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1 Introduction

Full Information Rational Expectations (FIRE), the strict assumption that agents observe

the entire information set and form rational beliefs, is fundamental to modern macroeco-

nomic models. Yet, recent empirical examinations of the FIRE hypothesis provide mixed

results, not reaching a consensus on whether the deviations consistently violate the full infor-

mation (i.e., information frictions), the rational expectations (i.e., behavioral bias), or both

assumptions (Angeletos et al., 2021, Bianchi et al., 2022, Eva and Winkler, 2023). More

importantly, behavioral biases and information frictions may have different macroeconomic

effects (Kohlhas and Walther, 2021, Coibion et al., 2022, Bianchi et al., 2021, Bordalo et al.,

2018, Gennaioli et al., 2016).

At the core of the deviations from FIRE are the separate findings on underreaction to news

at the consensus level in Coibion and Gorodnichenko (2015) (CG for short) and overreaction

to news at the individual level in Bordalo et al. (2020b) (BGMS for short).1 The literature

conventionally uses information frictions to explain the underreaction and behavioral bias

to explain the overreaction (Angeletos and Huo, 2021, Angeletos et al., 2021 and Kohlhas

and Walther, 2021, among others).2 However, while grounded in compelling theoretical

foundation, this suggestion fails to explain why forecast revisions are weak predictors of

forecast errors out-of-sample (Eva and Winkler, 2023).

An alternative hypothesis, which is the focus of this study, suggests analysts exhibit

asymmetric responses to signals. In this direction are works from Broer and Kohlhas (2022),

Bianchi et al. (2022), and Kučinskas and Peters (2024). At the core of this hypothesis is

the interaction of information friction and behavioral bias. Because of information rigidities,

agents are exposed to both public and private signals. Also, agents’ expectations are driven

by behavioral bias as their interpretation of these signals varies conditional on the type

of the signal received. The bias drives them to underestimate the significance of public

signals while overestimating the importance of private signals. In more detail, since public

signals are widely disseminated among multiple agents, they are perceived as ‘diluted’ and

an average agent discounts these signals’ value. However, private signals are perceived as

‘exclusive’ driving an average agent to overvalue them.

I document, this hypothesis not only explains underreactions and overreactions from

in-sample tests, but also reconciles mixed evidence from out-of-sample evaluations. First,

1CG regress analysts’ forecast errors on forecast revisions from forecasts about macroeconomic variables
at the consensus level and find that agents underreact to new information. BGMS run the same regression
at the individual-analyst level and find that agents overreact to new information.

2A growing body of literature also focuses in this area. See for example, Rozsypal and Schlafmann
(2023), Bordalo et al. (2022), Bordalo et al. (2018), Coibion et al. (2018) and Andolfatto et al. (2008) among
others.
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forecast revisions at the consensus level might effectively diversify revision components aris-

ing from private signals. Underreaction to news, as evidenced by the CG model, could

therefore reflect analysts’ tendency to underestimate the significance of public information.

On the other hand, regressions at the individual level might expose overreaction to news

given individuals’ tendency to overrate the significance of private information. This channel

may be a stronger predictor of forecast errors, obscuring underreaction to public signals.

Second, the mechanism explains why forecast revisions often fail to predict forecast er-

rors out-of-sample. By not accounting for asymmetric responses to signals, any attempt to

predict (and therefore diminish) forecast errors after controlling for analysts’ information set

is rather weak as the coefficient that identifies behavioral bias is not flexible to accommo-

date for different signal types that emerge in the testing sample. By decomposing forecast

updates into revisions from different types of signals, the econometrician gets more accurate

information of analysts’ behavior without receiving excess information that analysts might

have not been able to observe on real time when reported their forecasts. This helps account

for asymmetries and provide more accurate predictions than analysts’ reported forecasts if

they are distorted by bias.

The key difference between the prevailing and this alternative hypothesis is summarized

by two points. First, this hypothesis does not focus on agents’ ability to process contempo-

raneous and lagged information in order to explain underreactions (i.e., sticky information).

It instead emphasizes analysts’ behavior to explain this observation. Analysts underestimate

the degree to which these signals are informative about future outcomes. Second, analysts do

not necessarily extrapolate all signals in their attention, but only those they believe are more

informative as they perceive to have smaller noise. As a result, the presence of noisy infor-

mation and analysts’ non-rational prioritization of exclusive news sources jointly generates

the bias seen in the data.

Definitions. — Throughout this study I define a public signal–received within a window

of k periods–as the accumulated new information that was announced at any time from t−k
to t and is added to all individuals’ information set (i.e., is publicly available). A private

signal is the accumulated new information that an individual receives at any time from t−k

to t but this information is not available to every individual’s information set. It follows that

if all individuals’ beliefs were rational, the public signal would reflect changes in consensus’s

expectations from t − k to t while the private signal would be traced by deviations of an

individual’s beliefs from the consensus at time t.3 Revisions from public (private) signals

are an analyst’s updates of their reported forecasts upon observing public (private) signals.

Finally, I use the terms correction revisions and forecast corrections interchangeably to

3I discuss the identification of the signals in more detail in Section 2.2.

2



denote an analyst’s forecast updates resulting from past disagreements with the rational

consensus.4 The forecast horizon, H, is defined as the number of quarters the forecast

was reported ahead of the firm-revenue announcement and the revision window, k, is the

number of days between the initial forecast announcement at t− k and the updated forecast

announcement at t.

Contribution. — The contribution of this paper is twofold. First, I propose an empirical

methodology to decompose analysts’ overall forecast revisions into components related to

their reaction to public signals, private signals, and forecast corrections. This decomposition

method allows for an empirical examination of heterogeneous reactions to different sources

of signals when these signals are not directly observable in the data.

Second, I re-examine the predictability of forecast errors by forecast revisions in out-of-

sample (OOS) tests. The evidence suggests that the weak OOS performance of the BGMS

model, initially identified by Eva and Winkler (2023), is the result of analysts’ heterogeneous

responses to signals rather than the absence of behavioral bias. This finding is consistent

with the rejection of both the Full Information and the Rational Expectations hypothesis

and helps bridge the gap between evidence from two works studying forecast errors in OOS

settings. The first, Bianchi et al. (2022), finds that individuals heavily weight their personal

beliefs over publicly available information. The second, Eva and Winkler (2023), observes a

weak performance of the BGMS model in OOS tests.

While prior studies focus on predictions for macroeconomic variables, I examine forecasts

for firm revenues. The dataset employed in this study has certain advantages over those

studied in other papers. First, high-frequency data ensures proper identification of different

signal types analysts receive.5 Second, analysts’ forecasts are observed across three dimen-

sions: time, forecast horizons, and firms. This allows for empirical estimation of individuals’

responses to these signal types when the signals themselves are not directly observable. Ad-

ditionally, the dataset enables the study of heterogeneity across analysts due to sufficiency

in the number of observations per individual.

Identification Strategy. — Any inference of behavioral bias requires a valid identification

of ex ante rational expectations. I start by noting that if analysts receive private signals on

top of public signals, there cannot exist a universal agreement on a rational forecast, as this

is conditional on the information set an analyst observes. Observing the ex ante rational

4The rational consensus is defined below in the identification strategy.
5Throughout this study I conventionally use the term ‘high frequency’ to refer to data on daily forecasts.

Admittedly, one might associate high frequency with changes in values that occur several times per day. Here,
analysts face no restrictions in reporting their revised expectations on firm revenues versus several datasets
on expectations of macroeconomic variables where the survey occurs on monthly or quarterly basis—hence
the term.
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beliefs of every analyst separately would ideally be desirable, but it necessitates the proper

identification of their information set. To my knowledge, only one prior study pursues this

route, Bianchi et al. (2022), who control for analysts’ information set with a machine learning

model that utilizes a rich data environment. My identification strategy does not require such

data to proxy for analysts’ information set.

I instead argue that departures from rational expectations can be identified by comparing

forecasts with a well-defined benchmark universal across analysts. I establish this benchmark

by introducing a consensus estimate that is absent of any bias, which I term the rational

consensus. The rational consensus can be conceptualized as a representative analyst who

only observes public signals and revises expectations rationally. To demonstrate the main

results, I estimate the rational consensus using a Kalman Filter algorithm, and I show

that the results are robust to alternative specifications, for example the cross-analyst mean

forecast estimated from all forecasts announced up to 7 days before time-t.

Following this definition, interday revisions of the rational consensus indicate how much

an analyst should optimally revise her forecast had her beliefs not been influenced by behav-

ioral bias and/or private signals. It follows that the sensitivity of her revision to revisions

from the rational consensus can be estimated, and consequently, her overall forecast re-

visions can be decomposed into three parts: revisions from public signals, revisions from

private signals, and correction revisions. I use these three factors to predict forecast errors

using data from firm-revenue forecasts reported by professional equity analysts in the US. I

test the predictability of analysts’ forecast errors both in-sample and out-of-sample following

the rolling-forward methodology suggested by Eva and Winkler (2023). Finally, I examine

whether the behavioral bias is homogeneous across analysts or if they exhibit significant

heterogeneity in the degree they react to news.

Main Findings. — I demonstrate that, consistent with evidence reported by Eva and

Winkler (2023) who look at analysts’ predictions of macroeconomic variables, out-of-sample

(OOS) tests do not suggest the presence of bias when forecast errors are regressed on forecast

updates. However, I find that this outcome arises due to analysts’ heterogeneous responses

to signals, which tend to offset one another. When forecast updates are decomposed into

three factors—revisions from public signals, revisions from private signals, and correction

revisions—OOS tests reveal strong evidence of behavioral bias in analysts’ reported forecasts.

Specifically, analysts tend to overreact to private signals, underreact to public signals, and

exhibit persistence of over-/under-confidence by not properly correcting their past reports.

While revisions from public signals typically represent the largest part of overall revi-

sions, underreaction to these signals weakly explains forecast errors. This underreaction is

explained by analysts’ tendency to underestimate the significance of adverse public news
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while when receiving positive public signals their responses are rather rational and in longer

horizons can even be overreactive. In contrast, revisions from private signals and correction

revisions, though smaller parts of overall revisions, exhibit strong predictive power for fore-

cast errors, with overreaction to private signals being the most significant. Delving deeper

into responses to private signals, while analysts tend to overreact to both positive and neg-

ative news they observe privately, their overreaction is more pronounced in positive news.

Finally, instances of over-optimism are more pronounced than instances of over-pessimism

in equity analysts’ forecasts.

The data also provides some interesting stylized facts. Forecast updates typically occur

from public signals with a frequency slightly over 43% on average, while private signals

explain slightly under 30% of updates and corrections slightly over 26% of them. When a

signal is informative of an upward revision of revenue expectations equivalent to 1 percent,

an average analyst tends to underestimate the dynamics of this signal by 3 basis points if

the signal is announced publicly or overestimate it by 8 basis points if this signal is a private

announcement.

Additionally, I find significant cross-analyst heterogeneity of responses when analysts

are studied in different groups based on their overall reaction coefficients. While all groups

exhibit significant overreaction to private signals, this overreaction is more pronounced as we

move toward the bottom of the distribution. A different pattern emerges with public signals,

wherein the bottom of the distribution overreacts, while the top underreacts to these signals,

consistent with evidence from Broer and Kohlhas (2022). Finally, while all groups display

persistence in bias in their reports, analysts at the bottom of the distribution achieve more

accurate correction revisions. Accounting for cross-analyst heterogeneity can further improve

analysts’ forecasts, but it adds little to the outstanding predictive power of the decomposed

model.

The paper is structured as follows. In Section 2 I introduce a benchmark model from

Bordalo et al. (2020b) (BGMS) that implicitly assumes homogeneous responses to different

types of signals and then describe a methodology to decompose forecast revisions which

allows testing for heterogeneous responses. In Section 3 I describe the data used in this

study. In Section 4 I estimate the bias identified from the decomposed model and compare

with the results from the BGMS model when both models are tested in-sample (IS). In

Section 5 I follow the methodology proposed by Eva and Winkler (2023) and show that the

results are robust when the models are tested out-of-sample (OOS). In Section 6 I examine

the cross-analyst heterogeneity of responses to signals. In Section 7 I provide a series of

robustness checks and in Section 8 I conclude.
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2 Methodology

In this section I describe the analytical process of decomposing forecast revisions. I first

present the BGMS model of Bordalo et al. (2020b) as a reference test of the rational ex-

pectations hypothesis. I then proceed to the decomposition method by allowing analysts

to exhibit cross-analyst and cross-signal heterogeneous responses to new information. This

analysis considers revisions from public signals, private signals and correction revisions to

provide insights on analysts’ behavior. With these three factors available, I employ the de-

composed model as a natural generalization of the BGMS model to test for the presence

of bias and shed light on analysts’ heterogeneous responses to different information sources.

Figure 1 shows the timeline of a forecast announced by an individual analyst.

Figure 1: Timeline of a Forecast Announcement

Notes: Period-end date refers to the last day of the quarter firm revenues apply for. Capital letter H
measures the forecast horizon in quarters. Small letter h measures the forecast horizon in days.

2.1 The BGMS Model

I begin by presenting the model of Bordalo et al. (2020b) (BGMS model) who run a pooled

OLS regression of forecast errors on forecast revisions at the analyst level. I modify their

empirical model to account for the fact that analysts in this setting provide forecasts of

revenues for multiple firms at the same period, and therefore I analyze expectations at the

time-analyst-firm level. Let x̃jt+h denote firm j’s end-of-quarter revenues (in logs) announced

on day t+ h.

Let F i,j
t+h|t be analyst i’s forecast at day t (in logs) regarding firm j’s revenues of the

fiscal quarter announced at t + h. Analyst i’s forecast update from day t − k to t reflects

either new information received within the past k day(s) or strategic behavior under which
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the analyst decides to report an update during that period or a combination of these. The

forecast revision is given by:

∆kF
i,j
t+h ≡ F i,j

t+h|t − F i,j
t+h|t−k (1)

Unless otherwise stated, all regressions in this study include observations of which forecasts

are revised within a window between 1 day and 4 weeks (inclusive). I henceforth neglect

the term k in the notation to avoid confusion and denote the revision as ∆F i,j
t+h.

6 As docu-

mented by Bordalo et al. (2020b), these updates should not have explanatory power over (ex

post) forecast errors under the assumption of rational expectations. To maintain the same

interpretation of the estimated coefficients as with their work, I define the forecast errors by

subtracting forecasts from the realized revenues (both expressed in logs). That is:

FEi,j
t+h ≡ x̃jt+h − F i,j

t+h|t (2)

The following pooled (OLS) regression represents the baseline model (henceforth BGMS

model) of this analysis on in-sample (IS) estimates and will set the ground for comparison

with the decomposed model presented later in this section. The BGMS model is:

FEi,j
t+h = αB + βB∆F i,j

t+h + ϵi,jt+h for h ∈ H (3)

where j ∈ {1, ..., J} indexes the firm, i ∈ {1, ..., N} the analyst, t ∈ {1, ..., T} the day of the

forecast announcement and h ∈ H the forecast horizon (measured in days). I run separate

regressions depending on the number of quarters, H, the forecast was announced ahead of

the firm’s realized revenue announcement. The regressions are grouped to horizons from 1

to 6 quarters ahead.7

As in their paper, the BGMS coefficient or coefficient of overall reaction to news, βB,

6There is no overlap on revisions as the most recent vintage forecast is taken into account on estimation
of the revision. For example, if an analyst reported three different forecasts on revenues related to the same
firm and period-end date, say on days t = {1, 14, 25} then two revisions enter into the regressions; one from
day 1 to day 14 and the second from day 14 to day 25. The forecast update from day 1 to day 25 will be
omitted to mitigate concerns about residual autocorrelation.

7For example, when H is set to 2 quarters, the regression involves all forecasts reported as many days
ahead of the firm-revenue announcement as the forecast horizon (in days) falls within a window starting
3 months beyond day t and ending 6 months beyond day t. The decision to set quarterly boundaries on
horizons while forecast announcements are observed daily allows me to use a larger pool of observations as if
I imposed stricter limitations on the forecast horizon (by requiring, for example, a horizon of 30 days ahead).
In the latter case, only a smaller pool of analysts would meet this criterion.
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tests if the Rational Expectations hypothesis holds. Formally,

H0 : βB = 0, Analysts exhibit rational reaction to news.

H1 : βB ̸= 0, Analysts exhibit non-rational reaction to news.

A negative coefficient indicates that analysts overreact to news as when positive news induces

them to update their expectations upward, they tend to announce forecasts beyond the level

of actual revenues. Similarly, a positive coefficient is evidence of underreaction.

2.2 Decomposition of Forecast Updates

The BGMS coefficient captures the sensitivity of analysts’ forecast errors to their overall

reaction to news. However, if analysts demonstrate asymmetric responses to different sig-

nal types, forecast updates originating from one type of signal might counteract those from

another type, potentially overshadowing the actual predictability of news reaction and lead-

ing to a non-informative coefficient estimate. In addition, forecast updates from t − k to t

as in (1) could signify corrections to inaccurate predictions submitted in the past—rather

than conveying new information about fundamentals—or even strategic interactions with

the consensus once measures of the latter become available. To estimate analysts’ reactions

to different signal sources, I start by decomposing forecast revisions according to:

∆F i,j
t+h =

(
F i,j
t+h|t − Ēj

t+h|t

)
+
(
Ēj

t+h|t − Ēj
t+h|t−k

)
+
(
Ēj

t+h|t−k − F i,j
t+h|t−k

)
(4)

I define Ēj
t+h|t as the rational consensus-the expectation the consensus would form at day

t given all publicly available information in the absence of any form of bias. Specifically,

the rational consensus does not suffer from aggregate behavioral bias (e.g., prevailing opti-

mism/pessimism), and effectively diversifies any idiosyncratic behavioral bias (e.g., individu-

als’ sentiments) or any component arising from individuals’ strategic incentives. With these

properties in mind, I estimate the rational consensus using the Kalman Filter, the details of

which are provided in Appendix A.8

It follows that the second term on the RHS of equation (4) denotes how much the pro-

fessional analyst would react to the public signal she observes from t− k to t if she formed

rational expectations.9 The first term of the RHS captures inflated (depressed) reported

8In the robustness tests, I demonstrate that revisions from the rational consensus fail to predict forecast
errors in out-of-sample tests, evidence in rejection of sticky information.

9Gemmi and Valchev (2025) subtract lagged individual forecasts from lagged consensus forecasts–
consistent with the third term of (4)–to test for analysts’ responses to public signals. This is a noteworthy
difference with my work as their public signals correspond to individuals’ observation of the formation of
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forecast updates that can result from private signal observation and/or behavioral factors

distorting rational expectations. These latter factors are assumed to cause over -/under -

reaction to private and public news.

The third term of the RHS of equation (4) measures deviations from the rational con-

sensus on day t− k. While at t the analyst might not acknowledge the consensus, she may

eventually have a sense of the consensus as formed at t−k. The predictive ability of the latter

component reflects the degree to which this analyst corrects or adjusts her historical fore-

casts. As the rational consensus—by definition—does not yield predictable forecast errors,

the third term, which I name the correction revision, can only predict future forecast errors

if the analyst is persistently over-/under-confident (positive coefficient), or if she exhibits

aggressive correction to her past deviation from the consensus (negative coefficient). In the

language of Gemmi and Valchev (2025), the positive coefficient is consistent with analysts’

incentives to strategically diversify their reports (and thus stand out from the ‘herd’), while

the negative coefficient is consistent with their incentives to strategically coordinate (and

thus follow the ‘herd’).10

The discussion mentioned above implies that the forecast updates from t− k to t can be

decomposed into forecast updates due to news about fundamentals (i.e., the first two terms),

to which individuals might be reacting non-rationally, and updates due to news related to

the consensus’s formation (third term of (4)). Let the following process describe the sum of

the first two terms:

F i,j
t+h|t − Ēt+h|t−k = ∆F U ,i,j

t+h +∆FP,i,j
t+h (5)

where, ∆F U ,i,j
t+h ≡ (αu

i + αu
i,t + αu

i,h) s̄
j
t+h,k (6)

and, ∆FP,i,j
t+h ≡ (αp

i + αp
i,t + αp

i,h) s
i,j
t+h,k (7)

The term ∆F U ,i,j
t+h denotes analyst i’s revision due to a public signal, while ∆FP,i,j

t+h is her

revision due to a private signal. Equation (5) therefore states that analyst i’s current forecast

diverges from the rational consensus’s past forecast either because of her reaction to public

signals, or because of her response to private signals, or a combination of both. The term

s̄jt+h,k ≡ Ēj
t+h|t − Ēj

t+h|t−k in (6) is defined as the public signal, or equivalently the revision

an analyst would need to make if she represented the rational consensus. Similarly, if Ei,j
t+h|t

average opinion. In my work, public signals refer to news shocks about fundamentals that become common
knowledge to all analysts. On the other hand, I name the third term as corrections to emphasize the fact
that if this term explains forecast errors, it is attributed to poor correction efforts made by analysts when
they revised their initial forecasts.

10Another explanation of the predictive ability of the correction term—which is not the focus of this
study—is related to analysts’ strategic behavior to, for instance, stay overoptimistic as sell-side analysts
when the companies participate in M&As.
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represents analyst i’s rational beliefs conditional on her information set, the term si,jt+h,k ≡
Ei,j

t+h|t − Ēj
t+h|t in (7) is the private signal.11 The parameters inside the parentheses with

an upper letter u and p are related to analyst i’s reaction to public and private signals,

respectively. The first parameter characterizes her tendency to over -/under -estimate the

significance of the signal. The second parameter captures time-specific factors that induce

her to inflate or depress her reported forecast. The third parameter characterizes the degree

by which the proximity of the forecast period-end date might trigger her to pay closer

attention to the signal or not.12

Notice that if this analyst tends to reveal rational responses to public and private signals,

then αu
i = αp

i = 1 because she neither tends to overreact nor underreact to any signal source.

Furthermore, if during periods of overall optimism or pessimism she maintains her rational

reaction then αu
i,t = αp

i,t = 0 as she keeps responding to the signals as much as needed.

Finally, αu
i,h = αp

i,h = 0 implies that the timing she receives the signal compared to the

proximity of the firm-revenue announcement date does not influence her revision decision.

If all three conditions are met, then the three terms of (4) are interpreted as her rational

response to private signals (first term), her rational response to public signals (second term),

and her correction of potential mismatch with the consensus due to false private signals she

received in the past (third term).

The identification strategy of this paper is to isolate every analyst’s revisions that orig-

inate from the reception of public signals from revisions due to private signals to estimate

how each of them predicts forecast errors. There are two challenges to achieving this. First,

a valid measurement of the rational expectation given the publicly available information of

day t is needed to infer the public signal. Second, an estimation of the parameters of (6)

for every analyst is needed to infer her forecast updates from public signals. Once these

two issues are resolved, the revision from private signals can be estimated as the difference

between the LHS and the first term of the RHS of (5) without the need to identify either

the private signal or the parameters of (7).

Again, the first issue is resolved by estimating the rational consensus with Kalman Filter.

The Kalman Filter algorithm takes as inputs the cross-analyst average forecast reported on

day t (ADF) and estimates the (hidden) rational expectations conditional on publicly avail-

able information of day t. This process is performed for forecasts on all combinations of firm

and period-end date separately. Since individual reported forecasts are likely contaminated

by bias, so will the ADF, especially on days when only a few - or even one - analysts report.

11The private signal is not observed in the data, but as I discuss below, it is not needed when estimating
revisions from private signals. Later in the results I show how one can infer these signals as well and draw
their distribution.

12The forecast period-end date denotes the quarter and year for which the prediction is made.
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Part of this bias is assumed to distort all individuals’ expectations—and is therefore aggre-

gate. The remainder is assumed to be idiosyncratic bias, but if the pool of analysts reported

on the same day is small, this component might have not been diversified when computing

the ADF.

Both components of bias are not observed in the data, but their variances are parameter-

ized as following. The aggregate bias is assumed to vary consistent with the comovement of

the daily growth rate of the S&P 500 volatility index (VIX) and the forecast errors made by

the ADF. The idiosyncratic bias is assumed to vary consistent with the variance of individual

forecasters’ dispersion from the ADF and approximates zero when the number of forecasters

reported on day t tends to infinity. Finally, the public signals are assumed to vary consistent

with the variance of the log inter-day changes of the ADF. The aforementioned variances

determine the Kalman gain which in turn updates the rational consensus. Once the time

series of the rational consensus has been estimated for revenue forecasts on a specific firm

and period-end date, the public signals are backed out as a first-order change of the rational

consensus from (any) day t − k to t. The Kalman Filter method is presented in detail in

Appendix A.

The nature of the data used in this study allows me to overcome the second challenge as

well. Here, analysts report their revenue forecasts on different firms, announcement periods,

and horizons. Given that the parameters of (6) are not firm-dependent, they can be estimated

with an OLS regression (as I show in Equation (8)). To ensure sufficient statistical power of

the regressions, I modify the time-specific (αu
i,t) and horizon-specific (αu

i,h) parameters of (6)

to αu
i,q and αu

i,H respectively, such that q denotes the quarter-year that the announcement

day t belongs, and H measures the forecast horizon in quarters. In other words, the model

allows for cross-analyst heterogeneous reaction to public signals, while it also allows for cross-

period and cross-horizon (measured in quarters) variation in their coefficients of reaction, but

it assumes these parameters do not change within each quarter.13 I simultaneously estimate

the parameters of (6) and revisions from private signals by running for every analyst, i, an

OLS regression:

F i,j
t+h|t − Êj

t+h|t−k = âui ŝjt+h,k +
∑
q

âui,q
(
It∈q ŝjt+h,k

)
+

∑
H

âui,H
(
Ih∈H ŝjt+h,k

)
+ ∆̂F

P,i,j

t+h (8)

The variables Êj
t+h|t−k and ŝjt+h,k = Êj

t+h|t − Êj
t+h|t−k are denoted with hats as they are

estimations following the Kalman Filter algorithm. The dummy variables Ix∈X equal to 1 if

13While there is a trade-off between the statistical power of the regressions and the accuracy of the
estimated parameters, I expect this ad-hoc assumption does not compromise the significance of the results.
The results are consistent when the frequency is set to month-varying parameters.
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x ∈ X and 0 otherwise. ∆̂F
P,i,j

t+h are the residuals of (8) and serve as the estimated revisions

originating from private signals (see Equation (7)). The fitted values of (8) are the estimated

revisions from public signals (see Equation (6)).

The novelty of the aforementioned method to infer revisions from public signals and

revisions from private signals is supported by the data that provides sufficient observations

per analyst to infer their individual coefficients of reaction to news, as well as the formulation

of the rational consensus as a reference point to infer public signals. Contrary to works

that proxy revisions from public signals by first-order changes of the mean forecasts, here,

estimates of public signals are cleared out of aggregate behavioral bias and idiosyncratic

behavioral bias. My work also distinguishes between news signals that become common

knowledge and signals related to what other analysts believe—the latter captured by the

third term of Equation (4).

2.3 The Decomposed Model

Having estimated the three factors of forecast updates from Section 2.2—namely revisions

from public signals, revisions from private signals and correction revisions—the BGMS model

of (3) can be extended to allow for cross-signal heterogeneity in analysts’ reactions. The

decomposed model is a pooled OLS regression of the form:

FEi,j
t+h = α0 + βU ∆̂F

U ,i,j

t+h + βP ∆̂F
P,i,j

t+h + βC ∆̂F
C,i,j
t+h + εi,jt+h (9)

where the first two factors are the estimated revisions from public and private signals respec-

tively and the third factor ∆̂F
C,i,j
t+h ≡ Êj

t+h|t−k − F i,j
t+h|t−k is the correction revision (i.e., the

third term of the RHS of (4)). By definition, the summation of all three factors is equal to

analyst i’s overall revision. That is, ∆̂F
U ,i,j

t+h + ∆̂F
P,i,j

t+h + ∆̂F
C,i,j
t+h = ∆F i,j

t+h. This identity has

a great implication since if analysts exhibit a homogeneous reaction to private and public

signals as well as signals regarding the consensus formation, then the coefficient estimates

must equal to the BGMS coefficient; that is, βU = βP = βC = βB. The decomposed model

contributes to the literature that studies the predictability of forecast errors from forecast

revisions as it relaxes the strict assumption of a homogeneous coefficient of reaction to news

(Bordalo et al., 2020b).

It is possible that, in surveys of professional analysts, forecast errors may capture overop-

timism because of agency (Bordalo et al., 2023). I assume such bias would tend to inflate

their forecasts overall, but not necessarily trigger their reaction to news signals. In that sense,

the addition of the correction revision as a separate factor in this model should control for

bias not attributed to behavioral factors, and estimates of βU and βP can arguably serve as
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joint tests against the Full Information and Rational Expectations hypotheses. Formally,

H0 : β
U = βP = 0, Rational reaction to news.

H1 : β
U = βP ̸= 0, Non-rational reaction, not associated with noisy information.

H2 : β
U ̸= βP ̸= 0, Non-rational reaction associated with noisy information.

Notice that the first alternative hypothesis does not suggest the absence of noisy infor-

mation or rational inattention (see Woodford (2001) and Sims (2003)). It merely suggests

that (if any) evidence of irrational updating is homogeneous across signal types. The second

alternative suggests that the degree of non-rational response varies conditional on the type

of the signal received.

3 The Data

I obtain forecasts by professional analysts from the Detail History of the Institutional Bro-

kers’ Estimate System (IBES) concerning end-of-quarter revenues of publicly traded compa-

nies in the US. All forecasts are point estimates and I retain forecasts and realized revenues

reported in USD currency.14 I maintain observations with strictly positive forecasts and

actual revenues, both of which are transformed into logarithms before computing forecast

errors and forecast revisions.

Conventional practice in macroeconomics literature is to compute monthly or quarterly

revisions in the regressions of the CG and BGMS tests based on the frequency at which

analysts report their expectations of macroeconomic variables (Karnaukh and Vokata (2022)

and Bordalo et al. (2020b)).15 The mixed-frequency data used in this study reports the entire

history of analysts’ forecasts tracking the time a forecast was submitted or revised by an

analyst. This allows me to exploit higher-frequency revisions yielding granular information

on responses to public and private signals.

If an analyst reported more than once a day revenue forecasts regarding the same firm

and same horizon, I maintain their most recent vintage forecast of that day. This approach

to exploit high frequency does not substantially increase the number of observations in the

regressions compared to keeping analysts’ most recent vintage forecast per month. That is

because the majority of professional analysts do not update their initial beliefs as frequently.

14I exclude international firms to minimize the impact of exchange rate conversion on forecast errors. To
ensure consistency, I also exclude forecasts that were either submitted anonymously or submitted after the
realized revenues were reported by the firm.

15For example, SPF data asks panelists to report their expectations in quarterly basis. Blue Chip data
tracks analysts’ expectations every month.
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However, this approach ensures that if more than one news signals are received within the

same month, they will not be omitted exposing the results to sampling bias.16

While most studies in the finance literature focus on expectations of earnings per share

(EPS), the decision to study expectations on gross revenues is made for two reasons. First,

the data does not suffer from stock split issues which would contaminate analysts’ errors as

the accuracy of EPS forecasts also depends on analysts’ expectations of the future number of

common stocks. Second, tax-related regulations do not affect forecasts of gross revenues. Ad-

ditionally, while IBES provides analysts’ expectations on several variables, revenue forecasts

exhibit good cross-firm coverage.

I apply winsorization to the data by trimming the upper and lower 1% of observations in

the distribution of the log difference between the forecast and the actual revenue. To mitigate

concerns regarding measurement errors in the data, I introduce an additional requirement

for every firm and period-end date. All forecasts announced within the same month must

fall within 10 times the interquartile range away from their median, unless the absolute

difference between the identified outlier forecast and the actual revenues is smaller than

twice the absolute difference between the median forecast and the actual revenues. To the

best of my knowledge, this requirement effectively isolates bad predictions from measurement

errors.

All data surviving the winsorization process are used in the identification of the rational

consensus, but I set a minimum requirement of 30 observations per individual analyst to

ensure their inclusion in the forecast decomposition process.17 Additionally, unless otherwise

specified, the revision window in this study is set between 1 day to 4 weeks (i.e., 28 days)

in all regressions.18 Finally, I retain observations with a forecast horizon between 1 to 6

quarters ahead and run different regressions based on their horizon.19

Table O1 in the Online Appendix reports the summary statistics of the data where fore-

cast revisions are available. The number of observations depends on the horizon considered

with a minimum of 113, 884 observations on forecasts with horizon 6 quarters, and a max-

imum of 421, 785 observations on forecasts with horizon 1 quarter. Similarly, the number

of companies varies from 5, 634 to 7, 798, and the number of analysts varies from 3, 364 to

16The results remain robust when I keep analysts’ most recent vintage forecast every month (not reported
in this paper).

17The vast majority of analysts meet this criterion as they can report forecasts on different firms and
horizons multiple times. This minimum threshold was chosen to ensure the proper assignment of analysts
to different groups when testing for heterogeneity.

18The results remain robust when the revision window is adjusted to include forecasts updated between
4 to 8 weeks and 8 to 12 weeks.

19Forecasts with a horizon of zero quarters ahead are excluded from the regressions due to insufficient
data and to avoid inferring outcomes driven by insider information. Additionally, there is an insufficient
number of observations on forecasts that exceed 6 quarters ahead.
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4, 465. There are on average 366 observations per analyst, and an average analyst reports

forecasts for about 20 companies. While on average analysts report a little over than 18 rev-

enue forecasts for a specific firm, they only revise their initial reports about 2 times. Finally,

the pool of forecasters who report their expectations on same-firm same-quarter revenues is

slightly less than 4 on average.

Figure 2 provides insights into the composition of forecast revisions. The first bin of every

histogram shows the frequency at which a factor represents close to 0% of overall revisions

while the last bin shows the frequency at which this factor explains almost 100% of overall

revisions. Notably, revisions from public signals constitute the largest component of overall

revisions; the upper left histogram shows that public signals that cover at most 50% of overall

revision appear in lower frequency compared to the rest two factors while public signals that

cover the vast majority of overall revision appear in higher frequency. On the other hand,

both histograms of revisions from private signals and correction revisions are right skewed

as these factors typically cover only a smaller part of revisions. In numbers, revisions from

public signals explain on average slightly over 43%, while revisions from private signals

slightly under 30% and corrections slightly over 26% of overall revisions, respectively.

4 Evidence from In-Sample Tests

In this section, I present the findings from in-sample (IS) regressions. To establish a baseline,

I first examine the BGMS model outlined in Equation (3). Next, I explore the decomposed

model in Equation (9). This allows me to understand analysts’ responses to different types

of information.

4.1 In-Sample Evidence from the BGMS Model

Figure 3 presents the estimated coefficients resulting from a regression of forecast errors on

overall forecast revisions at both the consensus level (CG model) and individual-analyst level

(BGMS model; Equation (3)). The analysis employs the CG methodology on the Summary

History and the BGMS methodology on the Detail History from the IBES dataset. The

Summary History provides a consensus forecast on the third Thursday of every month by

summarizing individual forecasts.20

The two models present some challenges for direct comparison due to differences in the

revision windows. First, individuals might adjust their initial forecasts within a short time-

20The CG coefficients, albeit not being the primary focus of this study, were included for reference, demon-
strating the consistency of the data on firm-revenue forecasts with data on expectations of macroeconomic
variables explored in existing literature.
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Figure 2: Composition of forecast updates

Notes: The histograms show the frequency of the percentage coverage of forecast revision by each of the
three factors of the decomposed model. For every observation in the sample, the coverage ratio of any factor
is calculated as the absolute value of that factor divided by the sum of absolute values of the three factors.
The ratio is multiplied by 100 to denote percentage values. Taking the absolute value of the factors ensures
that the sum of coverage ratio of all three factors adds up to 100. Each of the three factors from every
observation is then classified to 1 of the 15 bins according to the percentage of coverage (from 0% to 100%,
as shown in the horizontal axis). The vertical dashed lines point the mean coverage ratio.

frame, while the Summary History aggregates forecasts reported over the past month. Sec-

ond, the Summary History is the rounding forecasts to two decimals, in contrast to the

four-decimal rounding in the Detail History. Third, a brokerage house might opt for exclud-

ing analysts’ forecasts from the Detail History file; a common caveat in studies that use this

data.

Despite these disparities, the data exhibit consistency with findings on various macroeco-

nomic variables in existing literature. Following the CG methodology, significant underreac-

tion to news on forecasts with horizons ranging from 1 quarter to 1 year ahead is observed, in

line with Coibion and Gorodnichenko (2015).21 When employing the BGMS methodology,

however, most horizon coefficients are not statistically significant, except for forecasts with

21Forecasts with horizons of 5 and 6 quarters ahead had limited observations and were excluded from the
analysis.
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horizons of 1 and 6 quarters ahead where the coefficients have a negative sign. The negative

coefficients align with the results of Bordalo et al. (2020b), indicating overreaction to news

by professional analysts at the individual level. Table O2 in the Online Appendix provides

detailed coefficients.
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Figure 3: Estimated coefficients from the CG and BGMS models

Notes: The plot shows the estimated BGMS coefficient from a regression of forecast errors on (overall)
forecast revisions as shown in equation 3 using observations from the IBES Detail File. For comparison, the
estimated CG coefficient is shown from a regression of forecast errors on forecast revisions at the consensus
level using observations from the IBES Summary File. Separate regressions are run for different forecast
horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Standard errors are double-clustered
(quarter of forecast announcement-individual analyst) in the BGMS model, and clustered at the quarter of
forecast announcement in the CG model. The estimated coefficients are shown in Table O2.
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Figure 4: Estimated coefficients from the Decomposed model

Notes: The plot shows the estimated coefficients of the decomposed model from a regression of forecast errors
on three factors, namely, revisions from public signals, revisions from private signals, and forecast correction
(past disagreement with consensus) as shown in equation 9. Separate regressions are run for different forecast
horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Double-clustered standard errors are
used (quarter of forecast announcement-individual analyst). The estimated coefficients are shown in Table
O3.
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4.2 In-Sample Evidence from the Decomposed Model

Figure 4 illustrates the estimated coefficients derived from regressions of the decomposed

model outlined in (9) across various horizons. Detailed results are presented in Table O3.

The IS estimates provide evidence of a pronounced overreaction to private signals, signified

by a negative and statistically significant coefficient. This implies that when analysts receive

a positive private signal prompting them to announce a more optimistic forecast than the

rational consensus, the negative coefficient predicts a negative forecast error. In other words,

the forecast tends to be overly optimistic compared to the ex post revenues. Conversely,

when analysts encounter unfavorable private news and adjust their forecasts to fall below

the rational consensus, the forecast error tends to be positive. Both scenarios underscore

the presence of overreaction to private news.

On the other hand, when statistically significant, the coefficient associated with public

signals is positive, suggesting an underreaction to such signals. When analysts adjust their

forecasts upwards after encountering positive news that is publicly available, the positive

coefficient predicts a positive forecast error, indicating that their revision tends to be less

optimistic than expected. Similarly, downward revisions resulting from negative news predict

negative forecast errors, implying that analysts did not lower their initial forecasts as much

as anticipated—an indication of underreaction. If analysts had adjusted their forecasts in

line with the rational consensus upon receiving public signals, this factor would fail to predict

forecast errors.

The correction coefficient is consistently positive and statistically significant for all hori-

zons, indicating that analysts exhibit persistent optimism or pessimism. For instance, if the

individual’s initial forecast was more optimistic than the rational consensus, the positive

correction coefficient predicts a negative error on the individual’s updated forecast. This im-

plies the analyst remained overconfident even after her revision as she did not appropriately

correct her initial report. Similarly, if the analyst announced a less optimistic initial forecast

than the rational consensus, the positive coefficient predicts that her updated report will

remain less optimistic compared to the ex post firm revenues.

Following the main IS regression estimates, a crucial question arises: do analysts demon-

strate a more or less pronounced underreaction to public signals depending on whether these

signals are considered good or bad news? To explore this, I add an interaction term of revi-

sions from public signals with a dummy variable, I−, which is equal to 1 if the signal causes a

negative revision and 0 otherwise. This interaction term is added to the decomposed model
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as a fourth factor, indexing with x = {U} for the public signal:

FEi,j
t+h = α0 +

∑
f

βf ∆̂F
f,i,j

t+h + β−(x) I−x ∆̂F
x,i,j

t+h + εi,jt+h with f ∈ {U ,P , C} (10)

The outcomes are presented in Table O4 and indicate that analysts’ reaction to public

signals is not symmetric across the different scenarios (adverse vs. favorable news). Aside

from forecasts with a horizon of 1 quarter ahead, where no underreaction is evident, analysts

appear to underreact to negative public signals, maintaining an optimistic outlook in the

face of adverse news. However, they do not underreact to favorable public signals. Indeed,

the coefficient of public signals now becomes insignificant across all horizons or even turns

negative for horizons of 4 and 6 quarters ahead (with significance at the 10% and 1% levels,

respectively). The positive and statistically significant coefficient (at the 1% level) as initially

shown in Table O3 now emerges in the interaction term. It is noteworthy that the in-sample

forecasting performance of the model only shows a marginal improvement with the inclusion

of the fourth factor, as the adjusted R-squared increases by less than 0.2 pp in all regressions.

I repeat the exercise of regression (10) by setting x = {P} to test if analysts’ overreaction

coefficient to private signals changes significantly under favorable vs. adverse private signals.

Table O5 suggests that analysts exhibit a more profound overreaction to positive private

news. While in all horizons the coefficient to private signals remains negative and statistically

significant at the 1% level, the interaction term is positive and statistically significant at the

5% level or beyond (with the exception of horizon 1 when it is only significant at the 10%

level). Importantly, the magnitude of the coefficient of the interaction term is smaller than

the coefficient of revisions from private signals. When the two coefficients are summed, the

results suggest that analysts also overreact to adverse private news, but in a less pronounced

manner. Once again, the inclusion of the interaction term only marginally raises the adjusted

R-Squared relative to the main model.

Notice that the interpretation of the correction revision coefficient differs from that of

the coefficients associated with the first two factors. The positive coefficient suggests that

analysts are persistently overconfident or underconfident by placing a relatively higher weight

on their initial forecast compared to the news they subsequently receive. But is this evidence

in favor of persistent optimism or pessimism? To answer this, I repeat the same exercise

by extending the decomposed model with the inclusion of an interaction term by setting,

this time, x = {C} in (10). The results are shown in Table O6. Except for forecasts with a

horizon of 1 quarter, the positive and statistically significant interaction term reveals that

instances of overoptimism are more persistent than instances of overpessimism. To see this,

when the coefficient of the interaction term is added to the correction revision coefficient,
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the effect of a negative correction revision to the forecast error becomes stronger.

Table 1: Regression Results

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A Forecast Horizon: 1 Quarter Ahead

Public -0.0485∗∗∗ 0.0980∗∗∗ -0.0627∗∗∗ 0.0179 -0.0177∗∗ 0.0043
(0.0165) (0.0172) (0.0154) (0.0160) (0.0072) (0.0079)

Private -0.9038∗∗∗ -0.7344∗∗∗ -0.9061∗∗∗ -0.7293∗∗∗ -0.7486∗∗∗ -0.7243∗∗∗

(0.0324) (0.0229) (0.0326) (0.0233) (0.0194) (0.0200)

Correction 0.5700∗∗∗ 0.3135∗∗∗ 0.6058∗∗∗ 0.3218∗∗∗ 0.3098∗∗∗ 0.3022∗∗∗

(0.0298) (0.0141) (0.0320) (0.0165) (0.0131) (0.0138)

Constant 0.0056∗∗ 0.0044∗ 0.0044∗ 0.0038 0.0051∗∗ 0.0039 0.0040
(0.0024) (0.0025) (0.0024) (0.0025) (0.0023) (0.0025) (0.0025)

Effects No No No No No No No Time Analyst
Observations 421,785 421,785 421,785 421,785 421,785 421,785 421,785 421,785 421,785
Adjusted R2 0.0009 0.1285 0.0791 0.1479 0.0823 0.1300 0.1481 0.1549 0.1327

Panel B Forecast Horizon: 3 Quarters Ahead

Public -0.0344 0.1879∗∗∗ -0.0296 0.0949∗∗∗ 0.0224∗∗ 0.0447∗∗∗

(0.0320) (0.0333) (0.0323) (0.0356) (0.0108) (0.0112)

Private -0.8755∗∗∗ -0.6756∗∗∗ -0.8752∗∗∗ -0.6486∗∗∗ -0.6907∗∗∗ -0.6696∗∗∗

(0.0292) (0.0233) (0.0290) (0.0290) (0.0161) (0.0166)

Correction 0.6072∗∗∗ 0.3371∗∗∗ 0.6788∗∗∗ 0.3840∗∗∗ 0.3529∗∗∗ 0.3489∗∗∗

(0.0245) (0.0153) (0.0235) (0.0192) (0.0144) (0.0153)

Constant −0.0167∗∗ −0.0182∗∗∗ −0.0182∗∗∗ −0.0187∗∗∗ −0.0177∗∗∗ −0.0183∗∗∗ −0.0184∗∗∗

(0.0067) (0.0068) (0.0067) (0.0068) (0.0066) (0.0068) (0.0067)

Effects No No No No No No No Time Analyst
Observations 314,946 314,946 314,946 314,946 314,946 314,946 314,946 314,946 314,946
Adjusted R2 0.0002 0.0616 0.0439 0.0719 0.0482 0.0617 0.0729 0.0823 0.0591

Notes: The table shows the estimated coefficients of the decomposed model from a regression of forecast
errors on three factors, namely, revisions from public signals, revisions from private signals, and forecast
correction (past disagreement with consensus) as shown in Equation (9). Separate regressions are run for
different forecast horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Panel A reports
the regression results from observations with forecast horizon of 1 quarter ahead while Panel B reports
the results from observations with a horizon of 3 quarters ahead of the firm-revenue announcement date.
Standard errors are double clustered in the pooled (OLS) regressions in columns (1)-(7) at the quarter
of forecast announcement and (individual) analyst level. Columns (8) and (9) use time-fixed effects and
analyst-fixed effects respectively and heteroscedasticity-consistent standard errors are reported. Time-fixed
effects are at the month-year level. Significance levels: 10% (*), 5% (**) and 1% (***).

So far, the results suggest that the decomposed model provides superior information–

when evaluated IS–that the BGMS coefficient cannot capture. This is confirmed by the

sign, size and significance of the three factors and the elevated R-Squared compared to the

baseline model of overall revisions. But do the three factors contribute equally to forecast

error predictability? The answer is no. While Figure 2 shows that the largest factor of

20



forecast updates is typically revisions from public signals, Table 1 conveys weak explanatory

power of this factor on forecast errors. Indeed, column 1 of Panel A shows a small R-squared

when this factor is evaluated alone on forecasts with a horizon of 1 quarter while Panel B

confirms the small R-squared value on observations with a forecast horizon of 3 quarters.22

Contrary to public signals, private signals appear to be the primary driver of forecast

errors, as evidenced by the relatively large R-squared (see column 2). The statistical signif-

icance of private signals remains robust even with the addition of the remaining two factors

and the inclusion of time-fixed effects (column 8), analyst-fixed effects (column 9), and time-

analyst fixed effects (not reported). It is noteworthy that while its statistical significance is

retained, its economic impact increases when the correction term is excluded, possibly due

to the correction term’s control over past private signals received.

Similarly, the correction term exhibits a greater magnitude when private signals are ex-

cluded from the regression, and its statistical significance holds in all specifications. Notably,

the in-sample predictive ability of all factors becomes stronger at shorter horizons. Lastly,

the results from the time-fixed effects models (column 8) should be interpreted with caution

due to the presence of the well-known Nickel bias in such data (Nickell, 1981). These results

are presented to test the robustness of the main model (i.e., the pooled OLS regression of

column 7).23

In the Online Appendix, I add a fourth factor, namely past forecast errors to control for

feedback mechanisms and I show that their inclusion primarily affects analysts’ reaction to

public signals and not private signals. This result is of no surprise as past forecast errors are

observed by analysts when firms announce their ex-post revenues (which are public signals).

5 Out-of-Sample Evaluation

An important consideration when assessing models like those presented in (3) and (9) is the

potential oversight of the information set available to the analyst by the time she announced

her expectations. This arises because the coefficients are estimated using the entire sample,

which includes data not known by analysts at time t. Unless all analysts were aware of the

distribution of these parameters, the econometrician might draw false conclusions regard-

ing the presence of behavioral bias. To infer robust evidence of bias, a behavioral model

that estimates coefficients using a training sample should be able to produce more accurate

forecasts than those reported by analysts in a succeeding-period evaluation sample. This is

22Consistent results across various horizons are omitted from the table for clarity.
23To mitigate this bias, the time-fixed effects are specified at the month-year level of the forecast an-

nouncement, as opposed to the daily level, which is the frequency at which the data is observed.
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because the behavioral model effectively conditions on the information observed by analysts

and accounts for any bias distorting their expectations (see Eva and Winkler, 2023, Afrouzi

et al., 2019, Chen et al., 2019, and Welch and Goyal, 2008).

In this section, I assess the out-of-sample (OOS) performance of the decomposed model

following the methodology proposed by Eva and Winkler (2023). To ascertain the value-

added of the decomposed model in the literature, I start by evaluating the OOS perfor-

mance of a behavioral model that addresses the bias identified by the BGMS coefficient.

Subsequently, I assess the OOS performance of a behavioral model that accounts for the bias

identified by the coefficients of the three decomposed factors. While the behavioral model

related to BGMS fails to outperform professional analysts’ forecasts out-of-sample, the de-

composed behavioral model effectively outperforms analysts, providing confirmation of the

evidence shown from the IS regressions.

5.1 Out-of-Sample Evaluation of the BGMS Model

I adopt the methodology proposed by Eva and Winkler (2023) for OOS evaluation of the

BGMS model. Utilizing a rolling-forward approach to estimate the BGMS coefficient, I

assess the performance of a behavioral model that takes into account the bias identified by the

BGMS coefficient for a testing period spanning from January 2005 to June 2023. Specifically,

for every quarter q within the testing period, I estimate the BGMS model’s coefficient βq

using all forecasts, for which revenues were announced up to 1 quarter ahead of quarter

q. Subsequently, I employ the estimated coefficient to generate ex ante expectations for a

behavioral model, aiming to correct for any reported bias. I then compare the performance

of these expectations with a rational model that assumes professional analysts’ reported

forecasts are unbiased. Following the methodology outlined by Eva and Winkler (2023),

the comparison of the two models relies on the difference in their accumulated sum squared

errors (SSE).

Specifically, for every quarter q in the evaluation period from Q1 2005 to Q2 2023, the

first stage involves estimating the β̂q coefficient from:

FEi,j
t+h = α̂q + β̂q ∆F i,j

t+h + ϵi,jt,h with t ∈ [Q1 1998, q − 1] (11)

Importantly, in these regressions I drop all forecasts for which a company announced their

realized revenues any time beyond quarter q−1 to avoid feeding the OOS predictions—formed

from forecasts announced at quarter q—with excess information to which analysts could not

have access. The β̂q is then used in the second stage to infer the ex ante expectations formed

by a behavioral model that aims to correct for any bias captured by the coefficient estimated
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in the first stage. Specifically, the behavioral model corrects analysts’ forecasts that were

announced any day of quarter q, and the ex ante expectations are defined as:24

x̂i,jt+h|t ≡ F i,j
t+h|t + β̂q ∆F i,j

t+h with t ∈ q (12)

Every quarter, q, the sum of squared (forecast) errors from the rational and behavioral

models, respectively, are:

SSER
q =

∑
t

∑
h

∑
i

∑
j

(x̃jt+h − F i,j
t+h|t)

2 ∀t ∈ [Q1 2005, q] (13)

SSEB
q =

∑
t

∑
h

∑
i

∑
j

(x̃jt+h − x̂i,jt+h|t)
2 ∀t ∈ [Q1 2005, q] (14)

The behavioral model incorporates a time-varying coefficient, β̂q, and every quarter, q, this

updated coefficient is estimated using an expanding training sample that only adds infor-

mation that is already known by quarter q. Finally, at any quarter q, the ability of the

behavioral model to outperform OOS the rational model is tested by the following statistic:

∆SSEq =
SSER

q − SSEB
q

SSER
T

where T = {Q2 2023} (15)

A rising ∆SSEq indicates that at the current testing period adjusting for bias essentially

minimizes forecast errors. The level at which ∆SSEq stands is also important, as any level

beyond zero reveals an overall outperformance of the behavioral model compared to the

rational model (and vice versa), by taking into consideration all forecasts of the testing

sample up to quarter q. As per Eva and Winkler (2023), the statistic is normalized by the

rational model’s final-period sum of squared errors, revealing the percentage of improvement

or dis-improvement in sum squared errors over the entire evaluation period at T = {Q2 2023}
if reports were adjusted for the observed bias.25

Notice that the model is parsimonious in nature as it only accounts for bias captured from

analysts’ responses to news and is therefore free of overabundant information that analysts

could potentially not process if they encountered limitations in processing information due to

cognitive factors which in turn would bias the results towards showing non-rational reaction

to news ( Da Silveira et al., 2020, Afrouzi et al., 2023, and Gabaix and Laibson, 2017).

24Consistent with Eva and Winkler (2023), I do not include the intercept from the first stage as its
significance could emerge from the small size of the time series, and its inclusion would not contribute to
any robust conclusion regarding any identified bias in the data.

25When the statistic is measured IS, a single coefficient of reaction is used at every testing period that is
estimated using the entire sample and therefore not controlling for analysts’ information set. The IS statistic
is added for consistency, but is not the focus of this Section.
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Figure 5: OOS Predictability of Forecast Errors from the BGMS Model

Notes: The plots on the LHS show the BGMS coefficient from a regression of Forecast Errors on Forecast
Revisions at the individual (analyst) level using high-frequency data. Every calendar quarter q in the testing
period uses a coefficient that is estimated with a rolling forward methodology (see main text) on revenues
that were released up until quarter q − 1. The shaded areas are 95% confidence intervals using double-
clustered standard errors at the forecast announcement period (calendar quarter) and analyst. The plots on
the RHS show the In-Sample (IS) and Out-of-Sample (OOS) performance of the ∆SSE statistic (see main
text). The vertical dotted lines show the end of the training period of the rolling forward methodology and
the beginning of the testing period.

Figure 5 illustrates that the behavioral model produced less accurate expectations com-

pared to the rational model (see plots on the RHS). While the figure reports the results

on forecasts with horizon 1 and 3 quarters ahead, consistent results are reported for fore-

casts with horizon 1-6 quarters as shown in the Online Appendix. Importantly, the ∆SSE

statistic maintains a negative value for almost all quarters of the evaluation period when

measured out-of-sample, and it remains negative at the endpoint of the evaluation period

(except for the sample of forecasts with a horizon of 6 quarters). The BGMS coefficient is

also statistically insignificant for most periods, except for quarters around the Global Finan-

cial Crisis of 2007-9 (see plots on the LHS). The results suggest that the BGMS coefficient

fails to identify bias in forecasts of firm revenues when accounting for professional analysts’
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information sets in out-of-sample evaluations.

Next, I demonstrate that, in contrast to the BGMS coefficient, the decomposed coeffi-

cients result in a significant improvement in the formation of ex ante expectations implying

successful identification of bias.

5.2 Out-of-Sample Evaluation of the Decomposed Model

As with the BGMS model, the robustness of any evidence from the IS evaluation of the

decomposed model depends on its ability to provide smaller expectation errors than the

rational model when evaluated OOS. To assess this, the rolling-forward methodology of (11)

is adapted by replacing overall revisions with the three factors of the decomposed model.

Specifically, for every quarter q in the evaluation period from Q1 2005 to Q2 2023, the first

stage involves estimating the coefficients βU
q , β

P
q and βC

q from:

FEi,j
t+h = α̂q +

∑
f

β̂f
q ∆F f,i,j

t+h + ϵi,jt,h with t ∈ [Q1 1998, q − 1] and f ∈ {U ,P , C} (16)

Now, contrary to Equation (12), the ex ante expectations of the behavioral model are shaped

by adjusting for the bias associated with any of the three factors:

x̂i,jt+h|t ≡ F i,j
t+h|t +

∑
f

β̂f
q ∆F f,i,j

t+h with t ∈ q and f ∈ {U ,P , C} (17)

Finally, as in (15), the ∆SSEq statistic is used to examine whether the behavioral model in-

corporating the factors of the decomposed model can outperform analysts’ reported forecasts

out-of-sample.

Figure 6 presents the outcomes of the OOS evaluation on forecasts with horizons of 1

and 3 quarters, with all results for horizons of 1-6 quarters are displayed in the Online

Appendix. The ∆SSEt statistic consistently rises as the sample rolls forward. Notably, in

the upper right plot for forecasts with a 1-quarter horizon, the adjustment for behavioral bias

linked to any of the three factors leads to a 14.86 percent reduction in the sum of squared

errors by the end of the testing period. This improvement in SSE diminishes for longer

forecast horizons but remains positive. For instance, correcting for bias in reports would

result in a 7.12 percent reduction in SSE for forecasts with a 3-quarter horizon and a 4.05

percent improvement for forecasts with a 6-quarter horizon. Therefore, while the findings on

longer horizons affirm the bias, the data indicate a more pronounced bias in shorter-horizon

forecasts.

The main takeaway from the OOS analysis is that the IS estimates of the decomposed
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Figure 6: OOS Predictability of Forecast Errors from the Decomposed Model

Notes: The plots on the LHS show the three coefficients of the decomposed model from a regression of
Forecast Errors on Forecast Revisions due to public signals, private signals, and the correction factor, at
the individual (analyst) level using high-frequency data. Every calendar quarter q in the testing period
uses coefficients that are estimated with a rolling forward methodology (see main text) on revenues that
were released up until quarter q − 1. The shaded areas are 95% confidence intervals using double-clustered
standard errors at the announcement period (calendar quarter) and analyst. The plots on the RHS show the
In-Sample (IS) and Out-of-Sample (OOS) performance of the ∆SSE statistic (see main text). The vertical
dotted lines show the end of the training period of the rolling forward methodology and the beginning of the
testing period.

model remain robust when accounting for professional analysts’ information set and evaluat-

ing their bias OOS. In contrast, the BGMS coefficient fails to improve forecast errors OOS,

reflecting the large offsetting effects of heterogeneous responses to different signal types. No-

tably, while overall revisions are predominantly associated with revisions from public signals,

the smaller components—revisions from private signals and correction revisions—appear to

contain superior information on forecast errors due to substantial bias. While the latter

two factors exhibit a coefficient of reaction of comparable magnitude but different sign, the

explanatory power of one factor over forecast errors offsets the explanatory power of the

other, plummeting the power of the BGMS model while the bias is still present.
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A critical implication of the out-of-sample analysis is that one can back out all ana-

lysts’ rational expectations conditional on their information set from the behavioral model

assuming that the decomposed factors effectively explain the entire predictable component

of forecast errors. Equation (17) is then used as the rational expectations conditional on

their information set which in turn is used to infer the private signals. That is:

if x̂i,jt+h|t ≈ Ei,j
t+h|t then, si,jt+h,k ≈ x̂i,jt+h|t − Ēj

t+h|t (18)

In words, the private signal denotes an individual’s departure from the rational consensus

that is not explained by any bias. This departure is therefore explained by the excess infor-

mation included in analyst i’s information set that is excluded from the rational consensus’s

information set.
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Figure 7: Distribution of Signals and Individuals’ Tendency to Respond

Notes: The upper left (right) plot shows the distribution of public (private) signals for the entire testing
sample from January 2005 to March 2023. Public signals are defined as the log deviations of the rational
consensus estimates from Kalman Filter across the revision window an analyst revised. Private signals are the
log deviations of the individual rational expectations (proxied by the ex ante expectations of the behavioral
model) and the rational consensus. The lower left (right) plot shows the distribution of analysts’ tendency
to respond to public (private) signals. Analysts’ response coefficients are estimated by an OLS regression of
(19) for every analyst. All histograms are winzorized at the top and bottom 1 percent. Black dashed lines
show mean values while green dot-dashed lines show median values.
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Figure 7 plots the distribution of public and private signals (upper left and upper right

plots respectively) as well as analysts’ tendency to respond to them (lower left and lower

right plots) for the entire testing sample from 2005 to 2023. Both signals are normally

distributed around a mean zero value and the public signals have longer tails compared to

private signals. The distribution of analysts’ tendency to respond to these signals is inferred

by an OLS regression on analyst i’s observations:

F i,j
t+h|t − Êj

t+h|t−k = αi + ϕi ŝ
j
t+h,k + ψi ŝ

i,j
t+h,k + ηi,jt+h,k (19)

where ϕi denotes analyst i’s tendency to respond to public signals and ψi is her tendency

to respond to private signals. An individual who tends to report rational forecasts exhibits

ϕi = ψi = 1 by exploiting all available information inherent to the signals received. A

coefficient greater than one implies overreaction while less than one underreaction. The

lower plots of Figure 7, confirm the main results of this paper as the distribution of analysts

reveals a mean coefficient of ϕi equal to 0.97 and a mean coefficient of ψi equal to 1.08. When

a signal is informative of an upward revision of revenue expectations equivalent to 1 percent,

an average analyst tends to underestimate the dynamics of this signal by 3 basis points or

overestimate it by 8 basis points depending on whether this signal is a public announcement

or private.

6 Cross-Analyst Heterogeneity

The decomposed model unveils substantial heterogeneity in analysts’ responses to different

types of signals. Notably, analysts tend to overestimate the significance of private signals,

while frequently neglecting the relevance of public signals. Moreover, their persistent diver-

gence from the rational consensus, as evidenced by past disagreements, suggests a consistent

pattern of overconfidence. But do these facts describe well the entire pool of analysts, or do

they exhibit asymmetric responses as we move away from the median of the distribution?

To test this, all analysts are categorized into one of five groups, each representing a distinct

quintile in the distribution of the BGMS coefficient. Subsequently, I examine potential sig-

nificant differences in the coefficient of reaction across these different groups. Specifically, in
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the first stage, I run for every analyst i an OLS regression of the form:26

FEi,j
t+h = αi + βi∆F i,j

t+h + ϵi,jt+h ∀ h, j (20)

All analysts are then sorted into one of the five groups that characterize the distribution of

βi. Every group represents a different quintile: ‘Bottom’ (bottom 20 percent), ‘Low-Mid’

(20-40 percentile), ‘Mid’ (40-60 percentile), ‘High-Mid’ (60-80 percentile), and ‘Top’ (top 20

percent). Importantly, there is no group re-arrangement as this practice would tend to group

observations with significant overreaction at the bottom of the distribution and observations

with significant underreaction at the top of the distribution without necessarily reflecting

persistent behavioral bias from analysts’ perspective. Since the allocation is decided on an-

alysts’ tendency to over-/under-react, any significant differences in responses across groups

serves as evidence supporting the rejection of the null hypothesis of cross-analyst homogene-

ity of responses. In the BGMS setting, this is tested by an OLS regression of the form:

FEi,j
t+h =

∑
g

Ii∈g αg +
∑
g

Ii∈g βB
g ∆F i,j

t+h + ϵi,jt+h (21)

where g indexes the five analyst groups. The null hypothesis is that βB
g = βB ∀g. The upper

left plot of Figure 8 demonstrates that analysts in the top 20% of the BGMS coefficient

distribution tend to underreact to news, while those in the bottom 20% tend to overreact.

The group around the median does not show predictable forecast errors from their overall

revisions, a consistent observation across all horizons.

Table O7 presents the coefficient estimates along with two statistics for testing cross-

group heterogeneity. A Wald one-sided test, under the null hypothesis that the Top group

does not have a coefficient greater than the Bottom group, is rejected at the 1% level across

all horizons. Similarly, a Wald one-sided test, under the null hypothesis that the High-Mid

group does not exhibit a greater coefficient than the Low-Mid group, is rejected at the 1%

level for all horizons as well. These results indicate not only significant heterogeneity in

analysts’ responses but also suggest that this heterogeneity is not limited to the extreme

groups alone.

All but the upper left plot of Figure 8 assess the cross-group coefficients of the decomposed

26I include forecasts of different horizons in this step. Since I set a minimum number of 30 observations
per analyst and due to the large number of observations per analyst for the majority of them, the estimated
coefficients should not suffer from sampling bias. I confirm the results by characterizing them according to
their t-statistic with robust standard errors that are clustered on the forecast announcement period.
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model. That is tested by modifying the regression model of (21) to:

FEi,j
t+h =

∑
g

Ii∈g αg +
∑
g

Ii∈gβU
g ∆F

U ,i,j
t+h +

∑
g

Ii∈gβP
g ∆F

P,i,j
t+h +

∑
g

Ii∈gβC
g∆F

C,i,j
t+h + ϵi,jt+h (22)

Significantly, the upper right plot illustrates that analysts display heterogeneous responses

to public signals: While the Top group tends to underreact, the Bottom group tends to

overreact to public news. This pattern is not evident with private signals, as all groups

tend to overreact. However, the overreaction is more pronounced as we move toward the

bottom of the distribution (see lower left plot). Finally, as the lower right plot reveals,

past disagreement with the consensus predicts positive errors in all five groups, indicating

that analysts do not adequately correct their forecasts. Analysts persist more in reporting

biased forecasts as we move toward the top of the distribution, while they tend to achieve

better forecast corrections as we move toward the bottom. The cross-analyst heterogeneity

of responses becomes less pronounced in forecasts with smaller horizons, as observed in all

three factors. Analytical results from the IS regressions are presented in Table O8.

While the IS evaluation reveals significant cross-analyst heterogeneity, the credibility of

this observation hinges on empirical support from an OOS evaluation. To rigorously assess

the presence of cross-analyst heterogeneity OOS, I modify the rolling-forward methodology

presented in Section 5. For every quarter q in the period Q1 2005 to Q2 2023, I run an OLS

regression to estimate the time-varying coefficients βU
q,g, β

P
q,g, and β

C
q,g for all five groups g:

FEi,j
t+h =

∑
g

Ii∈gα̂q,g +
∑
g

Ii∈g

{∑
f

β̂f
q,g ∆F f,i,j

t+h

}
+ ϵi,jt,h (23)

with t ∈ [Q1 1998, q − 1] , f ∈ {U ,P , C} and g ∈ G

In contrast to the standardized ∆SSE statistic that tests if the behavioral model outper-

forms the rational model, I modify the statistic (as shown in Equation (27)) to test if the

behavioral model that allows for cross-group heterogeneity outperforms the behavioral model

that assumes homogeneous cross-group reaction coefficients. The ex ante expectations of the

heterogeneous behavioral model are:

ẋi,jt+h|t ≡ F i,j
t+h|t +

∑
g

Ii∈g

{∑
f

β̂f
q,g ∆F f,i,j

t+h

}
with t ∈ q , f ∈ {U ,P , C} (24)

where the coefficients β̂f
q,g are estimated from the rolling-forward methodology of (23). The

ex ante expectations of the homogeneous behavioral model are those estimated in (17) which
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Figure 8: Cross-analyst heterogeneity of response to signals

Notes: The figure plots the coefficients from the BGMS model (upper left) and the decomposed model
(remaining 3 plots) over different forecast horizons for three out of the five quintile groups of analysts. The
‘Top’ group includes analysts whose individual BGMS coefficient is located at the top 20 percent of the
distribution. The ‘Bottom’ group includes analysts whose individual BGMS coefficient is located at the
bottom 20 percent of the distribution. The ‘Mid’ group includes analysts whose individual BGMS coefficient
is located at 20 percent around the median estimate. The regression for the BGMS model is shown in (21)
and for the decomposed model in (22). The shaded areas are 95% confidence intervals using double-clustered
standard errors at the forecast announcement period (calendar quarter) and analyst. Tables O7 and O8 in
the Appendix report these coefficients for the two models respectively.

I re-write here for convenience:

x̂i,jt+h|t ≡ F i,j
t+h|t +

∑
f

β̂f
q ∆F f,i,j

t+h with t ∈ q and f ∈ {U ,P , C}

where the coefficients β̂f
q are estimated from the rolling-forward methodology described in

(16). Every quarter of the testing sample, the sum of squared errors for the two behavioral
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models is computed as:

SSEG
q =

∑
t

∑
h

∑
i

∑
j

(x̃i,jt+h − ẋi,jt+h|t)
2 ∀t ∈ [Q1 2005, q] (25)

SSEB
q =

∑
t

∑
h

∑
i

∑
j

(x̃i,jt+h − x̂i,jt+h|t)
2 ∀t ∈ [Q1 2005, q] (26)

Finally, the ∆SSEq is modified to test for the presence of cross-analyst heterogeneity:

∆̃SSEq =
SSEB

q − SSEG
q

SSEB
T

where T = {Q2 2023} (27)

Here, a rising ∆̃SSEq coefficient is evidence in favor of cross-analyst heterogeneity, while

a diminishing coefficient implies that a universal coefficient across groups is sufficient to

describe reaction to the three factors of the decomposed model. In other words, the ∆̃SSEq

statistic now tests if the decomposed model’s performance (as shown Section 5) can be

further improved OOS by assuming that analysts’ responses are driven by intrinsic factors

(e.g., their temper and risk-aversion).

Figure 9 shows the results for forecasts with a horizon of 1 quarter ahead. Results on

different horizons are shown in the Online Appendix. To ease the plots’ interpretation,

only the two extreme groups are presented (top and bottom quintiles). The upper left

plot shows that after 2010, analysts who belong at the bottom of the distribution tend to

overreact to public signals while analysts who belong to the top of the distribution tend to

underreact to these signals. All groups tend to overreact to private signals (see upper right

plot). However, as we move toward the bottom of the distribution analysts exhibit a more

pronounced overreaction for most periods in the testing sample. Similarly, the correction

coefficient is positive for all groups (see lower left plot). As we move toward the bottom of

the distribution, the coefficient becomes less pronounced for most quarters.

The initial quarters of the testing period exhibit instabilities in the coefficients of all

three factors. This instability is likely due to the small number of observations in the

initial training period. As the training window expands, the coefficients stabilize, revealing

the characteristics identified in the IS evaluation, and the cross-group differences become

more apparent. Finally, the lower right plot shows that the ∆̃SSE statistic exhibits an

upward trend during the entire testing period when examined IS. When it is evaluated OOS,

the statistic collapses during the initial quarters presumably due to the small number of

observations (as already mentioned), but after 2010 the statistic gradually improves and

becomes greater than zero by the end of the testing period.

When the analysis is repeated on observations of longer horizons, the ∆̃SSE statistic is
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either negative or positive depending on the horizon examined (see the Online Appendix).

For horizons of 2 and 3 quarters ahead, the statistic remains below the threshold of zero,

whereas for horizons greater than 3 quarters ahead, it consistently exceeds this threshold.

In all horizons, however, the statistic exhibits an upward trend after 2010, indicating that

when the statistic fails to reject the null hypothesis, that might be due to insufficient data

in the initial training period.
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Figure 9: OOS performance of the decomposed model with cross-analyst heterogeneity

Notes: The first three plots show the time-varying estimated coefficients of the three factors of the de-
composed model (public signals, private signals, correction coefficient) on two groups of analysts (Tob and
Bottom quintiles). Every calendar quarter q in the testing period uses a coefficient that is estimated with
a rolling forward methodology (see main text) on revenues that were released up until quarter q − 1. The
shaded areas are 95% confidence intervals using double-clustered standard errors at the announcement period
(calendar quarter) and analyst. The lower right plot shows the In-Sample (IS) and Out-of-Sample (OOS)
performance of a ∆SSE statistic that tests for the presence of cross-analyst heterogeneity (see main text).
The vertical dotted lines show the end of the training period of the rolling forward methodology and the
beginning of the testing period.

The findings collectively suggest that analysts’ expectations are distorted by psycholog-

ical factors (e.g., cognitive bias, overoptimism, myopia) and may be influenced by inherent

personality traits (e.g., risk aversion), potentially introducing bias into their forecasts. No-

tably, when accounting for heterogeneous intrinsic characteristics, predictions do not exhibit

significant improvement over the decomposed factors’ accuracy (as shown in Section 5).
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Therefore, a model that decomposes analysts’ revisions into responses to different types of

signals seems sufficient to identify bias in their reports while an extension of this model that

allows for cross-analyst heterogeneity can only marginally explain forecast errors that are

not explained by these asymmetric responses to signals.

7 Robustness Tests

I test the robustness of the results in a series of aspects and report them in the Online

Appendix. First, I address the concern that the rational consensus might have not been

properly identified. I propose two alternative modifications of the Kalman Filter process and

test whether the results from the decomposition model change significantly. One alternative

consists of parameterizing aggregate bias in the Kalman Filter (instead of parameterizing the

variance of a measurement error related to this bias, as in the baseline model). The second

alternative imposes a penalty parameter in the Kalman gain whenever the average forecast

of day t in the observation equation is computed by a small pool of analysts–to account

for potential distorted beliefs arising from insufficient diversification of the idiosyncratic

measurement error. As an additional robustness check, I proxy for the rational consensus

by substituting the Kalman Filter process with a simple average forecast as formed over the

past 7 days. The results are robust to all three alternatives.

Second, I investigate whether public signals can predict forecast errors made by the

rational consensus in an OOS evaluation. Detecting predictability in forecast errors would

raise concerns about the accuracy of identification of the rational consensus (and hence, the

public signals), as bias may not be effectively filtered out. However, the results reveal no

predictive ability. This, together with the first series of robustness tests, indicate a proper

decomposition of forecast updates.

The main results in this paper underline a combination of noisy information and be-

havioral factors that jointly drive forecast errors. Could these results be explained by the

violation of the Full Information but not the violation of the Rational Expectations hy-

pothesis? If these asymmetric responses to signals were driven by sticky information and

not non-rational reactions, one would expect that the rational consensus still exhibits pre-

dictable forecast errors as the rational consensus has only eliminated non-rational bias. The

aforementioned robustness test shows that the rational consensus’s revisions to public signals

fail to explain future forecast errors. This alleviates concerns regarding the nature of the

bias identified in this study.

For the majority of forecast announcement days there has only been one analyst that

reports a forecast for the same-firm same-quarter revenues. This raises concerns whether
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the rational consensus accumulates–and not eliminates–individuals’ private information. To

mitigate such concerns, I run regressions on observations that meet a minimum threshold on

the number of forecasts reported on the same day. This way, I confirm that by restricting

observations on revisions stemming from important public announcements, the observed

asymmetry in responses to public and private signals is not the result of noise on individuals’

reports.

Any evidence of behavioral bias in this study is inferred from forecasts that analysts

revised sometime between 1 day to 4 weeks. To test whether the bias is maintained on

updates that occur in lower frequency, I expand the revision window such that analysts’ most

recent historical forecast precedes their current forecast by more than 4 weeks; particularly,

their historical forecast falls between 4-8 weeks, or between 8-12 weeks. The behavioral bias

identified in the main regressions is confirmed in non-overlapping data with lower-frequency

revisions.

A natural question that arises is if the behavioral bias identified in this study is driven

by the majority of analysts or a minority of them whose forecast errors are sufficiently large

to influence the results. Put it differently, the behavioral model that accounts for bias in the

three factors of the decomposed model could outperform analysts’ expectations OOS due

to the presence of a minority of analysts whose sum of squared errors is sufficiently large

while the rest of them announce accurate forecasts. I address this concern by proposing

an OOS evaluation where the behavioral model competes with every analyst separately.

The behavioral model outperforms the vast majority of analysts every period in the testing

sample.

As I show in the Online Appendix, the decomposed model consistently improves the

forecasts of the majority of analysts across all testing periods and horizons. Specifically, the

decomposed model improves forecasts for an average of 56.89% of analysts (with a standard

deviation of 3.30%) over time. This evidence is robust even when the decomposition process

substitutes the Kalman Filter process with a 7-day average forecast to proxy for the rational

consensus.

A caveat is weather the bias is explained by strategic incentives given that the forecasts

are prepared by professional analysts (Gemmi and Valchev, 2025, Ottaviani and Sørensen,

2006, Ehrbeck andWaldmann, 1996). I assume that if analysts engaged in strategic activities,

they would have an incentive to inflate or depress their forecasts at their initial reports. This

would lead to bias in the forecast correction factor, but would not influence their response

to news shocks. The fact that they overreact to both positive and negative private signals

strengthens the argument that their bias has behavioral roots.27

27Bordalo et al. (2023) claim that distortions due to agency are stable and do not influence the time series
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Finally, one might question that the decomposed model does not incorporate feedback

mechanisms. For example, analysts might exhibit adaptive learning and overreaction to pri-

vate signals could simply indicate that analysts are becoming more alert when responding

to shocks after learning about past forecast errors they individually made. In the Online

Appendix I show that when past forecast errors are included as a fourth factor in the re-

gressions, the adjusted R-squared increases while the coefficients of the three factors do not

change much with the exception of public signals that lose in terms of significance. That

said, past forecast errors are related to public signals as firms announce their realized rev-

enues, and therefore, the coefficient of reaction to public signals is expected to change with

the inclusion of this variable.

8 Conclusion

The violation of the Rational Expectations hypothesis holds significant consequences for

macroeconomics and finance, especially when the dynamics of behavioral bias differ from

those of information frictions. A model challenging this fundamental assumption should

demonstrate robustness when subjected to out-of-sample (OOS) evaluation. This raises an

essential question to econometricians: ‘Can you generate more accurate predictions than an-

alysts conditional on their real-time information? ’. To explore this, I analyze data from pro-

fessional analysts’ forecasts of US firm revenues. The mixed frequency of analysts’ revisions

in this data, together with a decomposition methodology I propose, allows for identifica-

tion of analysts’ responses to public and private signals. This in turn allows me to study

cross-signal asymmetries and cross-analyst heterogeneity in responses to news.

Following a rolling-forward methodology for OOS testing formally proposed by Eva and

Winkler (2023), I show that a behavioral model that corrects for the bias identified from

equity analysts’ reactions to news fails to outperform their reported forecasts when the news

is inferred from their overall revisions as in the work of Bordalo et al. (2020b). While this

result is seemingly consistent with the Rational Expectations hypothesis, I show that the

weak performance of the behavioral model masks simultaneous overreactions to private sig-

nals, underreactions to public signals and insufficient correction revisions of past reports due

to overconfidence. Once cross-signal asymmetry of responses is taken into account, the be-

havioral model outperforms analysts’ reported forecasts confirming bias that is robust OOS.

While public signals typically represent the largest factor of analysts’ revised expectations,

variation in forecasts. In my work, this need not be the case. Even if agency-related distortions are time-
varying, correction revisions would arguably control for them. The reaction coefficients related to public and
private signals are therefore attributed to behavioral bias.
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the magnitude of private signals is also economically significant. Together, these results

speak to the joint rejection of the Full Information and Rational Expectations hypotheses.

One explanation behind the rejection of FIRE might be related to strategic incentives

(Gemmi and Valchev, 2025). However, if professional analysts’ predictable forecast errors

were solely driven by strategic incentives, one should expect strong under-correction of their

past forecast reports without exhibiting asymmetric non-rational response to news. The

data suggest that controlling for the correction factor, underreaction to public signals and

overreaction to private signals remains statistically significant. A more plausible explanation

that is consistent with my findings is that equity analysts assign a relatively higher weight

on information they perceive as ‘exclusive’, while they undervalue the importance of infor-

mation that is publicly communicated. Due to this asymmetry of response, their overall

forecast revisions are often appeared as weak predictors of forecast errors which explains the

contradictory empirical results in the literature.

The findings unveil several questions for future research. First, is this asymmetry of

response to signals observed to different agents in the economy (eg, households and firm

managers)? Second, why are private signals perceived as more valuable than public signals?

Third, what are the dynamics of this asymmetry? For example, McClure et al. (2024) find

that US managers’ inflation expectations can drive their price- and wage-setting decisions.

In the same spirit, could asymmetric responses to signals lead to heterogeneous stock price

distortions? In line with this question is a growing literature on the diagnostic expectations

and its effects on stock prices (Bordalo et al., 2019, 2020a, 2023). I hope this work incentivizes

the consideration of additional features in such models to enhance their predictive ability.
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Appendix A Identification of Rational Consensus

The methodology of forecast revision decomposition as described in Section 2.2 requires

identification of the rational consensus, Ēj
t+h|t, as formed any day t when at least one an-

alyst reported their forecast. The rational consensus can be thought of as a representative

individual whose information set consists of public signals and her expectations are rational.

A consequence of this definition is that the rational consensus effectively diversifies any id-

iosyncratic component that arises from either private information, individual sentiments, or

strategic behavior and is not driven by aggregate behavioral bias. In this Appendix, I show

how to estimate the rational consensus with the Kalman Filter. In the Online Appendix

I propose two modifications of this algorithm to test if the identification of the rational

consensus is robust.

A.1 Rational Consensus Inference in High-Frequency Data

The literature conventionally takes the average or median forecast of a predefined window to

estimate consensus. There are two disadvantages associated with this practice. First, if the

window is wide enough, say 1 month, forecasts reported close to the beginning of the period

might be outdated if news shocks received afterward have changed analysts’ expectation

formation. To deal with this issue one can drop out all but the most recent vintage for every

analyst before averaging but there is no warrant that analysts will report a new forecast when

exposed to news shocks. On the other hand, if the window is narrow enough to ensure that

analysts have reported their most updated beliefs the pool of analysts will be small enough,

and the consensus formation will be distorted with idiosyncratic components that do not

represent consensus but individual analysts’ beliefs that were not effectively diversified.28

The second problem associated with this approach is that there might be periods of

optimism or pessimism influencing the reaction coefficient for the majority of analysts. As a

result, aggregate bias might be present in the consensus estimate and therefore Ēj
t+h|t might

no longer represent rational beliefs given all publicly available information.

To demonstrate the main results of this paper, I use Kalman Filter to estimate Ēj
t+h|t

and support the robustness of the results with the use of alternative measures, e.g., the use

of 7-Day average forecast. Let Ft = 1
Nt

∑
i∈I F

i,j
q|t be the cross-analyst average forecast of

28In addition, one could use data from the summary file of IBES to infer consensus; this file summarizes
forecasts in a window of one month and is reported on the third Thursday of the month. One could use
the most recent of these estimates as part of the information set of individual analyst i. In that case, the
analysis is not only liable to the first concern, but also, analysts who submitted their forecasts farther from
the third Thursday of a calendar month will be assigned an information set that has not incorporated recent
public signals (if any).
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day t on firm j’s end-of-quarter q revenues as formed by the Nt individuals who reported a

forecast the same day. Consequently, for every firm j and any fiscal quarter q, Ft describes

a time series of forecasts that are observable.

Let ER
i,t be analyst i’s expectations regarding the realization of firm j’s revenues in quar-

ter q given her information set at day t and assuming her expectations are not driven by

behavioral bias. Similarly, ER
t is the consensus’s expectations given all publicly available

information by day t and the absence of any behavioral bias. While analyst i’s expectations

of day t are not observed, her announced forecast is observable.29 Each individual’s rational

component of their expectation given their information set is characterized according to:

ER
i,t = ER

i,t−1 + si,t + s̄t

where, si,t is the change in the forecast due to a private signal that individual i observes at

time t, and s̄t is the change in the forecast due to a public signal. While ideally, one would

like to estimate ER
i,t for every individual, that is a toilsome process that demands a lot of

observations per individual and will require strong assumptions. To deal with this issue,

I reduce the dimensionality of this problem by estimating a series of rational expectations

given the publicly available information. That is, I estimate the consensus’s expectations as

if the consensus exhibited a rational reaction to the news. The state transition equation is:

ER
t = ER

t−1 + s̄t (A.1)

Assuming that rational updates follow a white noise process, the state transition equation is

a random walk. Here, s̄t ∼ N(0, σ2
s̄). Notice that the absence of private signals, si,t, follows

the assumption that the consensus effectively diversifies individual updates following these

signals. Importantly, ER
t is a hidden variable. The importance of estimating this variable

using recursive methods, like the Kalman Filter, is aligned with the absence of an appropriate

direct measure of estimating the consensus in high-frequency data since the signals are not

observable but are inferred from forecast updates. The observation equation is:

Ft = ER
t + εt + υt (A.2)

where, υt ≡ 1
Nt

∑
i υi,t. The measurement errors ϵt ∼ N(0, σ2

ϵ,t) and υt ∼ N(0,
σ2
i,t

Nt
) capture

aggregate bias and an idiosyncratic dispersion from the rational consensus respectively. The

former induces all analysts who submit their forecasts at t to depart from ER
t due to prevail-

29For simplicity, I assume that on days when no analyst announced a (new) forecast, there is no public
signal, and both the state and the state covariance are not updated in that case.
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ing pessimism/optimism. The latter is a diversifiable component that captures analyst i’s

dispersion from the norm, either because of private signals that add up to her information

set, or because of sentiments that are not aggregated.

I assume that whenever Nt = 0, then εt = υt = s̄t = 0. Each day, t, reflects an iteration

in the Kalman methodology and the estimated value of the hidden variable follows the state

update equation:30

ÊR
t|t = ÊR

t|t−1 +Kt

(
Ft − ÊR

t|t−1

)
(A.3)

where, Kt is the Kalman gain:

Kt =
P̂t|t−1

P̂t|t−1 + σ2
ϵ,t + σ2

υ,t

(A.4)

with P̂t|t−1 being the predicted state estimate variance. The estimated state variance is

updated according to:

P̂t|t = (1−Kt)P̂t|t−1 (A.5)

Given that every day, t, represents an iteration of the methodology, the initialization step of

the algorithm will crucially determine the efficiency of convergence to the consensus estimate,

assuming that the measurement variances describe well the system. For every time series of

firm and fiscal-quarter revenues, I choose the initial daily average forecast observed in the

data as the initial guess. That is, I set ÊR
0|0 ≡ F0. Of course, the degree of confidence of

the initial guess varies depending on how many individuals reported a forecast on day t = 0.

For this reason, I parameterize the initial guess of the state variance as:

P̂0|0 ≡
(
N −N0

N

)
(x̃jq − E0|0)

2

where N denotes the total number of analysts who have ever reported (at least once) their

forecast on firm j’s revenues of quarter q. These revenues are denoted by x̃jq. The mean

squared error, while incorporating realized revenues that are not known by time t = 0, serves

as a good proxy of confidence of the initial guess. Notice that as the number of forecasters

who form the initial guess increases and approaches the total number of forecasters, the

30To avoid any confusion regarding the notation used here, in this section ÊR
t|t is an updated estimate

of the rational consensus from the Kalman Filter’s t-th iteration/day regarding firm j’s revenues that are
announced on day t + h. This series is used as an estimation of Ēt+h|t as presented in the decomposition
process of Section 2.2.
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initial estimated state variance converges to zero reflecting augmented confidence that the

initial guess represents the consensus.

In this recursive method, the presence of the measurement error ϵt of Equation (A.2)

determines the characterization of ER as a rational consensus. The absence of ϵt would sug-

gest this method identified the consensus that may not necessarily exhibit rational reaction

to the news. A consequence of the addition of this term is that the proxy of its variance

selected will effectively determine the success of this characterization.

To proxy for the variance of aggregate bias, I work as following. I estimate the day-by-day

growth rate of the volatility index (VIX) as log(V IXt/V IXt−1) and regress forecast errors

on this growth rate:

log(xjq/Ft) = αv + βvlog(V IXt/V IXt−1) + εv,t

I then proxy for the time-varying variance of aggregate bias as σ2
ϵ̄,t ≈ (β̂v)

2σ2
V IX,t where

σ2
V IX denotes the moving-variance of the daily growth rate of VIX index over the past 30

working-days (including day t). Intuitively, if the βv coefficient is different than zero, then

forecast errors are partially predicted by the growing uncertainty that was prevailing by the

time analysts reported their expectations. This results in a larger variance of aggregate bias

in the observation equation as βv further departs from zero.

The variance of the diversifiable component is proxied by the variance of day-t dispersion

from the mean forecast:

σ2
v,t =

1

N2
t

∑
i

σ2
i,t ≈

var(log(Fi,t/Ft))

Nt

The higher the number of analysts who reported a forecast on day t, Nt, the smaller the

idiosyncratic variance. A concern with the use of this proxy is that whenever a daily mean

forecast is represented by only one analyst, the variance becomes zero. To deal with this

issue, whenever Nt = 1, σ2
i,t is proxied by (log(Fi,t/Ft−1))

2. Lastly, the variance of the public

signal, σ2
s̄ , is parameterized as the variance of log(Ft/Ft−1). The algorithmic procedure of

Kalman Filter is given below. The updated state, ER
t|t, from the iterative process is the

estimate of Ēj
t+h|t in the decomposition method.

Final Remark. — This process must be followed for every firm, and every horizon sep-

arately. The econometrician’s problem is to infer the consensus’s rational expectation of

day t given the real-time publicly available information, for all t when at least one analyst

announced a forecast. Having the entire time series of the rational consensus estimated,

the public signal received from t− k to t is the first-order change of the rational consensus
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estimate.
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Online Appendix

Heterogeneous Responses to Signals and the
Predictability of Forecast Errors

Symeon Taipliadis

This online appendix supports the main text of the paper as follows: In Section O.1 I

present two modifications of the Kalman Filter to estimate the time series of the rational

consensus’s expectations for every firm and period-end date of firm revenues. In Section O.2

I present some robustness tests briefly mentioned in Section 7 of the main text. In Section

O.3 I present additional tables and figures that complement the results discussed in the main

text.

O.1 Alternative Proxies for the Rational Consensus

Here, I present two alternative methodologies to proxy for the rational consensus each of

them representing extensions of the Kalman Filter presented in the main paper. These

methodologies are used in the robustness tests to ensure that the rational consensus is well

identified and effectively decomposes overall revisions into the three factors presented in the

main text. Of course, a naive statistic, for example, a simple average of individual analysts’

forecasts submitted over the past 7 days may also be used to proxy for the rational consensus.

I use this average to run robustness checks and show that the Kalman Filter methodology

is a valid tool to identify the public signals and the rational consensus.

O.1.1 Steps of the (Baseline) Kalman Filter Algorithm

Before presenting the extensions of the algorithm, I present the steps followed in the baseline

algorithm to facilitate comparison:

1. Series selection:

• Select firm j and quarter-q revenues.

• Identify the number of analysts N ever announced a forecast for firm j’s revenues

of quarter q.

• Find the number of analysts who reported a forecast on day t, Ft.

• Compute the daily-mean forecast of day t, Ft, for every day t there was at least

one forecast announcement.
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2. Initialization:

• Identify the initial day, t = 0, when at least one forecast was reported.

• Set Ê0|0 ≡ F0.

• Set P̂0|0 ≡
(
N−N0

N

)
(X̃ − E0|0)

2

3. Prediction:

• Set Ê1|0 = Ê0|0.

• Set P̂1|0 = P̂0|0 + σ2
s̄

4. Iteration Process (for t ∈ (1, T )):

• Identify Nt and Ft from the data.

• Estimate measurement variance as σ2
ϵ,t + σ2

v,t

• Estimate the Kalman Gain: Kt =
P̂t|t−1

P̂t|t−1+σ2
ϵ,t+σ2

v,t

.

• Estimate current state: Êt|t = Êt|t−1 +Kt

(
Ft − Êt|t−1

)
.

• Update current state variance: P̂t|t = (1−Kt)P̂t|t−1.

• Predict next period’s consensus estimate given the available information of day t:

Êt+1,t = Êt,t.

• Predict variance of next period’s state estimate given the available information of

day t: P̂t+1|t = P̂t|t + σ2
s̄ .

• Update day t to t+ 1.

5. Drop observations of day t = 0 from the sample.

• The initial observation is dropped as it was used to proxy for the initial guess.

• This rule does not impose further restrictions in this study, as by definition, there

is no forecast revision available associated with the initial observation.

O.1.2 Extension #1: Inclusion of a Penalty Parameter

The Kalman Filter algorithm used in this study (see Appendix A.1) updates the state equa-

tion by comparing the measurement variance with the variance of the public signal. When

the measurement variance gets smaller, a larger weight is given to the new observation (daily

mean), and the rational consensus estimate is updated aggresively. If the measurement vari-

ance is not proxied properly, the weight given to forecasts reported by a small number of

2



analysts (e.g., 1 analyst) might cause misidentification of signals that are de facto private as

public signals.

To deal with this concern, I modify the Kalman Filter algorithm by including a parameter

on the idiosyncratic component of the observation equation (A.2) that aims to impose a

penalty when the number of daily reported forecasts is relatively small. Specifically, the

hidden idiosyncratic component υi,t of (A.2) is now defined as:

υi,t =

√
2N −Nt

Nt

γi,t (O.1)

where, as before, N is the number of forecasters who ever reported a forecast and Nt is the

number of forecasters who reported a forecast on day t. Notice that whenever Nt is relatively

small, υi,t now becomes larger. The intervention of the penalty parameter can be better seen

on variances:

σt = var(υt) =

(
2N −Nt

Nt

)
σi,t
Nt

(O.2)

By proxying σi,t as in the main algorithm, now the variance that results from the mean-

dispersion σt becomes larger when N exceeds Nt. On the upper limit, when the number of

reports of the day t equals the number of all analysts that form the consensus, the penalty

parameter gets the value of 1 due to the increased confidence that the daily forecast well

represents the consensus. The penalty parameter is expected to provide more conservative

updates whenever the observed daily mean forecast is not well represented by a large body

of individuals. The steps of the Kalman Filter algorithm are modified as follows:

1. Series selection:

• Same as with the Baseline algorithm.

2. Initialization:

• Same as with the Baseline algorithm.

3. Prediction:

• Same as with the Baseline algorithm.

4. Iteration Process (for t ∈ (1, T )):

• Identify Nt and Ft from the data.

• Estimate measurement variance as σ2
µ,t ≡ σ2

ϵ,t +
(
2N−Nt

N

)
σ2
v,t
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• Estimate the Kalman Gain: Kt =
P̂t|t−1

P̂t|t−1+σ2
µ,t

.

• Estimate current state: Êt|t = Êt|t−1 +Kt

(
Ft − Êt|t−1

)
.

• Update current state variance: P̂t|t = (1−Kt)P̂t|t−1.

• Predict next period’s consensus estimate given the available information of day t:

Êt+1,t = Êt,t.

• Predict variance of next period’s state estimate given the available information of

day t: P̂t+1|t = P̂t|t + σ2
s̄ .

• Update day t to t+ 1.

5. Drop observations of day t = 0 from the sample.

O.1.3 Extension #2: Inclusion of an Aggregate Bias Parameter

Another concern regarding the Kalman Filter algorithm used in the main results (see Ap-

pendix A) is that the observation equation restricts the parameter of the hidden variable to

equal 1. A more generalized observation equation can be specified by modifying Equation

(A.2) as:

Ft = HtER
t + υt (O.3)

Notice that in this specification, the hidden measurement error, εt, that aims to capture

aggregate behavioral bias is no longer entering the equation, and instead, a time-varying

parameter, Ht, intends to capture this bias. This parameter is greater than one when the

average daily reported forecast is driven by prevailing optimism and below one when it is

driven by prevailing pessimism. Whenever there is no aggregate bias, any departure from

the rational consensus is due to idiosyncratic errors that have not been well-diversified. To

parameterize Ht I estimate the mean forecast error from all daily mean forecasts reported

on (calendar) month τ regardless of the firm and horizon as:

MFEτ =
1

Nτ

∑
j

∑
h

log(Fj
τ+h|τ/x̃

j
τ+h) ∀j, h

where Nτ is the total number of consensus daily forecasts reported on month τ . I then scale

all monthly observations of MFEτ to ensure the series is a zero-mean:

SMFEτ =MFEτ −MFE
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Figure O1: Proxy for aggregate bias

where MFE is the cross-month average mean forecast error. The aggregate bias is proxied

as:

Ht = 1 + SMFEτ with, t ∈ τ (O.4)

The intuition is that the mean forecast error within a calendar month should approximate

zero due to the large volume of forecasts announced for a sufficient number of firms and

forecast horizons. Since the forecast horizon is not fixed, if SMFEτ deviates significantly

from zero, that is an indication of prevailing optimism in the economy (SMFEτ > 0) or

pessimism (SMFEτ < 0). We should then expect that during periods of optimism (pes-

simism) the parameter Ht is greater (smaller) than one as analysts tend to inflate (depress)

their reports.

Figure O1 shows the fluctuation of Ht around its mean value over time. While all

forecasts reported are up to 6 quarters ahead and no long-term predictions are reported,

the Ht parameter seems to identify periods of optimism, for example before the emerge of

the Global Financial Crisis of 2007-09, and pessimism, for example early 2020. One could

argue that Ht might not be part of analysts’ information set, and hence, its inclusion to the

Kalman Filter might feed the algorithm with excess information. Since these forecasts are

reported by professional analysts it is fair to assume that they have a fair understanding

when the markets are characterized by optimism or pessimism. In any case, the inclusion of

the parameterized bias in the Kalman Filter aims to test if the results from the decomposed

model are robust to alternative specifications of the rational consensus. The steps of the

algorithm are modified as follows:
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1. Series selection:

• Same as with the Baseline algorithm.

2. Initialization:

• Same as with the Baseline algorithm.

3. Prediction:

• Same as with the Baseline algorithm.

4. Iteration Process (for t ∈ (1, T )):

• Identify Nt, Ft and Ht from the data.

• Estimate measurement variance as σ2
µ,t ≡ σ2

ϵ,t + σ2
v,t

• Estimate the Kalman Gain: Kt =
HtP̂t|t−1

H2
t P̂t|t−1+σ2

µ,t

.

• Estimate current state: Êt|t = Êt|t−1 +Kt

(
Ft −HtÊt|t−1

)
.

• Update current state variance: P̂t|t = (1−HtKt)P̂t|t−1.

• Predict next period’s consensus estimate given the available information of day t:

Êt+1,t = Êt,t.

• Predict variance of next period’s state estimate given the available information of

day t: P̂t+1|t = P̂t|t + σ2
s̄ .

• Update day t to t+ 1.

5. Drop observations of day t = 0 from the sample.

6



O.2 Robustness Tests

O.2.1 Proxying the Rational Consensus

The Kalman Filter algorithm (as shown in the Appendix A.1) provides estimations of the ra-

tional consensus that converge to the real expectations as the number of iterations increases.

Every iteration essentially represents a different forecast announcement day. One concern is

that the initial iterations can give estimates that are far from the rational consensus, espe-

cially if the initial guess is not defined properly. Indeed, for many series, the initial guess is

formed by a single forecast as during the initial day only one analyst reported their forecast

over a specific firm and period-end date. The results however seem robust to alternative

proxies of the rational consensus estimate. A straightforward alternative for Ēt+h|t without

using the Kalman Filter is to calculate the mean forecast based on all forecasts announced

in the past 7 days, including day t. This proxy can be expressed as:

Ēj
t+h|t =

1

7

6∑
ρ=0

F i,j
t+h|t−ρ

Figure O2 supplements Figure 4 by decomposing forecast updates with the use of a 7-day

mean forecast instead of the Kalman Filter’s state equation estimates. The results are almost

identical. Moreover, Figure O3 shows the OOS evaluation of the decomposed model when

this alternative is used (series: 7-Day Mean). As can be seen, while the ∆SSE statistic fall

slightly below the decomposed model that uses Kalman Filter, a substantial outperformance

of the decomposed model is confirmed with this alternative.

Another concern is that the rational consensus estimates are heavily updated from fore-

casts that include substantial idiosyncratic measurement error. To deal with this concern, in

Appendix O.1.2 I modify the Kalman Filter algorithm by adding a penalty parameter that

aims to provide more conservative updates of the state equation whenever the average daily

forecast is formed by a relatively small number of analysts.

The penalty parameter is added in the variance of the idiosyncratic measurement error of

the observation equation. For all series (i.e., firms and period-end dates) the total number of

analysts who have ever reported a forecast is tracked. On days when the number of analysts

submitted a forecast equals the total number of analysts in this series, the penalty parameter

disappears as there is increased confidence that during that day the average daily forecast

represents the consesus’s beliefs. On the other hand, when the number of analysts reported

on day t falls below the total number of analysts, the penalty parameter effectively increases

the idiosyncratic measurement variance and the Kalman gain shrinks. The observed average

forecast of day t will therefore been given a relatively smaller weight on the state update of

7
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Figure O2: Estimated coefficients from the Decomposed model when the rational consensus
is proxied by a 7-day mean forecast

the rational consensus in that case (compared to the baseline Kalman Filter algorithm of

A.1). Figure O3 shows that the results from the OOS evaluation of the decomposed model

remain robust when the penalty parameter is imposed to the Kalman Filter (series: Kalman

(w. penalty)). The ∆SSE under this alternative consistently follows the statistic of the

main results.

A third concern is that the Kalman Filter algorithm of Appendix A.1 assumes that the

aggregate component of the measurement error of the observation equation is independent of

the hidden variable of the rational consensus. The observed daily average forecast, however,

could depend linearly on the rational consensus. In other words, there could be periods

of time that all analysts are either too optimistic or too pessimistic and their aggregated

reported forecasts are more or less than one times the rational consensus. This can be solved

by allowing for a flexible time-varying parameter in the observation equation. I extend the

baseline algorithm by parameterizing this aggregate bias in the observation equation. This

modification is presented analytically in Appendix O.1.3. Robustness of the results are

shown in Figure O3 (series: Kalman (param. bias)). There are two comments regarding this

alternative proxy for the rational consensus. First, for all horizons, the decomposed model

outperforms analysts’ forecasts when the aggregate bias is parameterized in the Kalman

Filter. Second, for all horizons greater than 1, the addition of the aggregate bias parameter

results in significantly higher accuracy of ex ante expectations in the OOS evaluation.

The consistent conclusion drawn from all alternative proxies for the rational consensus

8



indicates that the failure of the BGMS coefficient to identify and correct the behavioral

bias in reported forecasts is not indicative of evidence supporting rational expectations.

Instead, the presence of heterogeneous responses to different sources of signals obscures the

predictability of forecast errors from overall forecast revisions.

O.2.2 Credibility of the Rational Consensus Estimate

Do estimates of the rational consensus effectively eliminate the behavioral bias? I address

this question by running an OOS rolling-forward methodology at the consensus level where

the sum of squared errors that arise from the rational consensus estimates are compared with

the sum of squared errors from a behavioral model that aims to improve these estimates by

taking into account the consensus’s revision from the public signal. In essence, for every

quarter q ∈ [Q1 2005, Q3 2023] the first stage involves estimating the βq coefficient from:

F̂E
j

t+h = α̂q + β̂q ∆Êj
t+h + ϵi,jt,h with t ∈ [Q1 1998, q − 1] (O.5)

where F̂E
j

t+h ≡ x̃jt+h − Êj
t+h|t and ∆Êj

t+h ≡ Êj
t+h|t − Êj

t+h|t−k.

Once again, I drop all forecasts for which the firm announced the realized revenues any

time beyond calendar quarter q from these rolling-forward regressions to avoid feeding the

OOS predictions with information that the analysts could not observe. The β̂q is then used

in the second stage to infer the ex ante expectations as formed by a behavioral consensus

model that aims to correct for any estimated bias that has not been effectively eliminated in

the Kalman Filter methodology. Here, the ex ante expectations of the behavioral consensus

model are:

x̂jt+h|t ≡ Êj
t+h|t + β̂q ∆Êj

t+h with t ∈ q (O.6)

The sum of squared errors of the rational consensus and the behavioral consensus are:

SSE
R

q =
∑
t

∑
h

∑
j

(xjt+h − Êj
t+h|t)

2 ∀t ∈ [Q1 2005, q] (O.7)

SSE
B

q =
∑
t

∑
h

∑
j

(xjt+h − x̂jt+h|t)
2 ∀t ∈ [Q1 2005, q] (O.8)

At any quarter q, if there is any bias inherent in the estimations of Êj
t+h|t that should be
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Figure O3: Robustness tests OOS
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identified by an upward trend in the following statistic:

∆SSEq =
SSE

R

q − SSE
B

q

SSE
R

T

where T = {Q2 2023} (O.9)

This is equivalent to saying that the model from Coibion and Gorodnichenko (2015) (CG

model) is evaluated OOS when the consensus is approximated by the rational consensus

estimate. Figure O4 shows the results from the rolling-forward methodology on forecasts

with horizon of 1 to 6 quarters ahead. While in all regressions with horizon from 2 to 6

quarters ahead, the end-point of ∆SSE falls below zero or is at most located at zero, the

same is not true on forecasts with horizon of 1 quarter ahead. However, in the latter case,

the improvement in the sum of squared errors OOS is not economically significant as it would

only improve the rational consensus estimates by a little less than 0.62% by the end of the

testing period. Moreover, while ∆SSE slopes upward after 2012 in the OOS evaluation, the

improvement in the sum of squared errors is trivial.

The key insight from these out-of-sample results is that the Kalman Filter methodology

employed in this paper effectively captures rational expectations based on all publicly avail-

able information. This alleviates concerns about significant bias in the estimates, strength-

ening the credibility of the results.

O.2.3 Imposing a minimum threshold on the number of forecasts reported daily

The prevalence of cases where only one individual has reported their forecast on a given

forecast announcement day, t, for a specific firm and quarter might raise concerns about the

differentiation between private and public signals. It is possible that revisions from private

signals are heavily influenced by measurement errors and not by deviations from the rational

consensus due to private signals. To address this potential issue, I introduce a minimum

threshold on the number of forecasts reported daily regarding revenues of the same firm and

quarter, ensuring that these observations represent ‘busy’ days with important news releases.

Figures O5 and O6 demonstrate the robustness of the results by conducting regressions

on forecasts announced on days with at least 2 and 4 analysts reporting their forecasts for

the same firm’s revenues, respectively. Despite the smaller number of observations that meet

these minimum thresholds, this filter reveals a more pronounced differentiation between re-

actions to public and private signals. Specifically, the overreaction to private signals remains

consistent with estimates from the main results, while a more pronounced underreaction to

public signals is observed compared to the main findings.
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Figure O4: OOS Credibility Test of the Rational Consensus Estimate

14



−2

−1

0

1

2

2000 2005 2010 2015 2020

C
oe

ffi
ci

en
t o

f R
ea

ct
io

n

Coefficient Public

−0.050

−0.025

0.000

0.025

0.050

2000 2005 2010 2015 2020

∆S
S

E

Sample IS OOS

Forecast Horizon: 4 Quarters Ahead

−2

−1

0

1

2

2000 2005 2010 2015 2020

C
oe

ffi
ci

en
t o

f R
ea

ct
io

n

Coefficient Public

−0.050

−0.025

0.000

0.025

0.050

2000 2005 2010 2015 2020

∆S
S

E

Sample IS OOS

Forecast Horizon: 5 Quarters Ahead

−2

−1

0

1

2

2000 2005 2010 2015 2020

C
oe

ffi
ci

en
t o

f R
ea

ct
io

n

Coefficient Public

−0.050

−0.025

0.000

0.025

0.050

2000 2005 2010 2015 2020

∆S
S

E

Sample IS OOS

Forecast Horizon: 6 Quarters Ahead

Figure O4 (cont.): OOS Credibility Test of the Rational Consensus Estimate
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Figure O5: Estimated coefficients from the Decomposed model when at least 2 analysts
reported on day t.
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Figure O6: Estimated coefficients from the Decomposed model when at least 4 analysts
reported on day t.

O.2.4 Lowering the Frequency of Revision

The OOS tests shown in Figure 6 suggest significant improvement of expectations formation

once analysts’ reported forecasts are corrected for the presence of bias identified in any of the

three factors of the decomposed model. But are these estimations robust to lower-frequency
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data? To test this, I regress forecast errors on forecast revisions, focusing on forecasts that

revised past reports within a window spanning 8 to 12 weeks. In essence, I extend the

revision horizon k in (1) to capture updates over a larger time frame. Recall these forecast

updates are defined as:

∆kF
i,j
t+h ≡ F i,j

t+h|t − F i,j
t+h|t−k

Figure O7 suggests that the results are robust to this specification.

O.2.5 More Insights on the Success Rate of the Behavioral Model

Does the behavioral model exhibit superior performance to the rational model as a conse-

quence of a minority of analysts reporting biased forecasts? To examine this, I expand the

rolling-forward methodology and assess the following OOS statistic:

RSSEi,q =
SSEB

i,q

SSER
i,q

(O.10)

where,

SSER
i,q =

∑
t

∑
h

∑
j

(xjt+h − F i,j
t+h|t)

2 ∀t ∈ q (O.11)

SSEB
i,q =

∑
t

∑
h

∑
j

(xjt+h − x̂i,jt+h|t)
2 ∀t ∈ q (O.12)

There are two key observations in this context. Firstly, the sum of squared errors is com-

puted individually for each analyst in every quarter throughout the testing period. Secondly,

the sum of squared errors does not accumulate past periods’ errors as the testing sample

progresses. The RSSEi,q statistic enables the behavioral model to compete with each analyst

individually. Any value of RSSEi,q below one indicates that, in quarter q, the behavioral

model produced more accurate expectations than analyst i’s reported forecasts when both

were evaluated based on their performance over the same set of forecasts.31 The RSSEi,q

statistic is insightful, as each quarter allows an assessment of whether the behavioral model

outperforms the median analyst. In other words:

MRSSEq = median(RSSEi,q) (O.13)

If MRSSEq is less than 1, it signifies that in testing quarter q, the behavioral model out-

31It’s important to note that the behavioral model doesn’t possess superior information that analyst i
wasn’t privy to, as x̂i,j

t+h|t is estimated with coefficient estimates from a training sample preceding the testing

sample (refer to Equation (17)).
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Figure O7: OOS Predictability of Forecast Errors from the Decomposed Model in Low-
Frequency Data

Notes: This figure tests the robustness of the results of Figure 6 in forecast updates of lower-frequency. The
revision horizon k in forecast revisions is modified such that the current forecast succeeds the initial forecast
in a window between 8 to 12 weeks. The plots on the LHS show the three coefficients of the decomposed
model from a regression of Forecast Errors on Forecast Revisions due to public signals, private signals, and
the correction factor, at the individual (analyst) level using high-frequency data. Every calendar quarter q
in the testing period uses coefficients that are estimated with a rolling forward methodology (see main text)
on revenues that were released up until quarter q − 1. The shaded areas are 95% confidence intervals using
double-clustered standard errors at the announcement period (calendar quarter) and analyst. The plots on
the RHS show the In-Sample (IS) and Out-of-Sample (OOS) performance of the ∆SSE statistic (see main
text). The vertical dotted lines show the end of the training period of the rolling forward methodology and
the beginning of the testing period.
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performs the majority of analysts by minimizing their forecast errors after correcting for the

behavioral bias. Additionally, the success rate in any quarter q is defined as the percentage

of analysts who reported less accurate forecasts than the behavioral model’s expectations.

In other words, the success rate identifies the percentage of individuals with RSSEi,q ≤ 1.

Figure O8 presents the two statistics for forecasts with horizons of 1, 2, and 3 quarters.

The plots on the LHS depict theMRSSEq for three alternative behavioral models. The first

corrects bias identified by the BGMS coefficient, the second corrects bias identified in all

three factors of the decomposed model when the rational consensus is estimated with the

Kalman Filter algorithm, and the third corrects bias in all three factors of the decomposed

model when a simple 7-day average forecast proxies for the rational consensus. Across all

horizons, the BGMS coefficient exhibits poor performance, fluctuating around the value of 1

(i.e., the cutoff point determining whether the median analyst’s forecasts can be improved.)

In contrast, the decomposed model consistently outperforms the median forecaster, and the

results remain robust to different specifications of the rational consensus in the decomposition

process.

The RHS plots in Figure O8 demonstrate that the decomposed model consistently im-

proves the forecasts of the majority of analysts across all testing periods and horizons.

Specifically, the baseline decomposed model (utilizing Kalman Filter in the decomposition

process) improves forecasts for an average of 56.89% of analysts (with a standard deviation

of 3.30%) over time, as indicated by the line plots. This evidence is robust even when the

decomposition process uses a 7-day average forecast to proxy for the rational consensus.

In contrast, the BGMS model exhibits a different pattern. A behavioral model aiming to

correct bias with the BGMS coefficient shows a more limited ability to improve forecasts for

the majority of analysts across most tested periods. On average, 50.32% of analysts (with

a standard deviation of 5.49%) could have improved their reported forecasts by considering

the bias identified from the BGMS coefficient.

The results underscore three crucial observations. First, any evidence suggesting that

analysts do not report forecasts consistent with the rational expectations hypothesis in this

study is not attributed to a minority of analysts reporting significantly worse expectations

than the behavioral model, but rather to the majority of analysts tested. Second, despite

the BGMS model’s failure to consistently outperform analysts out-of-sample, a non-trivial

percentage of analysts could have at least marginally improved their forecasts using this

model. Third, the supporting evidence in favor of heterogeneous responses to signals, as

demonstrated in the main results, is further reinforced by the decomposed model’s ability to

effectively improve forecasts for a greater number of analysts compared to the BGMS model.
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Figure O8: Does the behavioral model effectively correct the bias for a majority or minority
of analysts?

Notes: This figure tests the robustness of the results by estimating the performance of the behavioral model
relative to the median forecaster and the percentage of forecasters who could have improved their reported
forecasts by taking into account the behavioral bias identified in any of the three models (BGMS model;
Decomposed model that uses the Kalman Filter to proxy for the rational consensus; and Decomposed model
that uses a 7-Day mean forecast to proxy for the rational consensus). The plots on the LHS show the median
sum-squared-error ratio (see equation O.13). The plots on the RHS report the success rate defined as the
percentage of analysts whose forecasts were worse than or at most as successful as the behavioral model’s
expectations.
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O.2.6 Controlling for Adaptive Learning

The decomposed model proposed in the main paper identifies three factors from analysts’

overall revisions as candidate factors to explain forecast errors. Analysts might learn from

past forecast errors and adapt their response to news signals. This in turn might suggest

that the observed overreaction to private signals coincides with analysts becoming more

responsive to shocks after learning about forecast errors they made on their past forecasts.

To control for this feedback mechanism, I include analysts’ past forecast errors as a fourth

factor in the regressions. For most observations, past forecast errors are available on forecasts

announced within 60 days prior to their contemporaneous forecast.

Figure O9 shows the coefficient estimates from the IS regressions. According to the

results, the adjusted R-squared increases while the coefficients of the three factors do not

change much with the exception of public signals that lose in terms of significance. That said,

past forecast errors are related to public signals as firms announce their realized revenues,

and therefore, the coefficient of reaction to public signals is expected to change with the

inclusion of this variable. Analytical results are shown in Table O9.

Figure O17 shows that the results are robust out-of-sample, and in fact, ∆SSE statistic

improves compared to the decomposed three-factor model of the main results.
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Figure O9: Controlling for Past Forecast Errors
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O.3 Supporting Tables and Figures

Table O1: Summary Statistics

Panel A (a)

Forecast Horizon (Quarters Ahead) 1 2 3 4 5 6

Observations 421,785 368,671 314,946 247,911 169,056 113,884
Companies 7,798 7,594 7,304 6,954 6,267 5,634
Analysts 4,465 4,465 4,462 4,386 3,759 3,364
Brokerage Houses affiliated with Analysts 448 438 428 399 358 323
Earliest Forecast Announcement Apr 1996 Jan 1998 Apr 1996 Oct 1997 Sep 1997 Sep 1997
Latest Forecast Announcement Jun 2023 Mar 2023 Dec 2022 Sep 2022 Jun 2022 Mar 2022

Panel B

Mean St. Dev. Min Pctl(25) Pctl(75) Max

Observations by analyst (b) 366.462 590.762 16 66 418 9,172
Companies covered by analyst 19.827 14.179 1 9 27 112
Companies covered per month by analyst 2.565 2.602 1 1 3 55
Forecast announcement days by analyst 90.165 111.146 2 20 116 1,307
Forecasts reported for each firm by analyst (c) 18.483 30.063 1 4 20 789
Times revised by analyst (d) 2.032 1.723 1 1 2 40
Analysts per outcome (e) 3.901 3.790 1 1 5 43

Panel C

Mean St. Dev. Min Pctl(25) Pctl(75) Max

Forecast Error −0.011 0.184 −1.039 −0.063 0.057 0.754
Overall Forecast Revision −0.004 0.077 −1.781 −0.019 0.015 1.566
Revision from Public Signals −0.005 0.074 −1.583 −0.020 0.015 1.479
Revision from Private Signals −0.002 0.053 −1.545 −0.011 0.011 0.961
Correction Revision 0.003 0.065 −1.152 −0.007 0.009 1.488

Panel D (a)

Mean St. Dev. Min Pctl(25) Pctl(75) Max

Forecasts per outcome 35.714 39.175 3 10 46 546
Analysts per outcome 8.118 6.421 2 4 11 61

Notes: This table reports summary statistics of forecasts with horizon between (incl.) 1 and 6 quarters.
Forecast horizon measures how many quarters the forecast was announced ahead of the firm-revenue an-
nouncement date. All forecast errors and forecast revisions are computed by taking realized revenues and
forecasts in logs.
Footnotes:
(a) Panels A, B, and C report statistics on data of which analysts revised their initial forecasts and revision
was reported within 4 weeks. These observations were used in main regressions. Panel D reports statistics
on all forecasts (including forecasts where analysts did not revise their initial forecasts or revised beyond the
4-week window); these observations were used in the Kalman Filter to estimate the rational consensus. A
minimum of 2 analysts per outcome and 3 forecasts per outcome was a requirement in the Kalman Filter
process.
(b) Aminimum of 30 observations per analyst was required in the forecast-decomposition and group-formation
process. The minimum 16 shown here is due to some observations falling off the window of 1-6 quarters-
ahead horizon.
(c) Number of forecasts reported by an analyst regardless of the period-end date of the realization of revenues.
(d) Number of times an analyst revised her initial forecast on revenues about a specific firm and period-end
date.
(e) Outcome denotes revenues of a specific firm and period-end date (fiscal quarter).
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Table O2: IS Cross-Horizon Coefficient estimates from the BGMS and CG Models.

Horizon (Quarters Ahead): 1 2 3 4 5 6

Panel A BGMS Model

Forecast revision -0.0521∗∗∗ 0.0148 -0.0179 -0.0218 -0.0264 -0.1025∗∗

(0.0140) (0.0301) (0.0277) (0.0309) (0.0387) (0.0416)

Constant 0.0056∗∗ -0.0082 -0.0166∗∗ -0.0215∗∗∗ -0.0234∗∗ -0.0283∗∗∗

(0.0025) (0.0054) (0.0067) (0.0075) (0.0095) (0.0108)

Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.0011 0.0000 0.0000 0.0001 0.0001 0.0009

Panel B CG Model

Forecast revision 0.1292∗∗∗ 0.2276∗∗∗ 0.2437∗∗∗ 0.2865∗∗∗ 0.9745∗∗∗ -0.0964
(0.0141) (0.0256) (0.0283) (0.0465) (0.3348) (0.3974)

Constant -0.0062∗∗∗ -0.0216∗∗∗ -0.0306∗∗∗ -0.0351∗∗∗ -0.1142∗∗∗ -0.1060∗∗∗

(0.0021) (0.0039) (0.0051) (0.0060) (0.0206) (0.0307)

Observations 713,772 645,154 560,990 154,645 1,177 584
Adjusted R2 0.0032 0.0052 0.0040 0.0024 0.0224 -0.0015

Notes: The table shows the estimated coefficients of the BGMS model (Panel A) and the CG model (Panel
B) from a regression of forecast errors on (overall) forecast revisions. The regression of the BGMS model
is at the individual (analyst) level while the regression of the CG model is at the consensus level. The
BGMS model uses observations from the IBES Detail File while the CG model uses observations from the
IBES Summary File. Separate regressions are run for different forecast horizons (from 1 to 6 quarters ahead
of firm-revenue announcement.) Standard errors are double-clustered (quarter of forecast announcement-
individual analyst) in the BGMS model, and clustered at the quarter of forecast announcement in the CG
model. Significance levels: 10% (*), 5% (**) and 1% (***).
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Table O3: IS Cross-Horizon Coefficient estimates from the Decomposed Model.

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Public 0.0179 0.1329∗∗∗ 0.0949∗∗∗ 0.0836∗∗ 0.0878∗ 0.0077
(0.0160) (0.0415) (0.0356) (0.0364) (0.0452) (0.0487)

Private -0.7293∗∗∗ -0.6529∗∗∗ -0.6486∗∗∗ -0.6117∗∗∗ -0.5806∗∗∗ -0.6179∗∗∗

(0.0233) (0.0333) (0.0290) (0.0301) (0.0307) (0.0341)

Correction 0.3218∗∗∗ 0.3946∗∗∗ 0.3840∗∗∗ 0.3696∗∗∗ 0.4162∗∗∗ 0.3849∗∗∗

(0.0165) (0.0233) (0.0192) (0.0224) (0.0283) (0.0266)

Constant 0.0040 -0.0099∗ -0.0184∗∗∗ -0.0229∗∗∗ -0.0249∗∗∗ -0.0300∗∗∗

(0.0025) (0.0053) (0.0067) (0.0075) (0.0094) (0.0107)

Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.1481 0.0950 0.0729 0.0520 0.0440 0.0429

Notes: The table shows the estimated coefficients of the decomposed model from a regression of forecast
errors on three factors, namely, revisions from public signals, revisions from private signals, and forecast
correction (past disagreement with consensus) as shown in equation 9. Separate regressions are run for
different forecast horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Double-clustered
standard errors are used (quarter of forecast announcement-individual analyst). Significance levels: 10% (*),
5% (**) and 1% (***).
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Table O4: Do analysts exhibit more or less profound underreaction to negative public signals?

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Public 0.0059 0.0272 -0.0500 -0.0526∗ -0.0292 -0.1246∗∗∗

(0.0238) (0.0248) (0.0305) (0.0284) (0.0377) (0.0438)

Public (Negative 0.0184 0.1722∗∗∗ 0.2543∗∗∗ 0.2603∗∗∗ 0.2194∗∗∗ 0.2652∗∗∗

Revision) (0.0304) (0.0498) (0.0473) (0.0518) (0.0683) (0.0834)

Private -0.7295∗∗∗ -0.6543∗∗∗ -0.6509∗∗∗ -0.6101∗∗∗ -0.5784∗∗∗ -0.6164∗∗∗

(0.0233) (0.0327) (0.0282) (0.0298) (0.0308) (0.0347)

Correction 0.3220∗∗∗ 0.3967∗∗∗ 0.3875∗∗∗ 0.3779∗∗∗ 0.4222∗∗∗ 0.3927∗∗∗

(0.0164) (0.0230) (0.0189) (0.0233) (0.0290) (0.0279)

Constant 0.0043∗∗ -0.0068 -0.0140∗∗ -0.0178∗∗ -0.0205∗∗ -0.0248∗∗

(0.0022) (0.0048) (0.0063) (0.0071) (0.0089) (0.0102)

Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.1481 0.0960 0.0746 0.0535 0.0449 0.0440

Notes: The table repeats the results from Table O3 by including an interaction term of revisions from
public signals with a dummy variable that is 1 when the public signal is negative and zero otherwise, as a
fourth factor in the decomposed model. A statistically significant coefficient of the interaction term ‘Public
(Negative Revision)’ is evidence that analysts’ reaction to public signals changes significantly depending on if
news have a positive or negative impact on expectations formation. Separate regressions are run for different
forecast horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Double-clustered standard
errors are used (quarter of forecast announcement-individual analyst). Significance levels: 10% (*), 5% (**)
and 1% (***).
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Table O5: Do analysts exhibit more or less profound overreaction to negative private signals?

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Public 0.0152 0.1301∗∗∗ 0.0931∗∗∗ 0.0824∗∗ 0.0868∗ 0.0081
(0.0168) (0.0407) (0.0353) (0.0365) (0.0456) (0.0500)

Private -0.8234∗∗∗ -0.7637∗∗∗ -0.7709∗∗∗ -0.7595∗∗∗ -0.7450∗∗∗ -0.7654∗∗∗

(0.0483) (0.0420) (0.0431) (0.0402) (0.0479) (0.0592)

Private (Negative 0.1539∗ 0.1836∗∗ 0.2076∗∗ 0.2667∗∗∗ 0.2941∗∗∗ 0.2635∗∗

Revision) (0.0804) (0.0787) (0.0806) (0.0934) (0.1056) (0.1252)

Correction 0.3234∗∗∗ 0.3958∗∗∗ 0.3860∗∗∗ 0.3752∗∗∗ 0.4203∗∗∗ 0.3890∗∗∗

(0.0162) (0.0230) (0.0191) (0.0234) (0.0289) (0.0275)

Constant 0.0056∗∗∗ -0.0076 -0.0157∗∗∗ -0.0193∗∗∗ -0.0209∗∗ -0.0263∗∗∗

(0.0022) (0.0046) (0.0060) (0.0068) (0.0086) (0.0099)

Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.1487 0.0956 0.0735 0.0528 0.0449 0.0436

Notes: The table repeats the results from Table O3 by including an interaction term of revisions from
private signals with a dummy variable that is 1 when the private signal is negative and zero otherwise, as a
fourth factor in the decomposed model. A statistically significant coefficient of the interaction term ‘Private
(Negative Revision)’ is evidence that analysts’ reaction to private signals changes significantly depending
on if news have a positive or negative impact on expectations formation. Separate regressions are run for
different forecast horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Double-clustered
standard errors are used (quarter of forecast announcement-individual analyst). Significance levels: 10% (*),
5% (**) and 1% (***).
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Table O6: Do analysts exhibit persistency in overconfidence or underconfidence?

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Public 0.0163 0.1317∗∗∗ 0.0938∗∗∗ 0.0827∗∗ 0.0872∗ 0.0082
(0.0165) (0.0415) (0.0355) (0.0364) (0.0454) (0.0491)

Private -0.7309∗∗∗ -0.6540∗∗∗ -0.6512∗∗∗ -0.6142∗∗∗ -0.5829∗∗∗ -0.6213∗∗∗

(0.0232) (0.0333) (0.0286) (0.0294) (0.0302) (0.0333)

Correction 0.2959∗∗∗ 0.3619∗∗∗ 0.3256∗∗∗ 0.3028∗∗∗ 0.3342∗∗∗ 0.3034∗∗∗

(0.0270) (0.0284) (0.0244) (0.0290) (0.0419) (0.0483)

Correction (Negative 0.0659 0.0825∗∗ 0.1421∗∗∗ 0.1605∗∗∗ 0.1921∗∗∗ 0.1866∗∗

Disagreement) (0.0461) (0.0411) (0.0441) (0.0530) (0.0659) (0.0839)

Constant 0.0048∗∗ -0.0088∗ -0.0164∗∗∗ -0.0206∗∗∗ -0.0221∗∗ -0.0272∗∗∗

(0.0022) (0.0051) (0.0063) (0.0071) (0.0090) (0.0102)

Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.1483 0.0952 0.0734 0.0525 0.0446 0.0434

Notes: The table repeats the results from Table O3 by including an interaction term of the Correction
revision with a dummy variable that is 1 when the Correction revision is negative and zero otherwise, as a
fourth factor in the decomposed model. A statistically significant coefficient of the fourth factor ‘Correction
(Negative Disagreement)’ is evidence that the coefficient of the ‘Correction’ revision changes significantly
depending on if analysts were more confident or less confident than the rational consensus during period
t− 1. Separate regressions are run for different forecast horizons (from 1 to 6 quarters ahead of firm-revenue
announcement.) Double-clustered standard errors are used (quarter of forecast announcement-individual
analyst). Significance levels: 10% (*), 5% (**) and 1% (***).
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Table O7: IS Inference of Cross-analyst heterogeneity in the BGMS model.

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Bottom -0.2518∗∗∗ -0.2434∗∗∗ -0.3329∗∗∗ -0.3742∗∗∗ -0.4573∗∗∗ -0.5534∗∗∗

(0.0233) (0.0380) (0.0326) (0.0290) (0.0375) (0.0475)

Low-Mid -0.1250∗∗∗ -0.0662∗ -0.1162∗∗∗ -0.1348∗∗∗ -0.1813∗∗∗ -0.2385∗∗∗

(0.0155) (0.0364) (0.0326) (0.0397) (0.0455) (0.0475)

Mid -0.0320∗ 0.0222 0.0141 0.0351 0.0358 -0.0646
(0.0184) (0.0340) (0.0332) (0.0393) (0.0505) (0.0520)

High-Mid 0.0603∗∗∗ 0.1695∗∗∗ 0.1606∗∗∗ 0.1566∗∗∗ 0.1998∗∗∗ 0.1857∗∗∗

(0.0171) (0.0305) (0.0261) (0.0282) (0.0255) (0.0327)

Top 0.1751∗∗∗ 0.3618∗∗∗ 0.3976∗∗∗ 0.4414∗∗∗ 0.5707∗∗∗ 0.5728∗∗∗

(0.0170) (0.0329) (0.0362) (0.0391) (0.0473) (0.0509)

Wald (Top - Bottom) 219.16 144.64 224.71 281.03 290.14 261.78
Wald (High-Mid - Low-Mid) 64.61 24.62 43.99 35.72 53.38 54.15
Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.0093 0.0084 0.0135 0.0177 0.0196 0.0235

Notes: The table reports the cross-group BGMS coefficients from an OLS regression of equation 21. All
analysts are assigned to one of the five quintile groups (Bottom, Low-Mid, Mid, High-Mid, Top) based on their
individual βi coefficient that is estimated from an OLS regression of (20). Columns 1-6 report the results for
forecasts with different horizon (from 1 to 6 quarters ahead of firm-revenue announcement.) Double-clustered
standard errors are used (quarter of forecast announcement-individual analyst). Significance levels: 10% (*),
5% (**) and 1% (***). Wald (Top - Bottom) is a one-sided Wald statistic that tests whether the coefficient
of the Top group is greater than the coefficient of the Bottom group. Similarly, Wald (High-Mid - Low-Mid)
tests if the coefficient from the High-Mid group is greater than the coefficient of the Low-Mid group.
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Table O8: IS Inference of Cross-analyst heterogeneity in the Decomposed model.

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Public Signal

Bottom −0.1961∗∗∗ −0.1643∗∗∗ −0.2685∗∗∗ −0.3071∗∗∗ −0.3729∗∗∗ −0.5049∗∗∗

(0.0299) (0.0484) (0.0348) (0.0336) (0.0511) (0.0593)

Low-Mid −0.0458∗∗ 0.0571 −0.0040 −0.0326 −0.0798 −0.1308∗∗

(0.0211) (0.0520) (0.0416) (0.0462) (0.0530) (0.0550)

Mid 0.0413∗ 0.1562∗∗∗ 0.1416∗∗∗ 0.1649∗∗∗ 0.1572∗∗∗ 0.0594
(0.0216) (0.0491) (0.0453) (0.0492) (0.0585) (0.0647)

High-Mid 0.1182∗∗∗ 0.2826∗∗∗ 0.2784∗∗∗ 0.2527∗∗∗ 0.3170∗∗∗ 0.2995∗∗∗

(0.0188) (0.0396) (0.0354) (0.0352) (0.0352) (0.0454)

Top 0.2098∗∗∗ 0.4443∗∗∗ 0.4956∗∗∗ 0.5240∗∗∗ 0.6548∗∗∗ 0.6628∗∗∗

(0.0210) (0.0400) (0.0436) (0.0451) (0.0528) (0.0623)

Private Signal

Bottom −0.8859∗∗∗ −0.8551∗∗∗ −0.8960∗∗∗ −0.9134∗∗∗ −0.8843∗∗∗ −0.9443∗∗∗

(0.0374) (0.0553) (0.0491) (0.0461) (0.0319) (0.0425)

Low-Mid −0.8048∗∗∗ −0.7096∗∗∗ −0.7238∗∗∗ −0.7052∗∗∗ −0.7056∗∗∗ −0.7091∗∗∗

(0.0390) (0.0474) (0.0399) (0.0449) (0.0483) (0.0587)

Mid −0.6791∗∗∗ −0.6413∗∗∗ −0.5948∗∗∗ −0.5443∗∗∗ −0.5066∗∗∗ −0.6018∗∗∗

(0.0354) (0.0295) (0.0344) (0.0390) (0.0458) (0.0403)

High-Mid −0.6033∗∗∗ −0.5248∗∗∗ −0.5162∗∗∗ −0.4368∗∗∗ −0.3911∗∗∗ −0.3468∗∗∗

(0.0301) (0.0323) (0.0364) (0.0330) (0.0411) (0.0504)

Top −0.4691∗∗∗ −0.3188∗∗∗ −0.3055∗∗∗ −0.2226∗∗∗ −0.0965 −0.0688
(0.0381) (0.0518) (0.0523) (0.0675) (0.0782) (0.0906)
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Table O8: [cont.]

Forecast Horizon (Quarters Ahead)
1 2 3 4 5 6

Correction Revision

Bottom 0.2512∗∗∗ 0.2789∗∗∗ 0.1936∗∗∗ 0.0820∗∗ 0.0848∗ 0.0450
(0.0338) (0.0450) (0.0314) (0.0373) (0.0453) (0.0601)

Low-Mid 0.3066∗∗∗ 0.3660∗∗∗ 0.3529∗∗∗ 0.3292∗∗∗ 0.3244∗∗∗ 0.3382∗∗∗

(0.0286) (0.0424) (0.0356) (0.0348) (0.0398) (0.0352)

Mid 0.2991∗∗∗ 0.3602∗∗∗ 0.3856∗∗∗ 0.4128∗∗∗ 0.4880∗∗∗ 0.4117∗∗∗

(0.0237) (0.0264) (0.0267) (0.0370) (0.0473) (0.0442)

High-Mid 0.3523∗∗∗ 0.4492∗∗∗ 0.4324∗∗∗ 0.4414∗∗∗ 0.4947∗∗∗ 0.4943∗∗∗

(0.0233) (0.0254) (0.0231) (0.0317) (0.0367) (0.0415)

Top 0.4078∗∗∗ 0.6332∗∗∗ 0.6928∗∗∗ 0.7382∗∗∗ 0.9065∗∗∗ 0.9401∗∗∗

(0.0252) (0.0336) (0.0400) (0.0397) (0.0545) (0.0628)

Wald (Public) 123.34 93.97 187.56 218.87 195.88 184.36
Wald (Private) 61.08 50.15 67.75 71.42 87.01 76.54
Wald (Correction) 13.77 39.82 96.16 145.25 134.45 106.16
Observations 421,785 368,671 314,946 247,911 169,056 113,884
Adjusted R2 0.1558 0.1032 0.0860 0.0691 0.0627 0.0649

Notes: The table reports the cross-group coefficients of the three factors from the decomposed model (namely,
revisions from public signals, private signals, and correction revisions) from an OLS regression of (22). All
analysts are assigned to one of the five quintile groups (Bottom, Low-Mid, Mid, High-Mid, Top) based on
their individual βi coefficient that is estimated from an OLS regression of (20). Columns 1-6 report the results
for forecasts with different horizons (from 1 to 6 quarters ahead of firm-revenue announcement.) Double-
clustered standard errors are used (quarter of forecast announcement-individual analyst). Significance levels:
10% (*), 5% (**) and 1% (***). For every factor, a Wald one-sided statistic is reported that tests whether
the factor’s coefficient of the Top group is greater than the coefficient of the Bottom group.

30



Table O9: Inclussion of Past Forecast Errors in IS Regressions of the Decomposed Model

Dependent Variable: Forecast Errors

Forecast Horizon: (1) (2) (3) (4) (5) (6)

Public -0.0653∗∗∗ 0.0825∗ 0.0480 0.0270 0.0606 -0.0298
(0.0153) (0.0450) (0.0348) (0.0346) (0.0462) (0.0453)

Private -0.6951∗∗∗ -0.6427∗∗∗ -0.6577∗∗∗ -0.6377∗∗∗ -0.5928∗∗∗ -0.6291∗∗∗

(0.0157) (0.0334) (0.0280) (0.0304) (0.0311) (0.0346)

Correction 0.1536∗∗∗ 0.2577∗∗∗ 0.2550∗∗∗ 0.2481∗∗∗ 0.3383∗∗∗ 0.2887∗∗∗

(0.0118) (0.0280) (0.0200) (0.0240) (0.0364) (0.0301)

Past Forecast Error 0.3083∗∗∗ 0.2713∗∗∗ 0.2701∗∗∗ 0.2313∗∗∗ 0.2136∗∗∗ 0.2305∗∗∗

(0.0154) (0.0205) (0.0260) (0.0268) (0.0320) (0.0322)

Constant 0.0019 -0.0120∗∗ -0.0205∗∗∗ -0.0242∗∗∗ -0.0255∗∗∗ -0.0307∗∗∗

(0.0021) (0.0050) (0.0064) (0.0073) (0.0090) (0.0103)

Observations 349,409 304,673 258,829 204,709 140,733 95,264
Adjusted R2 0.2202 0.1257 0.0954 0.0644 0.0535 0.0515

Notes: The table shows the estimated coefficients from a regression of forecast errors on the three decom-
posed factors, namely, revisions from public signals, revisions from private signals, and forecast correction
(past disagreement with consensus) as shown in Equation (9) and a control variable, namely, past forecast
error. Past Forecast Error represents the individual analyst’s forecast error on her most recent historical
forecast reported (prior to day t) about realized firm revenues that become publicly available. Separate re-
gressions are run for different forecast horizons (from 1 to 6 quarters ahead of firm-revenue announcement.)
Standard errors are double clustered at the quarter of forecast announcement and (individual) analyst level.
Significance levels: 10% (*), 5% (**) and 1% (***).
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Figure O10: OOS Predictability of Forecast Errors from the BGMS Model

Notes: This figure supplements Figure 5 in the main text by showing all results for forecasts with a horizon
of 1-6 quarters ahead.
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Figure O10 (cont.): OOS Predictability of Forecast Errors from the BGMS Model

33



−1.0

−0.5

0.0

0.5

1.0

2000 2005 2010 2015 2020

C
oe

ffi
ci

en
t o

f R
ea

ct
io

n

Coefficient Correction Public Private

0.00

0.05

0.10

0.15

2000 2005 2010 2015 2020

∆S
S

E

Sample IS OOS

Forecast Horizon: 1 Quarter Ahead

−1.0

−0.5

0.0

0.5

1.0

2000 2005 2010 2015 2020

C
oe

ffi
ci

en
t o

f R
ea

ct
io

n

Coefficient Correction Public Private

0.00

0.05

0.10

0.15

2000 2005 2010 2015 2020

∆S
S

E

Sample IS OOS

Forecast Horizon: 2 Quarters Ahead

−1.0

−0.5

0.0

0.5

1.0

2000 2005 2010 2015 2020

C
oe

ffi
ci

en
t o

f R
ea

ct
io

n

Coefficient Correction Public Private

0.00

0.05

0.10

0.15

2000 2005 2010 2015 2020

∆S
S

E

Sample IS OOS

Forecast Horizon: 3 Quarters Ahead

Figure O11: OOS Predictability of Forecast Errors from the Decomposed Model

Notes: This figure supplements Figure 6 by showing all results for forecasts with a horizon of 1-6 quarters
ahead.
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Figure O11 (cont.): OOS Predictability of Forecast Errors from the Decomposed Model
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Figure O12: OOS performance of the decomposed model with cross-analyst heterogeneity

Notes: This figure supplements Figure 9 by showing the results from regressions of forecasts with horizon 2
quarters ahead.
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Figure O13: OOS performance of the decomposed model with cross-analyst heterogeneity

Notes: This figure supplements Figure 9 by showing the results from regressions of forecasts with horizon 3
quarters ahead.
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Figure O14: OOS performance of the decomposed model with cross-analyst heterogeneity

Notes: This figure supplements Figure 9 by showing the results from regressions of forecasts with horizon 4
quarters ahead.
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Figure O15: OOS performance of the decomposed model with cross-analyst heterogeneity

Notes: This figure supplements Figure 9 by showing the results from regressions of forecasts with horizon 5
quarters ahead.
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Figure O16: OOS performance of the decomposed model with cross-analyst heterogeneity

Notes: This figure supplements Figure 9 by showing the results from regressions of forecasts with horizon 6
quarters ahead.
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Figure O17: OOS Predictability of Forecast Errors from the Decomposed Model controlling
for Past Forecast Errors
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Figure O17 (cont.): OOS Predictability of Forecast Errors from the Decomposed Model
controlling for Past Forecast Errors
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