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A B S T R A C T

We propose identification robust statistics for testing hypotheses on the risk premia in dynamic
affine term structure models. We do so using the moment equation specification proposed
in Adrian et al. (2013). Statistical inference based on their three-stage estimator requires
knowledge of the risk factors’ quality and can be misleading when the 𝛽’s are weak, which
results when sampling errors are of comparable order of magnitude as the risk factor loadings.
We extend the subset (factor) Anderson–Rubin test from Guggenberger et al. (2012) to models
with multiple dynamic factors and time-varying risk prices. It provides a computationally
tractable manner to conduct identification robust tests on a few risk premia when a larger
number is present. We use it to analyze potential identification issues arising in the data
from Adrian et al. (2013) for which we show that some factors, though potentially weak, may
drive the time variation of risk prices, and weak identification issues are more prominent in
multi-factor models.

1. Introduction

A variety of Dynamic affine term structure models (DATSMs) have been developed since the foundational work by Vasicek
(1977) and Cox et al. (1985). They help to understand the movements of bond yields and to analyze financial markets. DATSMs
are empirically appealing for their smooth tractability and simple characterization of how risks get priced. There are many
studies employing this framework. To list a few: Cochrane and Piazzesi (2005) apply affine term structure models to study time
variation in expected excess bond returns using a single explanatory factor; Wu and Xia (2016) use affine models to summarize
the macroeconomic effects of unconventional monetary policy; Ang and Piazzesi (2003) investigate how macro economic variables
affect bond prices and the dynamics of the yield curve, Buraschi and Jiltsov (2005) study the properties of the nominal and real
risk premia of the term structure of interest rates and Goliński and Zaffaroni (2016) incorporate long memory state variables into
the term structure model. We adopt the DATSMs setup developed by Adrian et al. (2013) which nests a general class of linear asset
pricing models and can be regarded as a linear asset pricing model with time-varying risk premia and dynamic factors.

Many recent studies have developed approaches to estimate DATSMs. Most of them involve a time-consuming numerical
optimization procedure which results from their high degree of non-linearity. Inference concerning the coefficients suffers similar
challenges. An undesirable feature, as pointed out by, e.g., Hamilton and Wu (2012), is that identification can be problematic.
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Lack of identification, e.g., due to unspanned factors (Adrian et al., 2013), results in a relatively flat surface of the likelihood
because of which traditional inference becomes unreliable, see e.g., Kan and Zhang (1999), Gospodinov et al. (2017), Kleibergen
(2009), Hamilton and Wu (2012), Dovonon and Renault (2013), Beaulieu et al. (2016), Khalaf and Schaller (2016), Cattaneo et al.
(2022).

Unspanned factors refers to factors that only affect the dynamics of bond prices under the historical measure but not the risk
eutral one, see, e.g., Joslin et al. (2014). Empirical studies have shown their presence, see e.g., Ludvigson and Ng (2009), Adrian
t al. (2013). They can lead to identification challenges since varying the parameters of the risk neutral pricing measure associated
ith these factors does not strongly influence bond prices. Adrian et al. (2013) therefore allow for the presence of unspanned factors
sing the prior knowledge of knowing which factors are unspanned. Their proposed estimation procedure then differs for cases with
nd without unspanned factors.

Recently Crump and Gospodinov (2022) have also argued that the persistence in bond yields raises inference issues when
xtracting principal components from them. Principal components extracted from excess returns and difference returns might
herefore be preferable since they are much less persistent. Despite that these factors, including when constructed from yields,
re by construction correlated with excess returns on bonds, these correlations might be of the same order of magnitude as the
stimation error present in the DATSM which would make their risk premia weakly identified.

Because of these identification issues, traditional inference methods based on t-tests and Wald statistics can become unreliable
or conducting inference on the risk prices in DATSMs, see e.g., Stock and Wright (2000), Kleibergen (2005), Antoine and Renault
2020), Andrews and Cheng (2012), Antoine and Lavergne (2022). We therefore propose easy-to-implement identification robust
est procedures which are valid even when the model is not identified due to unspanned factors. The test procedures we provide can
e used to study the time-varying risk-premia for linear asset pricing models. Our proposed inference procedures use the framework
resented in Adrian et al. (2013), where the risk of bond prices is modeled as a linear functional in observed factors. The risk of bond
rices can then be decomposed into two parts: a time-constant and a time-varying part. We propose statistics for testing hypotheses
pecified on all parameters of the time-varying components and on just subsets of them.

The paper is organized as follows: Section 2 introduces the DATSM. Section 3 states the three-step estimation procedure
rom Adrian et al. (2013) and shows that it is sensitive to identification issues. Section 3 also shows the empirical relevance of
hese identification issues using the data from Adrian et al. (2013). Section A.1 of the Online Supplementary Appendix shows
hat these identification issues are similarly present when risk factors are extracted as principal components that result from other
epresentations than yields, such as, for example, excess returns and difference returns. Section 4 introduces joint identification
obust tests for time-varying risk premia. It conducts a small simulation experiment and applies them in empirical applications under
single-factor setting. A more detailed simulation experiment, including restrictions imposed by DATSM, is discussed in Section A.2
f the Online Supplementary Appendix. Section 5 introduces sub-vector identification robust tests for testing hypotheses on subsets
f time-varying risk premia. It applies them in various multi-factor settings using data from Adrian et al. (2013). The concluding
ection wraps up the discussion.

We use the following notation throughout the paper: “⊗” and “vec(⋅)” represent respectively the Kronecker product and
ectorization operator; “vecinv” refers to the inverse operation of “vec”. The “vech” (vector half) operation transforms a symmetric
atrix into a column vector by stacking only the lower triangular part of the matrix (including the diagonal) and “vechinv” is the

nverse operation of “vech”, which takes a vector that represents the lower triangular part of a symmetric matrix and reconstructs
he original symmetric matrix from it. 𝛴

1
2 is the lower triangular Cholesky decomposition of the positive definite symmetric matrix

𝛴 such that 𝛴 = 𝛴
1
2𝛴

1
2
′

; for a 𝑁 ×𝐾 dimensional full rank matrix 𝐴 ∶ 𝑃𝐴 = 𝐴(𝐴′𝐴)−1𝐴′ and 𝑀𝐴 = 𝐼 − 𝑃𝐴. The proofs of the main
heorems, i.e. Theorems 2–4, are in the Appendix A while the proof of the more secondary Theorem 1 is in the Online Supplementary
ppendix.

. Dynamic affine term structure models

We briefly discuss the popular class of DATSMs with observed factors. Instead of working directly with the implied yields on an
-period bond as usually done in the term structure literature, we use the excess holding return of an 𝑛-period bond as in Adrian
t al. (2013).

We first illustrate the model set-up following Adrian et al. (2013). For 𝑃𝑡,𝑛, the price at time 𝑡 of a zero-coupon bond maturing
t time 𝑡 + 𝑛, the pricing kernel, 𝑀𝑡+1, is such that

𝑃𝑡,𝑛 = 𝐸𝑡(𝑀𝑡+1𝑃𝑡+1,𝑛−1), (1)

here 𝐸𝑡(⋅) represents the conditional expectation using all information up to time 𝑡. For 𝑟𝑡, the one-period short rate and 𝜆𝑡 the
arket price of risk, the pricing kernel is assumed exponential affine in innovation factors 𝑣𝑡 ∼𝑖.𝑖.𝑑 𝑁(0, 𝛴𝑣) ∶

𝑀𝑡+1 = exp
(

−𝑟𝑡 −
1
2
𝜆′𝑡𝜆𝑡 − 𝜆

′
𝑡𝛴

− 1
2

𝑣 𝑣𝑡+1

)

, (2)

where the market price of risk 𝜆𝑡 is an affine function of the observed factors 𝑋𝑡 ∶

𝜆 = 𝛴
− 1

2
(

𝜆 + 𝛬 𝑋
)

, (3)
𝑡 𝑣 0 1 𝑡

2 
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with 𝜆0 and 𝛬1 resp. a 𝐾-dimensional vector and a 𝐾 × 𝐾 dimensional matrix, and the 𝐾-dimensional vector of state variables 𝑋𝑡
results from a vector autoregressive model of order 1 (VAR(1)):

𝑋𝑡+1 = 𝜇 +𝛷1𝑋𝑡 + 𝑣𝑡+1. (4)

For the one-period (log) excess holding return of a 𝑛-period bond at time 𝑡 + 1 ∶

𝑟𝑡+1,𝑛 = ln
(

𝑃𝑡+1,𝑛
)

− ln
(

𝑃𝑡,𝑛+1
)

− 𝑟𝑡, (5)

with 𝑟𝑡 = ln𝑃𝑡,1, the structure of the pricing kernel implies that:

𝐸𝑡

[

exp
(

−𝑟𝑡+1,𝑛 −
1
2
𝜆′𝑡𝜆𝑡 − 𝜆

′
𝑡𝛴

− 1
2

𝑣 𝑣𝑡+1

)]

= 1. (6)

Assuming that (𝑟𝑡+1,𝑛, 𝑣𝑡+1) are jointly normal, Adrian et al. (2013) show:

𝐸𝑡
(

𝑟𝑡+1,𝑛
)

= 𝛽(𝑛)′
(

𝜆0 + 𝛬1𝑋𝑡
)

− 1
2
𝑣𝑎𝑟(𝑟𝑡+1,𝑛), (7)

with 𝛽(𝑛) = 𝛴−1
𝑣 𝑐𝑜𝑣(𝑣𝑡+1, 𝑟𝑡+1,𝑛). When decomposing, 𝑅𝑡+1,𝑛 into a component correlated with 𝑣𝑡+1 and an uncorrelated compo-

ent/prediction error 𝑒𝑡+1,𝑛 ∶

𝑟𝑡+1,𝑛 − 𝐸𝑡
(

𝑟𝑡+1,𝑛
)

= 𝛽(𝑛)′𝑣𝑡+1 + 𝑒𝑡+1,𝑛; (8)

e then next have:

𝑟𝑡+1,𝑛 = 𝛽(𝑛)′
(

𝜆0 + 𝛬1𝑋𝑡
)

+ 𝑔(𝑛)(𝛽, 𝛴𝑣, 𝛴𝑒) + 𝛽(𝑛)′𝑣𝑡+1 + 𝑒𝑡+1,𝑛, (9)

where 𝑔(𝑛)(𝛽, 𝛴𝑣, 𝛴𝑒) = − 1
2𝑣𝑎𝑟(𝑟𝑡+1,𝑛), thus, for example, in case 𝛴𝑒 =var(𝑒𝑡+1,𝑛) = 𝜎2𝑒 , 𝑔(𝑛)(𝛽, 𝛴𝑣, 𝛴𝑒) = − 1

2

(

𝛽(𝑛)′𝛴𝑣𝛽(𝑛) + 𝜎2𝑒
)

. Additional
restrictions are often imposed on the parameters because of the cross-sectional term structure, but these restrictions are not used
in Adrian et al. (2013)’s approach. Assumption 1 next summarizes the model setting.

Assumption 1 (a). Consider a 𝐾 × 1 vector of factors 𝑋𝑡, 𝑡 = 0,… , 𝑇 that results from a stationary VAR(1):

𝑋𝑡+1 = 𝜇 +𝛷1𝑋𝑡 + 𝑣𝑡+1, (10)

where 𝑣𝑡 are the innovation shocks (or innovation factors). The log excess holding return 𝑟𝑡+1,𝑛−1 satisfies:

𝑟𝑡+1,𝑛−1 = 𝛽(𝑛−1)′
(

𝜆0 + 𝛬1𝑋𝑡
)

+ 𝑔(𝑛−1)
(

𝛽, 𝛴𝑣, 𝛴𝑒
)

+ 𝛽(𝑛−1)′𝑣𝑡+1 + 𝑒𝑡+1,𝑛−1 (11)

with 𝑔(𝑛−1)(⋅) a parametric function. Furthermore:

(𝑣′𝑡+1, 𝑒
′
𝑡+1)

′
|

{

𝑋𝑠
}𝑡
𝑠=0 ∼ 𝑖.𝑖.𝑑.𝑁

(

0,diag(𝛴𝑣, 𝛴𝑒)
)

. (12)

(b) For 𝛴𝑒 = 𝜎2𝑒 , 𝑔(𝑛−1)(𝛽, 𝛴𝑣, 𝛴𝑒) =
1
2 (𝛽

(𝑛−1)′𝛴𝑣𝛽(𝑛−1) + 𝜎2𝑒 ).

3. Regression estimator and Wald based inference

To estimate the price of risk, Adrian et al. (2013) propose a three-step procedure akin to the two-pass procedure from Fama and
MacBeth (1973):

1. Estimate the VAR(1):

𝑋𝑡+1 = 𝜇 +𝛷1𝑋𝑡 + 𝑣𝑡+1, (13)

by least squares to obtain 𝜇̂, 𝛷̂, 𝑣̂𝑡 = 𝑋𝑡 − 𝜇̂ − 𝛷̂1𝑋𝑡−1, 𝑡 = 1,… , 𝑇 and 𝛴̂𝑣 =
1
𝑇
∑𝑇
𝑡=1 𝑣̂𝑡𝑣̂

′
𝑡.

2. Estimate:

𝑟𝑡+1,𝑛 = 𝑎(𝑛) + 𝑑(𝑛)′𝑋𝑡 + 𝛽(𝑛)′𝑣̂𝑡+1 + 𝑒𝑡+1,𝑛, (14)

by least squares to obtain 𝑎̂(𝑛), 𝑑(𝑛) and 𝛽(𝑛), 𝑛 = 1,… , 𝑁 .
3. Construct 𝑎̂ = (𝑎̂(1) … 𝑎̂(𝑁))′, 𝛽 = (𝛽(1) … 𝛽(𝑁))′, 𝑑 = (𝑑(1) … 𝑑(𝑛))′, 𝑔̂ = (𝑔̂(1) … 𝑔̂(𝑛)) for 𝑔̂(𝑛) = 𝑔(𝑛)(𝛽, 𝛴̂𝑣, 𝛴̂𝑒), 𝑛 = 1,… , 𝑁 , and

estimate 𝜆0 and 𝛬1 using:

𝜆̂0 = (𝛽′𝛽)′−1𝛽′(𝑎̂ + 𝑔̂ + 𝛽𝜇̂)
𝛬̂1 = (𝛽′𝛽)′−1𝛽′(𝑑 + 𝛽𝛷̂).

(15)

The three-step procedure regresses transformed returns on estimated 𝛽’s. Because of the inversion of 𝛽′𝛽 in the estimation of
the risk premia, their reliability crucially depends on the quality of the 𝛽’s. If the 𝛽’s are relative small or the 𝛽 matrix is close to
a reduced rank value, the estimation error resulting from the error terms can be of the same order of magnitude as 𝛽 and make
the risk premia estimates unreliable. This is the setting of so-called weak factors, see e.g. Kleibergen (2009) and Anatolyev and
Mikusheva (2022). Tests for a reduced rank value of 𝛽 are then typically just barely significant if at all.
3 
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Table 1
Least squares estimates of the 𝛽’s associated with the excess returns for bonds with 11 different maturities of 6, 12, 18⋯ , 60 and
84, 120 months over the sample period 1987:01-2011:12. The factors are the first five principal components generated using the
cross-section of bond yields for maturities 3,⋯ , 120 months (data is from Adrian et al. (2013)). The t-statistics of the 𝛽 estimates
are in round brackets while 𝑝-values of 𝐹 -tests of 𝐻0 ∶ 𝛽𝑗 = 0 are in square brackets below each column. The Kleibergen–Paap
rank statistic (Kleibergen and Paap, 2006) testing 𝐻0 ∶ rank(𝛽) = 4, equals 1.6561 [0.9764], and to avoid near-singularity of
the covariance matrix, it uses a diagonal covariance matrix for 𝑒𝑡.

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5
(1) −0.0094 0.0031 −0.0008 0.0002 0.0000

(−3.6027) (2.5058) (−1.4886) (0.4344) (0.0347)
(2) −0.0213 0.0057 −0.0007 −0.0003 0.0002

(−8.2107) (4.5416) (−1.2228) (−0.7341) (0.5816)
(3) −0.0446 0.0070 0.0010 −0.0005 −0.0001

(−17.1745) (5.6040) (1.8889) (−1.3535) (−0.4551)
(4) −0.0656 0.0048 0.0024 0.0000 −0.0003

(−25.2648) (3.8500) (4.5279) (0.0386) (−0.9643)
(5) −0.0843 0.0003 0.0028 0.0007 −0.0001

(−32.4670) (0.2023) (5.2857) (1.7192) (−0.1732)
(6) −0.1011 −0.0059 0.0022 0.0010 0.0003

(−38.9474) (−4.6910) (4.1584) (2.6824) (1.0713)
(7) −0.1164 −0.0130 0.0008 0.0010 0.0006

(−44.8511) (−10.3464) (1.5602) (2.5469) (1.9102)
(8) −0.1305 −0.0206 −0.0011 0.0005 0.0005

(−50.2742) (−16.4072) (−2.0105) (1.2971) (1.8297)
(9) −0.1435 −0.0284 −0.0033 −0.0003 0.0002

(−55.2826) (−22.6118) (−6.1006) (−0.8978) (0.6354)
(10) −0.1556 −0.0361 −0.0056 −0.0015 −0.0005

(−59.9307) (−28.7667) (−10.3483) (−3.7935) (−1.6457)
(11) −0.1669 −0.0436 −0.0078 −0.0028 −0.0014

(−64.2706) (−34.7284) (−14.4913) (−7.1319) (−4.8558)

[0.0000] [0.0000] [0.0000] [0.0000] [0.0001]

When modeling unspanned factors that are present in the historical measure but not the risk neutral one, Adrian et al. (2013)
how that the entries in the 𝛽’s corresponding to unspanned factors are zero, hence, they influence the dynamics of bond prices
hrough the state variables present under the historical measure but have zero factor loadings and are therefore not present under
he risk neutral pricing measure. Including such unspanned factors or weak factors that are just minorly correlated with returns can
hen further aggravate identification issues, see e.g., Kleibergen (2009), Beaulieu et al. (2013), Kleibergen and Zhan (2015).

We illustrate the empirical relevance of weak factors and the quality of the 𝛽’s using data from Adrian et al. (2013), i.e., the
ero coupon yield data constructed by Gürkaynak et al. (2007). Table 1 therefore shows the factor loading estimates and 𝑝-values
f significance tests for a zero value for each of the columns of the 𝛽 matrix. The factors are the first five principal component
PCA) factors from Adrian et al. (2013). Table 1 shows that many elements of 𝛽 are small and not statistically different from zero
t the 5% significance level. While the 𝐹 -tests on the columns of 𝛽 are significant, the rank test of the 𝛽 -matrix indicates potential
dentification issues because it does not reject a lower rank value of the 𝛽 matrix at the 5% significance level.

To further illustrate the quality of the 𝛽’s, Fig. 1 shows the (log) singular values of (𝑑 ⋮ 𝛽), which results from the second of
he three-step estimation procedure (14), and the percentage of the variation that is explained by the principal components. When
he model is correctly specified, (𝑑 ⋮ 𝛽) provides an estimate of 𝛽(𝛬1 ⋮ 𝐼𝐾 ) so its smallest 𝐾 singular values should be close to
ero. Panel (a) of Fig. 1 uses the largest five principal components as risk factors and shows that the smallest six singular values are
lose to zero and not just the smallest five. It indicates a weak/unspanned factor problem and explains why the rank test does not
eject rank(𝛽) = 4 in Table 1 at the 5% significance level.

It has previously been noted that, see e.g., Kleibergen and Zhan (2020), Kleibergen et al. (2023), weak identification issues are
ften present when macro factors are used. Following Ang and Piazzesi (2003), we construct a macro factor, i.e. the real activity
easure, which equals the first principal component resulting from four variables that capture real US macro activity: the “Help
anted Advertising in Newspapers (HELP)”1 index, unemployment (UE), the growth rate of employment (EMPLOY), and the growth

ate of industrial production (IP). Table 2 shows that the macro factor is much less correlated with returns and thus is more likely to
esult in an identification issue. This is further reflected in Panel (b) of Fig. 1. It shows that while there are six factors, the smallest
even singular values are close to zero. Table 2 also shows a tiny value for the rank test which provides another indication of a
eak/unspanned factor problem.

Crump and Gospodinov (2022) raise caution with respect to the persistence present in bond yields, which carries over to principal
omponents extracted from them. We, therefore, repeated the analyzes in Tables 1 and 2 when using principal components extracted
rom excess returns and difference returns, as Crump and Gospodinov (2022) advocate. Figures A.1-A.5 in Section A.1 of the Online
upplementary Appendix contain the results when using principal components extracted from excess returns and difference returns

1 We use the HELP-Wanted index from Barnichon (2010) to match the time periods of the excess returns.
4 
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Fig. 1. (log) singular values (blue) of (𝑑 ⋮ 𝛽) from step 2 in the three-step estimation procedure and the percentage of the variance explained (red) by the
principal components.𝑅𝑡 uses the demeaned excess returns of the same bonds as in Table 1, 𝑋̄𝑡 uses the first five principal components as factors in Panel (a)
nd uses the same five PCA factors with one additional macro factor in Panel (b). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

Table 2
Least squares estimates of the 𝛽’s associated with the excess returns for bonds with 11 different maturities of 6, 12, 18⋯ , 60 and
84, 120 months over the sample period 1987:01-2011:12. The factors are the first five principal components generated using the
cross-section of bond yields for maturities 3,⋯ , 120 months (data is from Adrian et al. (2013)) and a macro factor (real activity)
that is constructed following Ang and Piazzesi (2003). The t-statistics of the 𝛽 estimates are in round brackets while 𝑝 -values
of 𝐹 -tests of 𝐻0 ∶ 𝛽𝑗 = 0 are in square brackets below each column. The Kleibergen–Paap rank statistic (Kleibergen and Paap,
2006) testing 𝐻0 ∶ rank(𝛽) = 5, equals 0.0025 [1.000], and to avoid near-singularity of the covariance matrix, it uses a diagonal
covariance matrix for 𝑒𝑡.

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽𝑚𝑎𝑐𝑟𝑜
(1) −0.0094 0.0032 −0.0008 0.0002 0.0000 0.0001

(−3.4930) (2.4109) (−1.4749) (0.4253) (0.0309) (0.0516)
(2) −0.0213 0.0057 −0.0007 −0.0003 0.0002 0.0000

(−7.9353) (4.3501) (−1.2115) (−0.7259) (0.5717) (0.0254)
(3) −0.0446 0.0070 0.0010 −0.0005 −0.0001 −0.0000

(−16.5873) (5.3631) (1.8715) (−1.3372) (−0.4497) (−0.0037)
(4) −0.0656 0.0049 0.0024 0.0000 −0.0003 0.0001

(−24.4149) (3.6980) (4.4871) (0.0346) (−0.9529) (0.0655)
(5) −0.0843 0.0003 0.0028 0.0007 −0.0001 0.0001

(−31.3724) (0.2100) (5.2383) (1.6937) (−0.1732) (0.0801)
(6) −0.1011 −0.0059 0.0022 0.0010 0.0003 0.0000

(−37.6206) (−4.4799) (4.1208) (2.6462) (1.0539) (0.0333)
(7) −0.1164 −0.0130 0.0008 0.0010 0.0006 −0.0000

(−43.3100) (−9.8999) (1.5456) (2.5142) (1.8813) (−0.0252)
(8) −0.1305 −0.0206 −0.0011 0.0005 0.0005 −0.0001

(−48.5424) (−15.7013) (−1.9930) (1.2811) (1.8021) (−0.0512)
(9) −0.1435 −0.0284 −0.0033 −0.0003 0.0002 −0.0000

(−53.3870) (−21.6288) (−6.0457) (−0.8872) (0.6243) (−0.0204)
(10) −0.1557 −0.0361 −0.0056 −0.0015 −0.0005 0.0001

(−57.8990) (−27.4937) (−10.2541) (−3.7506) (−1.6271) (0.0745)
(11) −0.1670 −0.0435 −0.0078 −0.0028 −0.0014 0.0002

(−62.1305) (−33.1560) (−14.3589) (−7.0557) (−4.7981) (0.2297)

[0.0000] [0.0000] [0.0000] [0.0000] [0.0002] [1.0000]

as risk factors compared to principal components extracted from bond yields. These results similarly show that weak identification
remains an issue when extracting principal components from other representations than yields. Because of the similarity of these
results, we, for reasons of brevity, only report them in the Online Supplementary Appendix.

The potential identification issues arising from the quality of the 𝛽’s revealed in Fig. 1 and Tables 1–2 affect the estimators’
validity and the reliability of traditional inference procedures. Adrian et al. (2013) suggest that knowing the unspanned factors
helps identify the zero rows in 𝛽 and mitigate the identification problem. We remain agnostic about this and propose test procedures
related to 𝛬1 that are identification robust without requiring prior knowledge of the unspanned factors.

Before introducing our novel test procedures, we first show that traditional Wald-type inference becomes unreliable when
nspanned factors are weak. The notion of weak unspanned factors is formalized in Assumption 2. It assumes that (part of) the
matrix drifts to zero at rate

√

𝑇 . Assumption 2 should not be taken too literally. It is a device which leads to the smallish rank
5 
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Fig. 2. Left panel (a) is the strong identified case, while the right panel (b) is for weak identification. Power curves (rejection frequencies) of Wald (dash-dotted,
red), FAR (solid), KLM (dashed), and JKLM (dotted) testing 𝛬1 (scalar) with its values on the horizontal axis; horizontal dashed line at 5% and vertical one at
the true calibrated value of 𝛬1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

tests on the 𝛽’s reported in Tables 1 and 2. Under the usual strong factor assumption, these rank tests should be proportional to
the sample size which they are clearly not. Because the outcome of the rank tests is at odds with their implied value under the
strong factor assumption, it is unclear if traditional inference procedures remain unaffected by small values of the rank tests. We
therefore establish the limiting distribution of the 𝛽 and risk premia estimator resulting from the three-step procedure under the
weak unspanned factor assumption that accommodates small values of the rank tests.

Assumption 2. Potential existence of (nearly) unspanned factors: 𝛽′ = (𝐵,𝐶), 𝐵 represents the spanned factors and is of full rank
𝐾𝐵 ≤ 𝐾 while 𝐶 = 𝑂(1∕

√

𝑇 ) reflects the (nearly) unspanned factors. If 𝐾𝐵 = 𝐾, there are no (nearly) unspanned factors.

Assumption 2 captures weak factors by having certain rows of 𝛽 to be inversely proportional to the square root of the sample size
so they are of the same order of magnitude as the estimation error. These rows of small values of the 𝛽’s correspond to the unspanned
factors. Adrian et al. (2013) assume that their location is known, and adapt their three-step procedure accordingly. It therefore
excludes the unspanned factors in the second step and solely incorporates spanned factors. The third step would otherwise encounter
identification issues in line with the classical multicollinearity problem because a zero value of the 𝛽’s leads to an unidentified value
of 𝜆. When we instead just have small 𝛽’s, which are comparable in magnitude to the estimation error as stated in Assumption 2, we
similarly encounter such an identification problem, see e.g., Kleibergen (2009), Antoine and Renault (2009), Antoine and Renault
(2012) Kleibergen and Zhan (2020), Kleibergen et al. (2023).

Theorem 1. Under Assumption 1.(a), denote 𝛬 = [𝜆0, 𝛬1]:
(a) If 𝛽 is of full rank:

√

𝑇
[

vec
(

𝛽′ − 𝛽′
)

vec
(

𝛬̂ − 𝛬
)

]

→𝑑 𝑁

(

[

0
0

]

,

[

𝛽 ′
𝛬,𝛽

𝛬,𝛽 𝛬

])

, (16)

where 𝛽 ,𝛬,𝛽 ,𝛬 are specified in the proof in the Online Supplementary Appendix.
(b) If Assumption 2 holds with 𝐾𝐵 < 𝐾, then 𝛬̂ →𝑑 𝛬+ 𝜖, where 𝜖 follows a non-standard distribution, so 𝛬̂ no longer converges to the

true value 𝛬 at rate
√

𝑇 .

roof. See the Online Supplementary Appendix. □

Theorem 1 states some well-known results from the weak identification literature. It shows that the risk premia estimator 𝛬̂
becomes inconsistent in the presence of weak factors because it converges to a random variable with a non-standard distribution.
This results since varying the value of the risk premia associated with the weak factors does not change the excess returns much.
The asymptotic distribution of the conventional Wald statistic for testing the null hypothesis 𝐻0 ∶ 𝛬1 = 𝛬0

1 then no longer converges
to a 𝜒2-distribution, and the same holds for subset tests based on this estimator. Therefore, the conventional test statistics can be
misleading in the presence of unspanned/weak factors, as depicted in Fig. 2 in Section 4.1 showing a case where the Wald test is
size distorted under weak identification. Theorem 1 does not rely on the normality assumption in Assumption 1 whose violations,
however, make the model misspecified.
6 
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4. Identification robust tests of time-varying risk premia

We focus on inference concerning the time-varying component of risk prices 𝛬1. We, therefore, demean the one-period (log)
xcess holding returns by subtracting its time-series average:

𝑟̄𝑡+1,𝑛 = 𝛽(𝑛)′
(

𝛬1𝑋̄𝑡
)

+ 𝛽(𝑛)′𝑣̄𝑡+1 + 𝑒𝑡+1,𝑛, (17)

ith 𝑧̄𝑡+1,𝑛 = 𝑧𝑡+1,𝑛 − 𝑧̄ and 𝑧̄ = 1
𝑇
∑𝑇
𝑡=1 𝑧𝑡 for 𝑧 = 𝑟, 𝑋, 𝑣 and 𝑒 resp. When stacking the equations for 𝑁 different maturities:

𝑅𝑡+1 = 𝛽
(

𝛬1𝑋̄𝑡
)

+ 𝛽𝑣̄𝑡+1 + 𝑒𝑡+1, (18)

where 𝑅𝑡+1 = (𝑟̄𝑡+1,1 … 𝑟̄𝑡+1,𝑁 )′, 𝛽 = (𝛽(1) … 𝛽(𝑛))′, 𝑒𝑡 = (𝑒𝑡,1 … 𝑒𝑡,𝑁 )′, the pricing equation closely resembles the beta-pricing model for
the return on (portfolios of) assets:

r𝑡+1 = 𝛽𝜆 + 𝛽F𝑡+1 + 𝑢𝑡+1, (19)

with r𝑡 an 𝑁-dimensional vector with the returns on 𝑁 assets, 𝛽 an 𝑁×𝐾-dimensional factor loading matrix and 𝐹𝑡 a 𝐾 -dimensional
vector of risk factors. A further important similarity that both models imply is the reduced rank structure that becomes obvious using
a slight respecification:

𝑅𝑡+1 = 𝛽
(

𝛬1 ⋮ 𝐼𝐾
)

(

𝑋̄𝑡
𝑣̄𝑡+1

)

+ 𝑒𝑡 (20)

and

r𝑡+1 = 𝛽
(

𝜆 ⋮ 𝐼𝐾
)

(

1
𝐹𝑡+1

)

+ 𝑢𝑡, (21)

where the 𝑁 × 2𝐾 and 𝑁 × (𝐾 + 1) dimensional matrices 𝛽(𝛬1 ⋮ 𝐼𝐾 ) and 𝛽(𝜆 ⋮ 𝐼𝐾 ) are each at most of rank 𝐾, so except for
the largest 𝐾 singular values, all, 𝐾 and 1 resp., smallest singular values of these matrices are zero. Further for 𝛬1 and 𝜆 to be well
defined, 𝛽 should be of full rank. When 𝛽 is near a reduced rank value, or in other words, if some factors are weak/unspanned,
we encounter an identification issue which is also reflected by more than just 𝐾 or one resp. singular values of the above matrices
being equal or close to zero.

We provide identification robust tests based on sample moment equations in a generalized methods of moments (GMM) setting.
The sample moments result from the model in (9). We subtract from it the return specific time-series average to obtain (17). Our
sample moment vector next imputes estimates of 𝑣̄𝑡+1, 𝑣̂𝑡+1, and 𝛽, 𝛽, which result from steps 1 and 2 of the three-step estimation
procedure, in (17) and assumes that the resulting estimation error is uncorrelated with 𝑋̄𝑡. For 𝑄̂𝑋𝑋 = 1

𝑇
∑𝑇
𝑡=1 𝑋̄𝑡−1𝑋̄′

𝑡−1, our sample
oment vector for 𝛬1 then becomes:

𝑓𝑇 (𝛬1, 𝑋) = 1
𝑇
∑𝑇
𝑡=1

(

𝑋̄𝑡−1 ⊗
[

(𝑅𝑡 − 𝛽𝑉𝑡) − 𝛽𝛬1𝑋̄𝑡−1
])

= 1
𝑇
∑𝑇
𝑡=1(𝑋̄𝑡−1 ⊗ (𝑅𝑡 − 𝛽𝑉𝑡)) −

(

𝑄̂𝑋𝑋 ⊗ 𝛽
)

vec(𝛬1),
(22)

nd its derivative with respect to vec(𝛬1) is

𝑞𝑇 (𝑋) = −
(

𝑄̂𝑋𝑋 ⊗ 𝛽
)

. (23)

e next make an assumption regarding the large sample behavior of the sample moment vector and its derivative.

ssumption 3. Under 𝐻0 ∶ 𝛬1 = 𝛬0
1,

√

𝑇
(

𝑓𝑇 (𝛬0
1, 𝑋)

vec(𝑞𝑇 (𝑋) − 𝐽 )

)

→
𝑑

(

𝜓𝑓
𝜓𝑞

)

, (24)

where the Jacobian 𝐽 = −(𝑄𝑋𝑋 ⊗ 𝛽), 𝑄̂𝑋𝑋 →
𝑝
𝑄𝑋𝑋 , and 𝜓𝑓 and 𝜓𝑞 are 𝑁𝐾- and 𝑁𝐾3-dimensional random vectors:

(

𝜓𝑓
𝜓𝑞

)

∼ 𝑁
(

0, 𝑉 (𝛬0
1)
)

, (25)

with

𝑉 (𝛬0
1) =

(

𝑉𝑓𝑓 (𝛬0
1) 𝑉𝑞𝑓 (𝛬0

1)
′

𝑉𝑞𝑓 (𝛬0
1) 𝑉𝑞𝑞(𝛬0

1)

)

, (26)

where 𝑉𝑓𝑓 (𝛬0
1), 𝑉𝑞𝑓 (𝛬

0
1) and 𝑉𝑞𝑞(𝛬0

1) are 𝑁𝐾 ×𝑁𝐾, 𝑁𝐾3 ×𝑁𝐾 and 𝑁𝐾3 ×𝑁𝐾3 dimensional matrices.

Assumption 3 is a high-level assumption which resembles Assumption 1 in Kleibergen (2005) and holds under mild conditions.
Assumption 3 holds true irrespective of Assumption 2. Assumption 1 is sufficient for Assumption 3, but our proposed test statistics
can be applied for more general cases than the model implied in Assumption 1. For our setting, we specifically have that:

0
𝜓𝑓 = 𝜓𝑓 + 𝛹𝑞vec(𝛬1), (27)

7 
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for 𝛹𝑞 =vecinv(𝜓𝑞) and
√

𝑇
(

1
𝑇
∑𝑇
𝑡=1(𝑋̄𝑡−1 ⊗ (𝑅̄𝑡 − 𝛽𝑉𝑡)) −

(

𝑄𝑋𝑋 ⊗ 𝛽
)

vec(𝛬0
1)
)

→
𝑑
𝜓𝑓 . (28)

e also have

𝜓𝑞 = vec((𝑄𝑋𝑋 ⊗𝛹𝛽 ) + (𝛹𝑋𝑋 ⊗ 𝛽)), (29)

here
√

𝑇 vech( 1𝑇
∑𝑇
𝑡=1 𝑋̄𝑡𝑋̄′

𝑡 −𝑄𝑋𝑋 ) →𝑑 𝜓𝑋𝑋 , 𝛹𝑋𝑋 = vechinv(𝜓𝑋𝑋 ),
√

𝑇 vec(𝛽 − 𝛽) →
𝑑
𝜓𝛽 , 𝛹𝛽 = vecinv(𝜓𝛽 ),

(30)

ith vech(𝐴) containing the unique elements of a symmetric matrix 𝐴. Since 𝜓𝑞 has 𝑁𝐾3 elements while the number of unique
lements in 𝛹𝛽 and 𝛹𝑋𝑋 equals 𝑁𝐾 + 1

2𝐾(𝐾 + 1), the joint normal distribution of (𝜓𝑓 , 𝜓𝑞) is further allowed to be degenerate.
The identification robust statistics use an estimator of the (recentered) Jacobian whose limit behavior under H0 ∶ 𝛬1 = 𝛬0

1 is
independent of the limit behavior of the sample moment, see Kleibergen (2005):

𝐷̂𝑇 (𝛬1, 𝑋) = (𝐷̂1,𝑇 (𝛬1, 𝑋)… 𝐷̂1,𝑇 (𝛬𝑘, 𝑋))
vec(𝐷̂𝑇 (𝛬1, 𝑋)) = vec(𝑞𝑇 (𝑋)) − 𝑉𝑞𝑓 (𝛬1)𝑉𝑓𝑓 (𝛬1)−1𝑓𝑇 (𝛬1, 𝑋)

√

𝑇 vec(𝐷̂𝑇 (𝛬0
1, 𝑋) − 𝐽 ) →

𝑑
𝜓𝑞.𝑓 ∼ 𝑁(0, 𝑉𝑞𝑞.𝑓 (𝛬0

1))
(31)

with 𝑉𝑞𝑞.𝑓 (𝛬1) = 𝑉𝑞𝑞 − 𝑉𝑞𝑓 (𝛬1)𝑉𝑓𝑓 (𝛬1)−1𝑉𝑞𝑓 (𝛬1)′, 𝑉𝑞𝑓 (𝛬1) and 𝑉𝑓𝑓 (𝛬1) consistent estimators of 𝑉𝑞𝑓 (𝛬0
1) and 𝑉𝑓𝑓 (𝛬0

1), and 𝜓𝑞.𝑓
independent of 𝜓𝑓 .

We can next define the identification robust Factor Anderson–Rubin (FAR), (Kleibergen) Lagrange multiplier (KLM) and JKLM
statistics for testing H0 ∶ 𝛬1 = 𝛬0

1 ∶

FAR(𝛬0
1) = 𝑇 × 𝑓𝑇 (𝛬0

1, 𝑋)′𝑉𝑓𝑓 (𝛬0
1)

−1𝑓𝑇 (𝛬0
1, 𝑋) →

𝑑
𝜒2(𝐾𝑁)

KLM(𝛬0
1) = 𝑇 × 𝑓𝑇 (𝛬0

1, 𝑋)′𝑉𝑓𝑓 (𝛬0
1)

− 1
2 𝑃

𝑉𝑓𝑓 (𝛬0
1)
− 1
2 𝐷̂𝑇 (𝛬0

1 ,𝑋)
𝑉𝑓𝑓 (𝛬0

1)
− 1

2 𝑓𝑇 (𝛬0
1, 𝑋) →

𝑑
𝜒2(𝐾2)

JKLM(𝛬0
1) = 𝑇 × 𝑓𝑇 (𝛬0

1, 𝑋)′𝑉𝑓𝑓 (𝛬0
1)

− 1
2𝑀

𝑉𝑓𝑓 (𝛬0
1)
− 1
2 𝐷̂𝑇 (𝛬0

1 ,𝑋)
𝑉𝑓𝑓 (𝛬0

1)
− 1

2 𝑓𝑇 (𝛬0
1, 𝑋) →

𝑑
𝜒2(𝐾(𝑁 −𝐾)).

(32)

he limiting distributions are a direct result of Assumption 3 and do not depend on the rank of the Jacobian or 𝛽, so the limiting
istributions hold regardless of Assumption 2.

.1. Illustrative simulation and empirical results

We conduct a single-factor model simulation study to illustrate the performance of the proposed identification robust tests. For
he data generating process (DGP), we consider

𝑅𝑡 = 𝑐 + 𝛽
(

𝛬1𝑋𝑡−1 + 𝑣𝑡
)

+ 𝑒𝑡,

here the parameters are calibrated to the data as in Table 1. We set the sample size to be 𝑇 = 300 and keep all parameters fixed
xcept 𝛽’s. We calibrate 𝛽’s with the second PCA factor from Adrian et al. (2013) to mimic the strong identification case and the fifth
ne for the weak identification setting. Section A.2. of the Online Supplementary Appendix has another more extensive simulation
tudy which mimics the data being generated from a DATSM and subsequently employs the identification robust tests. Since these
esults are qualitatively similar to those we report next and are considerably more elaborate, we, for expository purposes, only
eport them in the Online Supplementary Appendix.

Fig. 2 shows power curves of 5% significance tests using the conventional t-statistic and the identification robust test statistics
or both strong and weak identification. It shows that FAR, KLM and JKLM tests are all size correct, while the Wald test is size
istorted under weak identification and size correct but biased for strong identification. For weak identification, the KLM test has
ome power loss away from the hypothesized value because of which it is preferred to combine it in a conditional or unconditional
anner with the J-test to improve power, see Moreira (2003) and Kleibergen (2005).

We use the identification robust tests to analyze the time-varying component of the risk premium. A detailed description of the
nvolved excess returns and risk factors has been discussed previously for Tables 1–2. Fig. 3 shows the 𝑝-values of testing the risk
remium associated with all six factors in a single-factor model using the different tests. A 𝑝-value larger than, say, 5%, implies that
e cannot reject the null hypothesis at the 5% significance level.

Fig. 3 shows that for all factors, the FAR and KLM tests provide bounded 95% confidence sets since only for bounded regions the
-values are above the 95% line, even for those potentially weak factors such as the fifth PCA factor and the macro factor. It implies
hat in a single factor setting, all these risk premia are identified. For the high-order PCA factors, the robust tests, however, result
n 95% confidence sets that differ from those resulting from the Wald test. Most striking is that a zero value for the risk premium
s not rejected for strong factors such as the first and second PCA factors but rejected for potentially weak factors. For example, the
ull hypothesis that 𝛬1 = 0 is rejected by the FAR and KLM test for both the fifth factor and the macro factor. This is partly in line

ith Adrian et al. (2013), which highlight the role of the higher-order principal components as the time variation may be largely

8 
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Fig. 3. one-minus-𝑝-value curves of Wald (dash-dotted, red); FAR (solid); KLM (dashed); JKLM (dotted) for testing the 𝛬1 (scalar) in a single factor model with
values on the horizontal axis and dotted line at 95%. This figure uses the same data as in Table 2. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

driven by, e.g., the fifth principal component. Therefore, some factors may be weak but have some importance for interpreting the
(time-varying) expected returns.

Fig. 3 also shows that for most cases the JKLM test leads to wide 95% confidence sets even for strong factors. While these
confidence sets are wide, they remain bounded which can be shown when we use a wider grid. This results since, as shown by
Fig. 2, the JKLM tests has considerably less power since it primarily tests misspecification.

Fig. 3 is in line with Tables 1 and 2 which show that the columns of the 𝛽-matrix are significantly different from zero.2 This
indicates that the risk premia resulting from a single factor model are well identified. Fig. 3 does, however, not indicate if the same
applies when we consider a multi-factor setting.

5. Identification robust sub-vector testing

The identification robust tests introduced in the previous section are for testing hypotheses specified on all elements of 𝛬1.
We are often interested in testing hypotheses specified on just subsets of the parameters. When we analyze multi-factor models,
testing whether or not a certain factor risk premium exhibits time variation would require testing a specific row of 𝛬1, while
testing whether a factor drives the time variation would require to test the corresponding column of 𝛬1. Under our current settings,
projection-based versions of the identification robust tests would allow us to test such hypotheses whilst preserving the size of the
test, see Dufour and Taamouti (2005). These tests, however, lead to reduced power. We therefore extend the robust subset FAR test
(sFAR) of Guggenberger et al. (2012), which concerns testing a hypothesis specified on a selection of the number of elements of a
vector, i.e. a subvector, towards testing a hypothesis specified on just a row or column of the matrix 𝛬1.

Without loss of generality, we consider testing the hypothesis that the risk premia associated with one specific factor, say the
first, are all equal to 𝜆01:

H0 ∶ 𝜆1 = 𝜆01, (33)

2 While Tables 1 and 2 report on the significance of the columns of 𝛽 when using multiple factors, Table 4 further shows their significance in a single factor
setting.
9 
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Table 3
KPS test (KPST) statistics for testing the null hypothesis that 𝐻0 ∶ 𝑆 = 𝛺 ⊗ 𝛴 for some 𝛺 ∈ R2𝐾×2𝐾 and 𝛴 ∈ R𝑁×𝑁 symmetric
positive definite matrices. All four cases use excess returns on bonds with maturities 3, 12, 24, 60, 90, 120 months from Adrian
et al. (2013). For the factors 𝑋𝑡, (1) uses the macro factor (real activity) and the level factor (first PCA factor), (2) uses the
level factor (first PCA factor) and the slope factor (second PCA factor), (3) uses the macro factor (real activity) and the slope
factor (second PCA factor) and (4) uses the macro factor (real activity) and the curvature factor (third PCA factor).

(1) (2) (3) (4)

KPST 212.0808 201.8551 197.1613 205.8054
𝑝-value [0.0511] [ 0.1265] [ 0.1809] [0.0910]

for 𝛬1 =
(𝜆0′1
𝛬2

)

, 𝜆1 ∶ 𝐾 × 1, 𝛬2 ∶ (𝐾 − 1) × 𝐾. Under H0 ∶ 𝜆1 = 𝜆01, the 𝑁 × 2𝐾 dimensional reduced rank parameter matrix in the
equation for the stacked returns becomes:

𝛷 =
(

𝛽1 ⋮ 𝛽2
)

(

𝜆0′1 1 0
𝛬2 0 𝐼𝐾−1

)

, (34)

so post-multiplying by
(

𝐼𝐾
0

−𝜆01
0

0
𝐼𝐾−1

)′
yields the 𝑁 × (2𝐾 − 1) matrix:

𝛷

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

=
(

𝛽1 ⋮ 𝛽2
)

(

0 0
𝛬2 𝐼𝐾−1

)

= 𝛽2
(

𝛬2 𝐼𝐾−1
)

, (35)

hich, since the rank of 𝛽2
(

𝛬2 𝐼𝐾−1
)

equals 𝐾 − 1, shows that H0 implies that the smallest 𝐾 singular values of 𝛷 times
𝐼𝐾
0

−𝜆01
0

0
𝐼𝐾−1

)′
equal zero. The sFAR statistic for testing H0 ∶ 𝜆1 = 𝜆01 ∶

sFAR(𝜆1) = min𝛬2
FAR(𝛬1(𝜆01, 𝛬2)), (36)

therefore corresponds with a rank test of H0 ∶ rank
⎛

⎜

⎜

⎜

⎝

𝛷

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

= 𝐾 − 1.

The bounding distribution of the limiting distribution of the sFAR statistic relies upon a Kronecker product structure (KPS)
symptotic covariance matrix of the least squares estimator of the linear model (Guggenberger et al., 2012):

𝛷̂ = 1
𝑇
∑𝑇
𝑡=1 𝑅𝑡

(

𝑋̄𝑡
𝑣̂𝑡+1

)′ [

1
𝑇
∑𝑇
𝑡=1

(

𝑋̄𝑡
𝑣̂𝑡+1

)(

𝑋̄𝑡
𝑣̂𝑡+1

)′]−1

=
(

𝑑 ⋮ 𝛽
)

. (37)

The KPS thus concerns the asymptotic variance of

1
√

𝑇

∑𝑇
𝑡=1

((

𝑋̄𝑡
𝑣̂𝑡+1

)

⊗ 𝑒𝑡

)

, 𝑒𝑡 = 𝑒𝑡 + 𝛽(𝑣̄𝑡 − 𝑣̂𝑡). (38)

We note that 𝑣̄𝑡 is not directly observed so it adds additional sampling error because of the imputed estimates, 𝑣̂𝑡. To implement the
sFAR test, we therefore make the following assumption.

Assumption 4. There exists 𝛺 ∈ R2𝐾×2𝐾 and 𝛴 ∈ R𝑁×𝑁 symmetric positive definite matrices such that 𝑆 = 𝛺⊗𝛴 and

1
√

𝑇

∑𝑇
𝑡=1

((

𝑋̄𝑡
𝑣̂𝑡+1

)

⊗ 𝑒𝑡

)

→𝑑 𝑁(0, 𝑆). (39)

The asymptotic normality stated in Assumption 4 is a direct result of Assumption 1. If 𝑣̂𝑡 is directly observed, so 𝑒𝑡 = 𝑒𝑡,
Assumption 1 implies that 𝛺 = E

(

(𝑋̄′
𝑡 ⋮ 𝑣̂′𝑡+1)

′(𝑋̄′
𝑡 ⋮ 𝑣̂′𝑡+1)

)

and 𝛴 = var(𝑒𝑡). Because of the additional sampling error due to
he generated regressor 𝑣̂𝑡+1, Assumption 4 does, however, not provide the exact specifications of 𝛺 and 𝛴.

We use the KPS test (KPST) from Guggenberger et al. (2022) to test for the proximity of a KPS matrix to the covariance matrix,
. Table 3 reports the KPST results, and shows that the KPS restriction for 𝑆 is a realistic assumption since none of these tests

eject the null hypothesis that the covariance matrix has a KPS at the 5% significance level. A by-product of the KPS test is the KPS
actorization for 𝑆̂, see Guggenberger et al. (2022).

heorem 2. Under Assumption 4, and when there is a consistent estimator for 𝑆, 𝑆̂, then in large samples 𝑆̂ ≈ (𝛺̂ ⊗ 𝛴̂), where

𝛺̂ = vecinv
((

𝐿̂11
𝐿̂21

)

∕𝐿̂11

)

, 𝛴̂ = vecinv(𝐿̂11𝜎̂1𝑁̂
′
1), (40)

here 𝐿̂11, 𝐿̂21, 𝜎̂1, 𝑁̂1 are specified in the proof in the Appendix A. The KPS covariance estimator 𝛺̂ ⊗ 𝛴̂ provides a consistent estimator
or 𝑆.
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Table 4
Kleibergen–Paap rank statistic testing 𝐻0 ∶ rank(𝛽) = 𝐾 − 1 (𝐾 denotes the number of factors) and its associated [𝑝-value] in square brackets, for various factor
combinations. The column heading by (i), for i = 1,. . . ,5, states how many factors are used while the factor combinations are listed in separate cells. All cases
use excess returns on bonds with maturities of 2, 3, 12, 60, and 120 months and different combinations of the five PCA factors from Adrian et al. (2013). We
mark with one star if the lower bound of the limit sFAR (see Theorem 4) indicates a bounded 95% confidence sets in every direction, and mark with double
daggers if the associated 95% confidence sets of the time-varying risk premia parameters for one or more factors are unbounded.

(1) rank (2) rank (3) rank (4) rank (5) rank
test test test test test

1* 30 075 1,2 1290 1,2,3 711.1 1,2,3, 932.9 1,2,3, 9.105
[0.000] [0.000] [0.000] 4 [0.000] 4,5†† [0.003]

2* 4409 1,3 1487 1,2,4 1317 1,2,3, 5.103
[0.000] [0.000] [0.000] 5†† [0.078]

3* 973.0 1,4 1073 1,2,5 26.03 1,2,4, 76.53
[0.000] [0.000] [0.002] 5 [0.000]

4* 703.2 1,5 39.82 1,3,4 603.8 1,3,4, 12.36
[0.000] [0.000] [0.000] 5 [0.002]

5* 74.62 2,3 864.7 1,3,5 13.22 2,3,4, 16.23
[0.000] [0.000] [0.004] 5 [0.000]

2,4 990.9 1,4,5 110.3
[0.000] [0.000]

2,5 63.17 2,3,4 765.8
[0.000] [0.000]

3,4 825.2 2,3,5 16.96
[0.000] [0.001]

3,5 11.14 2,4,5 549.0
[0.025] [0.000]

4,5 445.2 3,4,5 18.05
[0.000] [0.000]

Proof. See Appendix A. □

Because of the KPS covariance structure, (𝛺̂ ⊗ 𝛴̂), we can compute the sFAR statistic using the characteristic polynomial stated
in Theorem 3.

Theorem 3. Under Assumptions 3 and 4, let 𝑉𝛷̂ = (𝛹̂ ⊗ 𝛴̂), 𝛹̂ = 𝑊̂ −1𝛺̂𝑊̂ −1 =
(

𝛹̂𝑋 𝛹̂𝑋𝑉
𝛹̂𝑉 𝑋 𝛹̂𝑉

)

, 𝑊̂ = 1
𝑇
∑𝑇
𝑡=1

( 𝑋̄𝑡
𝑣̂𝑡+1

)( 𝑋̄𝑡
𝑣̂𝑡+1

)′
, the subset

FAR statistic, sFAR(𝜆01), for testing H0 ∶ 𝜆1 = 𝜆01, for 𝛬1 =
(𝜆′1
𝛬2

)

, 𝜆1 ∶ 𝐾 × 1, 𝛬2 ∶ (𝐾 − 1) × 𝐾, equals 𝑇 times the sum of the 𝐾 smallest
roots of the characteristic polynomial:

|

|

|

|

|

|

|

|

|

𝜇

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

′

𝛹̂

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

′

𝛷̂′𝛴̂−1𝛷̂

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

= 0, (41)

and lim𝑇→∞ sFAR(𝜆1) ≺ 𝜒2(𝐾(𝑁 − (𝐾 − 1))). The bound on the limiting distribution holds regardless of Assumption 2.

Proof. See Appendix A. □

Fig. 4 illustrates the 𝜒2 bound on the limiting distribution of the sFAR statistic stated in Theorem 3. The density of the limiting
distribution of the sFAR statistic is simulated for a two-factor model, which uses the first two PCA factors to mimic the strongly
identified case and the third and the fifth PCA factors to mimic weak identification. In Panel (a), the limiting distribution of the sFAR
statistic is 𝜒2 when the model is strongly identified. In Panel (b), under weak identification, the limiting distribution is bounded by
the 𝜒2 distribution. It illustrates that using 𝜒2 critical values for the sFAR test controls the size of the test.

For projection-based tests on 𝜆1, the involved test has to be computed over a grid of points concerning the partialled out
arameters. This becomes computationally burdensome when the number of partialled out parameters increases because of a larger
imension of 𝛬1 reflecting more factors. It makes the sFAR test more empirically appealing because it does not involve an extensive
rid search. In practice, Assumption 4 can be further relaxed by using the KPST as a pre-test for conducting robust subset testing
s described in Guggenberger et al. (2022).

The value of the sFAR statistic at parameter values distant from zero provides a diagnostic to indicate if the confidence sets of
he hypothesized parameters are bounded. These tests are therefore indicative of weak identification.

heorem 4. For tests of H0 ∶ 𝜆1 = 𝑐𝜆01 with 𝜆01 a fixed vector of length one and 𝑐 a scalar, the realized value of the sFAR statistic at a
istant value of 𝜆1 in the direction of 𝜆01, lim𝑐→∞ sFAR(𝑐𝜆01), equals 𝑇 times the sum of the K smallest roots of

|

|

|

|

(

𝜆̄01,⟂ 0
)′

[

𝜇𝛹̂ − 𝛷̂′𝛴̂−1𝛷̂
]

(

𝜆̄01,⟂ 0
)

|

|

|

|

= 0,

|

|

0 𝐼𝐾 0 𝐼𝐾 |

|
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Fig. 4. Simulated density plots of the sFAR test statistic (shadowed bins) and the density function of the 𝜒2 -distribution (dashed black curve). Panel (a) is for
strong identification while Panel (b) is for weak identification. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

where 𝜆̄01,⟂ is a 𝐾 × (𝐾 − 1) orthonormal matrix that is orthogonal to 𝜆01. The limit sFAR statistic is uniformly bounded from below by the
minimum eigenvalue of 𝑇 𝛹̂−1∕2′

𝑉 𝛽′𝛴̂−1𝛽𝛹̂−1∕2
𝑉 .

Proof. See Appendix A. □

Theorem 4 provides a way of verifying whether the confidence sets resulting from the sFAR statistic are bounded or unbounded
in specific directions, see Dufour (1997), Kleibergen and Zhan (2020), Khalaf and Schaller (2016), Kleibergen et al. (2023). The
minimum eigenvalue of 𝑇 𝛹̂−1∕2′

𝑉 𝛽′𝛴̂−1𝛽𝛹̂−1∕2
𝑉 is a rank test statistic concerning the rank of the factor loading matrix 𝛽, see Kleibergen

and Paap (2006), so Theorem 4 shows that the sFAR test evaluated at distant values relates to the rank of 𝛽. Theorem 4 also explains
that when we encounter weak identification issues with 𝛽 close to reduced rank, we have unbounded confidence sets. The lower
bound is sharp when 𝐾 = 1, as indicated in the proof of Theorem 4, for which case also Theorem 12 in Kleibergen (2021) applies.
When 𝐾 = 1 and the Kleibergen–Paap rank test is significant at the 5% significance level, Theorem 4 implies that the sFAR test
leads to a bounded 95% confidence sets for 𝜆1.

Table 4 reports the Kleibergen–Paap rank test for different factor combinations for the data from Adrian et al. (2013). It shows
that, in line with Fig. 3, all single-factor model have bounded 95% confidence sets for the time-varying risk premia, which are less
likely to be bounded when we include more than three factors. The fifth factor, though identified in a single-factor setting, suffers
from weak identification problems when we include other factors. Table 4 also shows that the rank test statistic is a good indicator
of unboundedness as small values of the rank test statistics suggest unbounded confidence sets.

5.1. Power of the sFAR test

To illustrate the power of the sFAR test, we compute power curves for two settings calibrated to the data discussed previously.
Fig. 5 therefore shows the two-dimensional power curves that result when jointly testing the two risk premia parameters associated
with a single factor in a two-factor model. The left hand side of Fig. 5 shows the power curves for a strongly identified setting
while the right hand side does so for a weakly identified setting. The power curves on the right hand side show that the sFAR test
is not consistent for weakly identified settings since the rejection frequencies do not converge to one when we move away from the
hypothesized value.

5.2. Identification robust confidence sets for risk premia

We use the sFAR test to construct confidence sets on the risk premia resulting from two and three factor models. Fig. 6 shows
the 90, 95 and 99% joint confidence sets that result for the two risk premia parameters in 𝛬1 resulting for one specific factor in a
two-factor model using the data from Adrian et al. (2013) while Fig. 7 does so for the three risk premia parameters resulting for
one specific factor in a three-factor model. Size correct confidence sets for the individual risk premia result by projecting the joint
confidence sets on the axes. When using four or more factors, the number of risk premia concerning one factor is at least four so we
have to use projection-based tests based on the sFAR statistic to be able to visualize these confidence sets. For expository purposes
12 
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Fig. 5. Simulated power surfaces (rejection frequencies) of sFAR tests on 𝛬1 ’s w.r.t. the first factor of a two-factor model: the left panel (a) is a strong identified
setting calibrated to the two-factor model with excess returns of bonds with maturities 3, 60, 120 months using the first and second PCA factors, while the right
panel (b) is a weakly identified setting calibrated to the two-factor model with excess returns of bonds with maturities 3, 60, 120 months using the third and
fifth PCA factors. Dotted lines (𝛾𝑖 , 𝑦, 0.05) are drawn to mark the positions of the calibrated risk premia values, 𝛾𝑖 ’s, at 5% level.

Fig. 6. Joint confidence sets from the sFAR test for the two risk premia parameters of the first of the two listed factors in a two factor model. (yellow 90%,
light green 95%, light blue 99%, dark blue area contains the remaining values). Excess returns on bonds with maturities 3, 60, 120 months are used. [𝑝-value]
of Kleibergen–Paap rank statistic testing 𝐻0 ∶ rank(𝛽) = 1 in square brackets. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
13 
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Fig. 7. Joint confidence sets from the sFAR test for three-factor models (yellow 90%, light green 95%, light blue 99%, dark blue area contains the remaining
values) with excess returns on bonds with maturities 3, 60, 120 months, (a.i) testing on 𝛬1 ’s w.r.t. the 𝑖th factor when using first, second and third PCA factors
Kleibergen–Paap rank statistic testing 𝐻0 :rank(𝛽) = 2 equals 310.9294 [p-value: 0.0000]); (b.i) testing on 𝛬1 ’s w.r.t. the (𝑖 + 2)th factor when using first, third
and fifth PCA factors. Kleibergen–Paap rank statistic testing 𝐻0 :rank(𝛽) = 2 equals 0.0654 [p-value 0.7981]). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

and since Table 4 shows that some of these confidence sets are unbounded, for example, the one that results when using all five
factors, we therefore refrain from using more than three factors.3

Fig. 6 shows all two dimensional confidence sets for the two risk premia resulting for one factor for all different specifications
using the five PCA factors discussed previously in a two factor model. The two dimensional confidence sets in Fig. 6 vary a lot. Quite
a few are empty so all values of the parameters are rejected at significance levels which exceed 99%. This occurs, for example, when
using the first and either the second, third and fourth PCA factor so the model is misspecified. There are also settings where the
confidence set is bounded and well behaved which occurs, for example, when using the third and fourth PCA factor. Other confidence
sets are unbounded and/or cover the whole two-dimensional space, which occurs, for instance, when using the third and fifth PCA.
For this combination the 90% confidence set for the two risk premia on the third factor is unbounded but excludes an area in the
parameter space while the 90% confidence set of the two risk premia on the fifth factor covers the whole two-dimensional space.
Table 4 also shows that the combination of the third and fifth PCA factors leads to a smaller rank test statistic than other factor
combinations when using two-factor models which is in line with the unbounded confidence set in Fig. 6 which relates to the third
and fifth PCA factors. This is all indicative of weak identification when using both the third and fifth factors.

Fig. 7 shows the joint confidence sets for the three risk premia associated with a single factor in a three-factor model. The first
column of Fig. 7 does so for a factor model containing the first three principal components as factors while the second column does
so using the first, third and fifth principal components as factors. Unlike when using two factors, the first column shows that the
confidence sets are no longer empty but bounded which shows that the parameters for the first three PCA factors are well identified
and that the model is no longer misspecified. This is confirmed by the 𝑝-value of the rank test on the 𝛽’s. This is in contrast when
using the first, third and fifth principal components as factors. The confidence sets in the second column of Fig. 7 are namely all
unbounded indicating weak identification of the risk premia which is further reflected by the 𝑝-value of the rank test on the 𝛽’s.
Table 4 also shows that the model including the first, third, and fifth PCA factors has a much smaller rank test statistic than when
using the first three PCA factors in a three-factor model.

3 The rank tests in Table 4 and Figs. 6–7 are not identical. For expository purposes, we choose a smaller number of test assets in Figs. 6–7.
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The left hand side column of Fig. 7 shows the confidence sets for the first three PCA factors. These factors are proxies for
he “level”, “slope” and “curvature” factors which are constructed from observed yields, i.e. the level factor equals the difference
etween long and short yields, and the slope and curvature factors are a combination of short, intermediate, and long yields. Instead
f the first three PCA factors, the level, slope and curvature factors could as well be used. The confidence sets for the risk premia
n Fig. 7 for the first three PCA factors are all bounded which shows that they are well identified which is similarly confirmed by
he large value of the rank test. The standard risk premia on the level, slope and curvature factors can also be computed using their
verage return on a trading strategy mimicking the respective factor. The confidence sets in Fig. 7, are, however, for the time-varying
omponent of the risk premia which could as well be computed using a multi-pass estimation procedure using the return from a
rading strategy mimicking the respective factor.4

Fig. 7 shows the three dimensional confidence sets that result from the sFAR test. It results from partialling out the six risk
premia parameters associated with the other two factors. Hence, when we compute these confidence sets using projection with the
identification robust tests, we have to specify a nine-dimensional grid for the parameters and compute the identification robust tests
for all values on this nine-dimensional grid. This is, or is close to be, computationally infeasible. Hence, the sFAR test provides a
computationally tractable manner to conduct identification robust tests on larger number of parameters.

5.3. Practical takeaway for when weak identification occurs

The identification robust confidence sets discussed previously can have different shapes and not always conform with the
bounded Wald type confidence sets most researchers are used to. When the risk premia parameters are well identified, the resulting
identification robust confidence sets are bounded and convex and comparable to the Wald type confidence sets researchers are used
to. In case of weak identification, the identification robust confidence sets can, however, be unbounded which indicates that the
data is not informative about the risk premia parameters. The Wald type confidence sets remain bounded when identification is
weak but are unreliable because they mistakenly give the impression that the data is informative about the risk premia parameter
while it is not. Weak identification is very unsatisfactory because it leaves the researcher kind of empty-handed, and no conclusions
can be drawn about the parameters of interest. In such settings, it is important to try to improve the identification strength which
can be achieved in different ways:

1. Limit the number of factors or remove weak factors from the model. Our previous analyzes show that the higher order PCA
and macro factors are much weaker than the first three PCA factors. When estimating risk premia parameters using all these
factors, they become weakly identified so little can be learned about them. When we instead just use the first three principal
components as factors, Fig. 7 shows that bounded confidence sets are obtained which lead to meaningful inference.

2. Impose restrictions on the risk premia. When certain risk premia are thought to be identical, identification can be improved by
equating them. It would especially be of interest to use economic restrictions for this purpose, like, for example, no-arbitrage
conditions.

6. Conclusion

We propose identification robust test procedures for testing hypotheses on risk premia in DATSMs. The robust subset factor
Anderson–Rubin test extends the sFAR test from the linear asset pricing model to allow for tests on multiple risk premia parameters
and, unlike projection based testing, provides a computationally tractable manner to conduct identification robust tests on larger
number of parameters. Our empirical results show that especially in case of multiple factors, weak identification is pervasive
and traditional tests are likely misleading. We use the empirical settings from the literature on affine term structure models, see
e.g. Adrian et al. (2013) and Ang and Piazzesi (2003)), to illustrate our results and the importance of using weak identification
robust test procedures.

Appendix: Proofs

Appendix A. Proof of Theorem 2

Proof of Theorem 2. Suppose that there exists a consistent estimator for 𝑆, 𝑆̂, a by-product of the Kronecker Product Structure
(KPS) test is the KPS factorization for 𝑆̂ (Guggenberger et al., 2022). We briefly discuss how it operates. Let 𝑅 ∈ R𝑘𝑝×𝑘𝑝 be a matrix
with a block structure

𝑅 ∶=
⎛

⎜

⎜

⎝

𝑅11 ⋯ 𝑅1𝑝
⋮ ⋱ ⋮
𝑅𝑝1 ⋯ 𝑅𝑝𝑝

⎞

⎟

⎟

⎠

,

here 𝑅𝑗𝑙 ∈ R𝑘×𝑘, 𝑗, 𝑙 = 1,… , 𝑝. Define (𝑅) ∶=
(

𝑅′
1 ⋯𝑅′

𝑝

)′
∈ R𝑝2×𝑘2 with 𝑅𝑗 ∶=

(

vec
(

𝑅1𝑗
)

⋯ vec
(

𝑅𝑝𝑗
) )′ ∈ R𝑝×𝑘2 , 𝑗 = 1,… , 𝑝.

4 We thank an anonymous referee for pointing us at the relationship between the first three PCA factors and the level, slope and curvature factors.
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Consider a singular value decomposition (SVD) of (𝑆̂): (𝑆̂) = 𝐿̂𝛴̂𝑁̂ ′ where 𝑝 = 2𝐾, 𝑘 = 𝑁 , 𝛴̂ ∶= diag
(

𝜎̂1 … 𝜎̂min(𝑝2 ,𝑘2)
)

denotes a 𝑝2 × 𝑘2 dimensional diagonal matrix with the singular values 𝜎̂𝑗
(

𝑗 = 1,… ,min
(

𝑝2, 𝑘2
))

non-increasingly ordered on the
main diagonal, and 𝐿̂ ∈ R𝑝2×𝑝2 , 𝑁̂ ∈ R𝑘2×𝑘2 orthonormal matrices. Decompose

𝐿̂ ∶=
(

𝐿̂11 𝐿̂12
𝐿̂21 𝐿̂22

)

=
(

𝐿̂1 ⋮ 𝐿̂2
)

, 𝛴̂ ∶=
(

𝜎̂1 0
0 𝛴̂2

)

,

𝑁̂ ∶=
(

𝑁̂11 𝑁̂12
𝑁̂21 𝑁̂22

)

=
(

𝑁̂1 ⋮ 𝑁̂2
)

,

with 𝐿̂11 ∶ 1 × 1, 𝐿̂12 ∶ 1 ×
(

𝑝2 − 1
)

, 𝐿̂21 ∶
(

𝑝2 − 1
)

× 1, 𝐿̂22 ∶
(

𝑝2 − 1
)

×
(

𝑝2 − 1
)

, 𝜎̂1 ∶ 1 × 1, 𝛴̂2 ∶
(

𝑝2 − 1
)

×
(

𝑘2 − 1
)

, 𝑁̂11 ∶ 1 × 1,
𝑁̂12 ∶ 1 ×

(

𝑘2 − 1
)

, 𝑁̂21 ∶
(

𝑘2 − 1
)

× 1, 𝑁̂22 ∶
(

𝑘2 − 1
)

×
(

𝑘2 − 1
)

dimensional matrices. The consistency arises from the consistency of
𝑆̂ and Theorem 1 from Guggenberger et al. (2022). □

Appendix B. Proof of Theorem 3

We provide a proof of Theorem 3. Before we do so, we first state two lemmas that enable us to prove it in a succinct manner.
The proofs of these Lemmas are given in Appendix B.1 which succeeds the concise proof of Theorem 3.

Lemma 1. Under Assumptions of Theorem 3, the sFAR(𝜆01) statistic equals the sum of the K smallest roots of the following polynomial:

|

|

|

𝜇𝐼2𝐾−1 − 𝛯̂′𝛯̂||
|

= 0,

where 𝛯̂ = [𝜉𝑢 ⋮ 𝜉𝛽2 ] ∼𝑎 𝑁(, 𝐼𝑁(2𝐾−1)), “∼𝑎 ” denotes an approximate distribution in large samples. The specifications of 𝜉𝑢, 𝜉𝛽2 and the
parameter matrix  are stated in the proof.

Comments on Lemma 1.

1. The 𝑁 × (2𝐾 − 1) dimensional matrix  is non-random (and defined in (B.47)). It depends on the parameters of the data
generating process. Under the null hypothesis 𝐻0 ∶ 𝜆1 = 𝜆01,  can be expressed as (0𝑁,𝐾 ,𝑀) for some nonrandom 𝑁×(𝐾−1)
dimensional matrix 𝑀 . When, for example, all 𝛽’s are zero, we have 𝑀 = 0. The eigenvalues of ′ indicate the strength
of identification.

2. In large samples, 𝛯̂′𝛯̂ is approximately (non-central) Wishart distributed with 𝑁 degrees of freedom, covariance matrix 𝐼2𝐾−1,
and non-centrality parameter matrix ′, denoted by 2𝐾−1

(

𝑁, 𝐼2𝐾−1,′
)

.
3. Instead of being equal to the smallest root of a characteristic polynomial which is the setting in, e.g., Guggenberger et al.

(2012), Guggenberger et al. (2019)), Lemma 1 shows that the subset FAR statistic equals the sum of the 𝐾 smallest roots.
Theorem 3 therefore provides an important extension to the bounding result in Guggenberger et al. (2012).

Lemma 2. Let:

(a) 𝑇 be a sequence of the parameter matrix  from Lemma 1;
(b) M denote the collection of all such sequences under the null hypothesis 𝐻0 ∶ 𝜆1 = 𝜆01;
(c) 𝜅𝑖(𝐴) denote the 𝑖th eigenvalue of 𝐴′𝐴 ordered non-increasingly;
(d) M∞ be a subset of M that contains all sequences M𝑇 satisfying 𝑄𝑇 → 𝑄 with 𝑄𝑇 being an orthonormal matrix whose columns are

eigenvectors of ′
𝑇𝑇 and 𝜅1(𝑇 ) > ⋯ > 𝜅𝐾 (𝑇 ) = 𝜅𝐾+1(𝑇 ) = ⋯ = 0, 𝜅𝐾−1(𝑇 ) → ∞;

(e) 𝛯̃ = 𝑍 + with 𝑍 being an 𝑁 × (2𝐾 − 1) random matrix and vec(𝑍) ∼ 𝑁(0𝑁(2𝐾−1),1, 𝐼𝑁 ⊗ 𝐼2𝐾−1);

then:

i for any 𝑀𝑇 in 𝑀 , 𝜅𝑗 (𝛯̃𝑇
) = 𝑂𝑝(1), 𝑗 ≥ 𝐾;

ii for any 𝑀𝑇 in 𝑀 , we can find a parameter sequence ̃ℎ in 𝑀∞such that lim sup𝑇→∞ 𝜅𝑗 (𝛯̃𝑇
) ≤ lim infℎ→∞ 𝜅𝑗 (𝛯̃̃ℎ

), 𝑗 ≥ 𝐾;
iii under the assumptions of Lemma 1 and any sequence of parameter matrices in 𝑀∞, the ordered smallest 𝐾 eigenvalues, 𝜅̂𝑗 =
𝜅𝑗 (𝛯̂), 𝑗 ≥ 𝐾, converge in distribution to the (ordered) smallest eigenvalues of 𝑊 , with 𝑊 (central) Wishart distributed with 𝑁
degrees of freedom and covariance matrix 𝐼𝐾 , i.e., 𝑊 ∼ 𝑊𝐾

(

𝑁 − (𝐾 − 1), 𝐼𝐾 , 0𝐾
)

.

Proof of Theorem 3. The equality of the sFAR statistic with the sum of the 𝐾 smallest eigenvalues of a non-central Wishart
distributed random matrix results from Lemma 1.

Lemma 2.(ii) implies that for deriving an upper bound on the limiting distribution of the sFAR statistic, we only have to analyze
the limiting distributions of the 𝐾 smallest eigenvalues that result under parameter sequences in M .
∞
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Lemma 2.(iii) and because the trace of a central Wishart distributed random matrix has a (central) 𝜒2 distribution, see,
.g., Muirhead (2009), then lead to the bounding result lim

𝑇→∞
sFAR(𝜆01) ≺ 𝜒

2(𝐾(𝑁 − (𝐾 − 1))). □

.1. Proofs of Lemmas 1 and 2

This section contains proofs of the lemmas needed for the proof of Theorem 3.

roof of Lemma 1. The FAR statistic reads,

FAR(𝛬0
1)= 𝑇 × 𝑓𝑇 (𝛬0

1, 𝑋)′𝑉𝑓𝑓 (𝛬0
1)

−1𝑓𝑇 (𝛬0
1, 𝑋). (B.42)

The sample moments 𝑓𝑇 (𝛬1, 𝑋) of the model under consideration for given 𝛬1 are (22):

𝑓𝑇 (𝛬1, 𝑋) = 1
𝑇

𝑇
∑

𝑡=1
(𝑋̄𝑡−1 ⊗ (𝑅̄𝑡 − 𝛽𝑉𝑡)) −

(

𝑄̂𝑋𝑋 ⊗ 𝛽
)

vec(𝛬1).

sing that 𝑑 is the least squares estimator resulting from step 2 of the three-step procedure:

vec(𝑑) =
(

𝑄̂𝑋𝑋 ⊗ 𝐼𝑁
)−1 1

𝑇

𝑇
∑

𝑡=1
(𝑋̄𝑡−1 ⊗ (𝑅̄𝑡 − 𝛽𝑉𝑡)),

we have that

𝑓𝑇 (𝛬1, 𝑋) =
(

𝑄̂𝑋𝑋 ⊗ 𝐼𝑁
)

vec
(

𝛷̂𝐴(𝜆1)𝜋𝛬2

)

, (B.43)

with

𝛷̂ = 1
𝑇
∑𝑇
𝑡=1 𝑅𝑡

(

𝑋̄𝑡
𝑣̂𝑡+1

)′ [

1
𝑇
∑𝑇
𝑡=1

(

𝑋̄𝑡
𝑣̂𝑡+1

)(

𝑋̄𝑡
𝑣̂𝑡+1

)′]−1

=
(

𝑑 ⋮ 𝛽
)

, 𝐴(𝜆1) =
(

𝐼𝐾 −𝜆1 0
0 0 𝐼𝐾−1

)′

, 𝜋𝛬2
=
(

𝐼𝐾
−𝛬2

)

.

Provided that Assumption 4 holds, the above result implies that

𝑉𝑓𝑓 (𝛬0
1) =

(

𝑄̂𝑋𝑋𝜋′𝛬0
2
𝐴(𝜆01)

′ ⊗ 𝐼𝑁

)

𝑉𝛷̂
(

𝐴(𝜆01)𝜋𝛬0
2
𝑄̂𝑋𝑋 ⊗ 𝐼𝑁

)

=
(

𝑄̂𝑋𝑋 ⊗ 𝐼𝑁
)

(

𝜋′
𝛬0
2
𝐴(𝜆01)

′𝛹̂𝐴(𝜆01)𝜋𝛬0
2
⊗ 𝛴̂

)

(

𝑄̂𝑋𝑋 ⊗ 𝐼𝑁
)

.
(B.44)

ubstituting (B.43) and (B.44) into (B.42) then gives

FAR(𝜆01, 𝛬
0
2) = 𝑇 vec

(

𝛷̂𝐴(𝜆01)𝜋𝛬0
2

)′
(

𝜋′
𝛬0
2
𝐴(𝜆01)

′𝛹̂𝐴(𝜆01)𝜋𝛬0
2
⊗ 𝛴̂

)−1
vec

(

𝛷̂𝐴(𝜆01)𝜋𝛬0
2

)

= 𝑇 vec
(

𝛷̂𝐴(𝜆01)𝜋𝛬0
2

)′
vec

(

𝛴̂−1𝛷̂𝐴(𝜆01)𝜋𝛬0
2

(

𝜋′
𝛬0
2
𝐴(𝜆01)

′𝛹̂𝐴(𝜆01)𝜋𝛬0
2

)−1
)

,

hich using the trace operator can be rewritten as

FAR(𝜆01, 𝛬
0
2) = 𝑇 tr

(

𝜋′
𝛬0
2
𝐴(𝜆01)

′𝛷̂′𝛴̂−1𝛷̂𝐴(𝜆01)𝜋𝛬0
2

[

𝜋′
𝛬0
2
𝐴(𝜆01)

′𝛹̂𝐴(𝜆01)𝜋𝛬0
2

]−1
)

.

et F̃AR(𝜆01, 𝑞) = 𝑇 tr
(

𝑞′𝐴(𝜆01)
′𝛷̂′𝛴̂−1𝛷̂𝐴(𝜆01)𝑞

[

𝑞′𝐴(𝜆01)
′𝛹̂𝐴(𝜆01)𝑞

]−1), where 𝑞 is a (2𝐾 − 1) × 𝐾 matrix and 𝑞′𝐴(𝜆01)
′𝛹̂𝐴(𝜆01)𝑞 = 𝐼𝐾 and

et 𝑞∗∗ be a collection of such 𝑞’s. Denote

𝑞 = arg min
𝑞∈𝑞∗∗

F̃AR(𝜆01, 𝑞).

Theorem 1.2 from Sameh and Wisniewski (1982) implies that F̃AR(𝜆01, 𝑞) equals 𝑇 times the sum of the 𝐾 smallest eigenvalues
f the eigenvalue problem:

𝐴(𝜆01)
′𝛷̂′𝛴̂−1𝛷̂𝐴(𝜆01)𝑥 = 𝜅𝛹̂ (𝜆01)𝑥,

here 𝛹̂ (𝜆01) = 𝐴(𝜆01)
′𝛹̂𝐴(𝜆01), 𝑥 is a (2𝐾 − 1)-eigenvector, 𝜅 is a scalar eigenvalue, and 𝑞 corresponds to the associated eigenvectors

f 𝐴(𝜆01)
′𝛷̂′𝛴̂−1𝛷̂𝐴(𝜆01). Let 𝑤̂𝑢 denote the upper 𝐾 ×𝐾 block matrix of 𝑞, and let 𝑤̂𝑑 denote the lower block matrix. It follows that

AR(𝜆01, 𝛬̂2) = F̃AR(𝜆01, 𝑞) where 𝛬̂2 = −𝑤̂𝑑𝑤̂−1
𝑢 , as constructed.

𝑇 times the sum of the 𝐾 smallest eigenvalues, 𝜅’s, of the above eigenvalue problem equals 𝑇 times the sum of the 𝐾 smallest
oots of the characteristic polynomial:

|

|

|

𝜇𝛹̂ (𝜆01) − 𝑇𝐴(𝜆
0
1)

′𝛷̂′𝛴̂−1𝛷̂𝐴(𝜆01)
|

|

|

= 0. (B.45)

Pre/post-multiplying |

|

|

𝜇𝛹̂ (𝜆01) − 𝑇𝐴(𝜆
0
1)

′𝛷̂′𝛴̂−1𝛷̂𝐴(𝜆01)
|

|

|

= 0 by
(

𝐼𝐾 −𝛬′
2

0 𝐼𝐾−1

)

gives

| ̂ 0 ( ̂ )′ ̂−1 ( ̂ )|

|

|

𝜇𝛹 (𝜆1, 𝛬2) − 𝑇 𝑢̂, 𝛽2 𝛴 𝑢̂, 𝛽2 |

|

= 0 , (B.46)
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where

𝛹̂ (𝜆01, 𝛬2) =
(

𝐼𝐾 −𝛬′
2

0 𝐼𝐾−1

)′

𝛹̂ (𝜆01)
(

𝐼𝐾 −𝛬′
2

0 𝐼𝐾−1

)

=

(

𝛹̂𝑢 𝛹̂𝑢𝛽2
𝛹̂ ′
𝑢𝛽2

𝛹̂𝛽2

)

,

and 𝑢̂ = 𝑑 − 𝛽1𝜆0′1 − 𝛽2𝛬2 = 𝜖 + 𝛽1
(

𝜆1 − 𝜆01
)′. Note that 𝐶𝛹̂ (𝜆01, 𝛬2)𝐶 ′ = 𝐼2𝐾−1 holds with

𝐶 =

⎛

⎜

⎜

⎜

⎝

𝛹̂
− 1

2
𝑢𝑢 0

−𝛹̂
− 1

2
𝛽2𝛽2⋅𝑢

𝛹̂ ′
𝑢𝛽2
𝛹̂−1
𝑢𝑢 𝛹̂

− 1
2

𝛽2𝛽2⋅𝑢

⎞

⎟

⎟

⎟

⎠

, 𝛹̂𝛽2𝛽2⋅𝑢 = 𝛹̂𝛽2𝛽2 − 𝛹̂
′
𝑢𝛽2
𝛹̂−1
𝑢𝑢 𝛹̂𝑢𝛽2 .

Pre/post-multiplying Eq. (B.46) by |𝐶| yields |

|

|

𝜇𝐼2𝐾−1 − 𝛯̂′𝛯̂||
|

= 0, where

𝜉𝑢 =
√

𝑇 𝛴̂− 1
2 𝑢̂𝛹̂

− 1
2

𝑢𝑢 , 𝜉𝛽2 =
√

𝑇 𝛴̂− 1
2
(

𝛽2 − 𝑢̂𝛹̂−1
𝑢𝑢 𝛹̂

′
𝑢𝛽2

)

𝛹̂
− 1

2
𝛽2𝛽2⋅𝑢

,

 =
(

√

𝑇𝛴− 1
2 𝛽1(𝜆1 − 𝜆01)

′𝛹
− 1

2
𝑢𝑢 ⋮

√

𝑇𝛴− 1
2
(

𝛽2 − 𝛽1(𝜆1 − 𝜆01)
′𝛹−1
𝑢𝑢 𝛹 ′

𝑢𝛽2

)

𝛹
− 1

2
𝛽2𝛽2⋅𝑢

)

,
(B.47)

and 𝛹̂𝑢𝑢, 𝛹̂𝑢𝛽2 , 𝛹̂𝛽2𝛽2⋅𝑢 converge to 𝛹𝑢𝑢, 𝛹𝑢𝛽2 , 𝛹𝛽2𝛽2⋅𝑢 respectively in probability. Therefore, the eigenvalue problem (B.45) is equivalent
to the eigenvalue problem |

|

|

𝜇𝐼2𝐾−1 − 𝛯̂′𝛯̂||
|

= 0, and the test statistic equals the sum of the K smallest eigenvalues of 𝛯̂′𝛯̂. □

Proof of Lemma 2. (i) Under the null hypothesis 𝐻0 ∶ 𝜆1 = 𝜆01,  =
(

0𝑁,𝐾 ,
√

𝑇𝛴− 1
2 𝛽2𝛹

− 1
2

𝛽2𝛽2⋅𝑢

)

, so the rank of  is smaller than
or equal to 𝐾 − 1. Therefore, the null space of , denoted by 𝑁(), is at least 𝐾 dimensional. In the following of this proof, we
use 𝛯 = 𝛯̃ = 𝑍 +.

For an arbitrary 𝑛-by-𝑛 real symmetric matrix 𝐴, the 𝑘th largest eigenvalue, via min–max characterization (also known as the
Courant–Fisher expression), can be expressed as min 𝑈 𝑠.𝑡.

dim(𝑈 )=𝑛−𝑘+1
max𝑥∈𝑈 {𝑥′𝐴𝑥 ∶ ‖𝑥‖ = 1}, where the first minimum is over all

(𝑛 − 𝑘 + 1)-dimensional subspaces 𝑈 of R𝑛. Therefore, employing this characterization, the 𝑗th eigenvalue of 𝛯′𝛯 is

𝜅̂𝑗 = min
𝑈 𝑠.𝑡.

dim(𝑈 )=2𝐾−1−𝑗+1

max
𝑥∈𝑈

{𝑥′(𝑍 +)′(𝑍 +)𝑥 ∶ ‖𝑥‖ = 1}.

For 𝑗 ≥ 𝐾, 2𝐾 − 1 − 𝑗 + 1 ≤ 𝐾, we can choose 𝑈 ⊆ 𝑁(), and note that

max𝑥∈𝑁(){𝑥′(𝑍 +)′(𝑍 +)𝑥 ∶ ‖𝑥‖ = 1} = max𝑥∈𝑁(){𝑥′𝑍′𝑍𝑥 ∶ ‖𝑥‖ = 1} = 𝑂𝑝(1),

which implies that 𝜅̂𝑗 = 𝑂𝑝(1). □

Proof of Lemma 2. (ii) We show that for any given sequence 𝑛 in M, there exists a sequence ̃ℎ that belongs to M∞, satisfying
the condition lim sup𝑛→∞ 𝜅𝑗 (𝛯̃𝑛

) ≤ lim infℎ→∞ 𝜅𝑗 (𝛯̃̃ℎ
), 𝑗 ≥ 𝐾.

To construct the sequence, we start by selecting a sub-sequence of 𝑛, denoted by 𝑛ℎ , such that limℎ→∞ 𝜅𝑖(𝛯̃𝑛ℎ
) =

lim sup𝑛→∞ 𝜅𝑖(𝛯̃𝑛
), and 𝑄𝑛ℎ → 𝑄, where ′

𝑛ℎ
𝑛ℎ = 𝑄𝑛ℎ𝑃𝑛ℎ𝑄

′
𝑛ℎ

, 𝑄𝑛ℎ is an orthogonal matrix whose columns are eigenvectors
of ′

𝑛ℎ
𝑛ℎ and 𝑃𝑛ℎ is a diagonal matrix whose entries are the eigenvalues 𝜅𝑖(𝑛ℎ ). Denote by 𝑄𝑛ℎ ,𝑖 the eigenvector associated with

𝜅𝑖( 𝑛ℎ ), and by construction 𝑄𝑛ℎ ,𝑖 → 𝑄𝑖. Since we allow weak identification, 𝜅𝑖(𝑛ℎ ) with 𝑖 ≤ 𝐾 − 1 can be close to zero when
all factors are weak, e.g., 𝛽2 = 𝑂(1∕

√

𝑇 ). Parameter sequences in M∞ thus correspond to “non-weakly identified” data generating
processes.

We choose ̃ℎ = 𝑃
1
2
ℎ 𝑄

′
𝑛ℎ

with 𝑃ℎ being a diagonal matrix with diagonal entries 𝑃ℎ,𝑖𝑖 = 𝜅ℎ,𝑖 such that 𝜅ℎ,1 > ⋯ > 𝜅ℎ,𝐾 = 𝜅ℎ,𝐾+1 =

⋯ = 0, 𝜅ℎ,𝐾−1 → ∞ and 𝜅ℎ,1 = 𝑜
(

(

∑

1≤𝑖≤2𝐾−1 ‖𝑄𝑛ℎ ,𝑖 −𝑄𝑖‖max + ℎ−1
)−1

)

. Note that the following two properties hold by construction,

1. For 𝑗 ≥ 𝐾,

lim inf
ℎ

𝜅𝑗 (𝛯̃̃ℎ
) = lim inf

ℎ
min
𝑈 𝑠.𝑡.

dim(𝑈 )=
2𝐾−1−𝑗+1;

𝑈⟂
span(𝑄𝑖,𝑖<𝐾)

max
𝑥∈𝑈,
‖𝑥‖=1

{𝑥′𝛯̃′
̃ℎ

𝛯̃̃ℎ
𝑥},

(B.48)

where the minimum is over all (2𝐾 − 1 − 𝑗 + 1)-dimensional subspaces 𝑈 of R2𝐾−1 that are orthogonal to the linear spaces
spanned by vectors 𝑄𝑖, 𝑖 < 𝐾.

2. For 𝑗 ≥ 𝐾,

lim inf 𝜅 (𝛯̃ ̃ ) = lim 𝜅 (𝛯̃ ̃ ).

ℎ→∞ 𝑗 ℎ ℎ→∞ 𝑗 ℎ (B.49)
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These two properties lead directly to the final conclusion that for 𝑗 ≥ 𝐾,

lim sup𝑛→∞ 𝜅𝑗 (𝛯̃𝑛
) = limℎ→∞ 𝜅𝑗 (𝛯̃𝑛ℎ

)

= lim
ℎ→∞

min
𝑈 𝑠.𝑡.

dim(𝑈 )=2𝐾−1−𝑗+1

max
𝑥∈𝑈

{𝑥′𝛯̃′
𝑛ℎ

𝛯̃𝑛ℎ
𝑥 ∶ ‖𝑥‖ = 1}

≤ lim
ℎ→∞

min
𝑈 𝑠.𝑡.

dim(𝑈 )=2𝐾−1−𝑗+1,
𝑈⟂span(𝑄𝑛ℎ,𝑖 ,𝑖<𝐾)

max
𝑥∈𝑈

{𝑥′𝛯̃′
𝑛ℎ

𝛯̃𝑛ℎ
𝑥 ∶ ‖𝑥‖ = 1}

= lim
ℎ→∞

min
𝑈 𝑠.𝑡.

dim(𝑈 )=2𝐾−1−𝑗+1,
𝑈⟂span(𝑄𝑛ℎ,𝑖 ,𝑖<𝐾)

max
𝑥∈𝑈

{𝑥′𝑍′𝑍𝑥 ∶ ‖𝑥‖ = 1}

= lim
ℎ→∞

min
𝑈 𝑠.𝑡.

dim(𝑈 )=2𝐾−1−𝑗+1,
𝑈⟂span(𝑄𝑖,𝑖<𝐾)

max
𝑥∈𝑈

{𝑥′𝑍′𝑍𝑥 + 𝑜𝑝(1) ∶ ‖𝑥‖ = 1}

= lim
ℎ→∞

min
𝑈 𝑠.𝑡.

dim(𝑈 )=2𝐾−1−𝑗+1,
𝑈⟂span(𝑄𝑖,𝑖<𝐾)

max
𝑥∈𝑈

{𝑥′𝛯̃′
̃ℎ

𝛯̃̃ℎ
𝑥 ∶ ‖𝑥‖ = 1}

= lim
ℎ→∞

𝜅𝑗 (𝛯̃̃ℎ
) = lim inf

ℎ→∞
𝜅𝑗 (𝛯̃̃ℎ

),

here the second last equality results from using an increasing rate of 𝜅ℎ,1 such that 𝜅ℎ,1 = 𝑜
(

1
∑

1≤𝑖≤2𝐾−1 ‖𝑄𝑛ℎ,𝑖−𝑄𝑖‖max+ℎ−1

)

.
To complete the proof, we now prove the above two properties.

1. Note that

‖̃ℎ𝑥 − 𝑃
1
2
ℎ 𝑄

′𝑥‖ ≤ 𝜅
1
2
ℎ,1

(

∑

1≤𝑖≤2𝐾−1 ‖𝑄𝑛ℎ ,𝑖 −𝑄𝑖‖max

)

‖𝑥‖ = 𝑜(1)

because 𝜅ℎ,1 = 𝑜
(

1
∑

1≤𝑖≤2𝐾−1 ‖𝑄𝑛ℎ,𝑖−𝑄𝑖‖max+ℎ−1

)

. Hence, for the sequence { ̃ℎ, ℎ ≥ 1}, if, for example, for an arbitrary 𝑖 < 𝐾

such that 𝑄′
𝑖𝑥 ≠ 0, ‖𝑥‖ = 1, then with probability approaching one as ℎ increases,

𝑥′𝛯̃′
̃ℎ

𝛯̃̃ℎ
𝑥 = 𝑥′𝑍′𝑍𝑥 + 𝑥′̃′

ℎ𝑍𝑥 + 𝑥
′𝑍′̃ℎ𝑥 + 𝑥′̃′

ℎ̃ℎ𝑥

≥ 1
2𝜅ℎ,𝐾−1𝑥′𝑄𝑖′𝑄𝑖𝑥 → ∞,

Combining the above equation with Lemma 2.(i), we know 𝜅𝑗 (𝛯̃ℎ
), the minimum in Eq. (B.48), should be achieved over

linear spaces that are orthogonal to 𝑄𝑖, 𝑖 < 𝐾 as ℎ increases. This completes the proof of the first property (B.48).
2. For 𝑗 ≥ 𝐾, by construction, 𝜅𝑗 (𝛯̃̃ℎ

) = 𝑄′
𝑛ℎ ,𝑖
𝛯̃′
̃ℎ

𝛯̃̃ℎ
𝑄𝑛ℎ ,𝑖 = 𝑄′

𝑛ℎ ,𝑖
𝑍′𝑍𝑄𝑛ℎ ,𝑖 → 𝑄′

𝑖𝑍
′𝑍𝑄𝑖. Hence, lim infℎ→∞ 𝜅𝑗 (𝛯̃̃ℎ

)
= limℎ→∞ 𝜅𝑗 (𝛯̃̃ℎ

). This completes the proof of the second property (B.49). □

Proof of Lemma 2. (iii) The proof follows the proof of Theorem 8.4.(d) in the supplementary material of Andrews and Guggenberger
(2017). Note that 𝑛𝑈 ′

𝑛𝐷̂
′
𝑛𝑊

′
𝑛𝑊𝑛𝐷̂𝑛𝑈𝑛 in Andrews and Guggenberger (2017) corresponds with our 𝛯̂′𝛯̂. Equations (15.10), (16.37)

and Theorem 8.4.(d) in the supplementary material of Adrian et al. (2013) then lead to 𝑊 ∼ 𝐾
(

𝑁 − (𝐾 − 1), 𝐼𝐾 , 0𝐾
)

under any
sequence of parameter matrices in M∞. □

Appendix C. Proof of Theorem 4

Proof of Theorem 4. The smallest 𝐾 roots are calculated from the polynomial
|

|

|

|

|

|

|

|

|

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

′

[

𝜇𝛹̂ − 𝛷̂′𝛴̂−1𝛷̂
]

⎛

⎜

⎜

⎜

⎝

𝐼𝐾 0

−𝜆0′1 0

0 𝐼𝐾−1

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

|

= 0,

where 𝛹̂ = 𝛹̂ ′ =
(

𝛹̂𝑋 𝛹̂𝑋𝑉
𝛹̂𝑉 𝑋 𝛹̂𝑉

)

and 𝛹̂𝑋 and 𝛹̂𝑉 are 𝐾 ×𝐾 submatrices of 𝛹̂ , We specify 𝜆01 = 𝑐𝜆̄01, with 𝑐 = (𝜆0′1 𝜆
0
1)

1
2 , so 𝜆̄0′1 𝜆̄

0
1 = 1

and 𝜆̄01,⟂ ∶ 𝐾 × (𝐾 − 1), 𝜆̄0′1,⟂𝜆̄
0
1 ≡ 0, 𝜆̄0′1,⟂𝜆̄

0
1,⟂ ≡ 𝐼𝐾−1. Hence, diag((𝜆̄01,⟂ ⋮ 𝜆̄01), 𝐼𝐾−1) is an invertible orthonormal matrix. Pre- and post

ultiplying the matrices in the determinant with it does therefore not affect the characteristic roots of he following polynomial:
|

|

|

|

|

|

|

(

𝜆̄01,⟂ 𝜆̄01 0
0 0 𝐼𝐾−1

)′ ⎛
⎜

⎜

⎜

𝐼𝐾 0

−𝜆0′1 0

⎞

⎟

⎟

⎟

′

[

𝜇𝛹̂ − 𝛷̂′𝛴̂−1𝛷̂
]

⎛

⎜

⎜

⎜

𝐼𝐾 0

−𝜆0′1 0

⎞

⎟

⎟

⎟

(

𝜆̄01,⟂ 𝜆̄01 0

0 0 𝐼𝐾−1

)

|

|

|

|

|

|

|

= 0,
|

|

⎝
0 𝐼𝐾−1 ⎠ ⎝

0 𝐼𝐾−1 ⎠
|

|
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which can be rewritten as
|

|

|

|

|

|

|

|

⎛

⎜

⎜

⎝

1 0 0
0 −𝑐 0
0 0 𝐼2(𝐾−1)−1

⎞

⎟

⎟

⎠

′
⎛

⎜

⎜

⎝

𝜆̄01,⟂ −𝜆̄01∕𝑐 0
0 1 0
0 0 𝐼𝐾−1

⎞

⎟

⎟

⎠

′
[

𝜇𝛹̂ − 𝛷̂′𝛴̂−1𝛷̂
]

⎛

⎜

⎜

⎝

𝜆̄01,⟂ −𝜆̄01∕𝑐 0
0 1 0
0 0 𝐼𝐾−1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 0 0
0 −𝑐 0
0 0 𝐼2(𝐾−1)−1

⎞

⎟

⎟

⎠

|

|

|

|

|

|

|

|

= 0.

ence, when 𝑐 goes to infinity, the characteristic polynomial becomes:
|

|

|

|

|

|

(

𝜆̄01,⟂ 0
0 𝐼𝐾

)′
[

𝜇𝛹̂ − 𝛷̂′𝛴̂−1𝛷̂
]

(

𝜆̄01,⟂ 0
0 𝐼𝐾

)

|

|

|

|

|

|

= 0.

ince 𝛷̂ = (𝑑 ⋮ 𝛽), we have 𝛷̂ × diag(𝜆̄01,⟂, 𝐼𝐾−1) = ( 𝑑𝜆̄01,⟂ ⋮ 𝛽). The subset AR statistic now equals the sum of the 𝐾 smallest root
f the above characteristic polynomial which depend on 𝜆̄01,⟂. For example, when 𝜆̄1 = 𝑒1,𝑘, 𝜆̄01,⟂ =

( 0
𝐼𝑘−1

)

so 𝑑𝜆̄01,⟂ = 𝑑2 etc.

Let 𝛹̂ (𝜆̄01,⟂) =
(

𝜆̄01,⟂ 0
0 𝐼𝐾

)′

𝛹̂

(

𝜆̄01,⟂ 0
0 𝐼𝐾

)

. Then the above characteristic polynomial can be rewritten, by pre- and post

multiplying the matrices in the determinant with 𝛹̂ (𝜆̄01,⟂)
−1∕2′ and 𝛹̂ (𝜆̄01,⟂)

−1∕2 respectively, as

|

|

|

𝜇𝐼2𝐾−1 − 𝛹̂ (𝜆̄01,⟂)
−1∕2′( 𝑑𝜆̄01,⟂ ⋮ 𝛽)′𝛴̂−1( 𝑑𝜆̄01,⟂ ⋮ 𝛽)𝛹̂ (𝜆̄01,⟂)

−1∕2|
|

|

= 0.

The lower 𝐾 ×𝐾 principal submatrix of

𝛹̂ (𝜆̄01,⟂)
−1∕2′( 𝑑𝜆̄01,⟂ ⋮ 𝛽)′𝛴̂−1( 𝑑𝜆̄01,⟂ ⋮ 𝛽)𝛹̂ (𝜆̄01,⟂)

−1∕2

by construction is 𝛹̂−1∕2′
𝑉 𝛽′𝛴̂−1𝛽𝛹̂−1∕2

𝑉 , and thus Cauchy’s interlacing inequality implies the sum of the K smallest roots of the above
polynomial is bounded from below by the minimum eigenvalue of 𝛹̂−1∕2′

𝑉 𝛽′𝛴̂−1𝛽𝛹̂−1∕2
𝑉 . Therefore, the limit sFAR statistic is bounded

from below uniformly by the minimum eigenvalue of 𝛹̂−1∕2′
𝑉 𝛽′𝛴̂−1𝛽𝛹̂−1∕2

𝑉 . □

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105728.
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