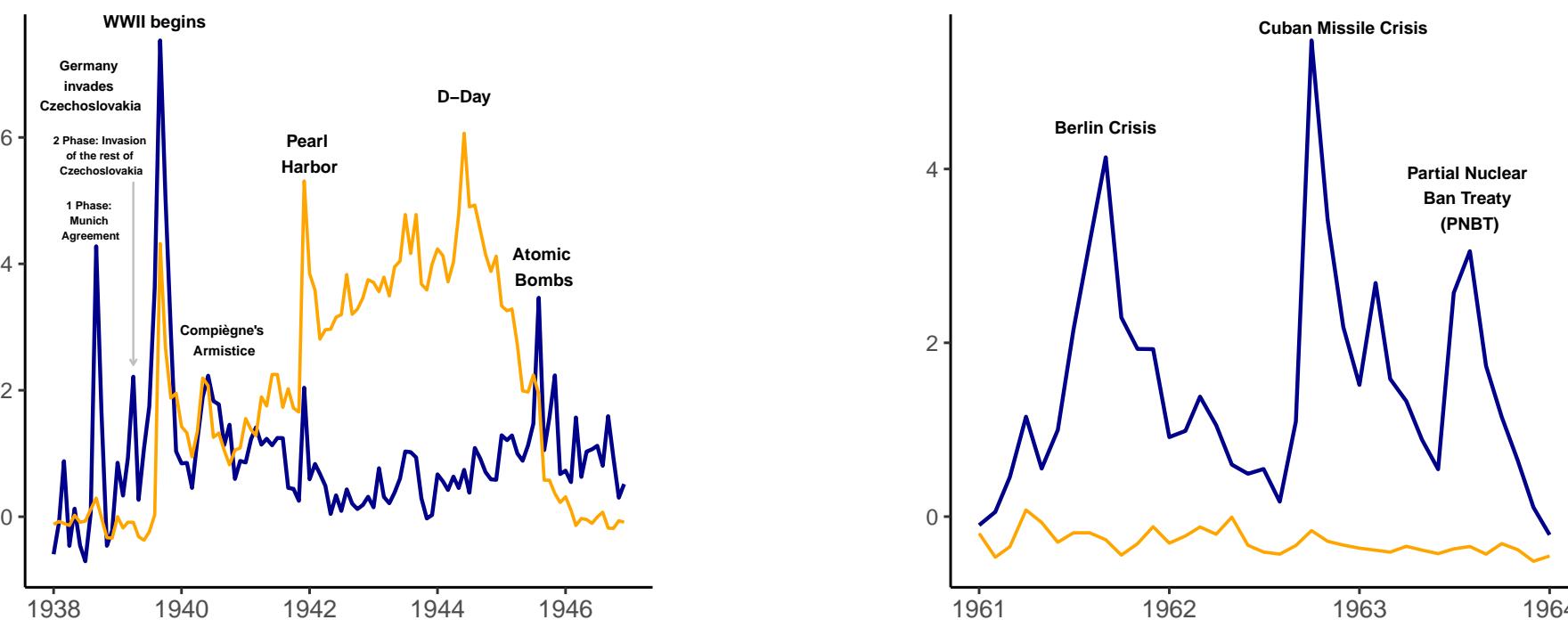


The Pricing of Geopolitical Tension over a Century

THE OHIO STATE UNIVERSITY

Andrei S. Gonçalves, Alessandro Melone, Andrea Ricciardi

The Ohio State University


Abstract

We study the asset pricing implications of geopolitical tensions using nearly 100 years of data. Leveraging widely adopted news-based geopolitical risk indices, we find that geopolitical **threats (GPT)** and **acts (GPA)** have markedly different effects. **GPT** aligns closely with geopolitical *risk perceptions and decisions* of investors and firms. Consequently, **GPT** is priced across *individual US stocks, equity anomalies, international equity and bond indices*, and it forecasts country-level equity premia. In contrast, **GPA** exhibits *weaker and less stable links* to the beliefs and decisions of investors and firms as well as to variation in risk premia across assets and over time. Importantly, our results are incremental to existing news-based indices of macro-financial uncertainty. Overall, our findings underscore the *importance of forward-looking measures* like **GPT** for understanding how news-based uncertainty affects *investment decisions and asset prices*.

Motivations

In forward-looking markets, **different dynamics and risk premia effects:**

Realized Events ("acts") vs E[Future Events] ("threats")

Geopolitical tensions are *infrequent* and *cluster over time*: Need long sample

GPT vs GPA: Investors

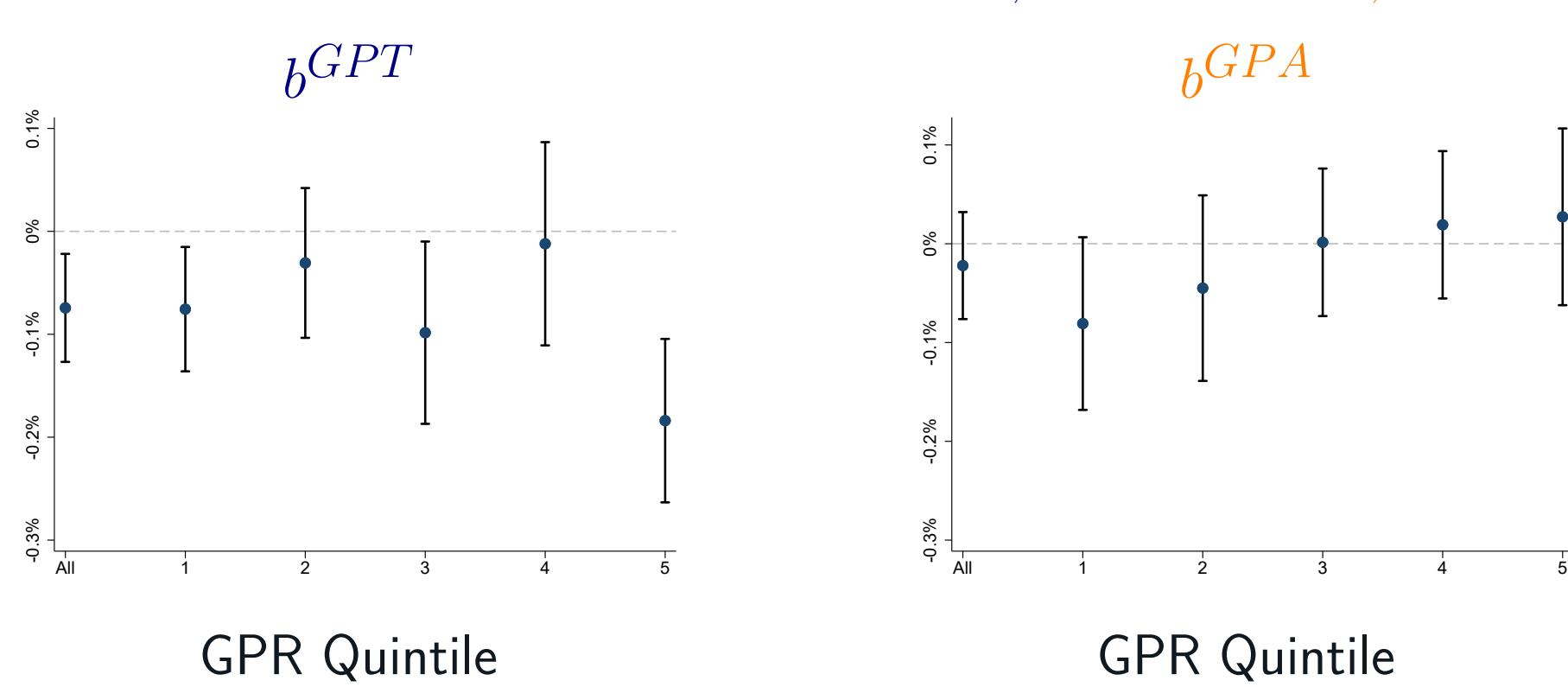
GPT (unlike **GPA**) is linked to subjective assessments of geopolitical risk:

	ICRG (All Categories)			ICRG (Internal+External Conflicts)			BofA Surveys of Fund Managers		
	[1]	[2]	[3]	[1]	[2]	[3]	[1]	[2]	[3]
GPT	0.30 [3.61]		0.36 [5.17]	0.31 [2.46]		0.35 [2.64]	1.07 [6.64]		1.01 [5.42]
GPA	-0.10 [-0.67]		-0.31 [-2.37]	0.00 [0.01]		-0.20 [-1.05]	1.31 [3.32]		0.33 [1.01]
R^2_{within}	10%	0%	14%	14%	14%	25%	40%	11%	40%
$Cor[Y_t, \hat{Y}_t]$	0.16	0.03	0.19	0.19	0.19	0.25	0.63	0.33	0.63
# Obs	4,970	4,970	4,970	4,970	4,970	4,696	210	210	210

Koijen and Yogo (2019) Set-up: In 13F portfolio holdings, investors allocate less capital to stocks with higher **GPT** exposure, but not higher **GPA**:

$$\log(w_{i,n,t}) = \theta_{0,i,t} + \theta'_{i,t} x_{n,t} + \theta_{i,t}^{GPT} \cdot \beta_{n,t}^{GPT} + \theta_{i,t}^{GPA} \cdot \beta_{n,t}^{GPA} + \epsilon_{i,n,t}$$

The effect strengthening during periods of high GPR

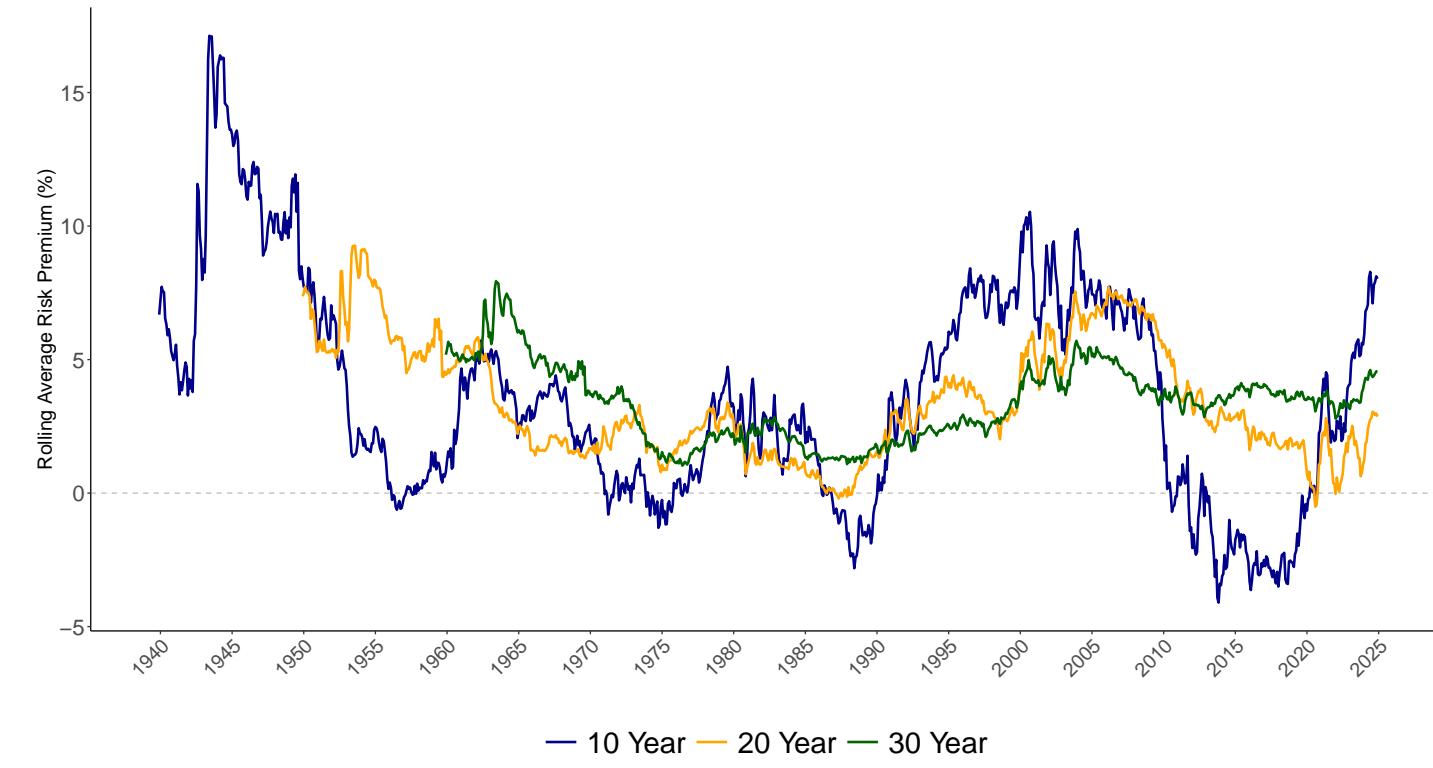

GPT vs GPA: Firms

GPT (unlike **GPA**) is linked to Firm Investment:

	Perceived Investment Risk			Aggregate Investment			Industry-Level Investment		
	[1]	[2]	[3]	[1]	[2]	[3]	[1]	[2]	[3]
GPT	0.34 [1.65]		0.50 [3.15]	-0.03 [-1.61]		-0.04 [-3.04]	-0.03 [-1.83]		-0.03 [-1.80]
GPA	-0.53 [-2.46]		-0.83 [-2.97]	0.03 [0.58]		0.06 [1.91]	-0.05 [-0.86]		-0.03 [-0.50]
R^2_{within}	6%	5%	16%	5%	2%	10%	1%	0%	1%
# Obs	4,970	4,970	4,970	312	312	312	1,482	1,482	1,482

Firms with higher β_{GPT} , (but not higher β_{GPA}) systematically cut back capital expenditures, an effect that also strengthens when GPR is high.

$$I_{n,t+1}/K_{n,t} = a_n + a_t + b' x_{n,t} + b^{GPT} \cdot \beta_{n,t}^{GPT} + b^{GPA} \cdot \beta_{n,t}^{GPA} + \epsilon_{n,t}$$


Geopolitical Risk Premia

Beta HML Portfolios Constructed from Single Stocks

INDEX =	GPT	GPA	GPR	WAR	EPU	EMV	TPU	RUI	MUI	FUI
Beta on Mimicking Factor	0.11 [3.14]	0.03 [1.02]	0.09 [3.04]	-0.03 [-0.24]	0.22 [11.3]	0.10 [6.58]	0.04 [1.41]	0.90 [3.64]	1.40 [5.25]	1.18 [4.04]
Risk Premium (%)	4.17 [2.85]	1.69 [0.98]	2.71 [1.65]	1.22 [0.87]	2.99 [1.42]	0.68 [0.40]	-0.49 [-0.30]	2.56 [1.36]	2.39 [1.22]	2.40 [1.05]
CAPM Alpha (%)	4.84 [3.23]	1.18 [0.72]	3.06 [1.90]	2.41 [1.61]	-1.08 [-0.59]	0.15 [0.09]	-1.12 [-0.65]	0.26 [0.15]	-0.11 [-0.06]	-0.42 [-0.20]
ICAPM Alpha (%)	4.21 [2.91]	0.93 [0.53]	2.28 [1.38]	1.48 [0.97]	0.45 [0.25]	-1.27 [-0.86]	-1.23 [-0.72]	1.18 [0.88]	0.99 [0.66]	0.62 [0.27]
GPT Alpha w.r.t INDEX	3.34 [2.61]	2.05 [2.59]	2.82 [2.17]	4.25 [3.12]	4.04 [2.80]	3.27 [2.09]	2.89 [1.82]	2.86 [1.93]	2.93 [1.96]	
INDEX Alpha w.r.t GPT	-0.37 [-0.25]	-1.00 [-1.21]	-0.68 [-0.50]	3.15 [1.25]	-0.37 [-0.20]	0.13 [0.08]	1.78 [0.98]	1.41 [0.77]	1.45 [0.66]	

Realized GPT Risk Premia on a Rolling Window

HML Quintile Portfolios Sorted on β^{GPT} (1930-2024)

Cross-Section of Equity Anomaly Risk Premia ✓

- Method: Supervised Principal Component Analysis (SPCA) of Giglio, Xiu, and Zhang (2025)
- 2,620 anomaly from Chen and Zimmermann (2022) and Jensen, Kelly, and Pedersen (2023)

Cross-Section of Country-Level Equity and Bond Risk Premia ✓

- Method: Fama and MacBeth (1973) regressions
- Data: Jordà et al. (2019) dataset, annual returns for 1930-2020 on 16 developed countries

Time-Series of Equity Risk Premia ✓

- Method: Panel Regressions with Country Fixed Effects
- Data: Jordà et al. (2019) dataset, annual returns for 1927-2019 on 16 developed countries

Potential Channels

Overreaction to geopolitical threats mechanism X

- $\uparrow GPT \rightarrow P$ declines too much \rightarrow equities become underpriced

Non-linear market risk mechanism X

- $\uparrow GPT \rightarrow$ associated with extreme market declines [(non-linear) market risk]

Time Variation in the Probability of Disasters ✓

$$sdf_t = \lambda_{t-1} - \gamma \cdot \Delta c_t - \lambda_E \cdot N_{E,t} + \lambda_V \cdot N_{V,t} + \lambda_H \cdot N_{H,t}$$

Realized Disasters: $Y_t = 1/H \cdot \sum_{h=1}^H \text{Disaster}_{t+h}$

	H = 1 Year			H = 3 Years			H = 5 Years			H = 10 Years		
	[1]	[2]	[3]	[1]	[2]	[3]	[1]	[2]	[3]	[1]	[2]	[3]
GPT	9.34 [3.16]	3.72 [1.45]	8.63 [3.27]	4.24 [1.55]	8.36 [3.79]	5.37 [2.27]	5.98 [4.17]	5.63 [3.56]				
GPA	13.18 [6.63]	11.56 [6.56]	10.86 [5.49]	9.02 [4.58]	8.47 [4.21]	6.14 [3.32]	3.17 [1.82]	0.73 [0.56]				
R^2_{within}	21% 26%	25% 26%	25% 26%	28% 28%	29% 28%	31% 30%	36% 34%	36% 34%				
# Obs	2,418	2,418	2,418	2,366	2,366	2,366	2,314	2,314	2,184	2,184	2,184	2,184

References

Chen, Andrew Y. and Tom Zimmermann, "Open Source Cross-Sectional Asset Pricing," *Critical Finance Review*, 2022, 11 (2), 207–264.

Fama, Eugene F. and James D. MacBeth, "Risk, Return, and Equilibrium: Empirical Tests," *Journal of Political Economy*, May 1973, 81 (3), 607–636.

Giglio, Stefano, Dacheng Xiu, and Dake Zhang, "Test Assets and Weak Factors," *The Journal of Finance*, February 2025, 80 (1), 259–319.

Jensen, Theis Ingerslev, Bryan Kelly, and Lasse Heje Pedersen, "Is There a Replication Crisis in Finance?," *The Journal of Finance*, October 2023, 78 (5), 2465–2518.

Koijen, Ralph S. J. and Motohiro Yogo, "A Demand System Approach to Asset Pricing," *Journal of Political Economy*, August 2019, 127 (4), 1475–1515.

Oscar Jordà, Katharina Knoll, Dmitry Kuvshinov, Moritz Schularick,