, 3 and 5 PCA risk
factors.
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We have bounded 95% confidence sets for the risk premia on the first
three PCA factors.

Because the 5-th PCA factor is weak, we have unbounded 95% confidence
sets when using the 1-st, 3-rd and 5-th PCAs as risk factors.

When we use four PCA factors, we need projection to show confidence
sets in a visual manner.

For two PCAs as risk factors, we have mostly empty 95% confidence sets
from subset FAR statistic since the model is then misspecified.
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Misspecification and identification

Because risk factors do not explain the full cross-section of asset returns,
the beta-pricing model is misspecified.

Identification condition turns out to be more stringent in misspecified
model.
For

MISS = mingerm Qcue(0),

with Qcye () continuous updating objective function using beta pricing
moment conditons, and IS, the Cragg-Donald rank statistic which tests the
rank of the B matrix:

IS > MISS >0

for pseudo-true value to be identified.

More stringent condition than in correctly specified models:

IS > 0.
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Empirical relevance: linear asset pricing

We compute IS and MISS (=) statistic for eight well-cited empirical
studies in asset pricing

J statistic

®  Savov 2011

. Jagannathan and Wang 1996

Kroencke 2017
° Fama and French 1993
He et al. 2017
Lettau and Ludvigson 2001

Adrian et . 2014
Yogo 2006
o 100 200 200
IS statistic

0

It shows the importance of considering IS—MISS instead of just IS.
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Table: MISS-statistic and IS-statistic (*:10%, **:5%, ***:1%)

(A) Impose Ag = 0: No (B) Impose Ay = 0: Yes

MISS IS MISS IS

FF 59.34%***  106.81*** 87.47*** Q74 30%**
JW 75.07 103.54 86.46 103.56
LL 31.11%* 31.75% 37.15%** 40.90**
Y 17.14 17.34 19.42 19.60

S 134.27%%*%  140.68%** 268.60***  296.78%**
AEM 28.42 31.97 30.41 42.03**
K 59.84%** 78 47H** 60.03%%*  102.77%**
HKM  35.32%* 35.88** 44 44%x** 59.74***

The MISS-statistics indicate that many models are misspecified while 1S
statistics indicate identification

It is, however, IS—MISS which is indicative of identification not just IS.
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Identification on the pseudo-true values of the risk premia is to be tested
using IS—MISS which provides a quasi-likelihood ratio statistic to test
no-identification.

The scatter plot of IS and MISS shows that the distribution of IS—MISS
can be degenerate.

Kleibergen and Zhan (2025) "Testing for identifirrcation in potentially
misspecified linear GMM" shows how to construct critical value functions.
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Conclusions

@ Many/most risk premia found in empirical studies are probably not
identified.

@ ldentification robust testing procedures should therefore generically be
used to test hypotheses on risk premia

@ ldentification of risk premia is greatly improved when using large
number of individual asset returns compared to the default of a small
number of portfolios

@ Betas do not span the full cross-section of asset returns so procedures
robust to both misspecification and weak identification should be
employed

@ ldentification condition in misspecified models is more stringent than
in correctly specified models
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