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Abstract
Consider a predictive regression with a financial asset, such as a stock market return, as the dependent variable,
and a macroeconomic variable, such as consumption growth, as the independent variable or predictor. Such
regressions in practice often fail to yield evidence of return predictability. In contrast, if the predictor variable
is aggregated at a lower frequency, for example annual consumption growth rather than monthly consumption
growth, evidence of return predictability is much stronger, both economically and statistically. The first contri-
bution of the paper is a model to explain this result. I assume that the macroeconomic predictor is measured
with error and is subject to adjustment dynamics. For example, aggregate consumption might respond slowly
to a shock due to adjustment costs. I further assume that the macroeconomic predictor may contain a long
memory or slow moving component. The second contribution of the paper is an instrumental variables estimator
to recover the true parameter of the original predictability regression. The instrument is constructed using a
lagged low frequency value of the predictor variable. I show that the estimator is robust to the presence of
measurement error, adjustment dynamics, and long memory. The consistency of the proposed instrumental
estimator relies on the long memory property of the predictor variable. Approximate consistency relies on the
sum of autocorrelations being large relative to the covariance between the measurement error and shocks to the
time series.

Univariate Model - Data Generating Process
The DGP depends on yt and pt , with t = 0, . . . ,T . x∗t is the first difference of p∗t , and is the sum of of two
components: µt and gt . µt is a covariance stationary long memory process, and gt is a covariance stationary
short memory process. ϵt is mean zero, uncorrelated over time, and uncorrelated with x∗t−1.

x∗t ≡ p∗t − p∗t−1

= µt + gt

yt = α + βx∗t−1 + ϵt

= α + β(µt−1 + gt−1) + ϵt

Suppose p∗t is measured with error vt , so that we observe pt and xt , where xt is the first difference of pt . Let
ut denote shocks to gt . vt and ut are white noise processes that are possibly correlated. Let σ

2
v ≡ Var(vt) and

σvu ≡ Cov(vt, ut).

pt = p∗t + vt

xt ≡ pt − pt−1

= µt + gt + vt − vt−1

OLS Estimator
The estimable model is a regression of yt on a constant and xt−1. Let ρj ≡ Cov(µt, µt−j) and γj ≡ Cov(gt, gt−j).
The OLS estimate and its probability limit are given by:

β̂OLS = [Var(xt−1)]
−1[Cov(xt−1, yt)]

plim β̂OLS = [ρ0 + γ0 + 2σvu + 2σ2
v ]
−1[ρ0 + γ0 + σvu]β

In general, the OLS slope coefficient is asymptotically biased towards zero.

IV Estimator
Consider the estimable model summed over t and t + 1, i.e. a regression of (yt+1 + yt) on a constant and

(xt + xt−1). Then, use
∑M

i=1 xt−i as an instrument for (xt + xt−1). The estimate and plim are given by:

β̂IV = [Cov(
M∑
i=1

xt−i , xt + xt−1)]
−1[Cov(

M∑
i=1

xt−i , yt+1 + yt)]

plim β̂IV = [ρ̃M + γ̃M ]
−1[ρ̃M + γ̃M + σvu]β

ρ̃M ≡ ρ0 + 2
M−1∑
i=1

ρi + ρM

γ̃M ≡ γ0 + 2
M−1∑
i=1

γi + γM

We now consider the limit of plim β̂IV as M increases. γ̃M converges to a constant. ρ̃M does not converge to a
constant due to the long memory property of µt . As M increases, [ρ̃M + γ̃M ]

−1[ρ̃M + γ̃M + σvu] converges to
unity. Note we assume that M does not grow as a fast as T , so that standard large sample asymptotics hold
as M increases. Thus limM→∞ plim β̂IV = β

Multivariate Model
We generalize the model to allow for multiple predictors. The probability limit of the OLS and IV estimators
are given by:

plim β̂OLS = [ρ0 + γ0 +Σvu +Σ′
vu + 2Σv ]

−1[ρ0 + γ0 +Σvu]β

plim β̂IV = [ρ̃M + γ̃M +Σvu −Σ′
vu]

−1[ρ̃M + γ̃M +Σvu]β

ρ̃M ≡ ρ0 + 2
M−1∑
i=1

ρi + ρM

γ̃M ≡ γ0 + 2
M−1∑
i=1

γi + γM

As with the univariate case, plim β̂IV converges to β as M increases.

Inference
Due to the aggregation of the estimable model over t and (t + 1), the residuals are autocorrelated at one lag.
Let et denote the residual from the IV regression, Xt denote the regressors, Zt denote the instruments, and B
denote the parameters. The distribution of the IV estimator is given by:√

T − (M + 1) (B̂ − B)
a∼ N(0,V )

V =

(
E[ZtX ′

t ]

)−1

S
(
E[XtZ ′

t ]

)−1

S ≡ Γ0 + Γ1 + Γ′
1

Γ0 ≡ E[ZtZ ′
te

2
t ]

Γ1 ≡ E[Ztetet−1Z ′
t−1]

=
1

2
E(e2t )E[ZtZ ′

t−1]

The covariance matrix can be consistently estimated using the sample analog of the above expressions. Γ1

is efficiently estimated as the sample analog of 1
2E(e

2
t )E[ZtZ ′

t−1], as this takes into account autocorrelation
structure of the residual.

Simulation
Using simulated data, I examine the performance of the proposed estimator. x∗t follows a mean zero fractionally
integrated autoregressive model of order one. I consider two simulations: In the first, d = 0.2 and ϕ = 0.5. This
corresponds to a long memory process with a moderately persistent short memory component. In the second,
d = 0.0 and ϕ = 0.8. This corresponds to a standard short memory process, but with greater persistence. I
set σ2

u = σ2
v = 1, and ρvu ≡ σvu

σvσu
= −0.5. A negative correlation in shocks to gt and pt is consistent with slow

adjustment of macroeconomic variables to their equilibrium values. In the return predictability regression, I set
α = 0 and β = 1, R2 = 0.05, the sample size is T = 1, 000, and the total number of simulations is 100, 000.

Figure: Simulation Results

(a) d = 0.2 & ϕ = 0.5: β̂ (b) d = 0.2 & ϕ = 0.5: CP

(c) d = 0.0 & ϕ = 0.8: β̂ (d) d = 0.0 & ϕ = 0.8: CP

Left - estimated slope coefficient for each M , with the 90% and 95% confidence intervals. Right - the 90% (black), 95% (red),
and 99% (blue) coverage probabilities. M = 0 corresponds to the OLS regression, while M = 1, . . . , 24 are the IV regressions.

Table: Simulation Results

d = 0.2 & ϕ = 0.5 d = 0.0 & ϕ = 0.8

M β̂ CP-90 β̂ CP-90
(ŝe) CP-95 (ŝe) CP-95
(m̂se) CP-99 (m̂se) CP-99

0 0.496 0.001 0.581 0.016
(0.102) 0.002 (0.108) 0.033
(0.264) 0.013 (0.187) 0.108

3 0.889 0.843 0.926 0.870
(0.194) 0.912 (0.173) 0.931
(0.050) 0.977 (0.035) 0.983

6 0.918 0.883 0.949 0.892
(0.244) 0.938 (0.210) 0.945
(0.066) 0.986 (0.047) 0.989

d = 0.2 & ϕ = 0.5 d = 0.0 & ϕ = 0.8

M β̂ CP-90 β̂ CP-90
(ŝe) CP-95 (ŝe) CP-95
(m̂se) CP-99 (m̂se) CP-99

12 0.934 0.898 0.957 0.900
(0.321) 0.949 (0.291) 0.950
(0.107) 0.991 (0.086) 0.991

18 0.941 0.904 0.958 0.906
(0.381) 0.954 (0.374) 0.955
(0.149) 0.992 (0.142) 0.992

24 0.945 0.908 0.958 0.910
(0.435) 0.957 (0.459) 0.959
(0.193) 0.993 (0.213) 0.994

In each table, the left column reports the estimated slope coefficient β̂, with the standard error (ŝe) and mean squared error
(m̂se) in the rows below. The right column reports the 90%, 95%, and 99% coverage probabilities.

Empirical Example
The dependent variable is the real excess return on the value weighted market index. The first predictor is the
log change in consumption growth. The second predictor is the log change in industrial production. The third
predictor is the log change in non-farm payrolls. The data start in January 1959 and end in December 2024.
The data are sampled monthly, and T = 792. I estimate the predictive regression using OLS, and using the
proposed IV method, for M = 1, . . . , 24. I collect the estimated slope coefficient, associated standard error,
and the r-squared. The results show that evidence of return predictability is stronger when using the proposed
instrumental variables estimator, relative to OLS. In general, evidence of predictability is greater as M increases,
with diminishing effects at larger values of M .

Figure: Return Predictability Regression Results

(a) PCE Regression: β̂ (b) IP Regression: β̂ (c) NFP Regression: β̂

(d) PCE Regression: R2 (e) IP Regression: R2 (f) NFP Regression: R2

I plot the estimated slope coefficients and r-squared for each M . The dotted blue and dashed red lines are the 90% and 95%
confidence intervals, respectively. M = 0 corresponds to the OLS regression, while M = 1, . . . , 24 are the IV regressions.

Table: Return Predictability Regression Results

PCE Regression IP Regression NFP Regression

M β̂ R2 β̂ R2 β̂ R2

(ŝe) (p) (ŝe) (p) (ŝe) (p)

0 −0.587 0.009 −0.062 0.000 −0.424 0.003
(0.223) (0.009) (0.159) (0.696) (0.270) (0.117)

2 −1.176 0.008 −0.449 0.001 −1.421 0.004
(0.653) (0.072) (0.339) (0.185) (1.053) (0.177)

4 −2.759 0.018 −0.843 0.006 −2.978 0.014
(1.764) (0.118) (0.532) (0.114) (2.527) (0.239)

6 −3.020 0.014 −1.066 0.004 −3.252 0.007
(1.813) (0.096) (0.659) (0.106) (2.639) (0.218)

PCE Regression IP Regression NFP Regression

M β̂ R2 β̂ R2 β̂ R2

(ŝe) (p) (ŝe) (p) (ŝe) (p)

9 −3.491 0.023 −1.494 0.006 −4.019 0.014
(1.582) (0.028) (0.746) (0.046) (2.602) (0.123)

12 −3.858 0.027 −1.907 0.011 −4.650 0.018
(1.536) (0.012) (0.845) (0.024) (2.797) (0.097)

18 −4.037 0.026 −2.577 0.012 −5.311 0.015
(1.544) (0.009) (1.181) (0.029) (3.173) (0.095)

24 −3.899 0.023 −3.086 0.009 −5.070 0.009
(1.478) (0.008) (1.759) (0.080) (3.486) (0.146)

For each regression, the left column reports the estimated slop coefficient β̂, with the standard error (ŝe) in parentheses below.
The right column reports the R2, with the p-value (p) testing the null hypothesis that β = 0 in parentheses below.


