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ABSTRACT

We introduce a double/debiased machine learning estimator for the impulse response function in
settings where a time series of interest is subjected to multiple discrete treatments, assigned over
time, which can have a causal effect on future outcomes. The proposed estimator can rely on fully
nonparametric relations between treatment and outcome variables, opening up the possibility to
use flexible machine learning approaches to estimate impulse response functions. To this end, we
extend the theory of double machine learning from an i.i.d. to a time series setting and show that
the proposed estimator is consistent and asymptotically normally distributed at the parametric rate,
allowing for semiparametric inference for dynamic effects in a time series setting. The properties of
the estimator are validated numerically in finite samples by applying it to learn the impulse response
function in the presence of serial dependence in both the confounder and observation innovation
processes. We also illustrate the methodology empirically by applying it to the estimation of the
effects of macroeconomic shocks.

JEL Classification C14 - C22 - C51 - C53 - C55
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1 Introduction

The estimation of the response of a time series to an external impulse is a common task in many scientific disciplines.
For example, in economics, one might be interested in the reaction of the economy to a change in a central bank’s
monetary policy (Angrist, Jorda, & Kuersteiner, 2018). In the analysis of their trading costs, financial professionals
are interested in the causal effect that their trades have on an asset’s price (Bouchaud, Bonart, Donier, & Gould, 2018).
In medicine, when administering a drug to a patient over time, one is interested in measuring its effect on the health of
the patient (Bica, Alaa, & Van Der Schaar, 2020). Readers are referred to the surveys in Runge, Gerhardus, Varando,
Eyring, and Camps-Valls (2023) and Raha et al. (2021) for more examples.

The quantity of interest in these applications is commonly referred to as the impulse response function (IRF). Ideally,
the IRF measures the causal effect that an action (or “treatment”) has on the time series of interest. Recently, IRFs
and ideas stemming from the causal inference framework have been related (Jorda, 2023). In particular, Rambachan
and Shephard (2021) provided assumptions under which IRFs coincide with classical average treatment effects (ATE)
analyzed in the potential outcomes framework of causal inference (Robins, 1986; Rubin, 1974). Given this relation

*The views, opinions, findings, and conclusions or recommendations expressed in this paper are strictly those of the authors.
They do not necessarily reflect the views of the Swiss National Bank (SNB). The SNB takes no responsibility for any errors or
omissions in, or for the correctness of, the information contained in this paper.

TWe thank Nora Bearth, Jonathan Chassot and Victor Chernozhukov for helpful comments and suggestions. We are also grateful
to Guido Kuersteiner for providing the data used in the empirical application.


https://arxiv.org/abs/2411.10009v2

D. BALLINARI & A. WEHRLI

between ATE and IRFs, it seams natural to adopt estimation procedures from the causal inference literature for the
problem of IRF estimation. Traditionally, IRFs have primarily been estimated by modelling the entire dynamic system
under consideration, e.g. using vector autoregressive processes (Sims, 1980). The seminal work of Jorda (2005)
later showed how to directly estimate univariate conditional expectations using local projections (Jorda & Taylor,
2024). This approach compares the conditional expectation of an outcome variable, once conditional on a shock
(treatment) and once conditional on no shock. As such, the local projection framework is directly related to the
regression adjustment approach used for ATE estimation. The approach of Jorda (2005) allows for some flexibility
in the estimation of the impulse response function, as it can easily incorporate polynomial and interaction terms of
the regressors, state dependence (Gongalves, Herrera, Kilian, & Pesavento, 2024), or instrumental variables (Stock &
Watson, 2018). More recently, Adamek, Smeekes, and Wilms (2024) extended the local projection approach to high-
dimensional settings using penalized local projections. Jorda and Taylor (2016) and Angrist et al. (2018) are examples
of applications that use propensity score weighting for the estimation of IRFs, another common estimation approach
coming from the causal inference literature, additionally accommodating asymmetric and nonlinear responses.

While estimators for IRFs have become more flexible in recent years, they still require the definition of a functional
form relating treatment and outcome variables. Here, we introduce an estimator for the IRF that can rely on fully
nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine
learning approaches to estimate IRFs. We consider a setting where a single time series is subjected to a discrete
treatment at multiple points in time and one is interested in the average (causal) effect that these treatments have at
different prediction horizons. Inspired by the approach of Chernozhukov et al. (2018) for the i.i.d. setting, the proposed
estimator leverages the efficient influence function for the IRF in combination with cross-fitting, which makes the IRF
estimation insensitive — or, formally, (Neyman-)orthogonal — to the biased estimation of the conditional expectation
and treatment probability functions by machine learners. Moreover, the proposed estimator avoids over-fitting by
using a cross-fitting procedure. These two ingredients, orthogonality and cross-fitting, eliminate regularization and
over-fitting bias to which machine learning algorithms are prone to, an approach coined double/debiased machine
learning (Chernozhukov et al., 2017). Our theoretical results show that the proposed IRF estimator is consistent
and asymptotically normally distributed at the parametric rate, building the basis for semiparametric inference for
dynamic effects in time series settings. The problem studied in this paper relates to classical semiparametric estimation
techniques for dependent data, e.g. using kernel (Li & Racine, 2006; Robinson, 1983), series (X. Chen & Christensen,
2015; J. Lee & Robinson, 2016) or general sieve estimators (X. Chen & Liao, 2015; X. Chen & Shen, 1998). Apart
from such classical approaches, our contribution relates to a nascent but growing body of literature on the application
of machine learning for semi- and nonparametric causal inference in time series problems. Lewis and Syrgkanis (2021)
e.g. provide a method of estimating and conducting inference for dynamic treatment effects, based on a sequential
regression peeling process, focusing on a fixed-length time series panel setup. Bica et al. (2020) propose an estimator
for time-varying treatment effects in the presence of hidden confounders, building on a recurrent neural network.
Their setting also considers a fixed-length time series observed for multiple individuals. Using panel data, Paranhos
(2025) employs a generalized random forest to obtain locally linear impulse response functions. Hauzenberger, Huber,
Klieber, and Marcellino (2025) estimate impulse response functions using Bayesian neutral networks. Grecov et al.
(2021) consider a multivariate time series setting where some units become and remain treated at a specific point in
time. The counterfactual outcomes are obtained from a global forecasting model based on a recurrent neural network.
Others have employed flexible machine learning approaches for causal discovery in time series; see, among others,
Bussmann, Nys, and Latré (2021); Nauta, Bucur, and Seifert (2019); Yin and Barucca (2022).

The rest of the paper is organized as follows. Section 2 sets up the problem. Section 3 presents the double machine
learning (DML) estimator and our main theoretical results on its asymptotic properties. Proofs are relegated to the
Appendix for legibility. Section 4 offers recommendations for the practical implementation of the estimator. Section 5
validates the developed theory in a simulation study and Section 6 provides a comparison to local projections. Section
7 applies the proposed estimator to policy decisions in a macrodynamic setting and Section 8 concludes.

2 Notation and identification

2.1 Notation

Let S() = {Zt(h) : t € T} be stochastic processes generated from a distribution P with Zt(h) = (Yitn, Xt, Dy),
where Y, is a scalar real-valued random variable, D, a binary treatment variable, and X; € & C R" a random
vector which may contain also lagged variables, including lagged values of Y; and D;. If not specified otherwise, 7
is a collection of ordered time indices (also referred to as the index set) with cardinality |7| = 7. The quantity of
interest is the impulse response function at horizon h € Ny for a binary impulse variable D, on the outcome variable



D. BALLINARI & A. WEHRLI

Y +n, defined as (Rambachan & Shephard, 2021)
0" = E[E[Yssn|Di = 1, X¢) — E[Yein|De = 0, X)) 1)

We focus on the case where Héh) and the conditional first moments of the outcome and treatment random variables are
time-invariant.

Assumption 1. Forall s,t € T and h € Ny, the following holds.

1. The impulse response function is time-invariant, i.e. Qéh) = E[E[Y;+r|D: = 1, X3 —E[Yi4r|D: = 0, X3]] =
E[E[Ys+h|Ds = LXS] - E[Ys+h|Ds = O,XS]].

2. The conditional first moments of Yy, and Dy are time-invariant, i.e. po(d,z,h) = E[Yiin|Dy = d, Xt =
x] = E[Ysyn|Ds = d, Xs = x]and eg(x) =Pr(Dy; = 1| Xy =2) =Pr(D; = 1| Xs =2

While we present results for a binary treatment Dy, this can be generalized to multivariate discrete treatments (Angrist
et al., 2018), which we will also do in our empirical application. In fact, discrete treatments can be interpreted as
pairwise binary treatment comparisons, and as such, the theoretical results presented in the sequel extend directly to
multivariate treatments. Moreover, even in settings where the treatment variable is continuous, one can obtain estima-
tion results by discretizing the treatment of interest (see, e.g. Knaus, 2021). We refer to I'g = (po(d, z, h), eg(z)) as
nuisance functions.

Much of traditional estimation of IRFs relies on regression adjustment, i.e., the estimation of Héh) as the average
difference between 1o (1, X;, h) and p0(0, Xy, h) (Cochran, 1968; Jorda, 2005; Pearl, 2009; Robins, 1986). How-
ever, regression adjustment estimators typically tend to be rather sensitive to small amounts of misspecification in
the conditional expectation models. Alternatively, approaches using inverse probability weighting (Angrist et al.,
2018; Rosenbaum & Rubin, 1983; Tsiatis, 2006) have been devised, but are also sensitive to misspecification of the
propensity score models. For the estimator presented in Section 3, as in e.g. Chernozhukov et al. (2018), we in-
stead rely on the efficient influence function (Hahn, 1998; Robins & Rotnitzky, 1995) to estimate the IRF, namely

g (Zt(h), h; F0> — Héh) where

D,
g (Zt(h)ah7F0) = ,U/O(laXt?h) - /J’O(OaXhh) (X )(Y:f+h ,U/O(I;Xhh))
t
1—D, (2)
T (Wi — (0, Xis B
1_6()(Xt)( t+h ,U’O( t ))

and it can be shown that
oY =E {g (Zt(h), h: ro)} .

An influence function measures how a small perturbation of the data affects an estimator. The efficient influence func-
tion is the particular influence function that (among all regular estimators) achieves the lowest possible asymptotic
variance allowed by the semiparametric model. Readers are referred to Hines, Dukes, Diaz-Ordaz, and Vansteelandt
(2022), Kennedy (2024), Fisher and Kennedy (2021) and Tsiatis (2006) for a review of influence functions and semi-
parametric theory. In contrast to regression adjustment or inverse probability weighting, an estimator relying on the
above influence function is Neyman orthogonal (Chernozhukov et al., 2017; Neyman, 1959, 1979). Technically, the
efficient influence function of the IRF is Neyman orthogonal since the (Gateaux) derivative of its expected value with
respect to either nuisance function equals zero (for a detailed discussion, see Chernozhukov et al., 2018). This prop-

erty ensures that small deviations from the true nuisance functions have no first-order effect on the estimation of Géh)
Loosely speaking, if the estimated nuisance functions are “close enough” to their true values, estimation errors only
have a vanishing impact on the IRF estimator. While the theory presented in Section 3 leverages this Neyman orthog-
onality property, it is worth mentioning that an estimator based on Equation (2) is also doubly robust, in the sense
that it remains consistent if only one of the nuisance functions is correctly specified. In the sequel, we use standard
notations O(-) and o(+) to indicate rates of convergence for sequences. In particular, if {z;}$° is any real sequence,
{a:}3° a sequence of positive real numbers, and there exists a finite constant B such that |z;|/a; < B for all ¢, we
write x; = O( t). If z¢/a; converges to zero, we write o(a;). We use [|-||, to denote the L;-norm; e.g. we write

£l = £, = (] 1f(2)19dP(z)) /2.
2.2 Identification

While the focus of this paper in on the estimation of the quantity introduced in Equation (1), we here briefly present
assumptions under which Géh) conveys the interpretation of the average causal effect that the binary impulse variable
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D, has on the outcome variable Y; . Identification is formulated within the potential outcomes framework of causal
inference (Robins, 1986; Rubin, 1974). Let Y;11,(d) be the potential outcome, i.e., the random variable one would ob-
serve at time ¢ 4 h if the treatment at time ¢ would have been D; = d. The following assumption ensures identification
of the causal effect.

Assumption 2 (Angrist et al. (2018); Rambachan and Shephard (2021)). Forallt € T and h € Ny the following
holds.

1. The potential outcomes are conditionally independent of the treatment, i.e.
Yien(1), Yien(0) L Def Xe.

2. The observed outcome is Yii, = DiYeqin (1) + (1 — Dy)Yin(0).
3. Forall x € X it holds that n < eg(x) < 1 —n, for some 0 < n < 1.

Assumption 2.1 requires conditional independence between the treatment at time ¢ and the potential outcomes. No-
tably, it is not necessary for D; to be conditionally independent from future treatment assignments. However, in the
case where Dy [ Diiq,...,Diyp| X, the identified effect corresponds to the effect of a treatment including poten-
tial future treatments caused by D; (Jorda, 2023). Assumption 2.3 imposes that at each point in time, the treatment
assignment is not deterministic. In other words, there are no situations in which either D; = 1 or D; = 0 with (con-
ditional) probability of one. In essence, these assumptions require the treatment variable of interest (or a sufficiently
informative proxy) to be observed, and a set of control variables to be available such that the treatment assignment is
(conditionally) as good as random. In macroeconomics, this requirement corresponds to identification strategies that
rely on constructed shocks, such as narrative monetary policy shocks (e.g., Ramey, 2016; Romer & Romer, 2004),
or “direct causal inference” approaches based on externally constructed measures of structural shocks (Nakamura &
Steinsson, 2018). For approaches that use continuous shock measures, the shock can also be incorporated into our
framework by discretizing them. This is however only required to define the treatment variable within our setup, not
by the identification strategy itself. For a more rigorous discussion of the identification of treatment effects with time-
dependent data — and in particular for the connection between Assumption 2 and classical macroeconomic shocks —
we refer to Rambachan and Shephard (2021). The following theorem finally establishes identification of the average
treatment effect.

Theorem 1. Under Assumptions I and 2 the ATE is identified as

6y = E[Yiin(1) — Yirn(0)].

As pointed out by Chernozhukov et al. (2018), the DML estimator will yield unbiased results also in a setting where
the causal identification assumptions presented in this section fail to hold. In this case however, the estimated IRF has
to be interpreted as a prediction difference rather than a causal effect.

3 Estimation

This section outlines the estimator for Géh) and its asymptotic properties when the nuisance functions are estimated
with flexible, nonparametric machine learning algorithms. The estimator is developed in three steps. First, we provide
results for the (hypothetical) case where the nuisance functions are known. In a second step, nuisance functions are
estimated, but multiple independent stochastic processes generated from the same distribution are available. Lastly,
we provide results for the case where nuisance functions have to be estimated and only a single stochastic process is
available.

3.1 An oracle estimator

In case the nuisance functions are known, we can estimate the effect of interest by simply averaging the stochastic
processes G = { g (Zt(h), h; FO) 1t e T} over the index set. We refer to this estimator as the oracle estimator for

the IRF. The following assumption and theorem provide conditions under which the oracle estimator is asymptotically
normally distributed.

Assumption 3. For some 5 > 2 and all h € Ny, the following conditions hold.

1. The stochastic processes G are weakly stationary.

2. The variance satisfies that 0 < Vo(h) = limp_,, Var {% e 9 (Zt(h), h; FO)].

4
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3. GM is uniformly Lg-bounded, i.e. sup,c 1 E Ug ( ,h; F())’ } < oo.

4. G is a-mixing, with coefficients a(s), s € N, satisfying > oc | a(s)P=2/F < .
Theorem 2. Let the oracle IRF estimator be given by

o) = % Zg (Zt(h), h; F0> .

teT

Under Assumptions 1 and 3, we have that
VT o) S N (0."),
with V" = Y1 COV[ (Zt(h)vh; Fo) .9 (Zt s P Fo)]

Given that g(z,h;T") is a measurable function as long as the nuisance functions are measurable, Assumption 3.4
is satisfied if the stochastic processes S\ are a-mixing for some § > 2 (Davidson, 2021). This is however not
necessary, and S(*) can exhibit less favorable dependence structures as long as G(*) adheres to Assumptions 1 and 3.
Moreover, while the above assumptions are standard in the application of functional central limit theory, variations are
possible that still lead to the desired asymptotics. For example, weak stationarity in Assumption 3.1 can be relaxed to
a constant mean, permitted that additionally Vo(h) < oo (see e.g. the discussion in Phillips (1987)). Weak stationarity

is however required in our setting in order to obtain a tractable estimator for Vo(h).

It is important to remark that the two assumptions 3.3 and 3.4 represent an inherent trade-off. The more absolute
moments of G(®) are required to exist, the more dependence is acceptable in the stochastic processes to still reach
asymptotic normality. For the sum in Assumption 3.4 to converge, we need a(s) = O(s~?) for some ¢ > ¢g =
B/(B — 2), i.e. the process needs to be a-mixing of size —¢y. As § — oo so that all moments are finite, the
required mixing size ¢y — 1. Because the mixing coefficients also determine bounds for the (absolute) autocovariance
function of the process (see Davidson (2021), Corollary 15.3), this directly implies that with all moments existing,

Cov [g (Zt(h)7 h; FO) , g ( t( o Foﬂ = O(s71) for the assumptions to be satisfied.

3.2 The double machine learning estimator with multiple independent stochastic processes

We now provide asymptotic results for the case where the nuisance functions are estimated and K > 2 independent
stochastic processes generated from the same distribution P are available. Denote the individual stochastic processes

as S(h) {Z(h) t € T}, where, without loss of generality, we assume |7;| = T/K for alli = 1,..., K. The
estimation procedure is outlined in Procedure 1. Asymptotics for the DML estimator (") from Procedure 1 are

For each forecast horizon h, follow the subsequent procedure.
1. Foreachi=1,..., K

(a) Fit appropriate machine learners fsﬂ’%) = (ﬂs(j_)(d,x,h), Egh (z)) on the sample S(_hi) =
Uj( 1,5#1 S(h)
(b) Compute the average of g (z, h; r S(h,_>) on Si(h) as
— (h)
S(,,) - \T\ > g (2" mtgm).
teT;

2. Compute the IRF estimator at horizon h as

6" = Z st

=

Procedure 1: DML estimator for the IRF with cross-fitting on multiple independent stochastic processes
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obtained by introducing assumptions under which (") has the same asymptotic distribution as the oracle estimator

6(") in Theorem 2. To this end, we impose standard assumptions on the convergence rates of the learners used in
step 1. of Procedure 1. In particular, we assume that the machine learners are consistent and that the product of the
estimation errors decays fast enough.

Assumption 4. Let the realization set be E(jfl ), which is a shrinking neighborhood of the true nuisance functions
Ty = (1o(d, z, h),eo(x)). Let {Ar}r>1 and {61} r>1 be sequences of positive constants converging to zero.

Define the statistical rates r,p =  SUD;cT SUP,, cz(m |1(Dy, Xy, h) — po(Dy, Xy, b))y and rer =
SUP;eT SUP, = () lle(X:) — eo(Xe)ll, Let C be a fixed strictly positive constant. Foralli = 1,..., K and h € Ny,
the following conditions hold.

. The nuisance function estimators I g(m belong to E(Th ) with probability at least 1 — Ar.

~

2. For ¢ > 2, we have sup;cysup - le(De, X4, h) — po(De, Xe, )|, < C < oo and
=T

q
SUPyeT SUP () lle(Xy) — eO(Xt)Hq <C < oo

3. Tu,T <7, Te, T < Ot and TuT *TeT < T_1/25T.

4. SUPyeT SUP, () lle(Xe) —1/2|| <1/2—n for0 <n < 1.
5. supyer B[ (Yern — po(d, Xo, 0)|Xe, Dy = d] < 6 < o0

The statistical rates in Assumption 4 are defined in terms of uniform Ls-norms. Under the additional assumptions of
strict stationarity of S(®) and measurability of the nuisance functions, these uniform norms would reduce to simple
Ly-norms. Assumption 4.2 requires that, with probability approaching one, the estimation errors are uniformly L -
bounded for ¢ > 2. Assumption 4.3 requires the estimation errors to converge uniformly in Ls-norm to zero and
their products to converge at least at the rate /7" with probability approaching one. Our assumptions on convergence
rates are set up to accommodate the application of a broad range of machine learning estimators for the nuisance
functions. There is a rich literature deriving convergence rates of machine learners under more strict conditions than
used here. Wong, Li, and Tewari (2020), for example, provide Lasso convergence rates for stochastic processes under
the assumption of exact sparsity. For a-mixing Gaussian processes, they find the L, convergence rate to be of order
@) (A(T) log dim(X)/T), where A(T) = _1_ a(s). Assumption 4.3 is satisfied for A(T) = o(T"/*), imposing
a restriction on how fast the dependence in the data has to decay. We provide more references in Section 4.2. Next,
Assumption 4.4 implies that the estimated propensity scores remain uniformly bounded away from zero and one with
probability approaching one. Finally, Assumption 4.5 requires that the conditional variance of the outcome variable is
a bounded random variable.

We furthermore impose the following sequential conditional exogeneity condition.

Assumption 5. For all t € T and h € Ny we have that E[Y; 14| X, Dy = d, {Zﬁo) cu € To,u < t}] =
E[Yiin| X, Dy = d) and BE[Dy| X, {Z") - u € T,u < t}] = E[Dy| X,).

Assumption 5 implies that the residuals D; —eq(X;) and Yip, — Do (1, X¢, h) — (1— D) 110(0, X¢, h) are mean inde-
pendent of past information on (Y;, Xy, D;). In line with standard assumptions in the literature (e.g. Olea, Plagborg-
Mgller, Qian, & Wolf, 2024; Semenova, Goldman, Chernozhukov, & Taddy, 2023), this in practice requires a rich
enough set of control variables, which can also contain past values of Y; and D;.

The following theorem finally establishes that the DML estimator for the IRF is asymptotically unbiased and normally

distributed. In particular, the estimator retains the parametric v/T' convergence rate. The proof is relegated to the
Appendix. The main idea of the proof is to show that the IRF estimator using estimated nuisance functions converges
to the oracle IRF estimator ("), which itself is asymptotically normally distributed as shown in Theorem 2, at rate

VT.



D. BALLINARI & A. WEHRLI

Theorem 3. Let Si(h) = {Zt(h) RS 7;} fori =1,.., K > 2and h € Ny be independent stochastic processes
generated from the same distribution P such that |T;| = T /K for all i. Define the estimator as

o) — Z|T| s“” with

i=1
(h) 3.1
Ogin = ITI > 9 (2" miTgon).
teT;
. .o P . . (h) | K (h) .
where the nuisance functions FSY;) = (,usihi) , es(j)) are estimated on > = Uj:Lj# S;"". Then under Assumptions

1 and 3 - 5 it holds that .
VT(O" — ) S N (0,v"),

with Vo(h) as in Theorem 2.

3.3 The double machine learning estimator with one stochastic process

In practice, multiple independent stochastic processes generated from the same distribution are often not available.
Instead, a sample from a single stochastic process S is observed. In the same spirit as approaches used for cross-
validating models with dependent data (Bergmeir & Benitez, 2012; Racine, 2000) and the cross-fitting approach pro-
posed by Semenova et al. (2023) for panel data, we split the single stochastic process into sub-sequences, removing
a block of kr coordinates where the process is split. The resulting sub-sequences replace the independent stochastic
processes Si(h) from Procedure 1. To this end, let {7; : ¢ = 1,..., K} be a partition of the index set 7 such that
the order of the time indices within each 7; and across all subsets follows the original order in 7. Without loss of
generality, we continue to assume that |7;| = T/ K for all i. The estimation procedure is described in Procedure 2.

For each forecast horizon h, follow the subsequent procedure.
1. Foreachi=1,...., K
(@) Define T_; = {t:t € T A (t <inf(T;) — kr Vt > sup(T;) + kr)}
(b) Fit appropriate machine learners f‘s(",.) = (figm (d,z,h),égmm (x)) on the sample S(_’;) — {Zt{h) S
T} - - -
(c) Compute the average of g (z, h; r

}
Sih,.)) on SZ( Y as

S(h) = ‘7-‘ Z ( b FS(h))

teT;

2. Compute the IRF estimator at horizon h as

N 7; !
i -3 i,

=

Procedure 2: DML estimator for the IRF with cross-fitting on a single stochastic processes

An illustration of the cross-fitting approach for K = 4 is given in Figure 1. The time series is divided into four sub-
sequences. The nuisance functions are estimated on the union of sub-sequences 51, S2 and Ss, where kp coordinates

are removed at the boundaries of S3. Sub-sequence Ss is used to compute ég;) This procedure is repeated such that
each sub-sequence is used once to conduct inference.

The asymptotic results for the estimator described in Procedure 2 require some additional assumptions.
Assumption 6. For d € {0,1}, h € Ny and some scalar constant p > 1 the following conditions hold.

1. kr = O(T).

2. The nuisance functions po(d, z, h), eo(x) and the functions p(d, z, h), e(x) € E%h) are measurable.
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Figure 1: Ilustration of the cross-fitting procedure

z;" . z;"

(h) QoF Ol PO
s s 4 s

NOTE: The figure illustrates the cross-fitting procedure for K = 4. The nuisance functions are estimated using appropriate machine
learners on the union of sub-sequences SY‘), Séh) and S ih) after dropping k1 observation at the boundaries to S’ém, Sub-sequence
Sém is used to compute O(S’zzl) . This procedure is repeated such that each sub-sequence is used once to conduct inference.

3

3. Forforr >pand1l/r =1/r'+1/r", we have sup, .+ Hsllpue:(m (n(d, X, h) — po(d, X, h))||2 < 00 and
=T

SuptGT ||60(Xt) - DtH2r” < Q.
4. For ¢ > pand 1/q = 1/¢ + 1/q", we have supteTHSllpe€:<h)(e(Xt) — eo(Xe))|lag< 00 and
=T

supyer 1Y — po(Dt, Xy 1) [|ggn < 0.

5. The stochastic processes S = {Zt(h) i t € T} are a-mixing with coefficients a(s), satisfying for T — oo
that o (kr)" = o(T~Y), where ) = 1/p — 1/ min(r, q).

Assumption 6 imposes restrictions on the dependence structure in the stochastic processes S("). As we can no longer
rely on the independence between Si(h) and S(_hi), we require the dependence in the stochastic process to decay fast
enough. Intuitively, after removing k7 coordinates at the boundaries of Sl-(h) it should (asymptotically) become inde-

pendent of S(_}?. The choice of k7 hereby represents a trade-off. The larger kr, the smaller is the effective estimation
sample size. Indeed, Assumption 6.1 requires k7 to not increase more rapidly than the sample size. However, kr
needs to be large enough to satisfy Assumption 6.5. The stronger the dependence in the stochastic processes S(), the
larger k7 needs to be, in turn reducing the effective estimation sample size. For the sake of exposition, assume that
kr = O(T?) for 0 < ¢ < 1 and let us look at different exemplary assumptions on the dependence structure of S*).

(i) a-mixing process: If the stochastic processes S(") are a-mixing of size —¢y, i.e. a(s) = O(s~?) for some
¢ > ¢g, then Assumption 6.5 is satisfied for ¥ > (¢1))~! and 0 < ¢ < 1. Put differently, the slower the
decay in the dependence (smaller ¢), the larger ) and thus k7 has to be.

(ii) Persistent process: For stochastic processes S with very slowly decaying dependence of the form afs) =
O(s2?71) with 0 < d < 1/2, we have additionally that 0 < ¢ < 1 and as a consequence Assumption 6.5 is
indeed never satisfied.

(iii) Weakly dependent processes: If the stochastic processes S(") have mixing coefficients a(s) = O(p*) for
0 < p < 1, then Assumption 6.5 is already satisfied with ¥ > 0.

(iv) Independent process: In this case, i.e. when it is assumed that the stochastic processes S*) are a collection
of independent random variables, then «(s) = 0 for all s > 0 and Assumption 6.5 is already satisfied for
kr = 0.

These examples intuit two things that are required for our theory to hold in practice. First, if only one stochastic
process S(") is available for estimation, enough coordinates must be removed when splitting, so that no influence
of past coordinates exists in coordinates of a subsequent split. Second, the stochastic processes S(*) itself have to
exhibit fast enough decaying temporal dependence. If this is not the case, suitable transformations of the original
process need to be found to achieve this. Lastly, the boundedness conditions in the above assumptions also represent a
trade-off. The more moments of the residuals and estimation errors are finite (larger r and g), the less stringent are the
conditions on the dependence decay, and vice versa. In general, with only one stochastic process, the conditions on the
estimation errors are more restrictive than those imposed in Assumption 4.2. The proposed cross-fitting approach is
closely related to the methodology introduced by Semenova et al. (2023) for panel data, wherein the data is partitioned
into folds along the temporal dimension. The primary distinction lies in the selection of observations omitted between
the estimation and inference samples. While Semenova et al. (2023) advocate for a K'-fold partitioning of the sample,
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removing an entire fold between estimation and inference samples, i.e. kr = |T/K | (see Section 4.1 for further
discussion), the present study adopts a more flexible strategy. Specifically, as outlined above, the choice of k7 can be
informed by the underlying dependence structure of the data. The following theorem finally establishes asymptotic
properties for the case when nuisance functions are estimated based on a single stochastic process.

Theorem 4. Given the stochastic processes S = {Zt(h) it € T} for h € Ny, define K > 2 sub-sequences
Sl(h) = {Zt(h) RS ’7;} such that {T; : i = 1,..., K} is a partition of the index set T where the order of the time

indices within each T; and across all sub-sequences with length | T;| = T/K follows the original order in T. Define
the estimator as

with

il 5
T 9( (21)

K
g =3
i=1
sy _ 1 ) .7
QSZ@) ~ 17 Zg (Zt ’h’FS(,h,i))’
teT;

where the nuisance functions T’ s = (i S0 é S(_h%)) are estimated using the sub-sequences S(fi) = {Zt(h) cte T}
forT_;={t:t €T At <inf(T;) — kr Vt > sup(T;) + kr)} respectively. Then under Assumptions 1 and 3 - 6 it

holds that
VTO™ o) S N (0."),
with Vo(h) as in Theorem 2.

3.4 Variance estimation and inference

The variances Vo(h) can be estimated using standard long-run variance estimators for time series, such as the one
proposed by Newey and West (1987).

Assumption 7. The following conditions hold.

1. There are some fixed finite constants C and v > 4 such that
sup,e7 E Hg (Zt(h), h;Fo)‘ } < C.

2. There exists a measurable function m(z) such that suprc=,. |9(z, h;T')| < m(z), where for some finite
constant D, sup,c+ E[m(Z;)?] < D.

3. For q > 2 and some fixed strictly positive and finite constant C we have sup,cr [|Y:[, < C.

4. For some scalar 0 < b, < b, < 1/2 it holds that:
(a) The bandwidth mr is a function of the sample size such that limp_, ., mp = oo and for T — oo it holds
that T~mmp = o(1).
(b) Tu,T < (STT_bT and Te,T < 5TT_bT.
Assumptions 7.4a and 7.4b represent an inherent trade-off. The slower the convergence rate of the machine learner,

the slower the bandwidth is allowed to grow. If the learner converges at the parametric rate, Assumption 7.4a reduces
to the usual assumption mr = o(T1/2) (see, e.g. Kool, 1988). Note that by Assumption 4.3 we have that b, > 1/4.

The following theorem establishes consistency of a variance estimator resulting from averaging Newey and West
: (h)

(1987) type estimators on each S; .

Theorem 5. Given the stochastic processes S = {Zt(h) :t € T}, define the sub-sequences Si(h)fori =1.,K>

2 and h € Nq as in Theorem 4. Furthermore, define Ugh) =g (Zt(h), h; F0> — Géh) and the corresponding estimated

quantities as @é’?l) =9 (Zt(h), h; fsﬂ,> —6M. ") ang S(j;) are defined as in Theorem 4 and the nuisance functions

Lym = (/:Ls(h‘) , és(h)) are estimated on S(j). Let w(s,mr) =1—s/(mg + 1), where mr is a bandwidth parameter
and define the additional index sets Tis ={t € T; : t—s > inf(7;)}. Moreover, define the following Newey and
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West (1987) type variance estimators as

mr
om 1 3 (h) 2 3 3 (h) A (h)
VS(’” T (Us(h> t) +2) wls,mr) Ysth Vst 4
: t \ter; TV s=1 teT,, 00 TV

The variance estimator is finally defined as

K
Oy 17l )
- T s
i=1

Then for Vo(h) as in Theorem 2 and under Assumptions 1 and 3 - 7 as T' — oo it holds that
‘17“” _ Vo(h)’ )
with measure P.

Note that while Theorem 5 is formulated in terms of a specific weight function w(s,m), as in Newey and
West (1987), the variance estimator is consistent for any weight function additionally satisfying for each s that
lim, (7)o w(s,mr) = 1 and |w(s,mr)| < oo. Using the estimators in Theorems 4 and 5, inference can be

conducted by constructing level-« confidence bounds for Qéh) as
. 1 o —
g ¢ (9<h> + ! (1 - 7) v(h)) : 3)
0 \/T 2 (
where ®~1(-) represents the inverse cumulative distribution function of the standard normal distribution.

4 Considerations on the practical implementation of the estimator

Here, we gather practical recommendations for the time series DML estimator.

4.1 Cross-fitting and small samples

For small samples, we recommend setting K to a rather large value (e.g. K = 10 or K = 20). This increases the
number of observations available to estimate the nuisance functions. Regarding the choice of kp, it is important to
note that this is directly affected by the definition of the outcome variable. In cases where the effect on the outcome
variable h periods after the treatment is of interest, k7 has to be chosen such that samples are not overlapping, i.e.
kr > h. Similarly, k7 has to take into account possible lagged values in X;. As a guideline, we recommend that
practitioners set K to either 10 or 20, and, following Semenova et al. (2023), use kr = |T/K| as an initial choice.
This satisfies Assumptions 6.1 and 6.5 across a wide range of dependence structures. Sensitivity analysis for variations
in k7 can then be done to ensure robustness of results.

4.2 Estimators for the nuisance functions

As in the i.i.d. setting (Chernozhukov et al., 2018), our theory requires the estimators for the nuisance functions to be
consistent with fast enough convergence rates. Following Theorems 3 and 4, this needs to extend to estimation on time-
dependent observations. Consistency and convergence rates on a-mixing sequences are derived for Lasso in Wong
et al. (2020), for random forests in Goehry, Benjamin (2020) and Davis and Nielsen (2020), for boosting algorithms
in Lozano, Kulkarni, and Schapire (2014), for support vector machines in Steinwart, Hush, and Scovel (2009), for
kernel and nearest-neighbour regressions in Irle (1997) and for spline and wavelet series regression estimators in
X. Chen and Christensen (2015). Consistency of deep feed-forward neural networks with ReLU activation functions
on exponentially a-mixing processes was recently shown in Ma and Safikhani (2022).

The selection of an appropriate machine learning algorithm ultimately has to consider the specific problem and the
characteristics of the data. For example, the random forest algorithm has been shown to perform effectively in
macroeconomic contexts, even with relatively small sample sizes (Beck & Wolf, 2025; Goulet Coulombe, 2024;
Goulet Coulombe, Leroux, Stevanovic, & Surprenant, 2022; Medeiros, Vasconcelos, Alvaro Veiga, & Zilberman,
2021). Our numerical experiments, as well as the empirical application, also find random forests to be effective on
representative sample sizes and data generating processes. In contexts with typically larger sample sizes, recurrent

10
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neural networks have e.g. demonstrated success in modelling high-frequency market data (Lucchese, Pakkanen, &
Veraart, 2024; Zhang, Zohren, & Roberts, 2019). For an overview of applying machine learning algorithms to time
series, we also refer to the recent survey by Masini, Medeiros, and Mendes (2023).

Our numerical experiments suggest that, as in the i.i.d. case (Bach, Schacht, Chernozhukov, Klaassen, & Spindler,
2024), properly tuning hyperparameters of the chosen estimators plays an important role in the application of double
machine learning also for time series data. In summary, we recommend to estimate and tune multiple different esti-
mators and select the best in terms of the relevant loss function for the problem at hand (e.g. predictive mean squared
error).

4.3 Modelling multiple forecast horizons

Our theory is agnostic to how the nuisance functions for different forecast horizons h are modelled. In analogy to clas-
sical impulse response function estimation using local projections, each forecast horizon (and nuisance function) can
be estimated separately, and potentially with different learning algorithms. Depending on the application, it is however
also possible to estimate po(d, z, h) with one model for all h, e.g. using sequence-to-sequence approaches (Mariet &
Kuznetsov, 2019), provided they exhibit appropriate convergence rates. Applying approaches from multitask learning
(Caruana, 1997), it is finally also possible to estimate pio(d, z, h) and eg(x) in one model if both problems can be
learned using a shared representation. This approach has e.g. been explored by Shi, Blei, and Veitch (2019) in the
context of i.i.d. data.

4.4 Inference in finite samples

Theorem 5 requires the choice of a kernel bandwidth my that fulfils Assumption 7. A valid choice would be, for
example, mp = yT''/3 where v is determined by the procedure proposed by Newey and West (1994). The variance
estimator, when combined with standard normal critical values, is asymptotically valid under general forms of het-
eroskedasticity and autocorrelation. However, extensive research has shown that this approach can perform poorly
in finite samples (Kiefer & Vogelsang, 2005; Sun, 2014). In response, the literature has proposed fixed-bandwidth
asymptotics, where the ratio of bandwidth and sample size mr /T is held fixed as the sample size grows, rather
than shrinking to zero (as in traditional small-bandwidth asymptotics). This framework yields non-standard limiting
distributions and requires the use of fixed-bandwidth critical values (see Kiefer & Vogelsang, 2005), which better
approximate the finite-sample behavior of test statistics. Our numerical experiments confirm this finding also for the
estimator proposed in this manuscript. For practical applications, we thus advise to use fixed-bandwidth critical values
when performing inference.

4.5 Extreme propensity scores

Assumption 2 and 4 require the true propensity scores eg(x) to be bounded away from zero and one. In applications,
however, certain treatments may have essentially zero probability for particular regions of the covariate space. For ex-
ample policy interventions that are infeasible under extreme macroeconomic conditions. When such limited support is
a concern, we recommend employing a propensity-score-based trimming procedure, following Crump, Hotz, Imbens,
and Mitnik (2009). This approach systematically excludes observations with extreme propensity scores to improve
overlap between treated and control units and to ensure that the resulting estimand pertains to a subpopulation with
adequate support. A related but different issue that may arise in finite samples are numerical instabilities of the re-
ciprocal of the propensity score. In other words, while it may hold that at the population level the propensity score is
bounded away from zero and one, in finite samples, the estimated propensity scores can still be close to zero or one. A
simple approach to address this instability is to winsorize the estimated propensity scores to a small number, e.g. 0.01
and 0.99 (B. K. Lee, Lessler, & Stuart, 2011). Alternatively, one can calibrate the estimated propensity score (Ballinari
& Bearth, 2025; Klaassen, Rabenseifner, Kueck, & Bach, 2025).

S Simulation experiments

To validate our theoretical results from the previous sections in finite samples, we conduct simulation experiments.
We compare the DML estimator from Procedures 1 and 2 to a regression adjustment estimator (RA) that estimates the
nuisance functions (1, z, h) and (0, 2, h) separately on the full sample and takes their difference (a T-learner in
the terminology of Kiinzel, Sekhon, Bickel, and Yu (2019)). To disentangle the effect of cross-fitting and usage of a
Neyman orthogonal estimator, we also compute the IRF using the doubly robust influence function (2) without relying
on cross-fitting (DR). In addition, we estimate the impulse response functions using standard local projections (LP)
(Jorda, 2005). Results are presented throughout using random forests (Breiman, 2001) as machine learning estimators

11
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for the nuisance functions. In the Online Appendix, Table C6, we also include results using a gradient boosting algo-
rithm estimator (T. Chen & Guestrin, 2016), supporting the validity of our asymptotic theory for alternative machine
learning estimators.® More details on the hyperparameter tuning schemes for both considered estimators are also given
in the Online Appendix A.l. In all simulations, we generate data according to the following data generating process
(DGP), which is a modification of the setup in Nie and Wager (2020). For some noise level o, a propensity score
eo(X}), a baseline effect b(X;) and a (conditional) treatment effect function 7(X;), the outcome process is defined as

th = b(Xt) + (Dt — 05) T(Xt) + ’}/thfl + €t,

where the innovations €; are generated from a GARCH(1,1) process €; = atCt, with ¢; ~ N(0,1) and 0? = w +
B1¢? 1 + Boo?_,. Following Jorda (2005) we set 3; = 0.3 and B2 = 0.5. w is set to ensure that the E[¢?] = o2, that
isw=(1— 1 — B2)02. We set D;|X; ~ Ber (eo(X;)) with

eo(Xe) = (1+ e Xt 4 e—X%t)_l

b(X) = 0.5 (X1¢ + Xoje + Xs,0) T + (Xap + X54)7)
T(Xe) = (X1 + Xop + Xap) ™ — (Xap + Xs0)"

where (2)* = max(0, z). The confounder process is modelled as a n-dimensional, zero mean VARMA(p,q) process

P q
Xy =Y AXi i+ Y Mjuj+u,
i=1 i=1

where u; is a zero mean white noise random variable with nonsingular covariance matrix, parameterized as ¥, =
021, using some scalar o, and the n-dimensional identity matrix [,. In the spirit of Adamek et al. (2024), the
coefficient matrices are defined as 4; = o'y 'T4 and M; = o; ;'TM, where aa,ays are some scalars, I (and
I'M correspondingly) is a tapered Toeplitz matrix with FA = |Z I+ and FA = 0 for |i — j| > n/2. We finally
scale the process X; so that the confounders have unit Varlance The baseline parametrlzatlon for our simulations is
vy=06,0 =0, =1,n=12, 04 = ap =03, p=2,q =1, pa = 0.35 and pp; = 0.7. The simulation
procedure is described in Procedure 3. We perform the numerical experiments for two settings. A first one, where

1. Draw a realization from the DGP with T" observations.

2. For each evaluated forecast horizon h = 0,1, ..., H:

a) Construct {Si(h) 21 =1,..., K} from the realization.
b) Find optimal hyperparameters for the estimators for po(0, X, h), puo(1l, X, h), and eo(X) by cross-

validation using {Sl-(h) :i=1,..., K} as folds and removing kr observations at the boundary between
estimation and inference sample.

¢) Train each of the four learners (DML, RA, DR, LP); and for each learner
i. compute the IRF estimator () according to Procedure 1 or Procedure 2

ii. compute the variance estimator V™ from Theorem 5. Following the arguments outlined in Section
4.4, we use the approach in Newey and West (1994) to determine the bandwidth m.

3. Repeat steps 1. and 2. N times.

Procedure 3: Setup of the simulation study

in step 2.a) the realizations for Si(h) are in fact drawn separately by simulating K independent realizations from the
DGP in step 1., each with T'/ K observations. In a second setting, the sub-samples are constructed from the one single
realization drawn in step 1. In this setting, we remove k7 = T/ K coordinates at the boundary of the estimation and
inference samples. Following our practical recommendation, we set /{ = 10. Results for the baseline parametrization
of the DGP for the DML, RA, DR and LP estimators for the setting with one stochastic process and for sample sizes
T € {125,250, 500, 1’000, 8’000} are shown in Table 1. Results for the setting with independent stochastic processes

3The gradient boosting algorithm is found to require slightly larger sample sizes than random forests to reach a consistent
estimate, highlighting that estimators can exhibit varying sample size requirements with respect to our asymptotic theory. For
practical applications we thus suggest, cf. Section 4.2, to select the estimator yielding the best predictive performance on the
available sample size.
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and for some parameter variations (different number of confounders, higher noise in the outcome process, empirically
calibrated parameters) are deferred to Tables C2-C5 in the Online Appendix.

Overall, our simulations support the validity of our theory. Compared to the RA and DR estimators, the DML estimator
exhibits the smallest average bias in all considered settings, converging at the expected /T -rate. Importantly, this
holds true for both Procedure 1 relying on independent realizations and Procedure 2 using a single realization. Being
linear estimators, local projections do not estimate the true nonlinear average treatment effect, but a weighted average
of marginal effects (Kolesar & Plagborg-Mgller, 2025). This is highlighted by the observation that the bias of the LP
estimator does not decrease and its coverage deteriorates with increasing sample sizes. On these points also refer to
Section 6. Finally, the DML estimator produces valid confidence intervals, while the regression adjustment, doubly
robust and local projection estimators fail to allow valid inference. As expected, when K truly independent realizations
are available (cf. Table C2 in the Online Appendix), the bias of the DML estimator is lower than in the one-realization
setting.

In Table 1, for the DML estimator, we report both the coverage using asymptotic and fixed-bandwidth critical values
(cf. Section 4.4). In small samples, coverage is better when using fixed-bandwidth critical values. As sample sizes
increase, the improvement over asymptotic critical values becomes negligible.* In most settings, the coverage of the
DML estimator is marginally too low, which likely reflects a finite-sample bias in estimating the variance of 6.,
Unreported results indeed show that, on average, our variance estimator is slightly smaller than the empirical variance
of the IRF estimates across realizations. This downward bias is expected because, while the variance estimator is
derived under the assumption of known nuisance functions, it is in practice constructed using estimates thereof. This
introduces sampling variability that is not fully accounted for in finite samples.

Figure 2 provides a visual summary of our results by depicting the true and estimated IRF. The regression adjustment
estimator is biased, overestimating on average the true impact of the treatment Dy, in particular for longer horizons.
When estimating the IRF with the doubly robust influence function (DR), the bias is reduced. Only when using
an estimator that is Neyman orthogonal and uses cross-fitting (DML), the distribution of the estimated IRFs across
simulation replications is centered around the true IRF. In the inset of the top panel of Figure 2, for the DML estimator,
normalized biases as a function of 7" are plotted for all forecast horizons h and contrasted to the /7 scaling implied by
Theorem 3, showing that the bias of the DML estimator follows the /7 scaling implied by Theorem 3 quite well. The
LP estimator finally exhibits a bias of similar magnitude as the RA estimator, as the linear estimator fails to capture
the highly nonlinear and heterogeneous relation between D;, X; and Y;,j in the DGP.

6 Comparison to local projections

The simulation study in the previous section provided evidence that, in the presence of nonlinearities, local projections
are asymptotically biased, while the proposed DML estimator consistently estimates the true impulse response func-
tion. Here, we contrast these two estimators and their underlying assumptions. For a comparison of local projections
and VARs, see Plagborg-Mgller and Wolf (2021).

6.1 An illustrative example

Consider the following stochastic processes

Yign = f(h)(Dt, Xi) + €rgn

)
Dy = q(Xe,me),

where €., and 7, are i.i.d. noise terms with zero mean and finite variance. The functions f(")(.) and ¢(-) are
measurable and possibly nonlinear. Let X; = (V;, V;—1)’ be a two-dimensional vector with V; = ¢V;_1 + uy, where
|¢| < 1 and u, is an i.i.d., mean zero random variable with finite variance. The quantity of interest is the impulse
response function at horizon h, ie. 8" = E[r"(X,)] with 7™ (X,) = E[f") (1, X,)|X,] — E[f"(0, X;)| X,].
In the following, we illustrate how assumptions of local projection and DML estimators are satisfied in the example
process (4).

4Simulation results are qualitatively unchanged when the bandwidth is determined alternatively using the rule of thumb by
Wooldridge (2016) or Lazarus, Lewis, Stock, and Watson (2018). Results are available from the authors upon request.
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Figure 2: Distribution of impulse response function estimates for a baseline nonlinear DGP with n = 12, 0, = 1.0
and random forest nuisance function estimates
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NOTE: Comparison of the true Qéh) with estimates ") of the IRF obtained for the setting with one stochastic process of length
T = 8000 from Table 1. Except for the LP estimator, nuisance functions are estimated with random forests. For the DML
estimator, we use 10-fold cross-fitting and set k7 = 7'/10. The parameters of the data generating process are n = 12, 0. = 1.0,
vy=06,p=2,qg=1,0, =1.0,04a = 0.3, ap = 0.3, pa = 0.35, par = 0.7, 51 = 0.3, B2 = 0.5. For individual h, we show
kernel density estimates of the distribution of 6" across N = 1'000 realizations. The dots indicate the average, and the vertical
lines the (2.5%, 97.5%)-quantile range of the distribution. In the inset of the top panel, for the DML estimator, normalized biases
as a function of 7" are plotted for all forecast horizons h and contrasted to the /7" scaling implied by Theorem 3 in black.
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Table 1: Simulation results for a baseline nonlinear DGP with n = 12, o = 1.0 and random forest nuisance function
estimates

h=0,60" =0.3321
DML RA DR LP
T Bias std(f,) RMSE Cy95%) C,(95%) Bias sid(§y) RMSE Cy(95%) Bias std(§,) RMSE C,95%) Bias std(f,) RMSE Cy,(95%)

125 0.053 0.797  0.799 0.945 0.944  0.360 0.455  0.580 0.511 0.263 0413 0.490 0.707  0.090 0357  0.368 0.871
250  0.060 0398  0.402 0.949 0941 0285 0.300 0413 0.514  0.208 0278  0.347 0.732  0.128 0251  0.282 0.847
500 0.030 0220 0.222 0.954 0.947 0219 0.196  0.294 0.464 0.142 0.183  0.232 0.776  0.135 0173 0.220 0.829
1’000  0.029 0.144  0.147 0.931 0.928 0.182 0.139  0.229 0.422  0.103 0.131  0.167 0.784  0.138 0.126  0.187 0.730
8’000 0.006 0.042  0.042 0.966 0.965 0.176 0.048  0.182 0.016  0.040 0.042  0.058 0.853  0.131 0.046  0.139 0.141

h=1,6" =0.1992
DML RA DR LP
T Bias std(6,) RMSE Cp(95%) C,(95%) Bias sid(6,) RMSE Cp(95%) Bias std(6,) RMSE Cy(95%) Bias std(§s) RMSE  Cy(95%)

125 0.088 0.857  0.861 0.930 0.920 0.379 0.446  0.586 0.480 0.275 0.407  0.491 0.708  0.060 0362  0.367 0.923
250  0.067 0.496  0.500 0.947 0.940 0312 0301 0434 0394  0.222 0277  0.355 0.692 0.111 0265  0.287 0914
500 0.053 0236  0.242 0.955 0952 0.250 0.196 0317 0321 0.161 0.183  0.243 0.731  0.123 0.193  0.229 0.887
1’000  0.053 0.144  0.153 0.942 0941 0218 0.135  0.257 0.226  0.126 0.127  0.179 0.708  0.139 0.133  0.193 0.792
8°000 0.012 0.044  0.045 0.955 0.954  0.220 0.049  0.226 0.001  0.051 0.042  0.066 0.759  0.144 0.053  0.153 0.183

h=2,6" =0.1195
DML RA DR LP
T Bias std(f,) RMSE C,(95%) Ca(95%) Bias std(d,) RMSE Cy(95%) Bias std(f) RMSE Cy(95%) Bias std(6,) RMSE  C(95%)

125 0.107 0.815  0.822 0.925 0.916 0.353 0455 0.576 0478 0256 0424  0.495 0.748  0.031 0410 0411 0.931
250 0.065 0.517  0.521 0.932 0932  0.278 0.313 0419 0425 0.197 0296 0356 0.731  0.078 0.306 0316 0.927
500 0.060  0.259  0.266 0.946 0.942  0.232 0212 0314 0.346  0.151 0201  0.252 0.737 0.104 0221 0244 0911
1°000 0.060  0.167  0.178 0918 0917 0210  0.153  0.260 0.220  0.125 0.146  0.193 0.717  0.128 0.160  0.204 0.854
8000 0.011 0.050  0.051 0.951 0.951 0214 0.052 0220 0.001 0.049  0.048  0.069 0.793  0.128 0.055  0.140 0.352

h=3,6" =0.0717
DML RA DR LP
T Bias std(f,) RMSE Cy95%) C,(95%) Bias sid(§y) RMSE Cy(95%) Bias std(0,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)

125 0.105 0.899  0.905 0.934 0.926  0.305 0.482  0.571 0.483  0.225 0452 0.505 0.767  0.012 0.448  0.448 0.937
250  0.069 0.527  0.532 0.920 0916 0.248 0.339 0420 0.467 0.175 0322 0.366 0.766  0.058 0340  0.345 0.934
500 0.060 0287  0.294 0.935 0.931  0.208 0.226  0.307 0.362 0.140 0220 0.260 0.774  0.087 0249 0.264 0.915
1°000  0.061 0.185  0.195 0.921 0919 0.193 0.164 0253 0.242  0.118 0.160  0.199 0.765 0.112 0.178  0.210 0.902
8’000 0.011 0.057  0.058 0.940 0.940 0.194 0.058  0.203 0.003  0.045 0.055  0.071 0.831 0.117 0.061 0.131 0.479

h=4,00" =0.0430
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) C,(95%) Bias std(0,) RMSE Cy(95%) Bias std(§,) RMSE C,95%) Bias std(f,) RMSE C,(95%)

125 0.138 0949  0.959 0.929 0.908 0.270 0.500  0.569 0.538  0.205 0475  0.517 0.773  0.021 0.496  0.497 0.935
250 0.064 0.671  0.674 0.910 0.907 0217 0369  0.428 0.462  0.159 0352 0.387 0.764  0.049 0377  0.380 0.922
500 0.051 0322 0.327 0.940 0.926 0.177 0.246  0.304 0.390 0.119 0239  0.267 0.806  0.062 0270  0.277 0.929
1°000  0.056 0201 0.209 0.938 0.936 0.170 0.174  0.244 0.280 0.106 0.170  0.201 0.803  0.092 0.192  0.213 0.921
8°000 0.011 0.063  0.064 0.946 0946 0.174 0.061  0.184 0.007  0.041 0.061  0.074 0.874  0.100 0.067  0.121 0.662

h="5,6{" =0.0258
DML RA DR LP
T Bias std(6,) RMSE Cp(95%) Ca(95%) Bias std(6,) RMSE Cp(95%) Bias std(6,) RMSE Cy(95%) Bias std(§s) RMSE  Cy(95%)

125 0.147 1.015 1.025 0.919 0.900 0.238 0.539  0.589 0.534  0.190 0515 0.549 0.782  0.032 0.551  0.552 0.921
250  0.069 0.647  0.651 0.913 0910 0.185 0381 0423 0.485 0.135 0367  0.392 0.755  0.036 0394 0.395 0.918
500 0.045 0340  0.343 0.936 0934 0.150 0256  0.297 0.454  0.103 0251  0.271 0.805 0.047 0283  0.287 0.943
1’000  0.049 0213 0.219 0.935 0933 0.147 0.183  0.234 0337 0.092 0.179  0.202 0.845 0.071 0202 0.214 0.933
87000 0.007 0.070  0.070 0.948 0.947  0.150 0.067  0.165 0.017 0.034 0.067  0.075 0.899  0.082 0.078  0.113 0.789

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the setting with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forests. For the DML estimator, we use 10-fold cross-fitting and set kr = 7'/10. For sample size T' = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 12, 0. = 1.0,7 =0.6,p=2,g=1,0, = 1.0,y = 0.3, apy = 0.3, pa = 0.35, pps = 0.7, 81 = 0.3, B2 = 0.5. C,(-) and Cy(+) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values respectively.

Local projection estimator
Local projections estimate the impulse response function via the coefficient B (1) in the linear regression model
Yien = BMDy + 6/ Xy + frsn.

By the projection theorem, the population coefficient ﬁ((,h) is given by

) _ E[f ™ (D, Xo)(De — X X4])
’ E[(Dy = X X1)?] 7

where \g = argmin E[(D; — X' X;)?]. Asymptotically, under certain regularity conditions on the time dependence

and moments of the stochastic processes S(*), we have ﬁ(ﬁ(h) — ﬂéh)) 4N (0, Var(ﬁ(()h))). To ensure this result,
D, and X; must be assumed to be stationary and ergodic for second moments, imposing restrictions on their time
dependence, similar to — although generally weaker then — those in Assumption 3 for the DML estimator. For the
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process in (4), this assumption is indeed fulfilled, as D; and X; are stationary and geometrically strong mixing.
Furthermore, D; and X, are assumed to be uncorrelated with the innovation €, ;,, which corresponds to Assumption
5 for the DML estimator. Lastly, similar to Assumptions 3 and 6, the first four moments of Dy, X;, and €45 need

to be finite. Note that since the linear regression estimator converges at the v/T-rate, Assumption 4 is satisfied, even

though this is not required for B (h) to converge to Béh).

DML estimator

Under Theorem 3, the DML estimator consistently recovers Héh) provided that Assumptions 1 and 3-6 hold. Assump-
tion 1 is met by construction of the example process (4). Since V; is geometrically strong mixing and all involved

functions are measurable, it follows that S*) and g(Zt(h), h;Tg) are also geometrically strong mixing (see Theorem
15.1 in Davidson, 2021) and thus Assumption 3 is satisfied. Assumption 4 requires that the Lo-norm of the estimation
error of the nuisance function estimators converges to zero at least at rate 7''/4. For the example process (4) this re-
quirement is met for example by random forests, which converge at least at rate 7"/3 (Davis & Nielsen, 2020). Neural
networks would also satisfy this condition, provided that the functions f(*)(-) and ¢(-) are sufficiently smooth (for
more details, see Ma & Safikhani, 2022). Lasso can achieve an even faster rate of T 1/2 (Wong et al., 2020), provided
that the nuisance functions can be well approximated by polynomials of the conditioning variables. Assumption 5

requires the set of covariates to be sufficiently rich, so that past information on Zt(h) cannot predict Y;4, and D,. For
the example process (4), this assumption holds directly if the covariates X; include both V; and V;_;. This would still

hold if additional covariates or lagged values of Zt(h) were included in the estimation. Assumption 6 finally holds for
any value of v in the setting of (4), since S is geometrically strong mixing. Therefore, it is also sufficient that the
residuals and estimation errors possess finite 4 + v moments, for some v > 0.

To conduct inference, Assumption 7 additionally requires choosing a bandwidth my depending on the convergence
rate of the nuisance function estimators. For the example process (4), random forests estimators would permit mr to

be o(T"/?3) (e.g. Newey & West, 1994). Using Lasso estimators, m can be o(T"/?) (e.g. Lazarus et al., 2018).

6.2 Linear and nonlinear processes

In case the function f(") (Dy, X;) is linear, then it can be shown that ﬁ(()h) = Héh) and thus linear projections recover
the true impulse response function. However, if f")(D,, X:) is a nonlinear function, then the coefficients ﬁéh) will

no longer recover the true impulse response function, but an expected, weighted average of marginal effects () (x).
For an extensive discussion and derivation of these results, refer to Kolesar and Plagborg-Mgller (2025).

These effects are illustrated in Figure 3, which compares the distribution of impulse response function estimates
obtained with DML and local projection estimators for three different DGPs: a nonlinear process, a linear process with
interactions, and a purely linear process. Detailed results are deferred to Tables C7 and C8 in the Online Appendix.
As already seen in Section 5 and again shown in Figure 3a, estimation using local projections is biased on a nonlinear

process, whereas the DML estimator recovers Héh). This also holds in a setting where the outcome variable is generated

from a linear function, but there is interaction between X; and D, (see Figure 3b). Local projections only recover Héh)
for a purely linear process where its functional form is correctly specified (see Figure 3c). In this case, local projections
have lower finite sample bias and variance than the DML estimator.

7 Empirical Application

As an illustration, we apply the proposed methodology to the empirical study conducted in Angrist et al. (2018).
Based on the same data set, we revisit the estimation of the effect of U.S. monetary policy decisions on macroeco-
nomic aggregates using modern machine learning estimators. Our monthly observations cover the period from July
1989 to December 2008 and we estimate the effect of federal funds target rate changes on a set of macroeconomic
outcome variables. As predictors, we consider the same futures-based expectation measure for the federal funds rate
as in Angrist et al. (2018), as well as the level of the target rate at the end of the prior month and its change, a scale
factor that accounts for when within the month the Federal Reserve’s Open Market Committee (FOMC) meeting was
scheduled, dummies for months with a scheduled FOMC meeting, as well as measures for inflation and unemployment

>Since V4 is a linear process, it can be shown to be geometrically strong mixing with coefficients a(s) = O(|$|®) (see Theorem
15.9 in Davidson, 2021).
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Figure 3: Comparison of the distribution of DML and LP impulse response function estimates for nonlinear and linear
DGPs

0.8 —— o 0.8 —— " 0.8 —— "
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0.4 + + 0.4 * 0.4
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h h h
(a) Nonlinear DGP (b) Linear DGP with interactions (c) Linear DGP

NOTE: The figure compares the true Géh) with estimates §") of the IRF obtained for the setting with one stochastic process of
length T = 8’000 generated from three different DGPs: the nonlinear DGP studied in Section 5 (Figure 3a), a linear DGP with
interaction terms where b(X;) = 0.53°_ X, ; and 7(X;) = 9(()0) +3°% | Xie —>°_, X, 4 (Figure 3b), and a linear DGP with
b(X:) = 0537 | X;¢ and 7(X;) = 0(()0> (Figure 3c). For the DML estimator, nuisance functions are estimated with random
forests, we use 10-fold cross-fitting and set k7 = 7'/10. The parameters of the data generating processes are n = 12, o = 1.0,
vy=06,p=2,9q=1,0, =1.0,0a =0.3,anr = 0.3, pa = 0.35, pps = 0.7, 1 = 0.3, B2 = 0.5. For individual h, we show
kernel density estimates of the distribution of 6™ across N = 1’000 realizations. The dots indicate the average, and the vertical
lines the (2.5%, 97.5%)-quantile range of the distribution.

(including lagged values).® Compared to the setup in Angrist et al. (2018), we make the following modifications to
accommodate for the change in estimation technique from linear models to flexible nonparametric machine learners.
First, we exclude dummies for monthly fixed effects and special events like Y2K and the September 11, 2001 attacks,
because IRF estimates are based on out-of-sample predictions in our approach. Second, we drop manually constructed
interaction variables, as machine learning estimators are able to infer these effects from the data, if they are present.
Third, we include up to four lags of inflation, unemployment rate and of the target variable. Our treatment variable
D; can assume one of five discrete values d € {—0.5%, —0.25%, 0.0%, 0.25%, 0.5%}. The propensity score model
for eg(d,x) = Pr(D; = d|X; = z) is implemented as an ordinal classification (Frank & Hall, 2001). To estimate
the conditional mean nuisance functions po(d, z, h), we include the treatments as dummy variables in X and esti-
mate/tune one joint model for all types of treatments (an S-learner in the terminology of Kiinzel et al. (2019)). As in
our simulation experiments in Section 5, we explore random forests and a gradient boosted trees algorithm as estima-
tors for the nuisance functions. Details on tuning of the machine learners are provided in the Online Appendix A.2.
We apply our cross-fitting approach with K = 10. In line with Angrist et al. (2018), we estimate impulse responses
up to H = 24 months and given the limited sample size set k7 = 24 to retain as much data as possible for estimation.
As advocated in Section 4.1, we remove the k7 observations from the data used to estimate the machine learners.

We present estimated IRFs for the federal funds rate and the unemployment rate in Figure 4. Additionally, estimates for
the effects on the bond yield curve are provided in Figure C5 in the Online Appendix. Predictive performance of both
types of machine learners explored are comparable, but random forests appear to produce slightly smoother impulse
responses, which, similar to standard local projection estimation (Barnichon & Brownlees, 2019), is advantageous.
We thus focus on results using random forests and for 25 basis point changes of the target rate.” Overall, we identify
similar dynamics in the outcome variables as in Angrist et al. (2018). However, for the federal funds rate, we find a
larger absolute effect for target rate decreases of around 50 basis points that remains significant at the 5% level until
around one year after the target rate decrease. In comparison, the peak effect of a target rate increase is around one
percentage point, occurring one year after the increase, though it is accompanied by greater uncertainty. Furthermore,
we do not find that either expansionary or tightening monetary policy has a significant effect on the unemployment
rate. Looking at the effects on the yield curve, in line with Angrist et al. (2018), changes in the federal funds target
rate have a higher initial impact on short-term yields than on long-term yields, as expected. Moreover, significant
effects are observed only for shorter tenures. In contrast to Angrist et al. (2018), however, our estimates do not
suggest that term rates are less sensitive to policy accommodation than to tightening. Finally, the empirical application
also provides evidence that even in settings with limited sample sizes commonly encountered in macroeconomic
studies, sufficiently accurate estimates of the nonparametric nuisance functions can be obtained in order to produce IRF

SThis corresponds to the model specification labelled OP 5 in Angrist et al. (2018).
7 Additional results are available from the authors on request.
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estimates comparable to ones obtained with conventional techniques, without having to construct all of the (interaction)
variables and nonlinearities manually.

Figure 4: Estimated cumulative effects of target rate changes on the federal funds rate and the unemployment rate

(a) Federal Funds Rate
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NOTE: The figure shows the estimated cumulative effects of target rate changes on (a) the federal funds rate and (b) the unemploy-
ment rate for the time period July 1989 to December 2008. The left (right) column shows the effect of decreasing (increasing) the
target rate by 25 basis points. The nuisance functions are estimated by random forests using 10-fold cross-fitting removing k7 = 24
observations from the estimation sample at the boundary to the inference sample. The shaded areas represent 68% and 95% con-
fidence intervals with fixed-bandwidth critical values (Kiefer & Vogelsang, 2005). The variances are estimated using bandwidths
determined by the procedure of Newey and West (1994).

8 Conclusion

We have shown how to adopt recent ideas from the causal inference framework to flexibly estimate IRFs. This presents
a novel estimator that can rely on fully nonparametric relations between treatment and outcome variables, opening up
the possibility to use flexible machine learning approaches to estimate IRFs. Our theoretical results outline conditions
for this estimator to be consistent and asymptotically normally distributed at the parametric rate. Simulations where a
highly nonlinear time series is treated over time corroborate these results. Alternative estimators often used in practice
estimate the IRF with a larger bias and fail to allow valid inference. Finally, we have illustrated the proposed method-
ology empirically by applying it to the estimation of the effects of macroeconomic shocks, allowing us to estimate
IRFs of U.S. monetary policy decisions on macroeconomic aggregates using modern machine learning estimators. For
future work, several semiparametric techniques available in the i.i.d. setting could be extended to time series settings
in order to develop our approach further. This includes approaches for continuous treatments (Colangelo & Lee, 2025),
instrumental variables (Chernozhukov et al., 2018), the estimation of other moments (Chernozhukov, Newey, & Singh,
2022a, 2022b), or conditional treatment effects (Kennedy, 2023; Qingliang Fan & Zhang, 2022; Semenova & Cher-
nozhukov, 2020; Zimmert & Lechner, 2019) to estimate generalized IRFs. In general, future research could extend
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the theoretical results developed in this paper to a broader class of estimands relying on linear scores (Chernozhukov
et al., 2018).
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Proofs

Proof of Theorem 1. We have that
EYiyn(d)] = E[E[Yipn(d)| Dy = d, Xi]] = E[E[Yyn| Dy = d, Xi]] = E [po(d, Xy, b)),

where the second equality follows from Assumption 2.1 and the last equality from Assumption 2.2. It thus follows
that B [Yi (1) — Yiin(0)] = E [po(1, X, h) — 110 (0, X¢, h)). O

Proof of Theorem 2. Under Assumption 3 the stochastic process G*) satisfies the assumptions for the Central Limit
Theorem for a-mixing processes (Herrndorf, 1984). O

Proof of Theorem 3. The proof follows a similar strategy to the one in Wager (2022) and Chernozhukov et al. (2018)
for the i.i.d. case. For the sake of legibility, we ease the notation and drop the reference to the forecast horizon h. Let

0 be the oracle IRF estimator as defined in Theorem 2. Denote by £y the event that (is_,(d,z,h),és_,(x)) € Er for
all¢ =1, ..., K. We have that
VT(6 - )+ VT(6 — 65)

VT (0~
(i

K
—S VT <§as _ m'ési) VTG - b),
=1

7 —9>+f(9 0o)

T

where 0, = |T;| ! > et 9(Z1;To). We have to show that the summation converges to zero in probability. Note that
since K is a finite integer, it suffices to show convergence for one summand. We begin by expanding a summand for
some arbitrary ¢ as

| Til 5 |T| _ .
T 857’, Si |7—| tEZT Zta]-—\S_7 g(Zt7FO)
D, .
ITI tEZT (MS (1, X¢) — po(1, X¢) + m(ﬁ — s, (1, Xy))
D,
- e(](X )(}/t - Mo(l,Xt))>
1-D R
|7_| > ( (0, X¢) — p10(0, X3) + T&t)(yt —fs_,(0,X3))

teT;
1- D,
- W(Yt - ,UO(OaXt))>-

We will prove convergence for the first summation, the second summation can be treated analogously. The first
summation can be decomposed as

D, D,
o b (us (10) = o1, X0) + D4 = s (1.20) = = (Y~ a1, X0))
D,
|,7—| teZT 1 Xt ,LL0(17Xt)) <1 - eO(Xt))
ne
1 1
|T| tGZTDt ~ o1, X)) <é5_1,(Xt) - Go(Xt)>
=P,
1 1
ITI ;Dt s, (1, Xy) — po(1, Xy)) (éSi(Xt) - eo(Xt)>'
Py
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We will show that P, = 0,(T~1/2) for k € {1,2,3}.

Term P;: From the squared Lo-norm of P; we have that

2
1 N D,
<|7;| Z (Msfi(laXt) - /LO(let)) <1 - eO(Xt)> ) ]

E
teT;
, A Dy i .
= [7eE |E (2; (0. = o1, X0) (1= eo<Xt>>> -
Dy
|7'|2 ;;E fis_i (1, X¢) — po(L, X¢)) (1 a eo(Xt)> g
(ﬂs,i(LXS) — MO(LXS)) (1 a 60?§5)> 5=
9 1
|7'|2 ;E{ s_. (L, X¢) — po(1, Xy)) (60(Xt) - 1)]
op(1) -
2 E (1, X)) — po(1, Xe) =2 =op(T 1).
g el o]

The third equality follows from the fact that the sum has mean zero and the inequality at the end follows from As-
sumption 4.4. The step from the second to the third equality follows from Assumption 5, which gives for ¢ < s

that

E[(ﬂs_ia,xt) = o(1,20) (1= 05 ) (s (1) = w1, X) (1= () 'S]

- E[(ﬂs_xl,xt) ~ol1,20) (1= =05 ) (s (1.0) = o1, X))

E X, {( Xy, Yy, Dy) cu € Tiyu<s)}h,S—i| |S—i| =

o (X.)

=0

The same argument can be made for ¢ > s. Convergence in the last step finally follows from the fact that K is a fixed
and finite integer and thus limy_, o |7;| = limy_o T/K = oo for all ¢ and by noting that conditional on S_;, the
nuisance function estimator is non-stochastic, and thus conditional on the event £, we have that

2 Sﬁ_]

< sup sup ||u(L, Xy) — po(L, Xy)|l5 = 0,(1)
teT; nEET

(1, X¢) — po(1, X))

2
supE | (fts_, (1, Xs) — po(1, X)) ’51] <sup sup E
teT; te€Ti p€Er

— 110(Dy, X0)||2 = (r7)? = 0p(1). By Lemma 6.1 in Cher-

since by Assumption 4 sup,cr; sup,cz=. [|#(Dy, X¢)
po(1, X¢))?] = o0,(1), and we thus conclude that P

nozhukov et al. (2018) it follows that sup, .+ E[(fzs_, (1, X;) —

is 0,(T~1/2).
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Term Ps: Similarly, from the squared Lo-norm of P, we have that

2
1 1
<|T| 2 D= (1, X0) (- eo<Xt>>> ]

1 1 1 ’
Rl (é”f o5 (55 ) ) o
Z ZE Dy (Y — po(1, X¢)) X
teT; s€T;

Ds (Ys - ,UO(L Xé))

1 L)
Dy (Y: — po(1, X¢))* (és_i(Xt) - eO(Xt)> ]

62 o
< %F E[(es () — eo(x))?] = %1 — o1,
g teT;

teT;

The third equality follows from the fact that the sum has mean zero, and the inequality follows from Assumptions 4.4
and 4.5. The crucial step is again to establish that the variance of the sum equals the sum of the variances (from the
second to the third equality). This follows from Assumption 5, which gives that whenever ¢ < s, it holds that

E | Ds (Y; — po(1, X¢)) (és_‘l(Xt) B eo(iﬁ)) )

D05 =013 (5 ) ‘51

D (Yi = po(1, X)) <és-1(Xt) - eO(TXﬁ)) -

=E

E | Ds(Ys — po(1, X)) | X5, {(Xu, Yo, Do) :w € Tju < s}, S

=0

and the same argument can be made for ¢ > s. Convergence in the last step finally follows from the fact that K is a
fixed and finite integer and thus limy_, | 7;| = limy_, o T//K = oo for all ¢ and by noting that conditional on S_;,
the nuisance function estimator is non-stochastic, and thus conditional on the event £7, we have that

(e(X1) — eo(X1))? | S

S_;| <sup sup E
teT; eEET

fSéI’/I‘ZE l(es (X)) — eO(Xt))

< sup sup |le(Xy) — eo(Xo)|3 = (re.r)?
teT; e€EET

by definition of the rate r, 7 in Assumption 4. By Lemma 6.1 in Chernozhukov et al. (2018) and Assumption 4 it
follows that sup, .- E [(és_i (X3) — eo(Xt))Q} = 0,(1), and we thus conclude that P is 0,(T~'/2).
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Term Ps: Finally, from the L;-norm of P; we get that

1 1
|T| ZDt fis_, (1, X1) — po(1, Xy)) (és,v,(Xt) - eo(Xt)> H

teT:

1 1
<E D (1, X 1, X)) = -
‘T‘;r s (1, Xe) = po(1, Xy))| 25 (X)) eo(Xt)]
1
E|D (D¢, X, Dy, Xt)| | = -
|T|t€ZT l t|,US t t) Ho( t t)| es,i(Xt) €0<Xt)‘|
1
?7|T| Z]El (Dt Xi) = po(Dy, Xo)| €5, (Xi) — eo(Xe)| | = (;131(/2)
teT;

where the last inequality follows from Assumption 4.4. Convergence in the last equality finally follows from the fact
that K is a fixed and finite integer and thus limp_, o, | 7;| = limp_, o T/ K = oo for all 4 and by noting that conditional
on S_;, the nuisance function estimators are non-stochastic, and thus conditional on the event £, we have that

|

SuﬁEl|MS_1 Df,Xt) ‘LLO(Df7Xt | |€S Xf) — 60(Xf)|
teT;

1/2 1/2
2

< SUPE[MS (D¢, Xt) — NO(DtaXt)| Si] SUPE[|€S (X¢) — eO(Xt)’ S_i

teT; teT;

1/2 1/2

< sup sup E| |u(Dy, Xt) — ,uo(Dt,X,g)\2 S_i] sup sup E| |e(X;) — eo(Xt)|2 S_i]

teT; pEET teT; e€Er
< sup sup [|u(De, X¢) — po(Dy, Xl sup sup [e(Xy) — eo(Xe)lly = 7 - re,r

teT; nEET teT; e€EET

by Cauchy-Schwarz and the definition of the rates r, 7 and r. 7 in Assumption 4. By Lemma 6.1 in Chernozhukov
et al. (2018) and Assumption 4.3 it follows that sup,c7 E [|fis_, (1, X;) — po(1, X¢)| [és_, (Xi) — eo(Xy)|] =
0,(T~1/2).

We have shown that Py, P, and P are o,(T~"/2). It follows that Z:lds, — Tlgs = o, (T-1/2) foralli = 1,..., K
and we can thus conclude that

K

VI - 0) =3 VT ('TT|95 _ 'TT'es) VTG~ ).

—or (1) SN (0,Vo)

O
Lemma 1. Let Z be a convex subset of some normed vector space, g : R"™ x = — R be a measurable function, {Z, :
t € T} an a-mixing stochastic process with mixing coefficient o(m) and Z; a real-valued random vector. For s > t

denote by F = 0(Zy, ..., Zs) the smallest o-field such that Zy, . . . , Z are measurable. If ||suprc= g(Z;, )|, < oo
for somer >p > 1, thenforallt € T

i [o(Z D7) = SpElo(Z D] + Op(a(k)' ),

Proof of Lemma 1. We will prove the statement by bounding the L,,-norm. First notice that

suEIE[ (Z;,T)|Ft k} suE]E[g(Zt,F)]
INSS) I'eE

E | s (0020, 1) - Bly(z0. 1)) 172

P
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By Theorem 15.2 in Davidson (2021) we have

I s (0020, 7) - Lotz 1) 1722

p

2(21/2 + 1)04(]{:)1/;071/7"

sup (9(Z, 1) = E[g(Z;,1)])

r

2(2/2 4 a7 (|supaz.1)| + fuwEla(, 1)) = Oty 717
re= » IT€E
where the second inequality follows from the Minkowski inequality. O

Proof of Theorem 4. The proof builds on the proof of Theorem 3 and we continue to omit the horizon  for the sake of
legibility. Following Davidson (2021) let the smallest o-field on which the stochastic process S_; = {Z; : t € T_;}
is measurable, be denoted as F_; = o (Z; :t € T A (t < inf(T;) — kr Vt > sup(7;) + kr)). Consider again the
three summations P;, P» and Ps from the proof of Theorem 3.

Term P;: From the squared Lo-norm of P; we to obtain

Dy ?
[(m 2 (s (1,0 = o1, X0) (- eo<xt)>> ]
e ZE[ 050 = X0 (1 55 ) ]

teT;

|7-|2 Z Z

teT; s€T;,s#t

(AL)

(s, (1, Xy) — po(1, X)) (1 - eogtft)> )

Dy
s (1, Xs) — po(1, X)) (1 — .
(1s-.01.%) = mo(1.%) (1= 25 ) ]
First, note that by applying Holder’s inequality twice we have that forr > p > land 1/r = 1/r' +1/r

(u(1, X3) — po(1, X2)) (1 - 30?)275)> (u(1, Xs) = po(1, Xs)) <1 - 60?)5(5))

"

sup sup
t,s€T; pEET r
2 Dy \*
< sup sup ||(u(1, X¢) — po(1, X¢))" (1 —
teT; nEST €0 (Xt) -
< sup sup |10 = o1, X0 (1= 2% )
~ ) t) — ) t -
teT; nesr v’ co(Xe)/ |,

which is bounded by Assumption 6.3. Next, for the first summand in (A1), note that conditional on F_; the estimator
is non-stochastic, and thus conditional on the event £ we have that
f]

R 2 Dy 2
R l(“s"'(l’Xt) so0.%0)" (1= 55
< sup sup E | (u(1, X1) — pio(L, X0))? (1 D )
" teTi peEr 7 T eo(Xt)

< sup sup E l(u(LXt) — j1o(1, X4))? (1 S ) + 0y (a(kr)?)

teT; peEr eO(Xt)

=0,(1)+ O, (oz(kT)w)
by Lemma 1 in combination with Assumption 6, and the definition of the rate 7, 7 in Assumption 4. By Lemma 6.1
in Chernozhukov et al. (2018) and Assumptions 4.3 and 6.5 it follows that

d ZE[ o (1.6 =t X0)* (1 55 ) ] = = ot

teT;
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Similarly, for the second summand of the Ly-norm of Py, conditional on the event & we have that

t,s€T; eO(Xt)

sup El(ﬂsxl,xt)uo(l,xt)) (1= pes) »

N D,
(/’LS—i(:l?XS) - :LLO(LXS)) (1 - 60(X5)> ‘F—z]

< swp s B (u(1,X0) - no(1,X0) (1= Do)«

t,s€T; €y eo(Xt)

(11, X.) — (1, X,)) (1— D )f]

D
< sup sup E{(,u(l,Xt) — 1o(1, X3)) (1 — : ) X
t,s€T; e€EET 60(Xt)

00,0~ o1, X0) (1= =2 ) [ +0, (athn)?)

by Lemma 1 in combination with Assumption 6, and the expectation in the last inequality is zero. By Lemma 6.1 in
Chernozhukov et al. (2018) and Assumptions 4.3 and 6.5 it follows that

2, D E

teT; s€T;,s#t

(1, X0) — po(1,Xy)) (1 D >><

ITI2 eo(Xt)

(,["S_qz(]-vXS) - NJO(]-va)) <1 - 60?§5)> ‘| = Op (Oé(kT)w) .

By Assumption 6.5 it follows that P; is op(T_l/ 2). Following a similar argument, it can be shown that P, is
0,(T~1/2).

Convergence for P can again be shown by bounding its L;-norm as

[ > Di (s (1, X0) = pro(1, X1)) <ési1(Xt> - eoé’@) H

teT;

|7il

1 R 1 1
- |72|]E teZTiDt (s, (De Xe) = pio(De, X2) (ési(Xt) B eo(Xt)> H
77 |T| ;E (Di, Xa) = o (D, X)| s (X) — GO(Xt)|]

Noting that conditional on F_;, the nuisance function estimators are non-stochastic, and thus conditional on the event
Er we have that

511711_)El|us_1 (Dy, Xt) = po(Dy, Xy) | }GS (Xe) — 60(Xt)| |F—i]
teT;

<sup sup ElW(Dt,Xt) — po(Dr, Xt)| le(Xy) — eo(Xy)] |]:—z'
teT; p,e€Er

+Op(akr)”)

<sup sup ElW(Dt,Xt) — po(Dy, X¢)| le(Xy) — eo(Xy)]
teT; p,e€EET

< sup sup [|u(Dy, Xi) — po(Dy, X¢)|l, sup sup [le(X:) — eo(Xe)lly + Op(akr)?)
teT; pEEr teT; eEET

=7TuT TeT + Op(a(kT)’/’)

by Lemma 1 in combination with Assumption 6, Cauchy-Schwarz and the definition of the rates r, r and 7. T
in Assumption 4. By Lemma 6.1 in Chernozhukov et al. (2018) and Assumptions 4.3 and 6.5 it follows that

25



D. BALLINARI & A. WEHRLI

sup;er: B [|fs_, (1, Xe) — po(1, Xy)| |és_, (Xe) — e(Xy)|] = 0,(T~1/2). This concludes the proof as we can now
apply the same arguments as in the proof of Theorem 3. [

Proof of Theorem 5. Define v:(0,T) = g(Z; T') — 6, for some nuisance functions I' = (u, e), g(Z¢; T') is the influence
function (2) evaluated using the nuisance functions in I' and we will drop the forecast horizon h everywhere for

legibility. Let
VT:Var< Zth,FQ>: (ZEvt +QZ Z vtvts>

tET s=1 t=s+1
with vy = g(Z4;T) — 0 and T'g = (o, €0), and thus limp_, o, Vr = V4. Next, define

Vs, = |'T| ZEvt +2Z Z El[viv—s]

teT; SET; t€Ti,s

with T; s = {t € T; |t — s > inf(T;)} fori = 1, ..., K. Then we have that limy_,o, Vs, = limgy_oo Vi = V), s0
given K being a finite integer, for |V — V| 25 0 it will be sufficient to show that Vs, —

mr
‘A/Si = |,71,| Zf)terQZw(s,mT) Z DOy

teT; s=1 telri,s

(1), where

with . . A .
O = g(Zy;Ty) — 6 and I'n={ls_,:i€{l,...,K},teT}
Moreover, let

Vé’::% th+22 w(s, mr) vatg

teT; teTi,s

Applying the triangle inequality, we will follow Newey and West (1987) and prove that the following three terms
converge to zero in probability

Vs, = Vs,| < Vs, = V| + V& — E[V]| + [E[VE"] -

=P, =P, =P

(A2)

Since terms P, and P3 do not contain any estimated quantities, they are o,,(1) following the same arguments as in the
proof of Theorem 2 in Newey and West (1987) and Kool (1988), provided that Assumptions 7.1-7.4a hold.

For the term P, define a function

£(6,7) > 0(0,To + r(I'y — Ty))?
|T| te”ﬂ

+ m Zw(s,mT) Z ve(0,To + r(ft —To))ve—s(0,To + r(ft_s —T)),
ts=1 teTi,s

so that ‘7& = f(6,1) and Vgt = f(60,0). By the multivariate mean-value theorem, for some (¢,7) on the line
segment from (6o, 0) to (6, 1), on the event £ we have

Vs, — Vg = J(0.1) ~ 1(600,0) = 2076~ 00) + 92.6.7)

and by the triangle inequality

of 5

Vs, = V&' < | 55(0,7)(0 — o) (A3)

=P =Pi2

We will show that both terms on the right hand side of (A3) are 0, (1).
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Term Pj;: The partial derivative with respect to 0 in Py is

af ~ . 2 - o
550 =~ 7 > wi(6,Tg + 7'y = Tp))
teT;
2 <X ~ - ~ -
- Zw(s,mT) Z {Ut(e, Iy + ’I“(Ft — Fo)) + Ut,3<9,1—‘0 + T‘(Ft,S — Fo))
|7;| s=1 teTi,s
and thus 5
—f(é, 7)| < 2sup \vt(é, I+ F(f‘t —T0))| + 4m7 sup |vt(é, I+ f(f‘t —T0))|
00 teT; teT;
Then we get for P, that
of =~ | 4 ~ A A
—(0,7)] |0 — 00| < 2sup |ve(0, Ty + 7(T'+ —To))| - |0 — 6ol
00 teT;

(A4)
m, ~ A A~
+ 4 sup v, (6, To + #(I' — To))| - VT|6 — 6.
T teT;
By Theorem 4, on the event £, | — 6| = 0,(1) and VT(6 — 6y) = O,(1). Moreover, by Assumption 7.4a,

im0 mT/\/T = 0. Thus it remains to show that on the event 7, sup;r; |vt(9~7 Ty + f(f‘t — T'g))| remains
bounded in probability. By the triangular inequality we have that

vp(0,To + 7(T'y — FO))’ =

M&ﬂb+f@r43»—ékﬁwaﬂb+ﬂﬁ—rw)+WL
For the first term after the inequality we have, for some ¢ > 2

)M&mmwm—mML

/Lo(]., Xt) + f(ﬂt(]-a Xt) - NO(]-a Xt))

= o(0, Xy) — 7(fe (0, X¢) — 110(0, X4)) (AS)
Dy o

+ eO(Xt) ¥ f(ét(Xt) — eO(Xt)) (i/t - ,U/O(17Xt> - T(:U’t(laXt) - MO(laXt))>
1-Dy

- 1_ eO(Xt) — ’F(ét(Xt) — eO(Xt)) ()/t - .[1“0(07Xt) - f(ﬂt(07Xt) - HO(()?Xt))) .
< lpo (1, Xo)[|, + 7l fe (L, Xe) — po(1, Xo)[|,, + 10(0, Xe)|l, + 7 (|26 (0, Xe) — 10 (0, Xe ),

eo(X:) + f(étl();(t) —eo(Xy)) (Y2 = po(1, Xy) = 7(jie(1, X¢) — po(1, X))
oot
1-— 60(Xt) - F(ét(Xt) - 60(Xt))

_|_

q

(Y} — /Lo(O,Xt) - 'F(ﬂt(OvXt) - MO(O?Xt)))

q
where
e ={bs_,:1€e{1,. ., K}, t €T} and ér={és_,:ie{l,.., K}, teT}.
From Assumptions 4 and 7.3 we have
C C

A (d, Xe) — po(d, X¢)||, < v and l[ko(d, Xe)|l, < v (A6)

for ¢ > 2, any I € Zpandd e {0, 1}, as shown in the proof of Theorem 5.1 in Chernozhukov et al. (2018). Using
these results, we get the following bound for |6

) ) j 5 C
16] <160 — o] + 00| <10 — 6o| + |6o] < |0 — 60| +2W’

where |6y| < 2C/n'/? follows from Assumption 4, as shown in the proof of Theorem 5.1 in Chernozhukov et al.
(2018). From Theorem 4, it follows that |§ — 6| = 0,(1), so |8] = Op(1).
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We continue with the term in the second line of the last inequality in (A5). For ¢ > 2, conditional on 7, we get

D,
eo(Xt) +7(é(Xt) — eo(Xt))

(Yt - ,U’O(la Xt) - F(ﬂt(laXt) - NO(laXt)))

q

IN

% DY — po(L, X2) — 71 (1, X2) — jo(L, X1))

1‘

n

1 1 T 1 1 C 7 C
" [Yell, + " ll1o(1, Xo)ll, + " (4 (1, Xe) — po(L, Xe)l, < 504' -y + s

q

IN

Y: — po(1, X¢) — 7(fae (1, X¢) — po(1, X¢)) (A7)

q

IN

where the first inequality follows from Assumption 4. The second inequality follows from D; € {0, 1}, and the third
from the Minkowski inequality. The fourth follows from (A6).

For the term in the third line of the last inequality in (AS5), we get for ¢ > 2 and conditional on 7 that

H 1 —eo(Xy) —177(_@1(7;@) — eo(X¢))

(Y2 — p10(0, X)) — 7(22¢(0, X)) — p0(0, X¢)))

q
- (A8)
<£C+1C 7 C

1 N
Sg Ye — po(0, X¢) — 7(1(0, X¢) — po(0, X¢)) LS HW+5W7

using the same arguments as for the term in (A7). Since all of the terms in the first line of the last inequality in
(A5) are L,-bounded, they are also O,(1) by Markov’s inequality. The same holds for (A7) and (A8), so we can
conclude that all of the terms on the right-hand-side of the last inequality in (A5) are Op(1). As a consequence,

supyer [04(0, T + 7#(I'y — T'o))| = Op(1) in (A4) and thus P;; = o,(1).

Term Pj5: From the partial derivative with respect to r in P2 we find

(9f~~ vy

87“ ‘ ‘ ‘T‘ = ’Ut(97ro + ’I"(Ft — Fo)) o (9 F() +7r (Ft Fo))
mr B R 9 .
T Zw(s,mT) 3" (6,00 + (L' — o)) 1; (6,T¢ + #(Ts—s — Tp))
ts=1 teTi,s
~ e d
ITI Z s,;mr) Y vi-o(0,Tg + #(Fy_s — To)) a”t (6,T¢ + #(T'; — ro))’
t€Tq,s

< 2sup v (0, To + #(T'y — Tp))| sup
teT; teT;

O, - .
—”;(9,% + (D, — ro))‘

+4T sup [ve(0,To + 7(T'y — Tg))| sup
teT;

vy , = R
7;(9, o+ T(Ft — F()))’ Tbm.

From proving P; = 0,(1) we know that sup, . [v:(0,To 4 #(T'y — Tg))| = O,(1). Moreover, mz /T = o(1) by
Assumption 7.4a. Thus it remains to show that sup, .- \%(é, Lo +7#(T: —T))| = 0,(T~). Since by Assumption
7 by, < by, we will show that the quantity is actually o, (7~""). By the triangle inequality, we have

sup

D 87(9 Lo 4 #(I: — To))| < Pia.a + Pia.g + Piac + Pia.p, (A9)
te
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where A A
Pia g = Suﬁ e (1, X¢) — po(1, X¢) — (21(0, X¢) — po(0, Xy))|
teT;
D
Pio p = sup i X

teT; | (eo(Xy) + 7(&1(Xy) — eo(Xy)))?

(Vi — (L, X2) — 77 (L X2) — po(L, X)) (e (X2) — eo(X2) \

1—- D,
P = su —
1O T = o (X)) — #(ér(X0) — eo(X1))

P . 1-— Dt X
12b te% (1= 7)1 = eo(X1)) + (1 = &(Xy)))?

(Y — p0(0, X)) + 7(2(0, X¢) — p0(0, X¢))) (€(Xt) — eo(Xt)) ‘

(0(0.X,) uo(0>Xt))’

For Py5 4, we first establish that on the event Ep for d € {0, 1} we have

SupE |:|l/)’t(d7 Xt) - Mo(d, Xt)|2 ‘Sl:|
teT;

< sup sup B |(u(d X0) - o, X))

teT; pnEET

(A10)

< sup sup E [(u(d, X0) = pio(d, X0))*| + Oy (alhr)?)
teT; pE=T
<+ Oplalkr)”) = 0p(T72).
The second inequality follows from Lemma 1, the third by the definition of the rate r, 7 in Assumption 4. The final
equality follows by Lemma 6.1 in Chernozhukov et al. (2018) and Assumptions 4.3, 6.5 and 7.4b. We thus conclude
that on the event &,
sup (. X1) — po(d X1)| = 0,(T ") (A1)
teT;
and as a consequence
Pra,a < sup |fu(1, X¢) = po(1, Xo)| + sup |f2(0, X)) = p10(0, Xy)| = 0,(T ).

teT; teT;
For P12 p, we first establish that on the event &1 we have

supE [\et(Xt) —eo(Xy) | }S_Z} < sup sup E [(et(Xt) —eo(Xy)) |S_z]
teT; eEET

< sup sup E [(é:(X;) — eo(Xy))?] + O, (alkr)?)

teT; e€ET
< TS,T + Op(a(kT)w) = Op(T_QbT)
by the same arguments as for (A10) and thus on the event Er,

sup |é:(Xy) — eo(Xe)| = op(T_bT). (A12)
teT;

This allows us to write

1 - . .
L Ve = (1= Ppo(1, Xp) — 7 (1, Xo)| [64(Xe) — eo(Xe)]
teT;

— po(L, X¢)| |é:(Xy) — eo(Xy)]
teT;

T . R
+sup — [V — fe(1, X )| |6:(Xe) — eo(Xe)| (A13)
teT: 1

2 .
< sup — |V — po(1, Xp)| [€:(Xe) — eo(Xt)|
teTi 1

+ sup — D |/~Lt(1 Xi) — po(1, Xp)| |e(Xe) — eo(Xy)],

teT;

29



D. BALLINARI & A. WEHRLI

where the first inequality follows from Assumption 4 and D; € {0,1}. From Assumption 7.3 and (A6), we have for
q>2,de{0,1} and any p € = that

1
sup [[Y; — u(d, X,)||, < sup [¥ill, + sup lu(d, X,)]l, < C (1 n 1/(,) | (A14)
teT; teT; teT; n

Combined with (A12) it follows that for d € {0, 1} and on the event E7 we have
sup 1Ye = pld, Xe)l|€(Xe) — eo(Xo)]lly
€7

S sup 1Y: = pld, Xl [|€:(Xe) — eo(Xo)ll,

1 . _
<supC (1 + 1/ ) [[€¢(Xe) — eO(Xt)||2 = OP(T b,‘)
teTi n/4

for any ;1 € =7, and as a consequence, combined with (A11), we have P2 p = op(T*bT).

For P3¢, we have by Assumption 4 and D; € {0,1} that Pp ¢ < sup;,cr %|ﬂt(O,Xt) — po(0, Xy)| and thus
Pisc = op(T_b”‘) by (A11).

For Py5 p finally, we have

1 _ - .
Piap < sup |(1 = 7)(Ye — po(0, X)) + 7(Ye — f1¢(0, X¢))

teT; 1

|e1(X¢) — eo(Xt)]

2 .
< sup o3 [Y: — 100, X¢)| [€:(X¢) — eo(Xt)]

teT;

1. .
+ sup — |f1t(0, X¢) — p0(0, X¢)| [€¢(Xe) — eo(Xe)]
teT: 1

where the first inequality again follows from Assumption 4 and D; € {0, 1}, and the second from the same arguments
as in (A13). Using (Al1), (A12) and (A14) lets us conclude that P15 p = op(T*bT). This shows that all terms on the
right hand side of (A9) are 0,(7~"") and thus sup,c. |22 (0, T + #(I'; — T'o))| = 0,(T~""). As a consequence,
P11 = 0,(1) and Pya = 0,(1) in (A3). We conclude that Vs, — V&' = op(1) and thus Vs, — Vg, | = 0p(1) so that
WV —vr| &o. O
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Supplementary material for “Semiparametric inference for impulse response
functions using double/debiased machine learning”

A Hyperparameter tuning

A.1 Tuning in the simulation study

Random forests: We fix the number of trees to 500. For each simulation replication, the maximal depth of each tree
(d), the minimal number of observations in the leafs of the trees (¢) and the maximal fraction of features considered
for each node split (my,,) are determined by cross-validation using the K sub-processes as folds. We perform a
simple grid search over {{d, ¢, m,,} | d € {5,10,20,50} A ¢ € {1,5,10} A my,,, € {0.3,1.0}} and select the
hyperparameter-combination yielding the best predictive cross-validation performance.

Gradient boosted trees: We perform a two-stage tuning procedure. In the first stage, we fix the learning rate of the
tree booster to 0.1, set the number of boosting rounds to some very high number (10°000) and abort the estimation
process if the predictive validation error has not decreased since 50 rounds of boosting. The maximum tree depth
for the base learners (d), the minimum sum of instance weight needed in a child (w), the subsampling ratio for
observations used to construct each tree (s°), and the subsampling ratio for features when constructing each tree
(s') are determined by cross-validation using the K sub-processes as folds. We perform a simple grid search
over {{d,w,s°, s’} | d € {1,..,10} Aw € {1,...,10} A s° € {0.25,0.5,0.75,1} A sf € {0.25,0.5,0.75,1}}
and select the hyperparameter-combination yielding the best predictive cross-validation performance. In the
second stage, using the optimal tree-hyperparameters from stage 1, we select the learning rate most fre-
quently yielding the best predictive cross-validation performance. We perform a search over the candidate set
{0.001, 0.002, 0.005,0.01,0.02,0.05,0.1,0.25,0.5}. Finally, the optimal number of boosting rounds is determined
as the average early-stopped boosting round for the selected learning rate. For computational reasons, we repeat
this procedure on R = 50 simulated examples and fix the hyperparameters for all simulation replications to the
hyperparameter combination most frequently yielding the best cross-validation performance.

A.2 Tuning in the empirical application

Random forests: We fix the number of trees to 500. The maximal depth of each tree (d), the minimal number of
observations in the leafs of the trees (¢) and the size of the random subsets of features to consider when splitting a
node (m) are determined by cross-validation using the K sub-processes as folds. We perform a simple grid search
over the same candidate sets as for the simulation study (cf. Appendix A.1) and select the hyperparameter-combination
yielding the best predictive cross-validation performance.

Gradient boosted trees: We perform a two-stage tuning procedure. In the first stage, we fix the learning rate of the tree
booster to 0.1, the number of boosting rounds to 500 and find optimal tree parameters by cross-validation. For this, we
perform a simple grid search over {{d, w,s°, s} |d € {1,...,10} Aw € {1,...,10} As° € {0.25,0.5,0.75,1} As/ €
{0.25,0.5,0.75, 1} }, for the same parameters as in Appendix A.1, and select the hyperparameter-combination yielding
the best predictive cross-validation performance. In the second stage, using the optimal tree-hyperparameters from
stage 1, we finally select the learning rate and number of boosting rounds yielding the best predictive cross-validation
performance. We perform a search over all combinations of {0.001,0.002, 0.005, 0.01,0.02,0.05,0.1,0.25,0.5} for
the learning rate and {10, 110, 210, 310, 410, 510} for the number of boosting rounds.

All estimators are tuned using 10-fold blocked cross-validation on the full sample, where at the boundary of the folds
24 observations are dropped to eliminate dependence between the folds.

B Simulation with an empirically calibrated data generating process
We calibrate the data generating process defined in Section 5 of the main text using monthly U.S. data from 1982 to
2012 obtained from the empirical study in Angrist et al. (2018). In more detail, the outcome process follows

Y—t =c+ b(Xt) + (Dt - 05) T(Xt) + ’}/}/tf] + €.

We calibrate the parameters c and -y, the innovation process €; and the process governing a set of confounder variables
X,;. The vector X, contains the changes in the federal funds rate and in the ten-year Treasury yield, percentage
changes in the S&P 1000 index, the M1 money stock, civilian employment, and industrial production, as well as
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percentage-point changes in the unemployment rate. The outcome variable Y; is the monthly percentage changes in
core personal consumption expenditures. The specification of b(X;), 7(X;) and e(X;) are kept identical to those used
in the simulation study in Section 5 of the main text.

The innovation process is assumed to follow a GARCH(p, q) specification. Following Adamek et al. (2024); Lazarus
et al. (2018), the confounder process X; is modelled using a dynamic factor model as

X; = AF, + U,
PF

Fo=) ®F_;j+V.,  Vi~N(OI)
j=1

Pu
Uit = ZébjUi,t—j + N, Nit ~ N(()’U?JI) fori=1,...,dim(Xy).

j=1

Model orders are selected using the Bayesian Information Criterion (BIC). Specifically, we determine the
GARCH(p, q) orders for €;, the number of latent factors Fj, the lag length pr of the factor VAR, and the AR order py;
of the idiosyncratic components by minimizing the BIC. For the sample at hand, this procedure selects an ARCH(1)
process for €, one latent factor following a VAR(1) process, and univariate AR(1) processes for the components of
U;. Simulation samples are generated by drawing independently from the distributions of €, V; and 7;.

36



D. BALLINARI & A. WEHRLI

C Additional tables and figures

Table C2: Simulation results for K independent nonlinear baseline DGPs (n = 12 and o, = 1.0) and random forest
nuisance function estimates

h=0,603" =0.3321
DML RA DR LP
T  Bias std(f,) RMSE Cy(95%) C.(95%) Bias std(§s) RMSE C,(95%) Bias sd(6,) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%)

125 -0.020 0.749  0.749 0.969 0.959 0.379 0438  0.579 0.530 0.275 0.400  0.486 0.732 0.099 0361  0.375 0.868
250 0.025 0.406  0.407 0.954 0953  0.276 0275  0.390 0512 0.198 0.256  0.323 0.752  0.110 0245  0.269 0.872
500 0.027 0212 0214 0.944 0944 0215 0.199  0.293 0.469  0.139 0.185  0.231 0.776  0.139 0.181 0.228 0.821
1°000  0.015 0.131  0.132 0.962 0.959 0.174 0.130  0.217 0.431  0.095 0.121  0.154 0.809 0.135 0.121  0.181 0.747
8’000  0.009 0.044  0.045 0.957 0.955 0.177 0.052  0.184 0.015  0.042 0.044  0.061 0.818 0.138 0.043  0.145 0.094

h=1,63" =0.1992
DML RA DR LP
T  Bias std(f,) RMSE Cy(95%) C.(95%) Bias std(§y) RMSE C,(95%) Bias sid(,) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%)

125 0.017 0.762  0.762 0.958 0953 0412 0.439  0.602 0.467 0.296 0.402  0.499 0.729  0.072 0369  0.376 0.904
250  0.057 0.398  0.402 0.971 0.951 0.306 0.284 0418 0.441 0215 0.263  0.340 0.741  0.099 0269  0.287 0.912
500  0.053 0220 0.226 0.949 0.941 0251 0.197  0.319 0.330 0.163 0.182  0.244 0.708  0.135 0.190  0.233 0.872
1°000  0.037 0.142  0.147 0.951 0951 0211 0.130  0.248 0.236 0.119 0.123  0.171 0.731 0.128 0.134  0.186 0.829
8000 0.014 0.045  0.047 0.934 0.934 0219 0.052  0.225 0.001  0.052 0.045  0.069 0.748  0.142 0.046  0.149 0.134

h=2,60" =0.1195
DML RA DR LP
T  Bias std(f,) RMSE Cy(95%) C.(95%) Bias std(§y) RMSE C,(95%) Bias sid(,) RMSE Cy(95%) Bias std(6,) RMSE C,(95%)

125 0.058 0.821  0.823 0.951 0942 0.394 0.466  0.610 0.458 0.288 0433 0.520 0.713  0.043 0412 0414 0.930
250 0.067 0.460  0.464 0.967 0.938  0.289 0299 0416 0.434  0.205 0.280  0.347 0.797  0.081 0313 0.324 0.926
500  0.067 0248  0.257 0.942 0.939 0.243 0.206 0319 0.307 0.162 0.197 0255 0.725  0.109 0219  0.245 0911
1°000  0.040 0.161  0.166 0.945 0.945  0.196 0.145  0.244 0.238 0.111 0.141  0.179 0.764 0.112 0.154  0.191 0.886
8000 0.014 0.052  0.054 0.933 0932 0213 0.057  0.221 0.002  0.051 0.050  0.071 0.787  0.126 0.054  0.137 0.367

h=3,63" =0.0717
DML RA DR LP
T  Bias std(f,) RMSE Cy(95%) C.(95%) Bias std(§s) RMSE C,(95%) Bias sid(6,) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%)

125 0.057 0.849  0.851 0.943 0.939  0.347 0.487  0.598 0475 0.257 0.459 0526 0.756  0.026 0.461  0.461 0.930
250 0.072 0483  0.489 0.954 0.936 0.257 0326 0416 0.416 0.188 0.310  0.363 0.816  0.060 0350  0.355 0.929
500  0.066 0273 0.281 0.943 0941 0216 0224 0311 0.337 0.147 0.216  0.261 0.759  0.090 0243 0.259 0.937
17000  0.045 0.181  0.187 0.935 0.932  0.181 0.159  0.241 0.252  0.107 0.156  0.189 0.786  0.094 0.177  0.201 0.908
8000  0.013 0.059  0.061 0.931 0.931  0.195 0.063  0.205 0.005  0.047 0.057  0.074 0.818 0.107 0.061  0.123 0.579

h=4,00" =0.0430
DML RA DR Lp
T  Bias std(6) RMSE Cy(95%) Ca.(95%) Bias std(§,) RMSE Cy(95%) Bias swd(6,) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%)

125 0.071 0.896  0.899 0.941 0934 0.299 0513 0.594 0.487 0.222 0.486  0.534 0.771  0.027 0.481  0.482 0.935
250 0.084 0532 0.539 0.936 0931 0233 0352 0422 0455 0.173 0336 0378 0.758 0.061 0391 0.396 0918
500  0.057 0.308  0.313 0.937 0.930 0.188 0.241  0.305 0.404  0.129 0235 0.269 0.790  0.073 0263  0.273 0.932
17000  0.040 0.200  0.203 0.936 0932 0.157 0.173  0.234 0.278  0.093 0.170  0.193 0.807 0.071 0.193  0.206 0.937
8000 0.014 0.066  0.068 0.931 0.930 0.176 0.067  0.189 0.009 0.044 0.064  0.078 0.846  0.088 0.067  0.111 0.740

h=5,00" =0.0258
DML RA DR Lp
T  Bias std(f,) RMSE Cy(95%) C.(95%) Bias std(d,) RMSE Cy,(95%) Bias std(§y) RMSE Cy(95%) Bias std(f) RMSE Cy(95%)

125 0.069 0951  0.954 0.933 0.929 0.254 0542 0.598 0.519  0.192 0.516  0.551 0.775  0.026 0523  0.524 0.922

250 0.081 0.634  0.639 0.931 0.929 0.199 0364 0415 0493 0.151 0352 0.383 0.791  0.064 0.420 0425 0.921
500  0.056 0337 0.342 0.936 0.931 0.165 0.264 0312 0414  0.117 0.257  0.283 0.805  0.060 0285  0.292 0.941
1’000  0.039 0217  0.221 0.941 0.939  0.141 0.186  0.233 0.340  0.086 0.183  0.202 0.834  0.051 0208  0.214 0.938

8000  0.013 0.070  0.072 0.931 0.931 0.155 0.072  0.171 0.027  0.039 0.069  0.079 0.875 0.069  0.073  0.100 0.844

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with K independent stochastic processes, with K = 10. Except for the LP estimator,
nuisance functions are estimated with random forest. For the DML estimator we set k7 = 7'/10 to obtain estimation samples of the same size as in the setting with one stochastic process.
For sample size 7" = 125, probabilities are winsorized at 1%. The parameters of the data generating process are n = 12, 0. = 1.0,y = 0.6,p = 2,¢q = 1, 0, = 1.0, 4 = 0.3,
ap = 0.3, pa = 0.35, ppr = 0.7, B1 = 0.3, B2 = 0.5. Cy(-) and Cy(-) in the tables denote the coverage at the given confidence level using asymptotic and fixed-bandwidth critical
values, respectively.
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Table C3: Simulation results for a nonlinear DGP (n = 20, o, = 1.0) and random forest nuisance function estimates

h=0,60" =0.3333
DML RA DR LP
T Bias std(§,) RMSE Cp(95%) Ca(95%) Bias std(6,) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%)  Bias std(fy) RMSE  Cy(95%)

125 0.180 0.791 0.811 0.937 0.920 0.382 0.454  0.593 0.524  0.293 0.418  0.511 0.712  0.101 0.370  0.383 0.823
250  0.082 0385  0.393 0.959 0945 0279 0289  0.402 0.519 0210 0269  0.342 0.719  0.117 0248  0.274 0.857
500 0.037 0213 0216 0.953 0.940 0.199 0.194 0278 0.529 0.136 0.183  0.228 0.780  0.122 0.175 0213 0.850
1°000  0.031 0.133  0.136 0.952 0.949  0.165 0.127  0.208 0.465  0.098 0.120  0.155 0.807  0.126 0.118  0.173 0.769
8000 0.010 0.044  0.045 0.934 0.934  0.156 0.048  0.163 0.018 0.038 0.044  0.058 0.835  0.133 0.043  0.140 0.123

h=1,6" = 0.2000
DML RA DR LP
T Bias std(6y) RMSE Cy(95%) C.(95%) Bias std(0y) RMSE Cy(95%) Bias std(6,) RMSE C,(95%) Bias std(f) RMSE Cy(95%)

125 0.207 0.827  0.852 0.935 0.920 0418 0.449  0.613 04838 0.317 0411 0519 0.698  0.058 0.381 0.386 0.884
250 0.103 0.393  0.406 0.965 0952 0.301 0283 0413 0.447 0.220 0261  0.341 0.724  0.088 0268  0.282 0.900
500 0.061 0224  0.232 0.948 0.945 0235 0.194  0.304 0.381  0.158 0.183  0.242 0712 0.114 0.186  0.218 0.898
1’000 0.053 0.144  0.154 0.931 0.929 0.203 0.134  0.243 0283 0.121 0.127  0.175 0.734  0.126 0.132  0.182 0.827
8000 0.020 0.045  0.049 0.925 0.924  0.202 0.047  0.207 0.001  0.052 0.043  0.068 0.738  0.139 0.047  0.147 0.153

h=2,60" =0.1200
DML RA DR LP
T Bias std(0y) RMSE Cy(95%) C,(95%) Bias std(0y) RMSE Cy(95%) Bias std(6) RMSE Cy(95%) Bias std(6) RMSE Cy(95%)

125 0222 0.878  0.905 0.906 0.898 0.378 0.477  0.609 0.488 0.283 0439  0.522 0.728  0.019 0424 0425 0.903
250  0.127 0.433 0451 0.937 0.926 0.294 0293 0415 0.434 0218 0272 0.349 0.747  0.075 0296  0.305 0.936
500 0.075 0249  0.260 0.941 0.937 0224 0209  0.307 0357 0.153 0.199  0.251 0.716  0.095 0214  0.234 0.927
1°000  0.049 0.164  0.171 0.928 0.927 0.185 0.145  0.235 0.260 0.106 0.140  0.175 0.764  0.098 0.149  0.179 0.901
8°000 0.022 0.051  0.056 0.919 0919 0.198 0.052  0.205 0.001  0.052 0.049  0.072 0.758  0.127 0.054  0.138 0.362

h=3,6" =0.0720

DML RA DR LP
T Bias std(fy) RMSE Cy(95%) C.(95%) Bias std(6,) RMSE C,(95%) Bias std(6,) RMSE Cy(95%)  Bias std(d,) RMSE C,(95%)
125 0228 0987 1013 0.924 0901 0353 048  0.601 0534 0271 0450 0526 0747 0022 0454 0454 0914

250 0.137 0.487  0.506 0.932 0.924  0.266 0328 0422 0.467  0.201 0311 0.370 0.746  0.053 0.340  0.344 0.925
500 0.083 0289  0.301 0.941 0.936 0216 0228 0314 0376 0.152 0218  0.266 0.735  0.085 0244 0.259 0.925
1’000  0.058 0.176  0.186 0.940 0.939  0.180 0.152  0.236 0.287  0.109 0.149  0.185 0.784  0.089 0.165  0.187 0.926
8°000 0.024 0.058  0.062 0.917 0917 0.185 0.056  0.194 0.001  0.051 0.055  0.075 0.807  0.111 0.061  0.127 0.563

h=4,6" =0.0432
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)  Bias std(f,) RMSE Cy(95%)

125 0.225 1.014  1.038 0.912 0.902 0315 0.520  0.608 0.555 0.248 0.491  0.550 0752 0.022 0.500  0.500 0.894
250 0.130 0.543  0.558 0.927 0.906  0.246 0.350  0.427 0.499  0.186 0.334 0383 0.753  0.038 0365  0.367 0.922
500 0.079 0321 0.331 0.933 0933 0.194 0241 0310 0431 0.139 0233 0271 0.771  0.062 0261  0.268 0.935
1°000  0.058 0.194  0.202 0.948 0.944  0.166 0.166  0.234 0.309 0.101 0.162  0.191 0811  0.072 0.181  0.195 0.937
8°000 0.022 0.065  0.068 0.930 0.929 0.168 0.062  0.179 0.014  0.047 0.061  0.077 0.842  0.092 0.067  0.113 0.736

h=5,6{" =0.0259
DML RA DR LP
T Bias std(f,) RMSE C,(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cp(95%)  Bias std(f,) RMSE Cy(95%)

125 0.208 1.055 1.075 0914 0.903  0.250 0.526  0.582 0.583  0.196 0.496  0.533 0.801  -0.002 0515 0.515 0911
250 0.136 0593 0.608 0.919 0.902 0217 0361 0421 0.548 0.170 0343 0.383 0.778  0.027 0.381 0.382 0.942
500 0.070 0339  0.346 0.925 0.925 0.167 0253 0.303 0482 0.119 0245 0272 0.802  0.042 0277  0.280 0.937
1°000  0.055 0213 0.220 0.934 0932 0.151 0.178  0.234 0.356  0.094 0.175  0.198 0.838  0.055 0.199  0.206 0.935
8’000 0.021 0.070  0.073 0.934 0.933  0.152 0.067  0.166 0.025 0.043 0.067  0.079 0.859  0.075 0.071  0.103 0.822

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated

with random forest. For the DML estimator we use 10-fold cross-fitting and set k7 = 7'/10. For sample size T' = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 20, 0. = 1.0,7=0.6,p =2,¢ =1, 0, = 1.0, ay = 0.3, apy = 0.3, pa = 0.35, pps = 0.7, f1 = 0.3, B2 = 0.5. C,(-) and Cy,(-) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C4: Simulation results for a nonlinear DGP (n = 12, o, = 3.0) and random forest nuisance function estimates

h=0,60" =0.3321
DML RA DR LP
T Bias std(§,) RMSE Cp(95%) Ca(95%) Bias std(6,) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%)  Bias std(fy) RMSE  Cy(95%)

125 0.055 1287  1.288 0.941 0.930 0.364 0.789  0.869 0.497  0.263 0.750  0.794 0.758  0.082 0713 0.717 0.907
250  0.060 0.779  0.781 0.953 0.943  0.273 0.534  0.600 0.528 0.203 0.516  0.555 0.800  0.142 0.488  0.508 0917
500 0.015 0429 0429 0.951 0.945 0.188 0368 0413 0471 0.120 0357 0376 0.824  0.142 0342 0.370 0.917
1°000  0.019 0285  0.285 0.946 0.945 0.161 0264  0.309 0.429  0.088 0260  0.274 0.838  0.146 0245 0.285 0.871
8000 0.003 0.091  0.091 0.951 0.950 0.161 0.089  0.184 0.106  0.033 0.088  0.094 0918  0.143 0.083  0.165 0.599

h=1,600" =0.1992
DML RA DR LP
T Bias std(6y) RMSE Cy(95%) C.(95%) Bias std(0y) RMSE Cy(95%) Bias std(6,) RMSE C,(95%) Bias std(f) RMSE Cy(95%)

125 0.101 1.430 1433 0.918 0918 0.370 0.846  0.924 0.523  0.271 0.815  0.859 0.759  0.060 0.782  0.784 0.922
250 0.047 1.051 1.052 0.942 0.936  0.293 0.580  0.650 0.459 0.210 0.565  0.603 0.769  0.122 0.555  0.568 0.931
500 0.043 0.474 0476 0.946 0945 0214 0388  0.443 0429 0.134 0381  0.404 0.832  0.128 0392 0412 0.920
1°000  0.049 0310 0314 0.949 0.947 0.198 0279  0.342 0345 0.111 0275  0.297 0.842  0.153 0271 0.311 0914
8000 0.010 0.102  0.102 0.947 0.946  0.207 0.097  0.228 0.047  0.045 0.098  0.108 0913 0.153 0.096  0.181 0.642

h=2600" =0.1195
DML RA DR LP
T Bias std(0y) RMSE Cy(95%) C,(95%) Bias std(0y) RMSE Cy(95%) Bias std(6) RMSE Cy(95%) Bias std(6) RMSE Cy(95%)

125 0.159 1382 1.391 0.932 0921 0352 0.847 0917 0512  0.258 0.816  0.856 0.784  0.033 0814  0.815 0.935
250  0.044 1.106  1.107 0.932 0.925 0.258 0.600  0.653 0.497 0.182 0592 0.619 0.777  0.080 0.599  0.604 0.925
500 0.059 0.503  0.507 0.941 0.938  0.202 0.414  0.460 0.417 0.130 0.408  0.428 0.814  0.111 0.420 0434 0.933
1°000  0.058 0340  0.345 0.931 0931 0.194 0302 0.360 0336 0.114 0300  0.321 0.814  0.143 0302 0.334 0913
8000 0.010 0.108  0.109 0.962 0.962 0.199 0.102  0.224 0.040 0.043 0.104  0.112 0.908  0.138 0.104  0.173 0.721

h=3,06" =0.0717
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)  Bias std(f,) RMSE Cy(95%)

125 0.116 1.482  1.486 0.936 0.923 0.284 0.852  0.898 0.556  0.201 0.821  0.845 0.795 -0.010 0.825  0.825 0.936
250  0.074 0.860  0.864 0.930 0.928 0.233 0.602  0.646 0.481 0.160 0.586  0.608 0.795  0.058 0.600  0.603 0.934
500 0.062 0.536  0.540 0.931 0.923  0.191 0432 0472 0.409 0.127 0.429  0.447 0.800  0.102 0.448 0459 0.929
1’000  0.060 0353 0.358 0.924 0922 0.183 0310 0.360 0331 0.112 0311 0331 0.815  0.128 0319  0.344 0911
8°000 0.010 0.114  0.114 0.950 0.950 0.180 0.107 0210 0.046  0.040 0.110  0.117 0.905  0.119 0.110  0.162 0.808

h=4,6{" =0.0430
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)  Bias std(f,) RMSE Cy(95%)

125 0.145 1.489  1.496 0.935 0915 0252 0.832  0.869 0.549  0.187 0.811  0.832 0.831  0.012 0.833  0.833 0.937
250  0.041 1.358  1.358 0.916 0916  0.208 0.639  0.672 0.485 0.150 0.623  0.641 0.787  0.058 0.631 0.634 0.935
500 0.039 0576 0.578 0.938 0.926 0.151 0.448 0473 0.421  0.097 0.443 0453 0.821  0.063 0.456  0.461 0.929
1°000  0.055 0363 0.367 0.938 0.936 0.160 0316  0.354 0.345  0.098 0315 0.330 0.835  0.104 0324 0.341 0.920
8°000 0.010 0.117  0.118 0.949 0.949  0.159 0.110  0.194 0.056 0.037 0.113  0.119 0911  0.100 0.110  0.148 0.859

h=5,6{" =0.0258
DML RA DR LP
T Bias std(f,) RMSE C,(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cp(95%)  Bias std(f,) RMSE Cy(95%)

125 0.167 1.619  1.627 0.915 0.898 0.253 0.897  0.932 0.558  0.199 0.874  0.897 0.813  0.053 0913 0914 0.922
250  0.050 1.062  1.063 0.920 0912 0.176 0.650  0.674 0.469 0.125 0.638  0.650 0.775  0.046 0.643  0.645 0.931
500 0.025 0.587  0.588 0.950 0.941 0.122 0.446  0.463 0.450 0.078 0.444 0451 0.829  0.045 0.458  0.461 0.938
1°000  0.042 0363  0.366 0.947 0941  0.129 0313 0.339 0.357 0.076 0313 0.322 0.855  0.074 0323 0.331 0.950
8’000 0.003 0.121  0.121 0.942 0941 0.134 0.112  0.175 0.082  0.026 0.115  0.118 0919  0.077 0.113  0.136 0.912

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forest. For the DML estimator we use 10-fold cross-fitting and set k7 = 7'/10. For sample size T' = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 12,0, = 3.0,7=0.6,p =2,¢ = 1,0, = 1.0, ay = 0.3, apy = 0.3, pa = 0.35, pps = 0.7, f1 = 0.3, B2 = 0.5. C,(-) and Cy,(-) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C5: Simulation results for an empirically calibrated DGP (see Section B) and random forest nuisance function
estimates

h=0,6" =0.2021
DML RA DR LP
T  Bias std(6y) RMSE GC,95%) C.(95%) Bias std(f,) RMSE C,(95%) Bias std(fs) RMSE Cp(95%)  Bias std(fs) RMSE  Cy(95%)

125 0.058 0343 0.348 0.966 0.948 0.244 0273 0.366 0.279 0.203 0263 0.332 0.681  0.146 0.260  0.298 0.883
250 0.042 0207 0211 0.935 0.931 0210 0.190  0.283 0238 0.168 0.184  0.249 0.629  0.153 0.189  0.243 0.845
500  0.038 0.130  0.136 0.949 0945 0.177 0.129 0219 0242 0.130 0.125  0.180 0.641  0.154 0.127  0.200 0.752
1’000  0.034 0.096  0.101 0.919 0.919 0.159 0.090  0.182 0.148  0.105 0.088  0.137 0.625  0.152 0.091  0.177 0.580
8’000 -0.002 0.031  0.032 0.949 0.949 0.153 0.033  0.156 0.000 0.035 0.031  0.047 0.760  0.153 0.033  0.157 0.001

h=1,6" =0.0521
DML RA DR LP
T  Bias std(6y) RMSE C,(95%) C.(95%) Bias std(6,) RMSE Cy(95%) Bias std(6,) RMSE C,(95%)  Bias std(6,) RMSE Cy(95%)

125 0.040 0.347  0.349 0.965 0.939  0.108 0271 0.291 0.330 0.088 0267  0.282 0.791  0.029 0274  0.276 0.941
250 0.025 0245  0.247 0.962 0.944  0.100 0.192 0216 0258 0.079 0.191  0.206 0.789  0.041 0.199  0.203 0.936
500 0.027 0.151  0.153 0.933 0.929 0.084 0.137  0.161 0.265  0.062 0.137  0.151 0.792  0.043 0.141  0.147 0918
17000 0.019 0.100  0.102 0.947 0.946 0.073 0.095  0.119 0.194  0.047 0.095  0.106 0.808  0.042 0.097  0.106 0.927
8’000 -0.000 0.035  0.035 0.954 0.953  0.072 0.034  0.079 0.019 0.015 0.034  0.037 0.894  0.040 0.034  0.053 0.780

h=2,0" =0.0134
DML RA DR LP
T  Bias std(fy) RMSE Cy(95%) C,(95%) Bias std(0,) RMSE C,(95%) Bias std(6,) RMSE Cy(95%)  Bias std(d,) RMSE Cy,(95%)

125 0.037 0362 0.364 0.969 0.947  0.067 0263  0.271 0.309 0.054 0261  0.266 0.860  0.007 0272 0272 0.946
250 0.008 0228  0.228 0.955 0.944  0.045 0.191  0.196 0.288  0.034 0.190  0.193 0.814  0.003 0.196  0.196 0.941
500 0.010 0.150  0.150 0.945 0.943  0.038 0.136  0.141 0.245  0.026 0.137  0.139 0.830  0.005 0.138  0.138 0.951
1°000  0.006 0.108  0.108 0.934 0.934  0.034 0.099  0.105 0.184  0.020 0.101  0.103 0.828  0.007 0.101  0.101 0.938
8°000  0.000 0.036  0.036 0.954 0.953  0.036 0.034  0.050 0.050  0.008 0.035  0.036 0916 0.010 0.035  0.037 0.936

h=3,6" =0.0035
DML RA DR LP
T  Bias std(6,) RMSE C,95%) C,(95%) Bias std(f,) RMSE C,(95%) Bias std(§s) RMSE Cy(95%)  Bias sd(§s) RMSE  Cy(95%)

125 0.032 0362 0.363 0.950 0.936  0.042 0282  0.285 0331  0.034 0277  0.279 0.811  0.001 0285  0.285 0.932
250 0.009 0238 0.239 0.935 0.929  0.027 0.196  0.198 0.284  0.020 0.197  0.198 0.790  -0.006 0.199  0.199 0.940
500 0.005 0.151  0.151 0.947 0.945  0.023 0.134  0.136 0.231 0.015 0.135  0.136 0.840 -0.003 0.135  0.135 0.957
1’000  0.003 0.106  0.106 0.939 0.937  0.022 0.096  0.098 0233 0.013 0.098  0.099 0.852  0.000 0.098  0.098 0.947
8°000  0.000 0.037  0.037 0.945 0.945  0.022 0.034  0.040 0.054  0.005 0.036  0.036 0.925  0.002 0.035  0.035 0.944

h=4,60" = 0.0009
DML RA DR LP
T  Bias std(6,) RMSE C,(95%) C,(95%) Bias std(dh) RMSE Cy(95%) Bias std(f,) RMSE C,(95%)  Bias std(f,) RMSE Cy(95%)

125 0.023 0376 0376 0.945 0933 0.034 0290  0.292 0315 0.026 0286  0.287 0.777 -0.001 0.296  0.296 0.925
250 0.006 0.228  0.228 0.944 0.938 0.025 0.190  0.192 0.316  0.020 0.191  0.192 0.810  0.003 0.195  0.195 0.940
500 0.006 0.155  0.155 0.940 0.936 0.017 0.141  0.142 0252 0.011 0.142  0.142 0.815  -0.005 0.145  0.145 0.938
1°000  0.006 0.103  0.103 0.956 0.955 0.020 0.093  0.095 0.185 0.012 0.095  0.096 0.871  0.001 0.095  0.095 0.951
8000 -0.000 0.036  0.036 0.953 0.953 0.016 0.033  0.037 0.065 0.003 0.035  0.035 0.936  0.000 0.035  0.035 0.956

h = 5,65 = 0.0002
DML RA DR LP
T  Bias std(0y) RMSE C,(95%) C,(95%) Bias std(fs) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)  Bias std(d,) RMSE Cy(95%)

125 0.024 0370 0371 0.944 0.930 0.022 0283  0.284 0.305 0.017 0281  0.282 0.909 -0.001 0.285  0.285 0.935
250 0.012 0237  0.238 0.936 0.934 0.016 0.194  0.194 0.304 0.013 0.193  0.193 0.796  -0.004 0.197  0.197 0.946
500 0.006 0.152  0.152 0.960 0.954 0.017 0.135  0.136 0226 0.012 0.136  0.136 0.851 -0.003 0.137  0.137 0.957
1°000  0.006 0.104  0.105 0.953 0.950 0.017 0.096  0.097 0.171  0.011 0.097  0.097 0.869  0.000 0.096  0.096 0.953
8’000  0.000 0.036  0.036 0.950 0.950 0.013 0.033  0.036 0.068  0.003 0.035  0.035 0.931  0.000 0.034  0.034 0.960

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forest. For the DML estimator we use 10-fold cross-fitting and set k7 = 7'/10. For sample size 7' = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are empirically calibrated using monthly U.S. data from 1982 to 2012 obtained from the empirical study in Angrist et al. (2018). C,(-) and Cy(-) in the tables denote
the coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C6: Simulation results for a baseline nonlinear DGP (n = 12, 0. = 1.0) and gradient boosting nuisance function
estimates

h=0,00" =0.3321
DML RA DR LP
T Bias std(0y) RMSE Cy(95%) C.(95%) Bias std(0n) RMSE Cy(95%) Bias std(0y) RMSE Cy(95%) Bias std(f) RMSE Cy(95%)

125 0.166 1285  1.295 0.937 0.937 0.071 0.525  0.530 0.800 -0.019 0.514 0515 0.900  0.090 0357 0.368 0.871
250  0.090 0.631  0.638 0.922 0922 0.111 0391 0.406 0732 0.081 0313 0.324 0.883  0.128 0251  0.282 0.847
500 0.043 0269  0.273 0.961 0.955 0.280 0242 0.370 0.398  0.158 0.199  0.254 0.805 0.135 0.173  0.220 0.829
1°000  0.028 0.158  0.160 0.942 0.939 0.073 0.189  0.203 0.662  0.038 0.141  0.146 0919 0.138 0.126  0.187 0.730
8’000  0.008 0.040  0.041 0.960 0.960 0.115 0.042  0.122 0.089  0.014 0.040  0.043 0952 0.131 0.046  0.139 0.141

h=1,00" =0.1992
DML RA DR LP
T Bias std(f,) RMSE C,(95%) C.(95%) Bias std(f) RMSE Cy(95%)  Bias std(6,) RMSE Cy(95%) Bias std(dy) RMSE Cy(95%)

125 0.166 1322 1.332 0.952 0.938  0.090 0.547  0.554 0.751  0.009 0514 0514 0.898  0.060 0362  0.367 0.923
250 0.105 0.641  0.650 0.955 0.954  0.135 0398 0421 0.701  0.090 0315  0.327 0.877 0.111 0265  0.287 0914
500 0.067 0266  0.275 0.959 0.957 0.320 0236  0.397 0286  0.175 0.196  0.263 0.777 0.123 0.193  0.229 0.887
1°000  0.044 0.154  0.160 0.953 0952 0.097 0.187  0.211 0.553  0.052 0.137  0.146 0916 0.139 0.133  0.193 0.792
8000 0.016 0.042  0.045 0.937 0.936 0.134 0.044  0.141 0.013  0.021 0.042  0.047 0.928 0.144 0.053  0.153 0.183

h=2,00" =0.1195
DML RA DR LP
T Bias std(6,) RMSE Cy(95%) C.(95%) Bias std(6) RMSE Cy(95%)  Bias std(6,) RMSE Cy(95%) Bias std(dy) RMSE Cy(95%)

125 0.153 1439 1447 0.959 0.935 0.104 0.561  0.570 0.732  -0.006 0.541  0.541 0913 0.031 0.410 0411 0.931
250  0.107 0.723  0.731 0.944 0.937 0.149 0426 0451 0.662  0.082 0329 0339 0.887 0.078 0306  0.316 0.927
500 0.072 0.300  0.308 0.952 0.952 0310 0266  0.408 0346 0.171 0219 0278 0.800 0.104 0221  0.244 0911
1°000  0.051 0.176  0.183 0.930 0.926 0.104 0210 0.234 0.478  0.058 0.156  0.167 0.898 0.128 0.160  0.204 0.854
8000 0.015 0.049  0.051 0.943 0.943  0.131 0.051  0.141 0.014  0.019 0.048  0.052 0.935 0.128 0.055  0.140 0.352

h=3,60" =0.0717
DML RA DR LP
T Bias std(fy) RMSE C,(95%) C,(95%) Bias std(6,) RMSE C,(95%) Bias sd(6,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)

125 0.132 1513 1519 0.958 0944 0.124 0.622  0.634 0.694  0.007 0.591  0.591 0.894 0.012 0.448  0.448 0.937
250  0.097 0.797  0.803 0.933 0.930 0.143 0476 0497 0.611  0.074 0364 0371 0.901  0.058 0.340  0.345 0.934
500 0.078 0327  0.337 0.953 0.946  0.289 0287  0.407 0391  0.163 0.238  0.289 0.840  0.087 0249  0.264 0915
1’000  0.054 0.196  0.204 0.949 0946 0.113 0228  0.255 0442 0.058 0.168  0.178 0915 0.112 0.178  0.210 0.902
8000 0.014 0.055  0.057 0.946 0946 0.128 0.058  0.141 0.021  0.017 0.055  0.057 0.937 0.117 0.061  0.131 0.479

h=4,00" =0.0430
DML RA DR LP
T Bias std(6,) RMSE Cy(95%) Ca(95%) Bias std(§,) RMSE Cy(95%)  Bias std(6,) RMSE C3(95%) Bias std(6,) RMSE  C3(95%)

125 0.150 1.681 1.688 0.960 0.937 0.125 0.678  0.689 0.695  0.041 0.696  0.697 0.902  0.021 0.496 0497 0.935
250  0.069 0.867  0.870 0.927 0924  0.142 0510  0.529 0.591  0.077 0.405 0412 0.873  0.049 0.377  0.380 0.922
500 0.068 0363 0.369 0.952 0.940 0.245 0299  0.387 0.447  0.148 0.261  0.300 0.852  0.062 0270  0.277 0.929
1°000  0.051 0219  0.225 0.942 0942 0.110 0247  0.271 0.408  0.054 0.181  0.189 0934 0.092 0.192  0.213 0.921
8000 0.014 0.061  0.063 0.948 0.948 0.126 0.063  0.141 0.026  0.017 0.060  0.063 0.939  0.100 0.067  0.121 0.662

h=5,600" =0.0258
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) Ca(95%) Bias std(§,) RMSE Cy(95%)  Bias std(6,) RMSE (3(95%) Bias std(f,) RMSE  C(95%)

125 0.099 1.794  1.796 0.949 0.927 0.148 0.705  0.720 0.669  0.082 0.729  0.734 0.898  0.032 0.551  0.552 0.921
250  0.077 0.937  0.940 0.931 0926 0.119 0532 0.545 0.584  0.068 0.421 0427 0.884  0.036 0394 0.395 0918
500 0.063 0384  0.389 0.951 0943 0216 0308  0.376 0.491  0.131 0271 0.301 0.862  0.047 0283  0.287 0.943
1’000 0.039 0233 0.236 0.946 0.938  0.097 0256  0.274 0.445  0.047 0.193  0.198 0.927 0.071 0202 0214 0.933
8000 0.010 0.068  0.068 0.951 0951 0.116 0.071  0.136 0.040 0.013 0.067  0.068 0.941  0.082 0.078  0.113 0.789

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated

with gradient boosting. For the DML estimator we use 10-fold cross-fitting and set k7 = 7'/10. For sample size 7' = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 12,0, = 1.0,y =0.6,p=2,¢= 1,0, = 1.0, a4 = 0.3, apy = 0.3, pa = 0.35, ppy = 0.7, 51 = 0.3, B2 = 0.5. C,(-) and Cy(-) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C7: Simulation results for a linear DGP (n = 12, 0. = 1.0) and random forest nuisance function estimates

h=0,00" =0.3321
DML RA DR LP
T Bias std(y) RMSE Cy(95%) C,(95%) Bias std(0y) RMSE Cy(95%) Bias std(6,) RMSE Cy(95%) Bias std(6) RMSE Cy(95%)

125 0.121 1.375 1.381 0.927 0918 0.851 0.550  1.013 0.270  0.669 0498  0.834 0.503  -0.006 0219 0219 0.911
250 0.060 1.043  1.044 0.944 0.935 0.675 0325  0.749 0.095 0.525 0292 0.601 0334 0.004 0.146  0.146 0.956
500 0.069 0348  0.355 0.959 0.941  0.537 0203  0.574 0.031 0.388 0.185  0.430 0.240 -0.001 0.106  0.106 0.947
1000 0.062 0.164  0.176 0.944 0942 0.445 0.126  0.463 0.000 0.280 0.116  0.303 0.186  -0.000 0.074  0.074 0.956
8000 0.019 0.040  0.044 0.942 0942 0.381 0.066  0.386 0.000 0.108 0.038  0.114 0.152  -0.001 0.025  0.025 0.940

h=1,600" =0.1992
DML RA DR LP
T Bias std(y) RMSE Cy(95%) C,(95%) Bias std(0y) RMSE C,(95%) Bias std(6) RMSE C,(95%) Bias std(f) RMSE Cy(95%)

125 0.173 1539  1.549 0.916 0.900 0.893 0590  1.070 0.287  0.708 0.542  0.892 0.485 -0.030 0317 0319 0.918
250 0.067 1273 1.275 0.943 0921 0.732 0364  0.817 0.119  0.567 0332 0.657 0.354  -0.005 0224  0.224 0.934
500 0.105 0372 0.386 0.945 0.936  0.597 0223 0.638 0.023  0.433 0.207  0.480 0.262  -0.008 0.151  0.151 0.947
1°000  0.094 0.195 0216 0913 0.910 0.509 0.148  0.530 0.002 0.324 0.139 0352 0.200  0.002 0.109  0.110 0.945
8°000 0.028 0.050  0.057 0.922 0.922  0.447 0.073 0453 0.000 0.128 0.046  0.136 0.163  0.001 0.038  0.038 0.950

h=26"=01195

DML RA DR LP
T Bias std(fy) RMSE Cy(95%) C.(95%) Bias std(f,) RMSE C,(95%) Bias std(6,) RMSE Cy(95%)  Bias std(6,) RMSE Cy(95%)
125 0217 1495 1511 0917 0892 0818 0659 1050 0372 0649 0615 0894 0610 -0.042 0454 0456 0918

250  0.082 1.058  1.061 0.917 0.905 0.656 0418  0.778 0.238 0.510 0393 0.644 0.546 -0.014 0326  0.326 0.931
500 0.114 0412 0427 0.944 0932 0.547 0270  0.610 0.102  0.399 0257 0475 0.483  -0.009 0218  0.218 0.954
1’000  0.102 0237  0.258 0.898 0.895 0470 0.192  0.508 0.033  0.303 0.185  0.355 0.429  0.004 0.165  0.165 0.936
8°000 0.027 0.066  0.072 0.926 0.924  0.420 0.084 0428 0.000 0.119 0.061  0.134 0.457  0.000 0.055  0.055 0.957

h=3,06" =0.0717
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)  Bias std(f,) RMSE Cy(95%)

125 0.221 1.641 1.656 0.920 0.895  0.696 0.709  0.993 0431 0.554 0.669  0.869 0.724  -0.051 0.562  0.564 0.917
250  0.055 1522 1.523 0912 0.899  0.569 0.4838  0.750 0.346  0.438 0463  0.637 0.660 -0.019 0418 0418 0.913
500 0.113 0.462 0475 0.951 0.937 0478 0310 0.570 0220 0.352 0301  0.463 0.642  -0.006 0281  0.281 0.945
1°000  0.106 0275  0.295 0913 0902 0413 0227 0471 0.100  0.270 0223 0.350 0.590  0.007 0209  0.209 0.935
8°000 0.027 0.082  0.086 0.938 0.937 0376 0.092  0.387 0.000 0.107 0.077  0.132 0.638  0.000 0.071  0.071 0.952

h=4,6{" =0.0430

DML RA DR LP
T Bias std(6,) RMSE Cy(95%) C.(95%) Bias std(f,) RMSE C,(95%) Bias std(6,) RMSE C,(95%) Bias std(f,) RMSE C,(95%)
125 0.283 1.587 1612 0.892 0.892  0.594 0.744  0.952 0.530 0478 0.714  0.860 0.807 -0.023 0.660  0.661 0.915

250 0.092 1.054  1.058 0.907 0.897 0476 0545  0.724 0.409 0.369 0.524  0.640 0.715 -0.016 0.493  0.493 0.917
500 0.103 0.489  0.499 0.961 0.935  0.396 0345 0.526 0335  0.291 0337 0.446 0.733  -0.016 0.326  0.326 0.957
1°000  0.102 0318  0.334 0.914 0.909 0.357 0261  0.442 0.194  0.237 0.257  0.350 0.693  0.010 0247  0.247 0.937
8’000 0.023 0.097  0.100 0.942 0941 0.329 0.100  0.343 0.002  0.092 0.091  0.130 0.756  -0.001 0.084  0.084 0.948

h=5,6{" =0.0258
DML RA DR LP
T Bias std(f,) RMSE C,(95%) C,(95%) Bias std(6,) RMSE Cy(95%) Bias std(f,) RMSE Cy(95%)  Bias std(6,) RMSE Cy(95%)

125 0.280 1.696  1.719 0.902 0.886  0.500 0.809  0.951 0.560 0.411 0.777  0.879 0.794  0.001 0.738  0.738 0.919
250 0.091 1.178  1.182 0.923 0916 0.407 0.579  0.708 0.489 0313 0.558  0.640 0.765  -0.009 0532 0.532 0.927
500 0.091 0.531 0.539 0.958 0938 0.327 0.377  0.499 0.402  0.241 0.370  0.442 0.779  -0.020 0364  0.364 0.953
17000 0.094 0.348  0.360 0913 0912 0.303 0283 0414 0.270  0.202 0.280  0.346 0.757  0.008 0272 0272 0.946
8’000 0.019 0.109  0.111 0.934 0.934 0.282 0.107  0.302 0.009 0.077 0.102  0.128 0.821  -0.003 0.096  0.096 0.946

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with one stochastic process. The outcome variable is generated from a linear DGP, i.e.

b(X;) = 0.5 Z‘::l X and 7(X;) = F)[(,D)A Except for the LP estimator, nuisance functions are estimated with random forest. For the DML estimator we use 10-fold cross-fitting and
set kr = T'/10. For sample size T' = 125, probabilities are winsorized at 1%. The parameters of the data generating process are n = 12, 0. = 1.0,y = 0.6,p = 2,¢ = 1, 0, = 1.0,
as =03, ap = 0.3, pa =0.35, par = 0.7, 81 = 0.3, B2 = 0.5. C,(-) and Cy(-) in the tables denote the coverage at the given confidence level using asymptotic and fixed-bandwidth
critical values, respectively.
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Table C8: Simulation results for a linear DGP with interactions (n = 12, 0. = 1.0) and random forest nuisance
function estimates

h=0,60" =0.3321
DML RA DR LP
T Bias std(f,) RMSE Cy(95%) C,(95%) Bias std(§y) RMSE Cy(95%) Bias std(§,) RMSE C,(95%) Bias std(f,) RMSE Cy,(95%)

125 0.115 1.926 1930 0.810 0.786  0.900 1.076  1.403 0.404 0.714 1.020 1245 0.513  0.556 0.858  1.023 0.579
250 0.079 1.248  1.251 0.814 0.810  0.700 0.726  1.009 0.468 0.551 0.702  0.892 0.580  0.595 0.589  0.837 0.527
500 0.085 0.618  0.624 0.839 0.830 0571 0.511  0.767 0.473 0419 0.495  0.649 0.633  0.624 0.404  0.743 0.364
1’000  0.084 0395 0.403 0.856 0.849  0.479 0.367  0.603 0.487 0.312 0359  0.476 0.684  0.632 0297  0.698 0.206
8’000 0.025 0.066  0.070 0.947 0.945 0416 0.086  0.425 0.000 0.124 0.064  0.140 0.460  0.329 0.053  0.333 0.000

h=1,60" =0.1992
DML RA DR LP
T Bias std(f,) RMSE Cy95%) C,(95%) Bias std(0,) RMSE Cy(95%) Bias std(§y) RMSE C,(95%) Bias std(f,) RMSE C},(95%)

125 0.173 1.778 1.787 0.863 0.843  0.821 0.825  1.164 0.350 0.627 0.759  0.985 0.543 0308 0592 0.667 0.771
250 0.113 1.003 1.009 0.881 0.878  0.662 0.562  0.868 0.330  0.498 0525  0.723 0.519 0375 0425  0.567 0.705
500 0.112 0502 0.514 0.859 0.859 0.542 0.390  0.668 0.300 0.381 0.368  0.530 0.539 0413 0303 0.512 0.567
1°000  0.103 0.300  0.318 0.868 0.863  0.464 0.276  0.540 0.267 0.289 0264  0.392 0.571  0.433 0222 0.487 0.341
8°000 0.029 0.062  0.069 0.919 0919 0.449 0.082  0.456 0.000 0.127 0.058  0.139 0355 0.231 0.051  0.237 0.006

h=2,60" =0.1195

DML ~ RA DR e
T Bias std(§,) RMSE Cy(95%) C.(95%) Bias std(f,) RMSE C,(95%) Bias std(fy) RMSE C3(95%) Bias std(6,) RMSE C,(95%)
125 0202 1573  1.586 0.901 0894 0707 0730 1016 0383 0532 0668 0854 0627 0151 0564 0.584 0.905

250 0.042 2297 2297 0.920 0912 0.555 0.497  0.745 0312 0412 0465 0.621 0.607 0.225 0415 0472 0.895
500 0.111 0.467  0.480 0.917 0.909 0.461 0341  0.574 0280 0320 0323 0455 0.595 0266 0301 0402 0.818
1°000 0.106  0.281  0.301 0.887 0.880  0.406 0.248 0476 0.198 0254 0237 0.347 0.566 0.302 0220 0374 0.645
8’000 0.025 0.070  0.074 0.935 0.934 0411 0.086  0.419 0.000 0.111 0.065  0.129 0.540 0.156  0.061  0.167 0.301

h=3,6" =0.0717
DML RA DR LP
T Bias std(6,) RMSE Cy(95%) C,(95%) Bias sid(§y) RMSE Cy(95%) Bias std(0,) RMSE C,(95%) Bias std(f,) RMSE Cy(95%)

125 0.208 1.625  1.638 0.915 0.901  0.594 0.720  0.933 0.454  0.453 0.669  0.808 0.709  0.072 0.612  0.617 0.929
250 0.105 0913 0919 0.913 0912 0.462 0.498  0.679 0.394  0.339 0.470  0.579 0.670  0.128 0.459 0476 0911
500 0.102 0.470  0.481 0.940 0.927 0.388 0.334 0512 0.296  0.269 0322 0420 0.686 0.171 0.331  0.372 0.903
1’000 0.102 0.285  0.303 0911 0.908 0.350 0.243  0.426 0.191  0.222 0236  0.324 0.658 0.214 0.237 0319 0.827
8’000 0.023 0.082  0.085 0.934 0.933  0.363 0.092 0375 0.001  0.097 0.078  0.124 0.706  0.104 0.074  0.128 0.709

h=4,6" =0.0430
DML RA DR LP
T Bias std(f,) RMSE Cy95%) C,(95%) Bias std(§,) RMSE Cy(95%) Bias std(§,) RMSE C,95%) Bias std(f,) RMSE Cy,(95%)

125 0.242 1.594  1.612 0.919 0.899  0.504 0.742  0.897 0.486  0.389 0.701  0.802 0.722  0.045 0.696  0.697 0.924
250 0.108 0967  0.973 0.905 0.900 0.399 0.529  0.662 0.418  0.300 0.504  0.587 0.712  0.090 0512 0.520 0.920
500 0.086 0552 0.559 0.938 0921 0319 0353 0476 0.365 0.222 0343 0.409 0.755  0.104 0363 0.378 0.934
1’000  0.090 0299  0.313 0.938 0.935 0294 0.251  0.386 0.251 0.187 0244 0.308 0.751 0.146 0255  0.294 0911
8’000 0.021 0.094  0.096 0.938 0.938 0.318 0.097  0.333 0.004  0.085 0.089  0.123 0.786  0.071 0.084  0.110 0.866

h=5,6{" =0.0258
DML RA DR LP
T Bias std(6,) RMSE Cp(95%) Co(95%) Bias std(6,) RMSE Cp(95%) Bias std(6,) RMSE Cy(95%) Bias std(§y) RMSE  Cy(95%)

125 0.242 1.669  1.686 0.899 0.899 0.428 0.786  0.894 0.516 0.342 0.745  0.820 0.757  0.043 0.770  0.771 0.912
250 0.106 0977  0.983 0.930 0.920 0.328 0552 0.642 0482 0244 0.528  0.582 0.749  0.047 0.539  0.541 0.934
500 0.084 0.533  0.540 0.943 0923 0.269 0370 0457 0.403  0.190 0362 0.409 0.775  0.067 0386  0.392 0.941
1’000  0.084 0317 0.328 0.942 0.937 0251 0.265  0.365 0303 0.162 0.260  0.306 0.797  0.102 0274  0.292 0.939
8°000 0.016 0.104  0.105 0.942 0942 0273 0.103  0.292 0.009 0.071 0.099  0.121 0.829  0.045 0.095  0.106 0.924

NOTE: The table depicts simulation results across N = 1’000 draws obtained for the scenario with one stochastic process. The outcome variable is generated from a linear DGP, i.e.
b(X;) =0.5 Z‘?:] Xirand 7(X;) = 91()0) + Z‘::] Xit— Z?:4 X +. Except for the LP estimator, nuisance functions are estimated with random forest. For the DML estimator we use
10-fold cross-fitting and set k7 = T'/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data generating process are n = 12, o = 1.0, v = 0.6,
p=2,qg=10, =10, asa =03, ap = 0.3, pa = 0.35, par = 0.7, 1 = 0.3, 2 = 0.5. C,(-) and Cy(-) in the tables denote the coverage at the given confidence level using
asymptotic and fixed-bandwidth critical values, respectively.
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Figure C5: Estimated cumulative effects of target rate changes on the bond yield curve

0 months after -0.25pp target rate change 0 months after 0.25pp target rate change
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NOTE: The figure shows the estimated cumulative effects of target rate changes on the bond yield curve for the time period July
1989 to December 2008. The left (right) column shows the effect of decreasing (increasing) the target rate by 25 basis points. The
estimated effects on the yield curve are depicted for O (top row), 12 (middle row), and 24 (bottom row) months after the target
rate change. The nuisance functions are estimated by random forest using 10-fold cross-fitting removing kr = 24 observations
from the estimation sample at the boundary to the inference sample. The shaded areas represent 68§% and 95% confidence intervals
with fixed-bandwidth critical values (Kiefer & Vogelsang, 2005). The variances are estimated using bandwidth determined by the
procedure of Newey and West (1994).
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