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ABSTRACT

We introduce a double/debiased machine learning estimator for the impulse response function in
settings where a time series of interest is subjected to multiple discrete treatments, assigned over
time, which can have a causal effect on future outcomes. The proposed estimator can rely on fully
nonparametric relations between treatment and outcome variables, opening up the possibility to
use flexible machine learning approaches to estimate impulse response functions. To this end, we
extend the theory of double machine learning from an i.i.d. to a time series setting and show that
the proposed estimator is consistent and asymptotically normally distributed at the parametric rate,
allowing for semiparametric inference for dynamic effects in a time series setting. The properties of
the estimator are validated numerically in finite samples by applying it to learn the impulse response
function in the presence of serial dependence in both the confounder and observation innovation
processes. We also illustrate the methodology empirically by applying it to the estimation of the
effects of macroeconomic shocks.

JEL Classification C14 · C22 · C51 · C53 · C55

Keywords Impulse response function · Double machine learning · Time series · Average treatment effect

1 Introduction

The estimation of the response of a time series to an external impulse is a common task in many scientific disciplines.
For example, in economics, one might be interested in the reaction of the economy to a change in a central bank’s
monetary policy (Angrist, Jordà, & Kuersteiner, 2018). In the analysis of their trading costs, financial professionals
are interested in the causal effect that their trades have on an asset’s price (Bouchaud, Bonart, Donier, & Gould, 2018).
In medicine, when administering a drug to a patient over time, one is interested in measuring its effect on the health of
the patient (Bica, Alaa, & Van Der Schaar, 2020). Readers are referred to the surveys in Runge, Gerhardus, Varando,
Eyring, and Camps-Valls (2023) and Raha et al. (2021) for more examples.

The quantity of interest in these applications is commonly referred to as the impulse response function (IRF). Ideally,
the IRF measures the causal effect that an action (or “treatment”) has on the time series of interest. Recently, IRFs
and ideas stemming from the causal inference framework have been related (Jordà, 2023). In particular, Rambachan
and Shephard (2021) provided assumptions under which IRFs coincide with classical average treatment effects (ATE)
analyzed in the potential outcomes framework of causal inference (Robins, 1986; Rubin, 1974). Given this relation
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between ATE and IRFs, it seams natural to adopt estimation procedures from the causal inference literature for the
problem of IRF estimation. Traditionally, IRFs have primarily been estimated by modelling the entire dynamic system
under consideration, e.g. using vector autoregressive processes (Sims, 1980). The seminal work of Jordà (2005)
later showed how to directly estimate univariate conditional expectations using local projections (Jordà & Taylor,
2024). This approach compares the conditional expectation of an outcome variable, once conditional on a shock
(treatment) and once conditional on no shock. As such, the local projection framework is directly related to the
regression adjustment approach used for ATE estimation. The approach of Jordà (2005) allows for some flexibility
in the estimation of the impulse response function, as it can easily incorporate polynomial and interaction terms of
the regressors, state dependence (Gonçalves, Herrera, Kilian, & Pesavento, 2024), or instrumental variables (Stock &
Watson, 2018). More recently, Adamek, Smeekes, and Wilms (2024) extended the local projection approach to high-
dimensional settings using penalized local projections. Jordà and Taylor (2016) and Angrist et al. (2018) are examples
of applications that use propensity score weighting for the estimation of IRFs, another common estimation approach
coming from the causal inference literature, additionally accommodating asymmetric and nonlinear responses.

While estimators for IRFs have become more flexible in recent years, they still require the definition of a functional
form relating treatment and outcome variables. Here, we introduce an estimator for the IRF that can rely on fully
nonparametric relations between treatment and outcome variables, opening up the possibility to use flexible machine
learning approaches to estimate IRFs. We consider a setting where a single time series is subjected to a discrete
treatment at multiple points in time and one is interested in the average (causal) effect that these treatments have at
different prediction horizons. Inspired by the approach of Chernozhukov et al. (2018) for the i.i.d. setting, the proposed
estimator leverages the efficient influence function for the IRF in combination with cross-fitting, which makes the IRF
estimation insensitive – or, formally, (Neyman-)orthogonal – to the biased estimation of the conditional expectation
and treatment probability functions by machine learners. Moreover, the proposed estimator avoids over-fitting by
using a cross-fitting procedure. These two ingredients, orthogonality and cross-fitting, eliminate regularization and
over-fitting bias to which machine learning algorithms are prone to, an approach coined double/debiased machine
learning (Chernozhukov et al., 2017). Our theoretical results show that the proposed IRF estimator is consistent
and asymptotically normally distributed at the parametric rate, building the basis for semiparametric inference for
dynamic effects in time series settings. The problem studied in this paper relates to classical semiparametric estimation
techniques for dependent data, e.g. using kernel (Li & Racine, 2006; Robinson, 1983), series (X. Chen & Christensen,
2015; J. Lee & Robinson, 2016) or general sieve estimators (X. Chen & Liao, 2015; X. Chen & Shen, 1998). Apart
from such classical approaches, our contribution relates to a nascent but growing body of literature on the application
of machine learning for semi- and nonparametric causal inference in time series problems. Lewis and Syrgkanis (2021)
e.g. provide a method of estimating and conducting inference for dynamic treatment effects, based on a sequential
regression peeling process, focusing on a fixed-length time series panel setup. Bica et al. (2020) propose an estimator
for time-varying treatment effects in the presence of hidden confounders, building on a recurrent neural network.
Their setting also considers a fixed-length time series observed for multiple individuals. Using panel data, Paranhos
(2025) employs a generalized random forest to obtain locally linear impulse response functions. Hauzenberger, Huber,
Klieber, and Marcellino (2025) estimate impulse response functions using Bayesian neutral networks. Grecov et al.
(2021) consider a multivariate time series setting where some units become and remain treated at a specific point in
time. The counterfactual outcomes are obtained from a global forecasting model based on a recurrent neural network.
Others have employed flexible machine learning approaches for causal discovery in time series; see, among others,
Bussmann, Nys, and Latré (2021); Nauta, Bucur, and Seifert (2019); Yin and Barucca (2022).

The rest of the paper is organized as follows. Section 2 sets up the problem. Section 3 presents the double machine
learning (DML) estimator and our main theoretical results on its asymptotic properties. Proofs are relegated to the
Appendix for legibility. Section 4 offers recommendations for the practical implementation of the estimator. Section 5
validates the developed theory in a simulation study and Section 6 provides a comparison to local projections. Section
7 applies the proposed estimator to policy decisions in a macrodynamic setting and Section 8 concludes.

2 Notation and identification

2.1 Notation

Let S(h) = {Z(h)
t : t ∈ T } be stochastic processes generated from a distribution P with Z(h)

t = (Yt+h, Xt, Dt),
where Yt+h is a scalar real-valued random variable, Dt a binary treatment variable, and Xt ∈ X ⊆ Rn a random
vector which may contain also lagged variables, including lagged values of Yt and Dt. If not specified otherwise, T
is a collection of ordered time indices (also referred to as the index set) with cardinality |T | = T . The quantity of
interest is the impulse response function at horizon h ∈ N0 for a binary impulse variable Dt on the outcome variable
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Yt+h, defined as (Rambachan & Shephard, 2021)

θ
(h)
0 = E [E[Yt+h|Dt = 1, Xt]− E[Yt+h|Dt = 0, Xt]] . (1)

We focus on the case where θ(h)0 and the conditional first moments of the outcome and treatment random variables are
time-invariant.
Assumption 1. For all s, t ∈ T and h ∈ N0, the following holds.

1. The impulse response function is time-invariant, i.e. θ(h)0 = E[E[Yt+h|Dt = 1, Xt]−E[Yt+h|Dt = 0, Xt]] =
E[E[Ys+h|Ds = 1, Xs]− E[Ys+h|Ds = 0, Xs]].

2. The conditional first moments of Yt+h and Dt are time-invariant, i.e. µ0(d, x, h) = E[Yt+h|Dt = d,Xt =
x] = E[Ys+h|Ds = d,Xs = x] and e0(x) = Pr(Dt = 1|Xt = x) = Pr(Ds = 1|Xs = x).

While we present results for a binary treatment Dt, this can be generalized to multivariate discrete treatments (Angrist
et al., 2018), which we will also do in our empirical application. In fact, discrete treatments can be interpreted as
pairwise binary treatment comparisons, and as such, the theoretical results presented in the sequel extend directly to
multivariate treatments. Moreover, even in settings where the treatment variable is continuous, one can obtain estima-
tion results by discretizing the treatment of interest (see, e.g. Knaus, 2021). We refer to Γ0 = (µ0(d, x, h), e0(x)) as
nuisance functions.

Much of traditional estimation of IRFs relies on regression adjustment, i.e., the estimation of θ(h)0 as the average
difference between µ0(1, Xt, h) and µ0(0, Xt, h) (Cochran, 1968; Jordà, 2005; Pearl, 2009; Robins, 1986). How-
ever, regression adjustment estimators typically tend to be rather sensitive to small amounts of misspecification in
the conditional expectation models. Alternatively, approaches using inverse probability weighting (Angrist et al.,
2018; Rosenbaum & Rubin, 1983; Tsiatis, 2006) have been devised, but are also sensitive to misspecification of the
propensity score models. For the estimator presented in Section 3, as in e.g. Chernozhukov et al. (2018), we in-
stead rely on the efficient influence function (Hahn, 1998; Robins & Rotnitzky, 1995) to estimate the IRF, namely
g
(
Z

(h)
t , h; Γ0

)
− θ

(h)
0 where

g
(
Z

(h)
t , h; Γ0

)
= µ0(1, Xt, h)− µ0(0, Xt, h) +

Dt

e0(Xt)
(Yt+h − µ0(1, Xt, h))

− 1−Dt

1− e0(Xt)
(Yt+h − µ0(0, Xt, h))

(2)

and it can be shown that
θ
(h)
0 = E

[
g
(
Z

(h)
t , h; Γ0

)]
.

An influence function measures how a small perturbation of the data affects an estimator. The efficient influence func-
tion is the particular influence function that (among all regular estimators) achieves the lowest possible asymptotic
variance allowed by the semiparametric model. Readers are referred to Hines, Dukes, Diaz-Ordaz, and Vansteelandt
(2022), Kennedy (2024), Fisher and Kennedy (2021) and Tsiatis (2006) for a review of influence functions and semi-
parametric theory. In contrast to regression adjustment or inverse probability weighting, an estimator relying on the
above influence function is Neyman orthogonal (Chernozhukov et al., 2017; Neyman, 1959, 1979). Technically, the
efficient influence function of the IRF is Neyman orthogonal since the (Gateaux) derivative of its expected value with
respect to either nuisance function equals zero (for a detailed discussion, see Chernozhukov et al., 2018). This prop-
erty ensures that small deviations from the true nuisance functions have no first-order effect on the estimation of θ(h)0 .
Loosely speaking, if the estimated nuisance functions are “close enough” to their true values, estimation errors only
have a vanishing impact on the IRF estimator. While the theory presented in Section 3 leverages this Neyman orthog-
onality property, it is worth mentioning that an estimator based on Equation (2) is also doubly robust, in the sense
that it remains consistent if only one of the nuisance functions is correctly specified. In the sequel, we use standard
notations O(·) and o(·) to indicate rates of convergence for sequences. In particular, if {xt}∞1 is any real sequence,
{at}∞1 a sequence of positive real numbers, and there exists a finite constant B such that |xt|/at ≤ B for all t, we
write xt = O(at). If xt/at converges to zero, we write o(at). We use ∥·∥q to denote the Lq-norm; e.g. we write

∥f∥q = ∥f(Z)∥q =
(∫

|f(z)|qdP(z)
)1/q

.

2.2 Identification

While the focus of this paper in on the estimation of the quantity introduced in Equation (1), we here briefly present
assumptions under which θ(h)0 conveys the interpretation of the average causal effect that the binary impulse variable
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Dt has on the outcome variable Yt+h. Identification is formulated within the potential outcomes framework of causal
inference (Robins, 1986; Rubin, 1974). Let Yt+h(d) be the potential outcome, i.e., the random variable one would ob-
serve at time t+h if the treatment at time t would have been Dt = d. The following assumption ensures identification
of the causal effect.
Assumption 2 (Angrist et al. (2018); Rambachan and Shephard (2021)). For all t ∈ T and h ∈ N0 the following
holds.

1. The potential outcomes are conditionally independent of the treatment, i.e.
Yt+h(1), Yt+h(0) ⊥ Dt|Xt.

2. The observed outcome is Yt+h = DtYt+h(1) + (1−Dt)Yt+h(0).

3. For all x ∈ X it holds that η < e0(x) < 1− η, for some 0 < η < 1.

Assumption 2.1 requires conditional independence between the treatment at time t and the potential outcomes. No-
tably, it is not necessary for Dt to be conditionally independent from future treatment assignments. However, in the
case where Dt ̸⊥ Dt+1, . . . , Dt+h|Xt, the identified effect corresponds to the effect of a treatment including poten-
tial future treatments caused by Dt (Jordà, 2023). Assumption 2.3 imposes that at each point in time, the treatment
assignment is not deterministic. In other words, there are no situations in which either Dt = 1 or Dt = 0 with (con-
ditional) probability of one. In essence, these assumptions require the treatment variable of interest (or a sufficiently
informative proxy) to be observed, and a set of control variables to be available such that the treatment assignment is
(conditionally) as good as random. In macroeconomics, this requirement corresponds to identification strategies that
rely on constructed shocks, such as narrative monetary policy shocks (e.g., Ramey, 2016; Romer & Romer, 2004),
or “direct causal inference” approaches based on externally constructed measures of structural shocks (Nakamura &
Steinsson, 2018). For approaches that use continuous shock measures, the shock can also be incorporated into our
framework by discretizing them. This is however only required to define the treatment variable within our setup, not
by the identification strategy itself. For a more rigorous discussion of the identification of treatment effects with time-
dependent data – and in particular for the connection between Assumption 2 and classical macroeconomic shocks –
we refer to Rambachan and Shephard (2021). The following theorem finally establishes identification of the average
treatment effect.
Theorem 1. Under Assumptions 1 and 2 the ATE is identified as

θ
(h)
0 = E [Yt+h(1)− Yt+h(0)] .

As pointed out by Chernozhukov et al. (2018), the DML estimator will yield unbiased results also in a setting where
the causal identification assumptions presented in this section fail to hold. In this case however, the estimated IRF has
to be interpreted as a prediction difference rather than a causal effect.

3 Estimation

This section outlines the estimator for θ(h)0 and its asymptotic properties when the nuisance functions are estimated
with flexible, nonparametric machine learning algorithms. The estimator is developed in three steps. First, we provide
results for the (hypothetical) case where the nuisance functions are known. In a second step, nuisance functions are
estimated, but multiple independent stochastic processes generated from the same distribution are available. Lastly,
we provide results for the case where nuisance functions have to be estimated and only a single stochastic process is
available.

3.1 An oracle estimator

In case the nuisance functions are known, we can estimate the effect of interest by simply averaging the stochastic
processes G(h) =

{
g
(
Z

(h)
t , h; Γ0

)
: t ∈ T

}
over the index set. We refer to this estimator as the oracle estimator for

the IRF. The following assumption and theorem provide conditions under which the oracle estimator is asymptotically
normally distributed.
Assumption 3. For some β > 2 and all h ∈ N0, the following conditions hold.

1. The stochastic processes G(h) are weakly stationary.

2. The variance satisfies that 0 < V
(h)
0 = limT→∞ Var

[
1√
T

∑
t∈T g

(
Z

(h)
t , h; Γ0

)]
.
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3. G(h) is uniformly Lβ-bounded, i.e. supt∈T E
[∣∣∣g (Z(h)

t , h; Γ0

)∣∣∣β] <∞.

4. G(h) is α-mixing, with coefficients α(s), s ∈ N, satisfying
∑∞
s=1 α(s)

(β−2)/β <∞.

Theorem 2. Let the oracle IRF estimator be given by

θ̃(h) =
1

T

∑
t∈T

g
(
Z

(h)
t , h; Γ0

)
.

Under Assumptions 1 and 3, we have that
√
T (θ̃(h) − θ

(h)
0 )

d→ N
(
0, V

(h)
0

)
,

with V (h)
0 =

∑+∞
s=−∞ Cov

[
g
(
Z

(h)
t , h; Γ0

)
, g
(
Z

(h)
t−s, h; Γ0

)]
.

Given that g(z, h; Γ) is a measurable function as long as the nuisance functions are measurable, Assumption 3.4
is satisfied if the stochastic processes S(h) are α-mixing for some β > 2 (Davidson, 2021). This is however not
necessary, and S(h) can exhibit less favorable dependence structures as long as G(h) adheres to Assumptions 1 and 3.
Moreover, while the above assumptions are standard in the application of functional central limit theory, variations are
possible that still lead to the desired asymptotics. For example, weak stationarity in Assumption 3.1 can be relaxed to
a constant mean, permitted that additionally V (h)

0 < ∞ (see e.g. the discussion in Phillips (1987)). Weak stationarity
is however required in our setting in order to obtain a tractable estimator for V (h)

0 .

It is important to remark that the two assumptions 3.3 and 3.4 represent an inherent trade-off. The more absolute
moments of G(h) are required to exist, the more dependence is acceptable in the stochastic processes to still reach
asymptotic normality. For the sum in Assumption 3.4 to converge, we need α(s) = O(s−ϕ) for some ϕ > ϕ0 =
β/(β − 2), i.e. the process needs to be α-mixing of size −ϕ0. As β → ∞ so that all moments are finite, the
required mixing size ϕ0 → 1. Because the mixing coefficients also determine bounds for the (absolute) autocovariance
function of the process (see Davidson (2021), Corollary 15.3), this directly implies that with all moments existing,
Cov

[
g
(
Z

(h)
t , h; Γ0

)
, g
(
Z

(h)
t−s, h; Γ0

)]
= O(s−1) for the assumptions to be satisfied.

3.2 The double machine learning estimator with multiple independent stochastic processes

We now provide asymptotic results for the case where the nuisance functions are estimated and K ≥ 2 independent
stochastic processes generated from the same distribution P are available. Denote the individual stochastic processes
as S(h)

i = {Z(h)
t : t ∈ Ti}, where, without loss of generality, we assume |Ti| = T/K for all i = 1, ...,K. The

estimation procedure is outlined in Procedure 1. Asymptotics for the DML estimator θ̂(h) from Procedure 1 are

For each forecast horizon h, follow the subsequent procedure.
1. For each i = 1, ...,K

(a) Fit appropriate machine learners Γ̂
S

(h)
−i

= (µ̂
S

(h)
−i

(d, x, h), ê
S

(h)
−i

(x)) on the sample S
(h)
−i =⋃K

j=1,j ̸=i S
(h)
j .

(b) Compute the average of g
(
z, h; Γ̂

S
(h)
−i

)
on S(h)

i as

θ̂
(h)

S
(h)
i

=
1

|Ti|
∑
t∈Ti

g
(
Z

(h)
t , h; Γ̂

S
(h)
−i

)
.

2. Compute the IRF estimator at horizon h as

θ̂(h) =

K∑
i=1

|Ti|
T
θ̂
(h)

S
(h)
i

.

Procedure 1: DML estimator for the IRF with cross-fitting on multiple independent stochastic processes

5



D. BALLINARI & A. WEHRLI

obtained by introducing assumptions under which θ̂(h) has the same asymptotic distribution as the oracle estimator
θ̃(h) in Theorem 2. To this end, we impose standard assumptions on the convergence rates of the learners used in
step 1. of Procedure 1. In particular, we assume that the machine learners are consistent and that the product of the
estimation errors decays fast enough.

Assumption 4. Let the realization set be Ξ
(h)
T , which is a shrinking neighborhood of the true nuisance functions

Γ0 = (µ0(d, x, h), e0(x)). Let {∆T }T≥1 and {δT }T≥1 be sequences of positive constants converging to zero.

Define the statistical rates rµ,T = supt∈T sup
µ∈Ξ

(h)
T

∥µ(Dt, Xt, h)− µ0(Dt, Xt, h)∥2 and re,T =

supt∈T sup
e∈Ξ

(h)
T

∥e(Xt)− e0(Xt)∥2. Let C be a fixed strictly positive constant. For all i = 1, ...,K and h ∈ N0,
the following conditions hold.

1. The nuisance function estimators Γ̂
S

(h)
−i

belong to Ξ
(h)
T with probability at least 1−∆T .

2. For q > 2, we have supt∈T sup
µ∈Ξ

(h)
T

∥µ(Dt, Xt, h)− µ0(Dt, Xt, h)∥q ≤ C < ∞ and
supt∈T sup

e∈Ξ
(h)
T

∥e(Xt)− e0(Xt)∥q ≤ C <∞.

3. rµ,T ≤ δT , re,T ≤ δT and rµ,T · re,T ≤ T−1/2δT .

4. supt∈T sup
e∈Ξ

(h)
T

∥e(Xt)− 1/2∥∞ ≤ 1/2− η for 0 < η < 1.

5. supt∈T E
[
(Yt+h − µ0(d,Xt, h))

2 |Xt, Dt = d
]
≤ ϵ2d <∞

The statistical rates in Assumption 4 are defined in terms of uniform L2-norms. Under the additional assumptions of
strict stationarity of S(h) and measurability of the nuisance functions, these uniform norms would reduce to simple
L2-norms. Assumption 4.2 requires that, with probability approaching one, the estimation errors are uniformly Lq-
bounded for q > 2. Assumption 4.3 requires the estimation errors to converge uniformly in L2-norm to zero and
their products to converge at least at the rate

√
T with probability approaching one. Our assumptions on convergence

rates are set up to accommodate the application of a broad range of machine learning estimators for the nuisance
functions. There is a rich literature deriving convergence rates of machine learners under more strict conditions than
used here. Wong, Li, and Tewari (2020), for example, provide Lasso convergence rates for stochastic processes under
the assumption of exact sparsity. For α-mixing Gaussian processes, they find the L2 convergence rate to be of order
O
(
A(T )

√
log dim(X )/T

)
, where A(T ) =

∑T
s=0 α(s). Assumption 4.3 is satisfied for A(T ) = o(T 1/4), imposing

a restriction on how fast the dependence in the data has to decay. We provide more references in Section 4.2. Next,
Assumption 4.4 implies that the estimated propensity scores remain uniformly bounded away from zero and one with
probability approaching one. Finally, Assumption 4.5 requires that the conditional variance of the outcome variable is
a bounded random variable.

We furthermore impose the following sequential conditional exogeneity condition.

Assumption 5. For all t ∈ T and h ∈ N0 we have that E[Yt+h|Xt, Dt = d, {Z(0)
u : u ∈ T , u < t}] =

E[Yt+h|Xt, Dt = d] and E[Dt|Xt, {Z(0)
u : u ∈ T , u < t}] = E[Dt|Xt].

Assumption 5 implies that the residualsDt−e0(Xt) and Yt+h−Dtµ0(1, Xt, h)−(1−Dt)µ0(0, Xt, h) are mean inde-
pendent of past information on (Yt, Xt, Dt). In line with standard assumptions in the literature (e.g. Olea, Plagborg-
Møller, Qian, & Wolf, 2024; Semenova, Goldman, Chernozhukov, & Taddy, 2023), this in practice requires a rich
enough set of control variables, which can also contain past values of Yt and Dt.

The following theorem finally establishes that the DML estimator for the IRF is asymptotically unbiased and normally
distributed. In particular, the estimator retains the parametric

√
T convergence rate. The proof is relegated to the

Appendix. The main idea of the proof is to show that the IRF estimator using estimated nuisance functions converges
to the oracle IRF estimator θ̃(h), which itself is asymptotically normally distributed as shown in Theorem 2, at rate√
T .
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Theorem 3. Let S(h)
i =

{
Z

(h)
t : t ∈ Ti

}
for i = 1, ...,K ≥ 2 and h ∈ N0 be independent stochastic processes

generated from the same distribution P such that |Ti| = T/K for all i. Define the estimator as

θ̂(h) =

K∑
i=1

|Ti|
T
θ̂
(h)

S
(h)
i

with

θ̂
(h)

S
(h)
i

=
1

|Ti|
∑
t∈Ti

g
(
Z

(h)
t , h; Γ̂

S
(h)
−i

)
,

where the nuisance functions Γ̂
S

(h)
−i

= (µ̂
S

(h)
−i
, ê
S

(h)
−i

) are estimated on S(h)
−i =

⋃K
j=1,j ̸=i S

(h)
j . Then under Assumptions

1 and 3 - 5 it holds that √
T (θ̂(h) − θ

(h)
0 )

d→ N
(
0, V

(h)
0

)
,

with V (h)
0 as in Theorem 2.

3.3 The double machine learning estimator with one stochastic process

In practice, multiple independent stochastic processes generated from the same distribution are often not available.
Instead, a sample from a single stochastic process S(h) is observed. In the same spirit as approaches used for cross-
validating models with dependent data (Bergmeir & Benítez, 2012; Racine, 2000) and the cross-fitting approach pro-
posed by Semenova et al. (2023) for panel data, we split the single stochastic process into sub-sequences, removing
a block of kT coordinates where the process is split. The resulting sub-sequences replace the independent stochastic
processes S(h)

i from Procedure 1. To this end, let {Ti : i = 1, . . . ,K} be a partition of the index set T such that
the order of the time indices within each Ti and across all subsets follows the original order in T . Without loss of
generality, we continue to assume that |Ti| = T/K for all i. The estimation procedure is described in Procedure 2.

For each forecast horizon h, follow the subsequent procedure.
1. For each i = 1, ...,K

(a) Define T−i = {t : t ∈ T ∧ (t < inf(Ti)− kT ∨ t > sup(Ti) + kT )}
(b) Fit appropriate machine learners Γ̂

S
(h)
−i

= (µ̂
S

(h)
−i

(d, x, h), ê
S

(h)
−i

(x)) on the sample S(h)
−i = {Z(h)

t : t ∈
T−i}.

(c) Compute the average of g
(
z, h; Γ̂

S
(h)
−i

)
on S(h)

i as

θ̂
(h)

S
(h)
i

=
1

|Ti|
∑
t∈Ti

g
(
Z

(h)
t , h; Γ̂

S
(h)
−i

)
.

2. Compute the IRF estimator at horizon h as

θ̂(h) =

K∑
i=1

|Ti|
T
θ̂
(h)

S
(h)
i

.

Procedure 2: DML estimator for the IRF with cross-fitting on a single stochastic processes

An illustration of the cross-fitting approach for K = 4 is given in Figure 1. The time series is divided into four sub-
sequences. The nuisance functions are estimated on the union of sub-sequences S1, S2 and S3, where kT coordinates
are removed at the boundaries of S3. Sub-sequence S3 is used to compute θ̂(h)S3

. This procedure is repeated such that
each sub-sequence is used once to conduct inference.

The asymptotic results for the estimator described in Procedure 2 require some additional assumptions.
Assumption 6. For d ∈ {0, 1}, h ∈ N0 and some scalar constant p ≥ 1 the following conditions hold.

1. kT = O(T ).

2. The nuisance functions µ0(d, x, h), e0(x) and the functions µ(d, x, h), e(x) ∈ Ξ
(h)
T are measurable.
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Figure 1: Illustration of the cross-fitting procedure

S
(h)
1 S

(h)
2

kT

S
(h)
3

kT

S
(h)
4

Z
(h)
1 Z

(h)
T. . .

NOTE: The figure illustrates the cross-fitting procedure for K = 4. The nuisance functions are estimated using appropriate machine
learners on the union of sub-sequences S(h)

1 , S(h)
2 and S

(h)
4 after dropping kT observation at the boundaries to S

(h)
3 . Sub-sequence

S
(h)
3 is used to compute θ̂

(h)

S
(h)
3

. This procedure is repeated such that each sub-sequence is used once to conduct inference.

3. For for r > p and 1/r = 1/r′+1/r′′, we have supt∈T ∥sup
µ∈Ξ

(h)
T

(µ(d,Xt, h)−µ0(d,Xt, h))∥2r′<∞ and
supt∈T ∥e0(Xt)−Dt∥2r′′ <∞.

4. For q > p and 1/q = 1/q′ + 1/q′′, we have supt∈T ∥sup
e∈Ξ

(h)
T

(e(Xt) − e0(Xt))∥2q′< ∞ and
supt∈T ∥Yt − µ0(Dt, Xt, h)∥2q′′ <∞.

5. The stochastic processes S(h) = {Z(h)
t : t ∈ T } are α-mixing with coefficients α(s), satisfying for T → ∞

that α (kT )
ψ
= o(T−1), where ψ = 1/p− 1/min(r, q).

Assumption 6 imposes restrictions on the dependence structure in the stochastic processes S(h). As we can no longer
rely on the independence between S(h)

i and S(h)
−i , we require the dependence in the stochastic process to decay fast

enough. Intuitively, after removing kT coordinates at the boundaries of S(h)
i it should (asymptotically) become inde-

pendent of S(h)
−i . The choice of kT hereby represents a trade-off. The larger kT , the smaller is the effective estimation

sample size. Indeed, Assumption 6.1 requires kT to not increase more rapidly than the sample size. However, kT
needs to be large enough to satisfy Assumption 6.5. The stronger the dependence in the stochastic processes S(h), the
larger kT needs to be, in turn reducing the effective estimation sample size. For the sake of exposition, assume that
kT = O(Tϑ) for 0 < ϑ ≤ 1 and let us look at different exemplary assumptions on the dependence structure of S(h).

(i) α-mixing process: If the stochastic processes S(h) are α-mixing of size −ϕ0, i.e. α(s) = O(s−ϕ) for some
ϕ > ϕ0, then Assumption 6.5 is satisfied for ϑ > (ϕψ)−1 and 0 < ψ < 1. Put differently, the slower the
decay in the dependence (smaller ϕ), the larger ϑ and thus kT has to be.

(ii) Persistent process: For stochastic processes S(h) with very slowly decaying dependence of the form α(s) =
O(s2d−1) with 0 < d < 1/2, we have additionally that 0 < ϕ < 1 and as a consequence Assumption 6.5 is
indeed never satisfied.

(iii) Weakly dependent processes: If the stochastic processes S(h) have mixing coefficients α(s) = O(ρs) for
0 < ρ < 1, then Assumption 6.5 is already satisfied with ϑ > 0.

(iv) Independent process: In this case, i.e. when it is assumed that the stochastic processes S(h) are a collection
of independent random variables, then α(s) = 0 for all s > 0 and Assumption 6.5 is already satisfied for
kT = 0.

These examples intuit two things that are required for our theory to hold in practice. First, if only one stochastic
process S(h) is available for estimation, enough coordinates must be removed when splitting, so that no influence
of past coordinates exists in coordinates of a subsequent split. Second, the stochastic processes S(h) itself have to
exhibit fast enough decaying temporal dependence. If this is not the case, suitable transformations of the original
process need to be found to achieve this. Lastly, the boundedness conditions in the above assumptions also represent a
trade-off. The more moments of the residuals and estimation errors are finite (larger r and q), the less stringent are the
conditions on the dependence decay, and vice versa. In general, with only one stochastic process, the conditions on the
estimation errors are more restrictive than those imposed in Assumption 4.2. The proposed cross-fitting approach is
closely related to the methodology introduced by Semenova et al. (2023) for panel data, wherein the data is partitioned
into folds along the temporal dimension. The primary distinction lies in the selection of observations omitted between
the estimation and inference samples. While Semenova et al. (2023) advocate for a K-fold partitioning of the sample,
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removing an entire fold between estimation and inference samples, i.e. kT = ⌊T/K⌋ (see Section 4.1 for further
discussion), the present study adopts a more flexible strategy. Specifically, as outlined above, the choice of kT can be
informed by the underlying dependence structure of the data. The following theorem finally establishes asymptotic
properties for the case when nuisance functions are estimated based on a single stochastic process.

Theorem 4. Given the stochastic processes S(h) = {Z(h)
t : t ∈ T } for h ∈ N0, define K ≥ 2 sub-sequences

S
(h)
i =

{
Z

(h)
t : t ∈ Ti

}
such that {Ti : i = 1, . . . ,K} is a partition of the index set T where the order of the time

indices within each Ti and across all sub-sequences with length |Ti| = T/K follows the original order in T . Define
the estimator as

θ̂(h) =

K∑
i=1

|Ti|
T
θ̂
(h)

S
(h)
i

with

θ̂
(h)

S
(h)
i

=
1

|Ti|
∑
t∈Ti

g
(
Z

(h)
t , h; Γ̂

S
(h)
−i

)
,

where the nuisance functions Γ̂
S

(h)
−i

= (µ̂
S

(h)
−i
, ê
S

(h)
−i

) are estimated using the sub-sequences S(h)
−i = {Z(h)

t : t ∈ T−i}
for T−i = {t : t ∈ T ∧ (t < inf(Ti)− kT ∨ t > sup(Ti) + kT )} respectively. Then under Assumptions 1 and 3 - 6 it
holds that √

T (θ̂(h) − θ
(h)
0 )

d→ N
(
0, V

(h)
0

)
,

with V (h)
0 as in Theorem 2.

3.4 Variance estimation and inference

The variances V (h)
0 can be estimated using standard long-run variance estimators for time series, such as the one

proposed by Newey and West (1987).

Assumption 7. The following conditions hold.

1. There are some fixed finite constants C and r > 4 such that

supt∈T E
[∣∣∣g (Z(h)

t , h; Γ0

)∣∣∣r] < C.

2. There exists a measurable function m(z) such that supΓ∈ΞT
|g(z, h; Γ)| < m(z), where for some finite

constant D, supt∈T E[m(Zt)
2] < D.

3. For q > 2 and some fixed strictly positive and finite constant C we have supt∈T ∥Yt∥q ≤ C.

4. For some scalar 0 < bm < br ≤ 1/2 it holds that:

(a) The bandwidthmT is a function of the sample size such that limT→∞mT = ∞ and for T → ∞ it holds
that T−bmmT = o(1).

(b) rµ,T ≤ δTT
−br and re,T ≤ δTT

−br .

Assumptions 7.4a and 7.4b represent an inherent trade-off. The slower the convergence rate of the machine learner,
the slower the bandwidth is allowed to grow. If the learner converges at the parametric rate, Assumption 7.4a reduces
to the usual assumption mT = o(T 1/2) (see, e.g. Kool, 1988). Note that by Assumption 4.3 we have that br ≥ 1/4.

The following theorem establishes consistency of a variance estimator resulting from averaging Newey and West
(1987) type estimators on each S(h)

i .

Theorem 5. Given the stochastic processes S(h) = {Z(h)
t : t ∈ T }, define the sub-sequences S(h)

i for i = 1, ...,K ≥
2 and h ∈ N0 as in Theorem 4. Furthermore, define v(h)t = g

(
Z

(h)
t , h; Γ0

)
− θ

(h)
0 and the corresponding estimated

quantities as v̂(h)
S

(h)
i ,t

= g
(
Z

(h)
t , h; Γ̂S−i

)
− θ̂(h). θ̂(h) and S(h)

−i are defined as in Theorem 4 and the nuisance functions

Γ̂
S

(h)
−i

= (µ̂
S

(h)
−i
, ê
S

(h)
−i

) are estimated on S(h)
−i . Let w(s,mT ) = 1− s/(mT +1), where mT is a bandwidth parameter

and define the additional index sets Ti,s = {t ∈ Ti : t − s ≥ inf(Ti)}. Moreover, define the following Newey and
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West (1987) type variance estimators as

V̂
(h)

S
(h)
i

=
1

|Ti|

∑
t∈Ti

(v̂
(h)

S
(h)
−i ,t

)2 + 2

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

v̂
(h)

S
(h)
−i ,t

v̂
(h)

S
(h)
−i ,t−s

 .

The variance estimator is finally defined as

V̂ (h) =

K∑
i=1

|Ti|
T
V̂

(h)

S
(h)
i

Then for V (h)
0 as in Theorem 2 and under Assumptions 1 and 3 - 7 as T → ∞ it holds that∣∣∣V̂ (h) − V

(h)
0

∣∣∣ p→ 0

with measure P .

Note that while Theorem 5 is formulated in terms of a specific weight function w(s,m), as in Newey and
West (1987), the variance estimator is consistent for any weight function additionally satisfying for each s that
limm(T )→∞ w(s,mT ) = 1 and |w(s,mT )| < ∞. Using the estimators in Theorems 4 and 5, inference can be
conducted by constructing level-α confidence bounds for θ(h)0 as

θ
(h)
0 ∈

(
θ̂(h) ± 1√

T
Φ−1

(
1− α

2

)√
V̂ (h)

)
, (3)

where Φ−1(·) represents the inverse cumulative distribution function of the standard normal distribution.

4 Considerations on the practical implementation of the estimator

Here, we gather practical recommendations for the time series DML estimator.

4.1 Cross-fitting and small samples

For small samples, we recommend setting K to a rather large value (e.g. K = 10 or K = 20). This increases the
number of observations available to estimate the nuisance functions. Regarding the choice of kT , it is important to
note that this is directly affected by the definition of the outcome variable. In cases where the effect on the outcome
variable h periods after the treatment is of interest, kT has to be chosen such that samples are not overlapping, i.e.
kT ≥ h. Similarly, kT has to take into account possible lagged values in Xt. As a guideline, we recommend that
practitioners set K to either 10 or 20, and, following Semenova et al. (2023), use kT = ⌊T/K⌋ as an initial choice.
This satisfies Assumptions 6.1 and 6.5 across a wide range of dependence structures. Sensitivity analysis for variations
in kT can then be done to ensure robustness of results.

4.2 Estimators for the nuisance functions

As in the i.i.d. setting (Chernozhukov et al., 2018), our theory requires the estimators for the nuisance functions to be
consistent with fast enough convergence rates. Following Theorems 3 and 4, this needs to extend to estimation on time-
dependent observations. Consistency and convergence rates on α-mixing sequences are derived for Lasso in Wong
et al. (2020), for random forests in Goehry, Benjamin (2020) and Davis and Nielsen (2020), for boosting algorithms
in Lozano, Kulkarni, and Schapire (2014), for support vector machines in Steinwart, Hush, and Scovel (2009), for
kernel and nearest-neighbour regressions in Irle (1997) and for spline and wavelet series regression estimators in
X. Chen and Christensen (2015). Consistency of deep feed-forward neural networks with ReLU activation functions
on exponentially α-mixing processes was recently shown in Ma and Safikhani (2022).

The selection of an appropriate machine learning algorithm ultimately has to consider the specific problem and the
characteristics of the data. For example, the random forest algorithm has been shown to perform effectively in
macroeconomic contexts, even with relatively small sample sizes (Beck & Wolf, 2025; Goulet Coulombe, 2024;
Goulet Coulombe, Leroux, Stevanovic, & Surprenant, 2022; Medeiros, Vasconcelos, Álvaro Veiga, & Zilberman,
2021). Our numerical experiments, as well as the empirical application, also find random forests to be effective on
representative sample sizes and data generating processes. In contexts with typically larger sample sizes, recurrent
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neural networks have e.g. demonstrated success in modelling high-frequency market data (Lucchese, Pakkanen, &
Veraart, 2024; Zhang, Zohren, & Roberts, 2019). For an overview of applying machine learning algorithms to time
series, we also refer to the recent survey by Masini, Medeiros, and Mendes (2023).

Our numerical experiments suggest that, as in the i.i.d. case (Bach, Schacht, Chernozhukov, Klaassen, & Spindler,
2024), properly tuning hyperparameters of the chosen estimators plays an important role in the application of double
machine learning also for time series data. In summary, we recommend to estimate and tune multiple different esti-
mators and select the best in terms of the relevant loss function for the problem at hand (e.g. predictive mean squared
error).

4.3 Modelling multiple forecast horizons

Our theory is agnostic to how the nuisance functions for different forecast horizons h are modelled. In analogy to clas-
sical impulse response function estimation using local projections, each forecast horizon (and nuisance function) can
be estimated separately, and potentially with different learning algorithms. Depending on the application, it is however
also possible to estimate µ0(d, x, h) with one model for all h, e.g. using sequence-to-sequence approaches (Mariet &
Kuznetsov, 2019), provided they exhibit appropriate convergence rates. Applying approaches from multitask learning
(Caruana, 1997), it is finally also possible to estimate µ0(d, x, h) and e0(x) in one model if both problems can be
learned using a shared representation. This approach has e.g. been explored by Shi, Blei, and Veitch (2019) in the
context of i.i.d. data.

4.4 Inference in finite samples

Theorem 5 requires the choice of a kernel bandwidth mT that fulfils Assumption 7. A valid choice would be, for
example, mT = γT 1/3 where γ is determined by the procedure proposed by Newey and West (1994). The variance
estimator, when combined with standard normal critical values, is asymptotically valid under general forms of het-
eroskedasticity and autocorrelation. However, extensive research has shown that this approach can perform poorly
in finite samples (Kiefer & Vogelsang, 2005; Sun, 2014). In response, the literature has proposed fixed-bandwidth
asymptotics, where the ratio of bandwidth and sample size mT /T is held fixed as the sample size grows, rather
than shrinking to zero (as in traditional small-bandwidth asymptotics). This framework yields non-standard limiting
distributions and requires the use of fixed-bandwidth critical values (see Kiefer & Vogelsang, 2005), which better
approximate the finite-sample behavior of test statistics. Our numerical experiments confirm this finding also for the
estimator proposed in this manuscript. For practical applications, we thus advise to use fixed-bandwidth critical values
when performing inference.

4.5 Extreme propensity scores

Assumption 2 and 4 require the true propensity scores e0(x) to be bounded away from zero and one. In applications,
however, certain treatments may have essentially zero probability for particular regions of the covariate space. For ex-
ample policy interventions that are infeasible under extreme macroeconomic conditions. When such limited support is
a concern, we recommend employing a propensity-score-based trimming procedure, following Crump, Hotz, Imbens,
and Mitnik (2009). This approach systematically excludes observations with extreme propensity scores to improve
overlap between treated and control units and to ensure that the resulting estimand pertains to a subpopulation with
adequate support. A related but different issue that may arise in finite samples are numerical instabilities of the re-
ciprocal of the propensity score. In other words, while it may hold that at the population level the propensity score is
bounded away from zero and one, in finite samples, the estimated propensity scores can still be close to zero or one. A
simple approach to address this instability is to winsorize the estimated propensity scores to a small number, e.g. 0.01
and 0.99 (B. K. Lee, Lessler, & Stuart, 2011). Alternatively, one can calibrate the estimated propensity score (Ballinari
& Bearth, 2025; Klaassen, Rabenseifner, Kueck, & Bach, 2025).

5 Simulation experiments

To validate our theoretical results from the previous sections in finite samples, we conduct simulation experiments.
We compare the DML estimator from Procedures 1 and 2 to a regression adjustment estimator (RA) that estimates the
nuisance functions µ0(1, x, h) and µ0(0, x, h) separately on the full sample and takes their difference (a T-learner in
the terminology of Künzel, Sekhon, Bickel, and Yu (2019)). To disentangle the effect of cross-fitting and usage of a
Neyman orthogonal estimator, we also compute the IRF using the doubly robust influence function (2) without relying
on cross-fitting (DR). In addition, we estimate the impulse response functions using standard local projections (LP)
(Jordà, 2005). Results are presented throughout using random forests (Breiman, 2001) as machine learning estimators
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for the nuisance functions. In the Online Appendix, Table C6, we also include results using a gradient boosting algo-
rithm estimator (T. Chen & Guestrin, 2016), supporting the validity of our asymptotic theory for alternative machine
learning estimators.3 More details on the hyperparameter tuning schemes for both considered estimators are also given
in the Online Appendix A.1. In all simulations, we generate data according to the following data generating process
(DGP), which is a modification of the setup in Nie and Wager (2020). For some noise level σϵ, a propensity score
e0(Xt), a baseline effect b(Xt) and a (conditional) treatment effect function τ(Xt), the outcome process is defined as

Yt = b(Xt) + (Dt − 0.5) τ(Xt) + γYt−1 + ϵt,

where the innovations ϵt are generated from a GARCH(1,1) process ϵt = σtζt, with ζt ∼ N (0, 1) and σ2
t = ω +

β1ζ
2
t−1 + β2σ

2
t−1. Following Jordà (2005) we set β1 = 0.3 and β2 = 0.5. ω is set to ensure that the E[ϵ2t ] = σ2

ϵ , that
is ω = (1− β1 − β2)σ

2
ϵ . We set Dt|Xt ∼ Ber (e0(Xt)) with

e0(Xt) =
(
1 + e−X1,t + e−X2,t

)−1

b(Xt) = 0.5
(
(X1,t +X2,t +X3,t)

+ + (X4,t +X5,t)
+
)

τ(Xt) = (X1,t +X2,t +X3,t)
+ − (X4,t +X5,t)

+

where (x)+ = max(0, x). The confounder process is modelled as a n-dimensional, zero mean VARMA(p,q) process

Xt =

p∑
i=1

AiXt−i +

q∑
j=1

Mjut−j + ut,

where ut is a zero mean white noise random variable with nonsingular covariance matrix, parameterized as Σu =
σ2
uIn using some scalar σu and the n-dimensional identity matrix In. In the spirit of Adamek et al. (2024), the

coefficient matrices are defined as Ai = αi−1
A ΓA and Mj = αj−1

M ΓM , where αA, αM are some scalars, ΓA (and
ΓM correspondingly) is a tapered Toeplitz matrix with ΓAi,j = ρ

|i−j|+1
A and ΓAi,j = 0 for |i − j| ≥ n/2. We finally

scale the process Xt so that the confounders have unit variance. The baseline parametrization for our simulations is
γ = 0.6, σϵ = σu = 1, n = 12, αA = αB = 0.3, p = 2, q = 1, ρA = 0.35 and ρM = 0.7. The simulation
procedure is described in Procedure 3. We perform the numerical experiments for two settings. A first one, where

1. Draw a realization from the DGP with T observations.
2. For each evaluated forecast horizon h = 0, 1, ..., H:

a) Construct {S(h)
i : i = 1, . . . ,K} from the realization.

b) Find optimal hyperparameters for the estimators for µ0(0, X, h), µ0(1, X, h), and e0(X) by cross-
validation using {S(h)

i : i = 1, . . . ,K} as folds and removing kT observations at the boundary between
estimation and inference sample.

c) Train each of the four learners (DML, RA, DR, LP); and for each learner
i. compute the IRF estimator θ̂(h) according to Procedure 1 or Procedure 2

ii. compute the variance estimator V̂ (h) from Theorem 5. Following the arguments outlined in Section
4.4, we use the approach in Newey and West (1994) to determine the bandwidth mT .

3. Repeat steps 1. and 2. N times.

Procedure 3: Setup of the simulation study

in step 2.a) the realizations for S(h)
i are in fact drawn separately by simulating K independent realizations from the

DGP in step 1., each with T/K observations. In a second setting, the sub-samples are constructed from the one single
realization drawn in step 1. In this setting, we remove kT = T/K coordinates at the boundary of the estimation and
inference samples. Following our practical recommendation, we set K = 10. Results for the baseline parametrization
of the DGP for the DML, RA, DR and LP estimators for the setting with one stochastic process and for sample sizes
T ∈ {125, 250, 500, 1′000, 8′000} are shown in Table 1. Results for the setting with independent stochastic processes

3The gradient boosting algorithm is found to require slightly larger sample sizes than random forests to reach a consistent
estimate, highlighting that estimators can exhibit varying sample size requirements with respect to our asymptotic theory. For
practical applications we thus suggest, cf. Section 4.2, to select the estimator yielding the best predictive performance on the
available sample size.
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and for some parameter variations (different number of confounders, higher noise in the outcome process, empirically
calibrated parameters) are deferred to Tables C2-C5 in the Online Appendix.

Overall, our simulations support the validity of our theory. Compared to the RA and DR estimators, the DML estimator
exhibits the smallest average bias in all considered settings, converging at the expected

√
T -rate. Importantly, this

holds true for both Procedure 1 relying on independent realizations and Procedure 2 using a single realization. Being
linear estimators, local projections do not estimate the true nonlinear average treatment effect, but a weighted average
of marginal effects (Kolesár & Plagborg-Møller, 2025). This is highlighted by the observation that the bias of the LP
estimator does not decrease and its coverage deteriorates with increasing sample sizes. On these points also refer to
Section 6. Finally, the DML estimator produces valid confidence intervals, while the regression adjustment, doubly
robust and local projection estimators fail to allow valid inference. As expected, whenK truly independent realizations
are available (cf. Table C2 in the Online Appendix), the bias of the DML estimator is lower than in the one-realization
setting.

In Table 1, for the DML estimator, we report both the coverage using asymptotic and fixed-bandwidth critical values
(cf. Section 4.4). In small samples, coverage is better when using fixed-bandwidth critical values. As sample sizes
increase, the improvement over asymptotic critical values becomes negligible.4 In most settings, the coverage of the
DML estimator is marginally too low, which likely reflects a finite-sample bias in estimating the variance of θ̂(h).
Unreported results indeed show that, on average, our variance estimator is slightly smaller than the empirical variance
of the IRF estimates across realizations. This downward bias is expected because, while the variance estimator is
derived under the assumption of known nuisance functions, it is in practice constructed using estimates thereof. This
introduces sampling variability that is not fully accounted for in finite samples.

Figure 2 provides a visual summary of our results by depicting the true and estimated IRF. The regression adjustment
estimator is biased, overestimating on average the true impact of the treatment Dt, in particular for longer horizons.
When estimating the IRF with the doubly robust influence function (DR), the bias is reduced. Only when using
an estimator that is Neyman orthogonal and uses cross-fitting (DML), the distribution of the estimated IRFs across
simulation replications is centered around the true IRF. In the inset of the top panel of Figure 2, for the DML estimator,
normalized biases as a function of T are plotted for all forecast horizons h and contrasted to the

√
T scaling implied by

Theorem 3, showing that the bias of the DML estimator follows the
√
T scaling implied by Theorem 3 quite well. The

LP estimator finally exhibits a bias of similar magnitude as the RA estimator, as the linear estimator fails to capture
the highly nonlinear and heterogeneous relation between Dt, Xt and Yt+h in the DGP.

6 Comparison to local projections

The simulation study in the previous section provided evidence that, in the presence of nonlinearities, local projections
are asymptotically biased, while the proposed DML estimator consistently estimates the true impulse response func-
tion. Here, we contrast these two estimators and their underlying assumptions. For a comparison of local projections
and VARs, see Plagborg-Møller and Wolf (2021).

6.1 An illustrative example

Consider the following stochastic processes

Yt+h = f (h)(Dt, Xt) + ϵt+h
Dt = q(Xt, ηt),

(4)

where ϵt+h and ηt are i.i.d. noise terms with zero mean and finite variance. The functions f (h)(·) and q(·) are
measurable and possibly nonlinear. Let Xt = (Vt, Vt−1)

′ be a two-dimensional vector with Vt = ϕVt−1 + ut, where
|ϕ| < 1 and ut is an i.i.d., mean zero random variable with finite variance. The quantity of interest is the impulse
response function at horizon h, i.e. θ(h)0 = E[τ (h)(Xt)] with τ (h)(Xt) = E[f (h)(1, Xt)|Xt] − E[f (h)(0, Xt)|Xt].
In the following, we illustrate how assumptions of local projection and DML estimators are satisfied in the example
process (4).

4Simulation results are qualitatively unchanged when the bandwidth is determined alternatively using the rule of thumb by
Wooldridge (2016) or Lazarus, Lewis, Stock, and Watson (2018). Results are available from the authors upon request.
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Figure 2: Distribution of impulse response function estimates for a baseline nonlinear DGP with n = 12, σϵ = 1.0
and random forest nuisance function estimates
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NOTE: Comparison of the true θ
(h)
0 with estimates θ̂(h) of the IRF obtained for the setting with one stochastic process of length

T = 8′000 from Table 1. Except for the LP estimator, nuisance functions are estimated with random forests. For the DML
estimator, we use 10-fold cross-fitting and set kT = T/10. The parameters of the data generating process are n = 12, σϵ = 1.0,
γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. For individual h, we show
kernel density estimates of the distribution of θ̂(h) across N = 1′000 realizations. The dots indicate the average, and the vertical
lines the (2.5%, 97.5%)-quantile range of the distribution. In the inset of the top panel, for the DML estimator, normalized biases
as a function of T are plotted for all forecast horizons h and contrasted to the

√
T scaling implied by Theorem 3 in black.
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Table 1: Simulation results for a baseline nonlinear DGP with n = 12, σϵ = 1.0 and random forest nuisance function
estimates

h = 0, θ(h)0 = 0.3321
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.053 0.797 0.799 0.945 0.944 0.360 0.455 0.580 0.511 0.263 0.413 0.490 0.707 0.090 0.357 0.368 0.871
250 0.060 0.398 0.402 0.949 0.941 0.285 0.300 0.413 0.514 0.208 0.278 0.347 0.732 0.128 0.251 0.282 0.847
500 0.030 0.220 0.222 0.954 0.947 0.219 0.196 0.294 0.464 0.142 0.183 0.232 0.776 0.135 0.173 0.220 0.829

1’000 0.029 0.144 0.147 0.931 0.928 0.182 0.139 0.229 0.422 0.103 0.131 0.167 0.784 0.138 0.126 0.187 0.730
8’000 0.006 0.042 0.042 0.966 0.965 0.176 0.048 0.182 0.016 0.040 0.042 0.058 0.853 0.131 0.046 0.139 0.141

h = 1, θ(h)0 = 0.1992
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.088 0.857 0.861 0.930 0.920 0.379 0.446 0.586 0.480 0.275 0.407 0.491 0.708 0.060 0.362 0.367 0.923
250 0.067 0.496 0.500 0.947 0.940 0.312 0.301 0.434 0.394 0.222 0.277 0.355 0.692 0.111 0.265 0.287 0.914
500 0.053 0.236 0.242 0.955 0.952 0.250 0.196 0.317 0.321 0.161 0.183 0.243 0.731 0.123 0.193 0.229 0.887

1’000 0.053 0.144 0.153 0.942 0.941 0.218 0.135 0.257 0.226 0.126 0.127 0.179 0.708 0.139 0.133 0.193 0.792
8’000 0.012 0.044 0.045 0.955 0.954 0.220 0.049 0.226 0.001 0.051 0.042 0.066 0.759 0.144 0.053 0.153 0.183

h = 2, θ(h)0 = 0.1195
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.107 0.815 0.822 0.925 0.916 0.353 0.455 0.576 0.478 0.256 0.424 0.495 0.748 0.031 0.410 0.411 0.931
250 0.065 0.517 0.521 0.932 0.932 0.278 0.313 0.419 0.425 0.197 0.296 0.356 0.731 0.078 0.306 0.316 0.927
500 0.060 0.259 0.266 0.946 0.942 0.232 0.212 0.314 0.346 0.151 0.201 0.252 0.737 0.104 0.221 0.244 0.911

1’000 0.060 0.167 0.178 0.918 0.917 0.210 0.153 0.260 0.220 0.125 0.146 0.193 0.717 0.128 0.160 0.204 0.854
8’000 0.011 0.050 0.051 0.951 0.951 0.214 0.052 0.220 0.001 0.049 0.048 0.069 0.793 0.128 0.055 0.140 0.352

h = 3, θ(h)0 = 0.0717
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.105 0.899 0.905 0.934 0.926 0.305 0.482 0.571 0.483 0.225 0.452 0.505 0.767 0.012 0.448 0.448 0.937
250 0.069 0.527 0.532 0.920 0.916 0.248 0.339 0.420 0.467 0.175 0.322 0.366 0.766 0.058 0.340 0.345 0.934
500 0.060 0.287 0.294 0.935 0.931 0.208 0.226 0.307 0.362 0.140 0.220 0.260 0.774 0.087 0.249 0.264 0.915

1’000 0.061 0.185 0.195 0.921 0.919 0.193 0.164 0.253 0.242 0.118 0.160 0.199 0.765 0.112 0.178 0.210 0.902
8’000 0.011 0.057 0.058 0.940 0.940 0.194 0.058 0.203 0.003 0.045 0.055 0.071 0.831 0.117 0.061 0.131 0.479

h = 4, θ(h)0 = 0.0430
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.138 0.949 0.959 0.929 0.908 0.270 0.500 0.569 0.538 0.205 0.475 0.517 0.773 0.021 0.496 0.497 0.935
250 0.064 0.671 0.674 0.910 0.907 0.217 0.369 0.428 0.462 0.159 0.352 0.387 0.764 0.049 0.377 0.380 0.922
500 0.051 0.322 0.327 0.940 0.926 0.177 0.246 0.304 0.390 0.119 0.239 0.267 0.806 0.062 0.270 0.277 0.929

1’000 0.056 0.201 0.209 0.938 0.936 0.170 0.174 0.244 0.280 0.106 0.170 0.201 0.803 0.092 0.192 0.213 0.921
8’000 0.011 0.063 0.064 0.946 0.946 0.174 0.061 0.184 0.007 0.041 0.061 0.074 0.874 0.100 0.067 0.121 0.662

h = 5, θ(h)0 = 0.0258
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.147 1.015 1.025 0.919 0.900 0.238 0.539 0.589 0.534 0.190 0.515 0.549 0.782 0.032 0.551 0.552 0.921
250 0.069 0.647 0.651 0.913 0.910 0.185 0.381 0.423 0.485 0.135 0.367 0.392 0.755 0.036 0.394 0.395 0.918
500 0.045 0.340 0.343 0.936 0.934 0.150 0.256 0.297 0.454 0.103 0.251 0.271 0.805 0.047 0.283 0.287 0.943

1’000 0.049 0.213 0.219 0.935 0.933 0.147 0.183 0.234 0.337 0.092 0.179 0.202 0.845 0.071 0.202 0.214 0.933
8’000 0.007 0.070 0.070 0.948 0.947 0.150 0.067 0.165 0.017 0.034 0.067 0.075 0.899 0.082 0.078 0.113 0.789

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the setting with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forests. For the DML estimator, we use 10-fold cross-fitting and set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 12, σϵ = 1.0, γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values respectively.

Local projection estimator

Local projections estimate the impulse response function via the coefficient β̂(h) in the linear regression model

Yt+h = β̂(h)Dt + α̂′Xt + r̂t+h.

By the projection theorem, the population coefficient β(h)
0 is given by

β
(h)
0 =

E[f (h)(Dt, Xt)(Dt − λ′0Xt])

E[(Dt − λ′0Xt)2]
,

where λ0 = argminE[(Dt − λ′Xt)
2]. Asymptotically, under certain regularity conditions on the time dependence

and moments of the stochastic processes S(h), we have
√
T (β̂(h) − β

(h)
0 )

d→ N (0,Var(β
(h)
0 )). To ensure this result,

Dt and Xt must be assumed to be stationary and ergodic for second moments, imposing restrictions on their time
dependence, similar to – although generally weaker then – those in Assumption 3 for the DML estimator. For the
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process in (4), this assumption is indeed fulfilled, as Dt and Xt are stationary and geometrically strong mixing.5
Furthermore, Dt and Xt are assumed to be uncorrelated with the innovation ϵt+h, which corresponds to Assumption
5 for the DML estimator. Lastly, similar to Assumptions 3 and 6, the first four moments of Dt, Xt, and ϵt+h need
to be finite. Note that since the linear regression estimator converges at the

√
T -rate, Assumption 4 is satisfied, even

though this is not required for β̂(h) to converge to β(h)
0 .

DML estimator

Under Theorem 3, the DML estimator consistently recovers θ(h)0 provided that Assumptions 1 and 3-6 hold. Assump-
tion 1 is met by construction of the example process (4). Since Vt is geometrically strong mixing and all involved
functions are measurable, it follows that S(h) and g(Z(h)

t , h; Γ0) are also geometrically strong mixing (see Theorem
15.1 in Davidson, 2021) and thus Assumption 3 is satisfied. Assumption 4 requires that the L2-norm of the estimation
error of the nuisance function estimators converges to zero at least at rate T 1/4. For the example process (4) this re-
quirement is met for example by random forests, which converge at least at rate T 1/3 (Davis & Nielsen, 2020). Neural
networks would also satisfy this condition, provided that the functions f (h)(·) and q(·) are sufficiently smooth (for
more details, see Ma & Safikhani, 2022). Lasso can achieve an even faster rate of T 1/2 (Wong et al., 2020), provided
that the nuisance functions can be well approximated by polynomials of the conditioning variables. Assumption 5
requires the set of covariates to be sufficiently rich, so that past information on Z(h)

t cannot predict Yt+h and Dt. For
the example process (4), this assumption holds directly if the covariates Xt include both Vt and Vt−1. This would still
hold if additional covariates or lagged values of Z(h)

t were included in the estimation. Assumption 6 finally holds for
any value of ψ in the setting of (4), since S is geometrically strong mixing. Therefore, it is also sufficient that the
residuals and estimation errors possess finite 4 + ν moments, for some ν > 0.

To conduct inference, Assumption 7 additionally requires choosing a bandwidth mT depending on the convergence
rate of the nuisance function estimators. For the example process (4), random forests estimators would permit mT to
be o(T 1/3) (e.g. Newey & West, 1994). Using Lasso estimators, mT can be o(T 1/2) (e.g. Lazarus et al., 2018).

6.2 Linear and nonlinear processes

In case the function f (h)(Dt, Xt) is linear, then it can be shown that β(h)
0 = θ

(h)
0 and thus linear projections recover

the true impulse response function. However, if f (h)(Dt, Xt) is a nonlinear function, then the coefficients β(h)
0 will

no longer recover the true impulse response function, but an expected, weighted average of marginal effects τ (h)(x).
For an extensive discussion and derivation of these results, refer to Kolesár and Plagborg-Møller (2025).

These effects are illustrated in Figure 3, which compares the distribution of impulse response function estimates
obtained with DML and local projection estimators for three different DGPs: a nonlinear process, a linear process with
interactions, and a purely linear process. Detailed results are deferred to Tables C7 and C8 in the Online Appendix.
As already seen in Section 5 and again shown in Figure 3a, estimation using local projections is biased on a nonlinear
process, whereas the DML estimator recovers θ(h)0 . This also holds in a setting where the outcome variable is generated
from a linear function, but there is interaction between Xt and Dt (see Figure 3b). Local projections only recover θ(h)0
for a purely linear process where its functional form is correctly specified (see Figure 3c). In this case, local projections
have lower finite sample bias and variance than the DML estimator.

7 Empirical Application

As an illustration, we apply the proposed methodology to the empirical study conducted in Angrist et al. (2018).
Based on the same data set, we revisit the estimation of the effect of U.S. monetary policy decisions on macroeco-
nomic aggregates using modern machine learning estimators. Our monthly observations cover the period from July
1989 to December 2008 and we estimate the effect of federal funds target rate changes on a set of macroeconomic
outcome variables. As predictors, we consider the same futures-based expectation measure for the federal funds rate
as in Angrist et al. (2018), as well as the level of the target rate at the end of the prior month and its change, a scale
factor that accounts for when within the month the Federal Reserve’s Open Market Committee (FOMC) meeting was
scheduled, dummies for months with a scheduled FOMC meeting, as well as measures for inflation and unemployment

5Since Vt is a linear process, it can be shown to be geometrically strong mixing with coefficients α(s) = O(|ϕ|s) (see Theorem
15.9 in Davidson, 2021).
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Figure 3: Comparison of the distribution of DML and LP impulse response function estimates for nonlinear and linear
DGPs
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(b) Linear DGP with interactions
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NOTE: The figure compares the true θ
(h)
0 with estimates θ̂(h) of the IRF obtained for the setting with one stochastic process of

length T = 8′000 generated from three different DGPs: the nonlinear DGP studied in Section 5 (Figure 3a), a linear DGP with
interaction terms where b(Xt) = 0.5

∑5
i=1 Xi,t and τ(Xt) = θ

(0)
0 +

∑3
i=1 Xi,t −

∑5
i=4 Xi,t (Figure 3b), and a linear DGP with

b(Xt) = 0.5
∑5

i=1 Xi,t and τ(Xt) = θ
(0)
0 (Figure 3c). For the DML estimator, nuisance functions are estimated with random

forests, we use 10-fold cross-fitting and set kT = T/10. The parameters of the data generating processes are n = 12, σϵ = 1.0,
γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. For individual h, we show
kernel density estimates of the distribution of θ̂(h) across N = 1′000 realizations. The dots indicate the average, and the vertical
lines the (2.5%, 97.5%)-quantile range of the distribution.

(including lagged values).6 Compared to the setup in Angrist et al. (2018), we make the following modifications to
accommodate for the change in estimation technique from linear models to flexible nonparametric machine learners.
First, we exclude dummies for monthly fixed effects and special events like Y2K and the September 11, 2001 attacks,
because IRF estimates are based on out-of-sample predictions in our approach. Second, we drop manually constructed
interaction variables, as machine learning estimators are able to infer these effects from the data, if they are present.
Third, we include up to four lags of inflation, unemployment rate and of the target variable. Our treatment variable
Dt can assume one of five discrete values d ∈ {−0.5%,−0.25%, 0.0%, 0.25%, 0.5%}. The propensity score model
for e0(d, x) = Pr(Dt = d|Xt = x) is implemented as an ordinal classification (Frank & Hall, 2001). To estimate
the conditional mean nuisance functions µ0(d, x, h), we include the treatments as dummy variables in Xt and esti-
mate/tune one joint model for all types of treatments (an S-learner in the terminology of Künzel et al. (2019)). As in
our simulation experiments in Section 5, we explore random forests and a gradient boosted trees algorithm as estima-
tors for the nuisance functions. Details on tuning of the machine learners are provided in the Online Appendix A.2.
We apply our cross-fitting approach with K = 10. In line with Angrist et al. (2018), we estimate impulse responses
up to H = 24 months and given the limited sample size set kT = 24 to retain as much data as possible for estimation.
As advocated in Section 4.1, we remove the kT observations from the data used to estimate the machine learners.

We present estimated IRFs for the federal funds rate and the unemployment rate in Figure 4. Additionally, estimates for
the effects on the bond yield curve are provided in Figure C5 in the Online Appendix. Predictive performance of both
types of machine learners explored are comparable, but random forests appear to produce slightly smoother impulse
responses, which, similar to standard local projection estimation (Barnichon & Brownlees, 2019), is advantageous.
We thus focus on results using random forests and for 25 basis point changes of the target rate.7 Overall, we identify
similar dynamics in the outcome variables as in Angrist et al. (2018). However, for the federal funds rate, we find a
larger absolute effect for target rate decreases of around 50 basis points that remains significant at the 5% level until
around one year after the target rate decrease. In comparison, the peak effect of a target rate increase is around one
percentage point, occurring one year after the increase, though it is accompanied by greater uncertainty. Furthermore,
we do not find that either expansionary or tightening monetary policy has a significant effect on the unemployment
rate. Looking at the effects on the yield curve, in line with Angrist et al. (2018), changes in the federal funds target
rate have a higher initial impact on short-term yields than on long-term yields, as expected. Moreover, significant
effects are observed only for shorter tenures. In contrast to Angrist et al. (2018), however, our estimates do not
suggest that term rates are less sensitive to policy accommodation than to tightening. Finally, the empirical application
also provides evidence that even in settings with limited sample sizes commonly encountered in macroeconomic
studies, sufficiently accurate estimates of the nonparametric nuisance functions can be obtained in order to produce IRF

6This corresponds to the model specification labelled OPF2 in Angrist et al. (2018).
7Additional results are available from the authors on request.
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estimates comparable to ones obtained with conventional techniques, without having to construct all of the (interaction)
variables and nonlinearities manually.

Figure 4: Estimated cumulative effects of target rate changes on the federal funds rate and the unemployment rate
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(b) Unemployment Rate
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NOTE: The figure shows the estimated cumulative effects of target rate changes on (a) the federal funds rate and (b) the unemploy-
ment rate for the time period July 1989 to December 2008. The left (right) column shows the effect of decreasing (increasing) the
target rate by 25 basis points. The nuisance functions are estimated by random forests using 10-fold cross-fitting removing kT = 24
observations from the estimation sample at the boundary to the inference sample. The shaded areas represent 68% and 95% con-
fidence intervals with fixed-bandwidth critical values (Kiefer & Vogelsang, 2005). The variances are estimated using bandwidths
determined by the procedure of Newey and West (1994).

8 Conclusion

We have shown how to adopt recent ideas from the causal inference framework to flexibly estimate IRFs. This presents
a novel estimator that can rely on fully nonparametric relations between treatment and outcome variables, opening up
the possibility to use flexible machine learning approaches to estimate IRFs. Our theoretical results outline conditions
for this estimator to be consistent and asymptotically normally distributed at the parametric rate. Simulations where a
highly nonlinear time series is treated over time corroborate these results. Alternative estimators often used in practice
estimate the IRF with a larger bias and fail to allow valid inference. Finally, we have illustrated the proposed method-
ology empirically by applying it to the estimation of the effects of macroeconomic shocks, allowing us to estimate
IRFs of U.S. monetary policy decisions on macroeconomic aggregates using modern machine learning estimators. For
future work, several semiparametric techniques available in the i.i.d. setting could be extended to time series settings
in order to develop our approach further. This includes approaches for continuous treatments (Colangelo & Lee, 2025),
instrumental variables (Chernozhukov et al., 2018), the estimation of other moments (Chernozhukov, Newey, & Singh,
2022a, 2022b), or conditional treatment effects (Kennedy, 2023; Qingliang Fan & Zhang, 2022; Semenova & Cher-
nozhukov, 2020; Zimmert & Lechner, 2019) to estimate generalized IRFs. In general, future research could extend
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the theoretical results developed in this paper to a broader class of estimands relying on linear scores (Chernozhukov
et al., 2018).
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Proofs

Proof of Theorem 1. We have that
E [Yt+h(d)] = E [E [Yt+h(d)|Dt = d,Xt]] = E [E [Yt+h|Dt = d,Xt]] = E [µ0(d,Xt, h)] ,

where the second equality follows from Assumption 2.1 and the last equality from Assumption 2.2. It thus follows
that E [Yt+h(1)− Yt+h(0)] = E [µ0(1, Xt, h)− µ0(0, Xt, h)].

Proof of Theorem 2. Under Assumption 3 the stochastic process G(h) satisfies the assumptions for the Central Limit
Theorem for α-mixing processes (Herrndorf, 1984).

Proof of Theorem 3. The proof follows a similar strategy to the one in Wager (2022) and Chernozhukov et al. (2018)
for the i.i.d. case. For the sake of legibility, we ease the notation and drop the reference to the forecast horizon h. Let
θ̃ be the oracle IRF estimator as defined in Theorem 2. Denote by ET the event that (µ̂S−i

(d, x, h), êS−i
(x)) ∈ ΞT for

all i = 1, ...,K. We have that
√
T (θ̂ − θ0) =

√
T (θ̂ − θ̃) +

√
T (θ̃ − θ0)

=
√
T

(
K∑
i=1

|Ti|
T
θ̂Si − θ̃

)
+
√
T (θ̃ − θ0)

=

K∑
i=1

√
T

(
|Ti|
T
θ̂Si −

|Ti|
T
θ̃Si

)
+

√
T (θ̃ − θ0),

where θ̃Si
= |Ti|−1

∑
t∈Ti

g(Zt; Γ0). We have to show that the summation converges to zero in probability. Note that
since K is a finite integer, it suffices to show convergence for one summand. We begin by expanding a summand for
some arbitrary i as

|Ti|
T
θ̂Si −

|Ti|
T
θ̃Si =

1

|Ti|
∑
t∈Ti

g(Zt; Γ̂S−i)− g(Zt; Γ0)

=
1

|Ti|
∑
t∈Ti

(
µ̂S−i(1, Xt)− µ0(1, Xt) +

Dt

êS−i
(Xt)

(Yt − µ̂S−i(1, Xt))

− Dt

e0(Xt)
(Yt − µ0(1, Xt))

)
− 1

|Ti|
∑
t∈Ti

(
µ̂S−i

(0, Xt)− µ0(0, Xt) +
1−Dt

1− êS−i
(Xt)

(Yt − µ̂S−i
(0, Xt))

− 1−Dt

1− e0(Xt)
(Yt − µ0(0, Xt))

)
.

We will prove convergence for the first summation, the second summation can be treated analogously. The first
summation can be decomposed as

1

|Ti|
∑
t∈Ti

(
µ̂S−i(1, Xt)− µ0(1, Xt) +

Dt

êS−i(Xt)
(Yt − µ̂S−i(1, Xt))−

Dt

e0(Xt)
(Yt − µ0(1, Xt))

)
=

1

|Ti|
∑
t∈Ti

(
µ̂S−i(1, Xt)− µ0(1, Xt)

)(
1− Dt

e0(Xt)

)
︸ ︷︷ ︸

=P1

+
1

|Ti|
∑
t∈Ti

Dt (Yt − µ0(1, Xt))

(
1

êS−i
(Xt)

− 1

e0(Xt)

)
︸ ︷︷ ︸

=P2

+
1

|Ti|
∑
t∈Ti

Dt

(
µ̂S−i(1, Xt)− µ0(1, Xt)

)( 1

êS−i
(Xt)

− 1

e0(Xt)

)
︸ ︷︷ ︸

=P3

.
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We will show that Pk = op(T
−1/2) for k ∈ {1, 2, 3}.

Term P1: From the squared L2-norm of P1 we have that

E

[(
1

|Ti|
∑
t∈Ti

(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)(

1− Dt

e0(Xt)

))2]

=
1

|Ti|2
E

E
(∑

t∈Ti

(
µ̂S−i(1, Xt)− µ0(1, Xt)

)(
1− Dt

e0(Xt)

))2 ∣∣∣∣∣S−i


=

1

|Ti|2
E

[∑
t∈Ti

∑
s∈Ti

E

[ (
µ̂S−i(1, Xt)− µ0(1, Xt)

)(
1− Dt

e0(Xt)

)
×

(
µ̂S−i

(1, Xs)− µ0(1, Xs)
)(

1− Ds

e0(Xs)

) ∣∣∣∣∣S−i

]]

=
1

|Ti|2
∑
t∈Ti

E
[(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)2( 1

e0(Xt)
− 1

)]
≤ 1

η|Ti|2
∑
t∈Ti

E
[(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)2]

=
op(1)

|Ti|
= op(T

−1).

The third equality follows from the fact that the sum has mean zero and the inequality at the end follows from As-
sumption 4.4. The step from the second to the third equality follows from Assumption 5, which gives for t < s
that

E

[ (
µ̂S−i(1, Xt)− µ0(1, Xt)

)(
1− Dt

e0(Xt)

)(
µ̂S−i(1, Xs)− µ0(1, Xs)

)(
1− Ds

e0(Xs)

) ∣∣∣∣∣S−i

]

= E

[ (
µ̂S−i(1, Xt)− µ0(1, Xt)

)(
1− Dt

e0(Xt)

)(
µ̂S−i(1, Xs)− µ0(1, Xs)

)
×

E

[
1− Ds

e0(Xs)

∣∣∣∣∣Xs, {(Xu, Yu, Du) : u ∈ Ti, u < s)}, S−i

]
︸ ︷︷ ︸

=0

∣∣∣∣∣S−i

]
= 0.

The same argument can be made for t > s. Convergence in the last step finally follows from the fact that K is a fixed
and finite integer and thus limT→∞ |Ti| = limT→∞ T/K = ∞ for all i and by noting that conditional on S−i, the
nuisance function estimator is non-stochastic, and thus conditional on the event ET , we have that

sup
t∈Ti

E

[(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)2 ∣∣∣∣∣S−i

]
≤ sup
t∈Ti

sup
µ∈ΞT

E

[
(µ(1, Xt)− µ0(1, Xt))

2

∣∣∣∣∣S−i

]
≤ sup
t∈Ti

sup
µ∈ΞT

∥µ(1, Xt)− µ0(1, Xt)∥22 = op(1)

since by Assumption 4 supt∈Ti
supµ∈ΞT

∥µ(Dt, Xt)− µ0(Dt, Xt)∥22 = (rµ,T )
2 = op(1). By Lemma 6.1 in Cher-

nozhukov et al. (2018) it follows that supt∈Ti
E[(µ̂S−i

(1, Xt)− µ0(1, Xt))
2] = op(1), and we thus conclude that P1

is op(T−1/2).
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Term P2: Similarly, from the squared L2-norm of P2 we have that

E

[(
1

|Ti|
∑
t∈Ti

Dt (Yt − µ0(1, Xt))

(
1

êS−i
(Xt)

− 1

e0(Xt)

))2]

=
1

|Ti|2
E

[
E

[(∑
t∈Ti

Dt (Yt − µ0(1, Xt))

(
1

êS−i
(Xt)

− 1

e0(Xt)

))2∣∣∣∣∣S−i

]]

=
1

|Ti|2
E

[∑
t∈Ti

∑
s∈Ti

E

[
Dt (Yt − µ0(1, Xt))

(
1

êS−i(Xt)
− 1

e0(Xt)

)
×

Ds (Ys − µ0(1, Xs))

(
1

êS−i
(Xs)

− 1

e0(Xs)

) ∣∣∣∣∣S−i

]]

=
1

|Ti|2
∑
t∈Ti

E

[
Dt (Yt − µ0(1, Xt))

2

(
1

êS−i
(Xt)

− 1

e0(Xt)

)2
]

≤ 1

|Ti|2
ϵ21
η2

∑
t∈Ti

E
[(
êS−i(Xt)− e0(Xt)

)2]
=
op(1)

|Ti|
= op(T

−1).

The third equality follows from the fact that the sum has mean zero, and the inequality follows from Assumptions 4.4
and 4.5. The crucial step is again to establish that the variance of the sum equals the sum of the variances (from the
second to the third equality). This follows from Assumption 5, which gives that whenever t < s, it holds that

E

[
Dt (Yt − µ0(1, Xt))

(
1

êS−i
(Xt)

− 1

e0(Xt)

)
×

Ds (Ys − µ0(1, Xs))

(
1

êS−i
(Xs)

− 1

e0(Xs)

) ∣∣∣∣∣S−i

]

= E

[
Dt (Yt − µ0(1, Xt))

(
1

êS−i(Xt)
− 1

e0(Xt)

)
×

E

[
Ds(Ys − µ0(1, Xs))

∣∣∣∣∣Xs, {(Xu, Yu, Du) : u ∈ Ti, u < s}, S−i

]
︸ ︷︷ ︸

=0

(
1

êS−i
(Xs)

− 1

e0(Xs)

) ∣∣∣∣∣S−i

]
= 0,

and the same argument can be made for t > s. Convergence in the last step finally follows from the fact that K is a
fixed and finite integer and thus limT→∞ |Ti| = limT→∞ T/K = ∞ for all i and by noting that conditional on S−i,
the nuisance function estimator is non-stochastic, and thus conditional on the event ET , we have that

sup
t∈Ti

E

[(
êS−i

(Xt)− e0(Xt)
)2 ∣∣∣∣∣S−i

]
≤ sup
t∈Ti

sup
e∈ΞT

E

[
(e(Xt)− e0(Xt))

2

∣∣∣∣∣S−i

]
≤ sup
t∈Ti

sup
e∈ΞT

∥e(Xt)− e0(Xt)∥22 = (re,T )
2

by definition of the rate re,T in Assumption 4. By Lemma 6.1 in Chernozhukov et al. (2018) and Assumption 4 it

follows that supt∈Ti
E
[(
êS−i(Xt)− e0(Xt)

)2]
= op(1), and we thus conclude that P2 is op(T−1/2).
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Term P3: Finally, from the L1-norm of P3 we get that

E

[∣∣∣∣∣ 1

|Ti|
∑
t∈Ti

Dt

(
µ̂S−i(1, Xt)− µ0(1, Xt)

)( 1

êS−i
(Xt)

− 1

e0(Xt)

) ∣∣∣∣∣
]

≤ E

[
1

|Ti|
∑
t∈Ti

Dt

∣∣µ̂S−i
(1, Xt)− µ0(1, Xt)

∣∣ ∣∣∣∣ 1

êS−i
(Xt)

− 1

e0(Xt)

∣∣∣∣
]

=
1

|Ti|
∑
t∈Ti

E

[
Dt

∣∣µ̂S−i
(Dt, Xt)− µ0(Dt, Xt)

∣∣ ∣∣∣∣ 1

êS−i
(Xt)

− 1

e0(Xt)

∣∣∣∣
]

≤ 1

η

1

|Ti|
∑
t∈Ti

E

[ ∣∣µ̂S−i
(Dt, Xt)− µ0(Dt, Xt)

∣∣ ∣∣êS−i
(Xt)− e0(Xt)

∣∣ ] =
op(1)

T 1/2
,

where the last inequality follows from Assumption 4.4. Convergence in the last equality finally follows from the fact
thatK is a fixed and finite integer and thus limT→∞ |Ti| = limT→∞ T/K = ∞ for all i and by noting that conditional
on S−i, the nuisance function estimators are non-stochastic, and thus conditional on the event ET , we have that

sup
t∈Ti

E

[ ∣∣µ̂S−i
(Dt, Xt)− µ0(Dt, Xt)

∣∣ ∣∣êS−i
(Xt)− e0(Xt)

∣∣ ∣∣∣∣∣S−i

]

≤ sup
t∈Ti

E

[ ∣∣µ̂S−i
(Dt, Xt)− µ0(Dt, Xt)

∣∣2 ∣∣∣∣∣S−i

]1/2
sup
t∈Ti

E

[ ∣∣êS−i
(Xt)− e0(Xt)

∣∣2 ∣∣∣∣∣S−i

]1/2

≤ sup
t∈Ti

sup
µ∈ΞT

E

[
|µ(Dt, Xt)− µ0(Dt, Xt)|2

∣∣∣∣∣S−i

]1/2
sup
t∈Ti

sup
e∈ΞT

E

[
|e(Xt)− e0(Xt)|2

∣∣∣∣∣S−i

]1/2
≤ sup
t∈Ti

sup
µ∈ΞT

∥µ(Dt, Xt)− µ0(Dt, Xt)∥2 sup
t∈Ti

sup
e∈ΞT

∥e(Xt)− e0(Xt)∥2 = rµ,T · re,T

by Cauchy-Schwarz and the definition of the rates rµ,T and re,T in Assumption 4. By Lemma 6.1 in Chernozhukov
et al. (2018) and Assumption 4.3 it follows that supt∈Ti

E
[∣∣µ̂S−i(1, Xt)− µ0(1, Xt)

∣∣ ∣∣êS−i(Xt)− e0(Xt)
∣∣] =

op(T
−1/2).

We have shown that P1, P2 and P3 are op(T−1/2). It follows that |Ti|
T θ̂Si −

|Ti|
T θ̃Si = op(T

−1/2) for all i = 1, ...,K
and we can thus conclude that

√
T (θ̂ − θ) =

K∑
i=1

√
T

(
|Ti|
T
θ̂Si

− |Ti|
T
θ̃Si

)
︸ ︷︷ ︸

=op(1)

+
√
T (θ̃ − θ0)︸ ︷︷ ︸
d→N (0,V0)

.

Lemma 1. Let Ξ be a convex subset of some normed vector space, g : Rn × Ξ → R be a measurable function, {Zt :
t ∈ T } an α-mixing stochastic process with mixing coefficient α(m) and Zt a real-valued random vector. For s ≥ t
denote by Fs

t = σ(Zt, . . . , Zs) the smallest σ-field such that Zt, . . . , Zs are measurable. If ∥supΓ∈Ξ g(Zt,Γ)∥r <∞
for some r ≥ p ≥ 1, then for all t ∈ T

sup
Γ∈Ξ

E
[
g(Zt,Γ)|F t−k

−∞
]
= sup

Γ∈Ξ
E [g(Zt,Γ)] +Op(α(k)

1/p−1/r).

Proof of Lemma 1. We will prove the statement by bounding the Lp-norm. First notice that∥∥∥∥sup
Γ∈Ξ

E
[
g(Zt,Γ)|F t−k

−∞
]
− sup

Γ∈Ξ
E [g(Zt,Γ)]

∥∥∥∥
p

≤
∥∥∥∥E [sup

Γ∈Ξ
(g(Zt,Γ)− E [g(Zt,Γ)]) |F t−k

−∞

]∥∥∥∥
p
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By Theorem 15.2 in Davidson (2021) we have∥∥∥∥E [sup
Γ∈Ξ

(g(Zt,Γ)− E [g(Zt,Γ)]) |F t−k
−∞

]∥∥∥∥
p

≤ 2(21/2 + 1)α(k)1/p−1/r

∥∥∥∥sup
Γ∈Ξ

(g(Zt,Γ)− E [g(Zt,Γ)])

∥∥∥∥
r

≤ 2(21/2 + 1)α(k)1/p−1/r

(∥∥∥∥sup
Γ∈Ξ

g(Zt,Γ)

∥∥∥∥
r

+

∣∣∣∣sup
Γ∈Ξ

E [g(Zt,Γ)]

∣∣∣∣) = O(α(k)1/p−1/r)

where the second inequality follows from the Minkowski inequality.

Proof of Theorem 4. The proof builds on the proof of Theorem 3 and we continue to omit the horizon h for the sake of
legibility. Following Davidson (2021), let the smallest σ-field on which the stochastic process S−i = {Zt : t ∈ T−i}
is measurable, be denoted as F−i = σ (Zt : t ∈ T ∧ (t < inf(Ti)− kT ∨ t > sup(Ti) + kT )). Consider again the
three summations P1, P2 and P3 from the proof of Theorem 3.

Term P1: From the squared L2-norm of P1 we to obtain

E

[(
1

|Ti|
∑
t∈Ti

(
µ̂S−i(1, Xt)− µ0(1, Xt)

)(
1− Dt

e0(Xt)

))2]

=
1

|Ti|2
∑
t∈Ti

E

[(
µ̂S−i(1, Xt)− µ0(1, Xt)

)2(
1− Dt

e0(Xt)

)2
]

+
1

|Ti|2
∑
t∈Ti

∑
s∈Ti,s̸=t

E

[ (
µ̂S−i

(1, Xt)− µ0(1, Xt)
)(

1− Dt

e0(Xt)

)
×

(
µ̂S−i

(1, Xs)− µ0(1, Xs)
)(

1− Ds

e0(Xs)

)]
.

(A1)

First, note that by applying Hölder’s inequality twice we have that for r > p ≥ 1 and 1/r = 1/r′ + 1/r′′

sup
t,s∈Ti

sup
µ∈ΞT

∥∥∥∥(µ(1, Xt)− µ0(1, Xt))

(
1− Dt

e0(Xt)

)
(µ(1, Xs)− µ0(1, Xs))

(
1− Ds

e0(Xs)

)∥∥∥∥
r

≤ sup
t∈Ti

sup
µ∈ΞT

∥∥∥∥∥(µ(1, Xt)− µ0(1, Xt))
2

(
1− Dt

e0(Xt)

)2
∥∥∥∥∥
r

≤ sup
t∈Ti

sup
µ∈ΞT

∥∥∥(µ(1, Xt)− µ0(1, Xt))
2
∥∥∥
r′

∥∥∥∥∥
(
1− Dt

e0(Xt)

)2
∥∥∥∥∥
r′′

which is bounded by Assumption 6.3. Next, for the first summand in (A1), note that conditional on F−i the estimator
is non-stochastic, and thus conditional on the event ET we have that

sup
t∈Ti

E

[(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)2(

1− Dt

e0(Xt)

)2
∣∣∣∣∣F−i

]

≤ sup
t∈Ti

sup
µ∈ΞT

E

[
(µ(1, Xt)− µ0(1, Xt))

2

(
1− Dt

e0(Xt)

)2
∣∣∣∣∣F−i

]

≤ sup
t∈Ti

sup
µ∈ΞT

E

[
(µ(1, Xt)− µ0(1, Xt))

2

(
1− Dt

e0(Xt)

)2
]
+Op

(
α(kT )

ψ
)

= op(1) +Op
(
α(kT )

ψ
)

by Lemma 1 in combination with Assumption 6, and the definition of the rate rµ,T in Assumption 4. By Lemma 6.1
in Chernozhukov et al. (2018) and Assumptions 4.3 and 6.5 it follows that

1

|Ti|2
∑
t∈Ti

E

[(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)2(

1− Dt

e0(Xt)

)2
]
=
op(1)

|Ti|
= op(T

−1).
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Similarly, for the second summand of the L2-norm of P1, conditional on the event ET we have that

sup
t,s∈Ti

E

[ (
µ̂S−i

(1, Xt)− µ0(1, Xt)
)(

1− Dt

e0(Xt)

)
×

(
µ̂S−i(1, Xs)− µ0(1, Xs)

)(
1− Ds

e0(Xs)

) ∣∣∣∣∣F−i

]

≤ sup
t,s∈Ti

sup
e∈ΞT

E
[
(µ(1, Xt)− µ0(1, Xt))

(
1− Dt

e0(Xt)

)
×

(µ(1, Xs)− µ0(1, Xs))

(
1− Ds

e0(Xs)

) ∣∣∣∣∣F−i

]
≤ sup
t,s∈Ti

sup
e∈ΞT

E
[
(µ(1, Xt)− µ0(1, Xt))

(
1− Dt

e0(Xt)

)
×

(µ(1, Xs)− µ0(1, Xs))

(
1− Ds

e0(Xs)

)]
+Op

(
α(kT )

ψ
)

by Lemma 1 in combination with Assumption 6, and the expectation in the last inequality is zero. By Lemma 6.1 in
Chernozhukov et al. (2018) and Assumptions 4.3 and 6.5 it follows that

1

|Ti|2
∑
t∈Ti

∑
s∈Ti,s̸=t

E

[ (
µ̂S−i

(1, Xt)− µ0(1, Xt)
)(

1− Dt

e0(Xt)

)
×

(
µ̂S−i(1, Xs)− µ0(1, Xs)

)(
1− Ds

e0(Xs)

)]
= Op

(
α(kT )

ψ
)
.

By Assumption 6.5 it follows that P1 is op(T−1/2). Following a similar argument, it can be shown that P2 is
op(T

−1/2).

Convergence for P3 can again be shown by bounding its L1-norm as

E

[∣∣∣∣∣ 1

|Ti|
∑
t∈Ti

Dt

(
µ̂S−i

(1, Xt)− µ0(1, Xt)
)( 1

êS−i
(Xt)

− 1

e0(Xt)

) ∣∣∣∣∣
]

=
1

|Ti|
E

[∣∣∣∣∣∑
t∈Ti

Dt

(
µ̂S−i

(Dt, Xt)− µ0(Dt, Xt)
)( 1

êS−i
(Xt)

− 1

e0(Xt)

) ∣∣∣∣∣
]

≤ 1

η

1

|Ti|
∑
t∈Ti

E

[ ∣∣µ̂S−i
(Dt, Xt)− µ0(Dt, Xt)

∣∣ ∣∣êS−i
(Xt)− e0(Xt)

∣∣ ].
Noting that conditional on F−i, the nuisance function estimators are non-stochastic, and thus conditional on the event
ET we have that

sup
t∈Ti

E

[ ∣∣µ̂S−i
(Dt, Xt)− µ0(Dt, Xt)

∣∣ ∣∣êS−i
(Xt)− e0(Xt)

∣∣ ∣∣∣∣∣F−i

]

≤ sup
t∈Ti

sup
µ,e∈ΞT

E

[
|µ(Dt, Xt)− µ0(Dt, Xt)| |e(Xt)− e0(Xt)|

∣∣∣∣∣F−i

]

≤ sup
t∈Ti

sup
µ,e∈ΞT

E

[
|µ(Dt, Xt)− µ0(Dt, Xt)| |e(Xt)− e0(Xt)|

]
+Op(α(kT )

ψ)

≤ sup
t∈Ti

sup
µ∈ΞT

∥µ(Dt, Xt)− µ0(Dt, Xt)∥2 sup
t∈Ti

sup
e∈ΞT

∥e(Xt)− e0(Xt)∥2 +Op(α(kT )
ψ)

= rµ,T · re,T +Op(α(kT )
ψ)

by Lemma 1 in combination with Assumption 6, Cauchy-Schwarz and the definition of the rates rµ,T and re,T
in Assumption 4. By Lemma 6.1 in Chernozhukov et al. (2018) and Assumptions 4.3 and 6.5 it follows that
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supt∈Ti
E
[∣∣µ̂S−i

(1, Xt)− µ0(1, Xt)
∣∣ ∣∣êS−i

(Xt)− e(Xt)
∣∣] = op(T

−1/2). This concludes the proof as we can now
apply the same arguments as in the proof of Theorem 3.

Proof of Theorem 5. Define vt(θ,Γ) = g(Zt; Γ)−θ, for some nuisance functions Γ = (µ, e), g(Zt; Γ) is the influence
function (2) evaluated using the nuisance functions in Γ and we will drop the forecast horizon h everywhere for
legibility. Let

VT = Var

(
1√
T

∑
t∈T

g(Zt; Γ0)

)
=

1

T

(
T∑
t=1

E[v2t ] + 2

T−1∑
s=1

T∑
t=s+1

E[vtvt−s]

)
with vt = g(Zt; Γ0)− θ0 and Γ0 = (µ0, e0), and thus limT→∞ VT = V0. Next, define

VSi
=

1

|Ti|

∑
t∈Ti

E[v2t ] + 2
∑
s∈Ti

∑
t∈Ti,s

E[vtvt−s]


with Ti,s = {t ∈ Ti | t − s ≥ inf(Ti)} for i = 1, ...,K. Then we have that limT→∞ VSi = limT→∞ VT = V0, so
given K being a finite integer, for |V̂ − VT |

p→ 0 it will be sufficient to show that |V̂Si
− VSi

| = op(1), where

V̂Si =
1

|Ti|

∑
t∈Ti

v̂2t + 2

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

v̂tv̂t−s


with

v̂t = g(Zt; Γ̂t)− θ̂ and Γ̂t = {Γ̂S−i : i ∈ {1, ...,K}, t ∈ Ti}.
Moreover, let

V mSi
=

1

|Ti|

∑
t∈Ti

v2t + 2

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

vtvt−s

 .

Applying the triangle inequality, we will follow Newey and West (1987) and prove that the following three terms
converge to zero in probability

|V̂Si
− VSi

| ≤ |V̂Si
− V mSi

|︸ ︷︷ ︸
=P1

+ |V mSi
− E[V mSi

]|︸ ︷︷ ︸
=P2

+ |E[V mSi
]− VSi

|︸ ︷︷ ︸
=P3

. (A2)

Since terms P2 and P3 do not contain any estimated quantities, they are op(1) following the same arguments as in the
proof of Theorem 2 in Newey and West (1987) and Kool (1988), provided that Assumptions 7.1-7.4a hold.

For the term P1, define a function

f(θ, r) =
1

|Ti|
∑
t∈Ti

vt(θ,Γ0 + r(Γ̂t − Γ0))
2

+
2

|Ti|

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

vt(θ,Γ0 + r(Γ̂t − Γ0))vt−s(θ,Γ0 + r(Γ̂t−s − Γ0)),

so that V̂Si
= f(θ̂, 1) and V mSi

= f(θ0, 0). By the multivariate mean-value theorem, for some (θ̃, r̃) on the line
segment from (θ0, 0) to (θ̂, 1), on the event ET we have

V̂Si − V mSi
= f(θ̂, 1)− f(θ0, 0) =

∂f

∂θ
(θ̃, r̃)(θ̂ − θ0) +

∂f

∂r
(θ̃, r̃)

and by the triangle inequality

|V̂Si − V mSi
| ≤

∣∣∣∣∂f∂θ (θ̃, r̃)(θ̂ − θ0)

∣∣∣∣︸ ︷︷ ︸
=P11

+

∣∣∣∣∂f∂r (θ̃, r̃)
∣∣∣∣︸ ︷︷ ︸

=P12

. (A3)

We will show that both terms on the right hand side of (A3) are op(1).
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Term P11: The partial derivative with respect to θ in P11 is

∂f

∂θ
(θ̃, r̃) = − 2

|Ti|
∑
t∈Ti

vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))

− 2

|Ti|

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

[
vt(θ̃,Γ0 + r̃(Γ̂t − Γ0)) + vt−s(θ̃,Γ0 + r̃(Γ̂t−s − Γ0))

]
and thus ∣∣∣∣∂f∂θ (θ̃, r̃)

∣∣∣∣ ≤ 2 sup
t∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))|+ 4mT sup
t∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))|.

Then we get for P11 that∣∣∣∣∂f∂θ (θ̃, r̃)
∣∣∣∣ |θ̂ − θ0| ≤ 2 sup

t∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| · |θ̂ − θ0|

+ 4
mT√
T

sup
t∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| ·
√
T |θ̂ − θ0|.

(A4)

By Theorem 4, on the event ET , |θ̂ − θ0| = op(1) and
√
T (θ̂ − θ0) = Op(1). Moreover, by Assumption 7.4a,

limT→∞mT /
√
T = 0. Thus it remains to show that on the event ET , supt∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| remains
bounded in probability. By the triangular inequality we have that∣∣∣∣vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))

∣∣∣∣ = ∣∣∣∣g(Zt; Γ0 + r̃(Γ̂t − Γ0))− θ̃

∣∣∣∣ ≤ ∣∣∣∣g(Zt; Γ0 + r̃(Γ̂t − Γ0))

∣∣∣∣+ |θ̃|.

For the first term after the inequality we have, for some q > 2∥∥∥g(Zt; Γ0 + r̃(Γ̂t − Γ0))
∥∥∥
q

=

∥∥∥∥µ0(1, Xt) + r̃(µ̂t(1, Xt)− µ0(1, Xt))

− µ0(0, Xt)− r̃(µ̂t(0, Xt)− µ0(0, Xt)) (A5)

+
Dt

e0(Xt) + r̃(êt(Xt)− e0(Xt))
(Yt − µ0(1, Xt)− r̃(µ̂t(1, Xt)− µ0(1, Xt)))

− 1−Dt

1− e0(Xt)− r̃(êt(Xt)− e0(Xt))
(Yt − µ0(0, Xt)− r̃(µ̂t(0, Xt)− µ0(0, Xt)))

∥∥∥∥
q

≤ ∥µ0(1, Xt)∥q + r̃ ∥µ̂t(1, Xt)− µ0(1, Xt)∥q + ∥µ0(0, Xt)∥q + r̃ ∥µ̂t(0, Xt)− µ0(0, Xt)∥q

+

∥∥∥∥ Dt

e0(Xt) + r̃(êt(Xt)− e0(Xt))
(Yt − µ0(1, Xt)− r̃(µ̂t(1, Xt)− µ0(1, Xt)))

∥∥∥∥
q

+

∥∥∥∥ 1−Dt

1− e0(Xt)− r̃(êt(Xt)− e0(Xt))
(Yt − µ0(0, Xt)− r̃(µ̂t(0, Xt)− µ0(0, Xt)))

∥∥∥∥
q

where
µ̂t = {µ̂S−i : i ∈ {1, ...,K}, t ∈ Ti} and êt = {êS−i : i ∈ {1, ...,K}, t ∈ Ti}.

From Assumptions 4 and 7.3 we have

∥µ̂t(d,Xt)− µ0(d,Xt)∥q ≤
C

η1/q
and ∥µ0(d,Xt)∥q ≤

C

η1/q
, (A6)

for q > 2, any Γ̂t ∈ ΞT and d ∈ {0, 1}, as shown in the proof of Theorem 5.1 in Chernozhukov et al. (2018). Using
these results, we get the following bound for |θ̃|

|θ̃| ≤ |θ̃ − θ0|+ |θ0| ≤ |θ̂ − θ0|+ |θ0| ≤ |θ̂ − θ0|+ 2
C

η1/q
,

where |θ0| ≤ 2C/η1/q follows from Assumption 4, as shown in the proof of Theorem 5.1 in Chernozhukov et al.
(2018). From Theorem 4, it follows that |θ̂ − θ0| = op(1), so |θ̃| = Op(1).
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We continue with the term in the second line of the last inequality in (A5). For q > 2, conditional on ET , we get

∥∥∥∥ Dt

e0(Xt) + r̃(êt(Xt)− e0(Xt))
(Yt − µ0(1, Xt)− r̃(µ̂t(1, Xt)− µ0(1, Xt)))

∥∥∥∥
q

≤ 1

η

∥∥∥∥Dt(Yt − µ0(1, Xt)− r̃(µ̂t(1, Xt)− µ0(1, Xt)))

∥∥∥∥
q

≤ 1

η

∥∥∥∥Yt − µ0(1, Xt)− r̃(µ̂t(1, Xt)− µ0(1, Xt))

∥∥∥∥
q

(A7)

≤ 1

η
∥Yt∥q +

1

η
∥µ0(1, Xt)∥q +

r̃

η
∥µ̂t(1, Xt)− µ0(1, Xt)∥q ≤

1

η
C +

1

η

C

η1/q
+
r̃

η

C

η1/q
,

where the first inequality follows from Assumption 4. The second inequality follows from Dt ∈ {0, 1}, and the third
from the Minkowski inequality. The fourth follows from (A6).

For the term in the third line of the last inequality in (A5), we get for q > 2 and conditional on ET that

∥∥∥∥ 1−Dt

1− e0(Xt)− r̃(êt(Xt)− e0(Xt))
(Yt − µ0(0, Xt)− r̃(µ̂t(0, Xt)− µ0(0, Xt)))

∥∥∥∥
q

≤ 1

η

∥∥∥∥Yt − µ0(0, Xt)− r̃(µ̂t(0, Xt)− µ0(0, Xt))

∥∥∥∥
q

≤ 1

η
C +

1

η

C

η1/q
+
r̃

η

C

η1/q
,

(A8)

using the same arguments as for the term in (A7). Since all of the terms in the first line of the last inequality in
(A5) are Lq-bounded, they are also Op(1) by Markov’s inequality. The same holds for (A7) and (A8), so we can
conclude that all of the terms on the right-hand-side of the last inequality in (A5) are Op(1). As a consequence,
supt∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| = Op(1) in (A4) and thus P11 = op(1).

Term P12: From the partial derivative with respect to r in P12 we find

∣∣∣∣∂f∂r (θ̃, r̃)
∣∣∣∣ = ∣∣∣∣ 2

|Ti|
∑
t∈Ti

vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))
∂vt
∂r

(θ̃,Γ0 + r̃(Γ̂t − Γ0))

+
2

|Ti|

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))
∂vt−s
∂r

(θ̃,Γ0 + r̃(Γ̂t−s − Γ0))

+
2

|Ti|

mT∑
s=1

w(s,mT )
∑
t∈Ti,s

vt−s(θ̃,Γ0 + r̃(Γ̂t−s − Γ0))
∂vt
∂r

(θ̃,Γ0 + r̃(Γ̂t − Γ0))

∣∣∣∣
≤ 2 sup

t∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| sup
t∈Ti

∣∣∣∣∂vt∂r (θ̃,Γ0 + r̃(Γ̂t − Γ0))

∣∣∣∣
+ 4

mT

T bm
sup
t∈Ti

|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| sup
t∈Ti

∣∣∣∣∂vt∂r (θ̃,Γ0 + r̃(Γ̂t − Γ0))

∣∣∣∣T bm .

From proving P11 = op(1) we know that supt∈Ti
|vt(θ̃,Γ0 + r̃(Γ̂t − Γ0))| = Op(1). Moreover, mT /T

bm = o(1) by
Assumption 7.4a. Thus it remains to show that supt∈Ti

|∂vt∂r (θ̃,Γ0+ r̃(Γ̂t−Γ0))| = op(T
−bm). Since by Assumption

7 bm < br, we will show that the quantity is actually op(T−br ). By the triangle inequality, we have

sup
t∈Ti

∣∣∣∣∂vt∂r (θ̃,Γ0 + r̃(Γ̂t − Γ0))

∣∣∣∣ ≤ P12,A + P12,B + P12,C + P12,D, (A9)
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where
P12,A = sup

t∈Ti

|µ̂t(1, Xt)− µ0(1, Xt)− (µ̂t(0, Xt)− µ0(0, Xt))|

P12,B = sup
t∈Ti

∣∣∣∣ Dt

(e0(Xt) + r̃(êt(Xt)− eo(Xt)))
2×

(Yt − µ0(1, Xt)− r̃(µ̂t(1, Xt)− µ0(1, Xt))) (êt(Xt)− e0(Xt))

∣∣∣∣
P12,C = sup

t∈Ti

∣∣∣∣ 1−Dt

1− e0(Xt)− r̃(êt(Xt)− e0(Xt))
(µ̂t(0, Xt)− µ0(0, Xt))

∣∣∣∣
P12,D = sup

t∈Ti

∣∣∣∣ 1−Dt

((1− r̃)(1− e0(Xt)) + r̃(1− êt(Xt)))
2×

(Yt − µ0(0, Xt) + r̃(µ̂t(0, Xt)− µ0(0, Xt))) (êt(Xt)− e0(Xt))

∣∣∣∣.
For P12,A, we first establish that on the event ET for d ∈ {0, 1} we have

sup
t∈Ti

E
[
|µ̂t(d,Xt)− µ0(d,Xt)|2

∣∣∣∣S−i

]
≤ sup
t∈Ti

sup
µ∈ΞT

E
[
(µ(d,Xt)− µ0(d,Xt))

2

∣∣∣∣S−i

]
≤ sup
t∈Ti

sup
µ∈ΞT

E
[
(µ(d,Xt)− µ0(d,Xt))

2
]
+Op(α(kT )

ψ)

≤ r2µ,T +Op(α(kT )
ψ) = op(T

−2br ).

(A10)

The second inequality follows from Lemma 1, the third by the definition of the rate rµ,T in Assumption 4. The final
equality follows by Lemma 6.1 in Chernozhukov et al. (2018) and Assumptions 4.3, 6.5 and 7.4b. We thus conclude
that on the event ET ,

sup
t∈Ti

|µ̂t(d,Xt)− µ0(d,Xt)| = op(T
−br ) (A11)

and as a consequence
P12,A ≤ sup

t∈Ti

|µ̂t(1, Xt)− µ0(1, Xt)|+ sup
t∈Ti

|µ̂t(0, Xt)− µ0(0, Xt)| = op(T
−br ).

For P12,B , we first establish that on the event ET we have

sup
t∈Ti

E
[
|êt(Xt)− e0(Xt)|2

∣∣S−i

]
≤ sup
t∈Ti

sup
e∈ΞT

E
[
(êt(Xt)− e0(Xt))

2
∣∣S−i

]
≤ sup
t∈Ti

sup
e∈ΞT

E
[
(êt(Xt)− e0(Xt))

2
]
+Op(α(kT )

ψ)

≤ r2e,T +Op(α(kT )
ψ) = op(T

−2br )

by the same arguments as for (A10) and thus on the event ET ,
sup
t∈Ti

|êt(Xt)− e0(Xt)| = op(T
−br ). (A12)

This allows us to write

P12,B ≤ sup
t∈Ti

1

η2
|Yt − (1− r̃)µ0(1, Xt)− r̃µ̂t(1, Xt)| |êt(Xt)− e0(Xt)|

≤ sup
t∈Ti

1− r̃

η2
|Yt − µ0(1, Xt)| |êt(Xt)− e0(Xt)|

+ sup
t∈Ti

r̃

η2
|Yt − µ̂t(1, Xt)| |êt(Xt)− e0(Xt)|

≤ sup
t∈Ti

2

η2
|Yt − µ0(1, Xt)| |êt(Xt)− e0(Xt)|

+ sup
t∈Ti

1

η2
|µ̂t(1, Xt)− µ0(1, Xt)| |êt(Xt)− e0(Xt)| ,

(A13)
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where the first inequality follows from Assumption 4 and Dt ∈ {0, 1}. From Assumption 7.3 and (A6), we have for
q > 2, d ∈ {0, 1} and any µ ∈ ΞT that

sup
t∈Ti

∥Yt − µ(d,Xt)∥q ≤ sup
t∈Ti

∥Yt∥q + sup
t∈Ti

∥µ(d,Xt)∥q ≤ C

(
1 +

1

η1/q

)
. (A14)

Combined with (A12) it follows that for d ∈ {0, 1} and on the event ET we have

sup
t∈Ti

∥|Yt − µ(d,Xt)||êt(Xt)− e0(Xt)|∥1

≤ sup
t∈Ti

∥Yt − µ(d,Xt)∥2 ∥êt(Xt)− e0(Xt)∥2

≤ sup
t∈Ti

C

(
1 +

1

η1/q

)
∥êt(Xt)− e0(Xt)∥2 = op(T

−br )

for any µ ∈ ΞT , and as a consequence, combined with (A11), we have P12,B = op(T
−br ).

For P12,C , we have by Assumption 4 and Dt ∈ {0, 1} that P12,C ≤ supt∈Ti

1
η |µ̂t(0, Xt) − µ0(0, Xt)| and thus

P12,C = op(T
−br ) by (A11).

For P12,D finally, we have

P12,D ≤ sup
t∈Ti

1

η2
|(1− r̃)(Yt − µ0(0, Xt)) + r̃(Yt − µ̂t(0, Xt))| |êt(Xt)− e0(Xt)|

≤ sup
t∈Ti

2

η2
|Yt − µ0(0, Xt)| |êt(Xt)− e0(Xt)|

+ sup
t∈Ti

1

η2
|µ̂t(0, Xt)− µ0(0, Xt)| |êt(Xt)− e0(Xt)| ,

where the first inequality again follows from Assumption 4 and Dt ∈ {0, 1}, and the second from the same arguments
as in (A13). Using (A11), (A12) and (A14) lets us conclude that P12,D = op(T

−br ). This shows that all terms on the
right hand side of (A9) are op(T−br ) and thus supt∈Ti

|∂vt∂r (θ̃,Γ0 + r̃(Γ̂t − Γ0))| = op(T
−br ). As a consequence,

P11 = op(1) and P12 = op(1) in (A3). We conclude that |V̂Si − V mSi
| = op(1) and thus |V̂Si − VSi | = op(1) so that

|V̂ − VT |
p→ 0.
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Supplementary material for “Semiparametric inference for impulse response
functions using double/debiased machine learning”

A Hyperparameter tuning

A.1 Tuning in the simulation study

Random forests: We fix the number of trees to 500. For each simulation replication, the maximal depth of each tree
(d), the minimal number of observations in the leafs of the trees (ℓ) and the maximal fraction of features considered
for each node split (mtry) are determined by cross-validation using the K sub-processes as folds. We perform a
simple grid search over {{d, ℓ,mtry} | d ∈ {5, 10, 20, 50} ∧ ℓ ∈ {1, 5, 10} ∧ mtry ∈ {0.3, 1.0}} and select the
hyperparameter-combination yielding the best predictive cross-validation performance.

Gradient boosted trees: We perform a two-stage tuning procedure. In the first stage, we fix the learning rate of the
tree booster to 0.1, set the number of boosting rounds to some very high number (10’000) and abort the estimation
process if the predictive validation error has not decreased since 50 rounds of boosting. The maximum tree depth
for the base learners (d), the minimum sum of instance weight needed in a child (w), the subsampling ratio for
observations used to construct each tree (so), and the subsampling ratio for features when constructing each tree
(sf ) are determined by cross-validation using the K sub-processes as folds. We perform a simple grid search
over {{d,w, so, sf} | d ∈ {1, ..., 10} ∧ w ∈ {1, ..., 10} ∧ so ∈ {0.25, 0.5, 0.75, 1} ∧ sf ∈ {0.25, 0.5, 0.75, 1}}
and select the hyperparameter-combination yielding the best predictive cross-validation performance. In the
second stage, using the optimal tree-hyperparameters from stage 1, we select the learning rate most fre-
quently yielding the best predictive cross-validation performance. We perform a search over the candidate set
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.25, 0.5}. Finally, the optimal number of boosting rounds is determined
as the average early-stopped boosting round for the selected learning rate. For computational reasons, we repeat
this procedure on R = 50 simulated examples and fix the hyperparameters for all simulation replications to the
hyperparameter combination most frequently yielding the best cross-validation performance.

A.2 Tuning in the empirical application

Random forests: We fix the number of trees to 500. The maximal depth of each tree (d), the minimal number of
observations in the leafs of the trees (ℓ) and the size of the random subsets of features to consider when splitting a
node (m̄) are determined by cross-validation using the K sub-processes as folds. We perform a simple grid search
over the same candidate sets as for the simulation study (cf. Appendix A.1) and select the hyperparameter-combination
yielding the best predictive cross-validation performance.

Gradient boosted trees: We perform a two-stage tuning procedure. In the first stage, we fix the learning rate of the tree
booster to 0.1, the number of boosting rounds to 500 and find optimal tree parameters by cross-validation. For this, we
perform a simple grid search over {{d,w, so, sf} | d ∈ {1, ..., 10}∧w ∈ {1, ..., 10}∧so ∈ {0.25, 0.5, 0.75, 1}∧sf ∈
{0.25, 0.5, 0.75, 1}}, for the same parameters as in Appendix A.1, and select the hyperparameter-combination yielding
the best predictive cross-validation performance. In the second stage, using the optimal tree-hyperparameters from
stage 1, we finally select the learning rate and number of boosting rounds yielding the best predictive cross-validation
performance. We perform a search over all combinations of {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.25, 0.5} for
the learning rate and {10, 110, 210, 310, 410, 510} for the number of boosting rounds.

All estimators are tuned using 10-fold blocked cross-validation on the full sample, where at the boundary of the folds
24 observations are dropped to eliminate dependence between the folds.

B Simulation with an empirically calibrated data generating process

We calibrate the data generating process defined in Section 5 of the main text using monthly U.S. data from 1982 to
2012 obtained from the empirical study in Angrist et al. (2018). In more detail, the outcome process follows

Yt = c+ b(Xt) + (Dt − 0.5) τ(Xt) + γYt−1 + ϵt.

We calibrate the parameters c and γ, the innovation process ϵt and the process governing a set of confounder variables
Xt. The vector Xt contains the changes in the federal funds rate and in the ten-year Treasury yield, percentage
changes in the S&P 1000 index, the M1 money stock, civilian employment, and industrial production, as well as
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percentage-point changes in the unemployment rate. The outcome variable Yt is the monthly percentage changes in
core personal consumption expenditures. The specification of b(Xt), τ(Xt) and e(Xt) are kept identical to those used
in the simulation study in Section 5 of the main text.

The innovation process is assumed to follow a GARCH(p, q) specification. Following Adamek et al. (2024); Lazarus
et al. (2018), the confounder process Xt is modelled using a dynamic factor model as

Xt = ΛFt + Ut

Ft =

pF∑
j=1

ΦjFt−j + Vt, Vt ∼ N (0, I)

Ui,t =

pU∑
j=1

ϕjUi,t−j + ηt, ηi,t ∼ N (0, σ2
i,η) for i = 1, . . . , dim(Xt).

Model orders are selected using the Bayesian Information Criterion (BIC). Specifically, we determine the
GARCH(p, q) orders for ϵt, the number of latent factors Ft, the lag length pF of the factor VAR, and the AR order pU
of the idiosyncratic components by minimizing the BIC. For the sample at hand, this procedure selects an ARCH(1)
process for ϵt, one latent factor following a VAR(1) process, and univariate AR(1) processes for the components of
Ut. Simulation samples are generated by drawing independently from the distributions of ϵt, Vt and ηt.
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C Additional tables and figures

Table C2: Simulation results for K independent nonlinear baseline DGPs (n = 12 and σϵ = 1.0) and random forest
nuisance function estimates

h = 0, θ(h)0 = 0.3321
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 -0.020 0.749 0.749 0.969 0.959 0.379 0.438 0.579 0.530 0.275 0.400 0.486 0.732 0.099 0.361 0.375 0.868
250 0.025 0.406 0.407 0.954 0.953 0.276 0.275 0.390 0.512 0.198 0.256 0.323 0.752 0.110 0.245 0.269 0.872
500 0.027 0.212 0.214 0.944 0.944 0.215 0.199 0.293 0.469 0.139 0.185 0.231 0.776 0.139 0.181 0.228 0.821

1’000 0.015 0.131 0.132 0.962 0.959 0.174 0.130 0.217 0.431 0.095 0.121 0.154 0.809 0.135 0.121 0.181 0.747
8’000 0.009 0.044 0.045 0.957 0.955 0.177 0.052 0.184 0.015 0.042 0.044 0.061 0.818 0.138 0.043 0.145 0.094

h = 1, θ(h)0 = 0.1992
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.017 0.762 0.762 0.958 0.953 0.412 0.439 0.602 0.467 0.296 0.402 0.499 0.729 0.072 0.369 0.376 0.904
250 0.057 0.398 0.402 0.971 0.951 0.306 0.284 0.418 0.441 0.215 0.263 0.340 0.741 0.099 0.269 0.287 0.912
500 0.053 0.220 0.226 0.949 0.941 0.251 0.197 0.319 0.330 0.163 0.182 0.244 0.708 0.135 0.190 0.233 0.872

1’000 0.037 0.142 0.147 0.951 0.951 0.211 0.130 0.248 0.236 0.119 0.123 0.171 0.731 0.128 0.134 0.186 0.829
8’000 0.014 0.045 0.047 0.934 0.934 0.219 0.052 0.225 0.001 0.052 0.045 0.069 0.748 0.142 0.046 0.149 0.134

h = 2, θ(h)0 = 0.1195
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.058 0.821 0.823 0.951 0.942 0.394 0.466 0.610 0.458 0.288 0.433 0.520 0.713 0.043 0.412 0.414 0.930
250 0.067 0.460 0.464 0.967 0.938 0.289 0.299 0.416 0.434 0.205 0.280 0.347 0.797 0.081 0.313 0.324 0.926
500 0.067 0.248 0.257 0.942 0.939 0.243 0.206 0.319 0.307 0.162 0.197 0.255 0.725 0.109 0.219 0.245 0.911

1’000 0.040 0.161 0.166 0.945 0.945 0.196 0.145 0.244 0.238 0.111 0.141 0.179 0.764 0.112 0.154 0.191 0.886
8’000 0.014 0.052 0.054 0.933 0.932 0.213 0.057 0.221 0.002 0.051 0.050 0.071 0.787 0.126 0.054 0.137 0.367

h = 3, θ(h)0 = 0.0717
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.057 0.849 0.851 0.943 0.939 0.347 0.487 0.598 0.475 0.257 0.459 0.526 0.756 0.026 0.461 0.461 0.930
250 0.072 0.483 0.489 0.954 0.936 0.257 0.326 0.416 0.416 0.188 0.310 0.363 0.816 0.060 0.350 0.355 0.929
500 0.066 0.273 0.281 0.943 0.941 0.216 0.224 0.311 0.337 0.147 0.216 0.261 0.759 0.090 0.243 0.259 0.937

1’000 0.045 0.181 0.187 0.935 0.932 0.181 0.159 0.241 0.252 0.107 0.156 0.189 0.786 0.094 0.177 0.201 0.908
8’000 0.013 0.059 0.061 0.931 0.931 0.195 0.063 0.205 0.005 0.047 0.057 0.074 0.818 0.107 0.061 0.123 0.579

h = 4, θ(h)0 = 0.0430
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.071 0.896 0.899 0.941 0.934 0.299 0.513 0.594 0.487 0.222 0.486 0.534 0.771 0.027 0.481 0.482 0.935
250 0.084 0.532 0.539 0.936 0.931 0.233 0.352 0.422 0.455 0.173 0.336 0.378 0.758 0.061 0.391 0.396 0.918
500 0.057 0.308 0.313 0.937 0.930 0.188 0.241 0.305 0.404 0.129 0.235 0.269 0.790 0.073 0.263 0.273 0.932

1’000 0.040 0.200 0.203 0.936 0.932 0.157 0.173 0.234 0.278 0.093 0.170 0.193 0.807 0.071 0.193 0.206 0.937
8’000 0.014 0.066 0.068 0.931 0.930 0.176 0.067 0.189 0.009 0.044 0.064 0.078 0.846 0.088 0.067 0.111 0.740

h = 5, θ(h)0 = 0.0258
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.069 0.951 0.954 0.933 0.929 0.254 0.542 0.598 0.519 0.192 0.516 0.551 0.775 0.026 0.523 0.524 0.922
250 0.081 0.634 0.639 0.931 0.929 0.199 0.364 0.415 0.493 0.151 0.352 0.383 0.791 0.064 0.420 0.425 0.921
500 0.056 0.337 0.342 0.936 0.931 0.165 0.264 0.312 0.414 0.117 0.257 0.283 0.805 0.060 0.285 0.292 0.941

1’000 0.039 0.217 0.221 0.941 0.939 0.141 0.186 0.233 0.340 0.086 0.183 0.202 0.834 0.051 0.208 0.214 0.938
8’000 0.013 0.070 0.072 0.931 0.931 0.155 0.072 0.171 0.027 0.039 0.069 0.079 0.875 0.069 0.073 0.100 0.844

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with K independent stochastic processes, with K = 10. Except for the LP estimator,
nuisance functions are estimated with random forest. For the DML estimator we set kT = T/10 to obtain estimation samples of the same size as in the setting with one stochastic process.
For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data generating process are n = 12, σϵ = 1.0, γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3,
αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the coverage at the given confidence level using asymptotic and fixed-bandwidth critical
values, respectively.
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Table C3: Simulation results for a nonlinear DGP (n = 20, σϵ = 1.0) and random forest nuisance function estimates
h = 0, θ(h)0 = 0.3333

DML RA DR LP
T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.180 0.791 0.811 0.937 0.920 0.382 0.454 0.593 0.524 0.293 0.418 0.511 0.712 0.101 0.370 0.383 0.823
250 0.082 0.385 0.393 0.959 0.945 0.279 0.289 0.402 0.519 0.210 0.269 0.342 0.719 0.117 0.248 0.274 0.857
500 0.037 0.213 0.216 0.953 0.940 0.199 0.194 0.278 0.529 0.136 0.183 0.228 0.780 0.122 0.175 0.213 0.850

1’000 0.031 0.133 0.136 0.952 0.949 0.165 0.127 0.208 0.465 0.098 0.120 0.155 0.807 0.126 0.118 0.173 0.769
8’000 0.010 0.044 0.045 0.934 0.934 0.156 0.048 0.163 0.018 0.038 0.044 0.058 0.835 0.133 0.043 0.140 0.123

h = 1, θ(h)0 = 0.2000
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.207 0.827 0.852 0.935 0.920 0.418 0.449 0.613 0.488 0.317 0.411 0.519 0.698 0.058 0.381 0.386 0.884
250 0.103 0.393 0.406 0.965 0.952 0.301 0.283 0.413 0.447 0.220 0.261 0.341 0.724 0.088 0.268 0.282 0.900
500 0.061 0.224 0.232 0.948 0.945 0.235 0.194 0.304 0.381 0.158 0.183 0.242 0.712 0.114 0.186 0.218 0.898

1’000 0.053 0.144 0.154 0.931 0.929 0.203 0.134 0.243 0.283 0.121 0.127 0.175 0.734 0.126 0.132 0.182 0.827
8’000 0.020 0.045 0.049 0.925 0.924 0.202 0.047 0.207 0.001 0.052 0.043 0.068 0.738 0.139 0.047 0.147 0.153

h = 2, θ(h)0 = 0.1200
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.222 0.878 0.905 0.906 0.898 0.378 0.477 0.609 0.488 0.283 0.439 0.522 0.728 0.019 0.424 0.425 0.903
250 0.127 0.433 0.451 0.937 0.926 0.294 0.293 0.415 0.434 0.218 0.272 0.349 0.747 0.075 0.296 0.305 0.936
500 0.075 0.249 0.260 0.941 0.937 0.224 0.209 0.307 0.357 0.153 0.199 0.251 0.716 0.095 0.214 0.234 0.927

1’000 0.049 0.164 0.171 0.928 0.927 0.185 0.145 0.235 0.260 0.106 0.140 0.175 0.764 0.098 0.149 0.179 0.901
8’000 0.022 0.051 0.056 0.919 0.919 0.198 0.052 0.205 0.001 0.052 0.049 0.072 0.758 0.127 0.054 0.138 0.362

h = 3, θ(h)0 = 0.0720
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.228 0.987 1.013 0.924 0.901 0.353 0.486 0.601 0.534 0.271 0.450 0.526 0.747 0.022 0.454 0.454 0.914
250 0.137 0.487 0.506 0.932 0.924 0.266 0.328 0.422 0.467 0.201 0.311 0.370 0.746 0.053 0.340 0.344 0.925
500 0.083 0.289 0.301 0.941 0.936 0.216 0.228 0.314 0.376 0.152 0.218 0.266 0.735 0.085 0.244 0.259 0.925

1’000 0.058 0.176 0.186 0.940 0.939 0.180 0.152 0.236 0.287 0.109 0.149 0.185 0.784 0.089 0.165 0.187 0.926
8’000 0.024 0.058 0.062 0.917 0.917 0.185 0.056 0.194 0.001 0.051 0.055 0.075 0.807 0.111 0.061 0.127 0.563

h = 4, θ(h)0 = 0.0432
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.225 1.014 1.038 0.912 0.902 0.315 0.520 0.608 0.555 0.248 0.491 0.550 0.752 0.022 0.500 0.500 0.894
250 0.130 0.543 0.558 0.927 0.906 0.246 0.350 0.427 0.499 0.186 0.334 0.383 0.753 0.038 0.365 0.367 0.922
500 0.079 0.321 0.331 0.933 0.933 0.194 0.241 0.310 0.431 0.139 0.233 0.271 0.771 0.062 0.261 0.268 0.935

1’000 0.058 0.194 0.202 0.948 0.944 0.166 0.166 0.234 0.309 0.101 0.162 0.191 0.811 0.072 0.181 0.195 0.937
8’000 0.022 0.065 0.068 0.930 0.929 0.168 0.062 0.179 0.014 0.047 0.061 0.077 0.842 0.092 0.067 0.113 0.736

h = 5, θ(h)0 = 0.0259
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.208 1.055 1.075 0.914 0.903 0.250 0.526 0.582 0.583 0.196 0.496 0.533 0.801 -0.002 0.515 0.515 0.911
250 0.136 0.593 0.608 0.919 0.902 0.217 0.361 0.421 0.548 0.170 0.343 0.383 0.778 0.027 0.381 0.382 0.942
500 0.070 0.339 0.346 0.925 0.925 0.167 0.253 0.303 0.482 0.119 0.245 0.272 0.802 0.042 0.277 0.280 0.937

1’000 0.055 0.213 0.220 0.934 0.932 0.151 0.178 0.234 0.356 0.094 0.175 0.198 0.838 0.055 0.199 0.206 0.935
8’000 0.021 0.070 0.073 0.934 0.933 0.152 0.067 0.166 0.025 0.043 0.067 0.079 0.859 0.075 0.071 0.103 0.822

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forest. For the DML estimator we use 10-fold cross-fitting and set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 20, σϵ = 1.0, γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C4: Simulation results for a nonlinear DGP (n = 12, σϵ = 3.0) and random forest nuisance function estimates
h = 0, θ(h)0 = 0.3321

DML RA DR LP
T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.055 1.287 1.288 0.941 0.930 0.364 0.789 0.869 0.497 0.263 0.750 0.794 0.758 0.082 0.713 0.717 0.907
250 0.060 0.779 0.781 0.953 0.943 0.273 0.534 0.600 0.528 0.203 0.516 0.555 0.800 0.142 0.488 0.508 0.917
500 0.015 0.429 0.429 0.951 0.945 0.188 0.368 0.413 0.471 0.120 0.357 0.376 0.824 0.142 0.342 0.370 0.917

1’000 0.019 0.285 0.285 0.946 0.945 0.161 0.264 0.309 0.429 0.088 0.260 0.274 0.838 0.146 0.245 0.285 0.871
8’000 0.003 0.091 0.091 0.951 0.950 0.161 0.089 0.184 0.106 0.033 0.088 0.094 0.918 0.143 0.083 0.165 0.599

h = 1, θ(h)0 = 0.1992
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.101 1.430 1.433 0.918 0.918 0.370 0.846 0.924 0.523 0.271 0.815 0.859 0.759 0.060 0.782 0.784 0.922
250 0.047 1.051 1.052 0.942 0.936 0.293 0.580 0.650 0.459 0.210 0.565 0.603 0.769 0.122 0.555 0.568 0.931
500 0.043 0.474 0.476 0.946 0.945 0.214 0.388 0.443 0.429 0.134 0.381 0.404 0.832 0.128 0.392 0.412 0.920

1’000 0.049 0.310 0.314 0.949 0.947 0.198 0.279 0.342 0.345 0.111 0.275 0.297 0.842 0.153 0.271 0.311 0.914
8’000 0.010 0.102 0.102 0.947 0.946 0.207 0.097 0.228 0.047 0.045 0.098 0.108 0.913 0.153 0.096 0.181 0.642

h = 2, θ(h)0 = 0.1195
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.159 1.382 1.391 0.932 0.921 0.352 0.847 0.917 0.512 0.258 0.816 0.856 0.784 0.033 0.814 0.815 0.935
250 0.044 1.106 1.107 0.932 0.925 0.258 0.600 0.653 0.497 0.182 0.592 0.619 0.777 0.080 0.599 0.604 0.925
500 0.059 0.503 0.507 0.941 0.938 0.202 0.414 0.460 0.417 0.130 0.408 0.428 0.814 0.111 0.420 0.434 0.933

1’000 0.058 0.340 0.345 0.931 0.931 0.194 0.302 0.360 0.336 0.114 0.300 0.321 0.814 0.143 0.302 0.334 0.913
8’000 0.010 0.108 0.109 0.962 0.962 0.199 0.102 0.224 0.040 0.043 0.104 0.112 0.908 0.138 0.104 0.173 0.721

h = 3, θ(h)0 = 0.0717
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.116 1.482 1.486 0.936 0.923 0.284 0.852 0.898 0.556 0.201 0.821 0.845 0.795 -0.010 0.825 0.825 0.936
250 0.074 0.860 0.864 0.930 0.928 0.233 0.602 0.646 0.481 0.160 0.586 0.608 0.795 0.058 0.600 0.603 0.934
500 0.062 0.536 0.540 0.931 0.923 0.191 0.432 0.472 0.409 0.127 0.429 0.447 0.800 0.102 0.448 0.459 0.929

1’000 0.060 0.353 0.358 0.924 0.922 0.183 0.310 0.360 0.331 0.112 0.311 0.331 0.815 0.128 0.319 0.344 0.911
8’000 0.010 0.114 0.114 0.950 0.950 0.180 0.107 0.210 0.046 0.040 0.110 0.117 0.905 0.119 0.110 0.162 0.808

h = 4, θ(h)0 = 0.0430
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.145 1.489 1.496 0.935 0.915 0.252 0.832 0.869 0.549 0.187 0.811 0.832 0.831 0.012 0.833 0.833 0.937
250 0.041 1.358 1.358 0.916 0.916 0.208 0.639 0.672 0.485 0.150 0.623 0.641 0.787 0.058 0.631 0.634 0.935
500 0.039 0.576 0.578 0.938 0.926 0.151 0.448 0.473 0.421 0.097 0.443 0.453 0.821 0.063 0.456 0.461 0.929

1’000 0.055 0.363 0.367 0.938 0.936 0.160 0.316 0.354 0.345 0.098 0.315 0.330 0.835 0.104 0.324 0.341 0.920
8’000 0.010 0.117 0.118 0.949 0.949 0.159 0.110 0.194 0.056 0.037 0.113 0.119 0.911 0.100 0.110 0.148 0.859

h = 5, θ(h)0 = 0.0258
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.167 1.619 1.627 0.915 0.898 0.253 0.897 0.932 0.558 0.199 0.874 0.897 0.813 0.053 0.913 0.914 0.922
250 0.050 1.062 1.063 0.920 0.912 0.176 0.650 0.674 0.469 0.125 0.638 0.650 0.775 0.046 0.643 0.645 0.931
500 0.025 0.587 0.588 0.950 0.941 0.122 0.446 0.463 0.450 0.078 0.444 0.451 0.829 0.045 0.458 0.461 0.938

1’000 0.042 0.363 0.366 0.947 0.941 0.129 0.313 0.339 0.357 0.076 0.313 0.322 0.855 0.074 0.323 0.331 0.950
8’000 0.003 0.121 0.121 0.942 0.941 0.134 0.112 0.175 0.082 0.026 0.115 0.118 0.919 0.077 0.113 0.136 0.912

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forest. For the DML estimator we use 10-fold cross-fitting and set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 12, σϵ = 3.0, γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C5: Simulation results for an empirically calibrated DGP (see Section B) and random forest nuisance function
estimates

h = 0, θ(h)0 = 0.2021
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.058 0.343 0.348 0.966 0.948 0.244 0.273 0.366 0.279 0.203 0.263 0.332 0.681 0.146 0.260 0.298 0.883
250 0.042 0.207 0.211 0.935 0.931 0.210 0.190 0.283 0.238 0.168 0.184 0.249 0.629 0.153 0.189 0.243 0.845
500 0.038 0.130 0.136 0.949 0.945 0.177 0.129 0.219 0.242 0.130 0.125 0.180 0.641 0.154 0.127 0.200 0.752

1’000 0.034 0.096 0.101 0.919 0.919 0.159 0.090 0.182 0.148 0.105 0.088 0.137 0.625 0.152 0.091 0.177 0.580
8’000 -0.002 0.031 0.032 0.949 0.949 0.153 0.033 0.156 0.000 0.035 0.031 0.047 0.760 0.153 0.033 0.157 0.001

h = 1, θ(h)0 = 0.0521
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.040 0.347 0.349 0.965 0.939 0.108 0.271 0.291 0.330 0.088 0.267 0.282 0.791 0.029 0.274 0.276 0.941
250 0.025 0.245 0.247 0.962 0.944 0.100 0.192 0.216 0.258 0.079 0.191 0.206 0.789 0.041 0.199 0.203 0.936
500 0.027 0.151 0.153 0.933 0.929 0.084 0.137 0.161 0.265 0.062 0.137 0.151 0.792 0.043 0.141 0.147 0.918

1’000 0.019 0.100 0.102 0.947 0.946 0.073 0.095 0.119 0.194 0.047 0.095 0.106 0.808 0.042 0.097 0.106 0.927
8’000 -0.000 0.035 0.035 0.954 0.953 0.072 0.034 0.079 0.019 0.015 0.034 0.037 0.894 0.040 0.034 0.053 0.780

h = 2, θ(h)0 = 0.0134
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.037 0.362 0.364 0.969 0.947 0.067 0.263 0.271 0.309 0.054 0.261 0.266 0.860 0.007 0.272 0.272 0.946
250 0.008 0.228 0.228 0.955 0.944 0.045 0.191 0.196 0.288 0.034 0.190 0.193 0.814 0.003 0.196 0.196 0.941
500 0.010 0.150 0.150 0.945 0.943 0.038 0.136 0.141 0.245 0.026 0.137 0.139 0.830 0.005 0.138 0.138 0.951

1’000 0.006 0.108 0.108 0.934 0.934 0.034 0.099 0.105 0.184 0.020 0.101 0.103 0.828 0.007 0.101 0.101 0.938
8’000 0.000 0.036 0.036 0.954 0.953 0.036 0.034 0.050 0.050 0.008 0.035 0.036 0.916 0.010 0.035 0.037 0.936

h = 3, θ(h)0 = 0.0035
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.032 0.362 0.363 0.950 0.936 0.042 0.282 0.285 0.331 0.034 0.277 0.279 0.811 0.001 0.285 0.285 0.932
250 0.009 0.238 0.239 0.935 0.929 0.027 0.196 0.198 0.284 0.020 0.197 0.198 0.790 -0.006 0.199 0.199 0.940
500 0.005 0.151 0.151 0.947 0.945 0.023 0.134 0.136 0.231 0.015 0.135 0.136 0.840 -0.003 0.135 0.135 0.957

1’000 0.003 0.106 0.106 0.939 0.937 0.022 0.096 0.098 0.233 0.013 0.098 0.099 0.852 0.000 0.098 0.098 0.947
8’000 0.000 0.037 0.037 0.945 0.945 0.022 0.034 0.040 0.054 0.005 0.036 0.036 0.925 0.002 0.035 0.035 0.944

h = 4, θ(h)0 = 0.0009
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.023 0.376 0.376 0.945 0.933 0.034 0.290 0.292 0.315 0.026 0.286 0.287 0.777 -0.001 0.296 0.296 0.925
250 0.006 0.228 0.228 0.944 0.938 0.025 0.190 0.192 0.316 0.020 0.191 0.192 0.810 0.003 0.195 0.195 0.940
500 0.006 0.155 0.155 0.940 0.936 0.017 0.141 0.142 0.252 0.011 0.142 0.142 0.815 -0.005 0.145 0.145 0.938

1’000 0.006 0.103 0.103 0.956 0.955 0.020 0.093 0.095 0.185 0.012 0.095 0.096 0.871 0.001 0.095 0.095 0.951
8’000 -0.000 0.036 0.036 0.953 0.953 0.016 0.033 0.037 0.065 0.003 0.035 0.035 0.936 0.000 0.035 0.035 0.956

h = 5, θ(h)0 = 0.0002
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.024 0.370 0.371 0.944 0.930 0.022 0.283 0.284 0.305 0.017 0.281 0.282 0.909 -0.001 0.285 0.285 0.935
250 0.012 0.237 0.238 0.936 0.934 0.016 0.194 0.194 0.304 0.013 0.193 0.193 0.796 -0.004 0.197 0.197 0.946
500 0.006 0.152 0.152 0.960 0.954 0.017 0.135 0.136 0.226 0.012 0.136 0.136 0.851 -0.003 0.137 0.137 0.957

1’000 0.006 0.104 0.105 0.953 0.950 0.017 0.096 0.097 0.171 0.011 0.097 0.097 0.869 0.000 0.096 0.096 0.953
8’000 0.000 0.036 0.036 0.950 0.950 0.013 0.033 0.036 0.068 0.003 0.035 0.035 0.931 0.000 0.034 0.034 0.960

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with random forest. For the DML estimator we use 10-fold cross-fitting and set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are empirically calibrated using monthly U.S. data from 1982 to 2012 obtained from the empirical study in Angrist et al. (2018). Ca(·) and Cb(·) in the tables denote
the coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C6: Simulation results for a baseline nonlinear DGP (n = 12, σϵ = 1.0) and gradient boosting nuisance function
estimates

h = 0, θ(h)0 = 0.3321
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.166 1.285 1.295 0.937 0.937 0.071 0.525 0.530 0.800 -0.019 0.514 0.515 0.900 0.090 0.357 0.368 0.871
250 0.090 0.631 0.638 0.922 0.922 0.111 0.391 0.406 0.732 0.081 0.313 0.324 0.883 0.128 0.251 0.282 0.847
500 0.043 0.269 0.273 0.961 0.955 0.280 0.242 0.370 0.398 0.158 0.199 0.254 0.805 0.135 0.173 0.220 0.829

1’000 0.028 0.158 0.160 0.942 0.939 0.073 0.189 0.203 0.662 0.038 0.141 0.146 0.919 0.138 0.126 0.187 0.730
8’000 0.008 0.040 0.041 0.960 0.960 0.115 0.042 0.122 0.089 0.014 0.040 0.043 0.952 0.131 0.046 0.139 0.141

h = 1, θ(h)0 = 0.1992
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.166 1.322 1.332 0.952 0.938 0.090 0.547 0.554 0.751 0.009 0.514 0.514 0.898 0.060 0.362 0.367 0.923
250 0.105 0.641 0.650 0.955 0.954 0.135 0.398 0.421 0.701 0.090 0.315 0.327 0.877 0.111 0.265 0.287 0.914
500 0.067 0.266 0.275 0.959 0.957 0.320 0.236 0.397 0.286 0.175 0.196 0.263 0.777 0.123 0.193 0.229 0.887

1’000 0.044 0.154 0.160 0.953 0.952 0.097 0.187 0.211 0.553 0.052 0.137 0.146 0.916 0.139 0.133 0.193 0.792
8’000 0.016 0.042 0.045 0.937 0.936 0.134 0.044 0.141 0.013 0.021 0.042 0.047 0.928 0.144 0.053 0.153 0.183

h = 2, θ(h)0 = 0.1195
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.153 1.439 1.447 0.959 0.935 0.104 0.561 0.570 0.732 -0.006 0.541 0.541 0.913 0.031 0.410 0.411 0.931
250 0.107 0.723 0.731 0.944 0.937 0.149 0.426 0.451 0.662 0.082 0.329 0.339 0.887 0.078 0.306 0.316 0.927
500 0.072 0.300 0.308 0.952 0.952 0.310 0.266 0.408 0.346 0.171 0.219 0.278 0.800 0.104 0.221 0.244 0.911

1’000 0.051 0.176 0.183 0.930 0.926 0.104 0.210 0.234 0.478 0.058 0.156 0.167 0.898 0.128 0.160 0.204 0.854
8’000 0.015 0.049 0.051 0.943 0.943 0.131 0.051 0.141 0.014 0.019 0.048 0.052 0.935 0.128 0.055 0.140 0.352

h = 3, θ(h)0 = 0.0717
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.132 1.513 1.519 0.958 0.944 0.124 0.622 0.634 0.694 0.007 0.591 0.591 0.894 0.012 0.448 0.448 0.937
250 0.097 0.797 0.803 0.933 0.930 0.143 0.476 0.497 0.611 0.074 0.364 0.371 0.901 0.058 0.340 0.345 0.934
500 0.078 0.327 0.337 0.953 0.946 0.289 0.287 0.407 0.391 0.163 0.238 0.289 0.840 0.087 0.249 0.264 0.915

1’000 0.054 0.196 0.204 0.949 0.946 0.113 0.228 0.255 0.442 0.058 0.168 0.178 0.915 0.112 0.178 0.210 0.902
8’000 0.014 0.055 0.057 0.946 0.946 0.128 0.058 0.141 0.021 0.017 0.055 0.057 0.937 0.117 0.061 0.131 0.479

h = 4, θ(h)0 = 0.0430
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.150 1.681 1.688 0.960 0.937 0.125 0.678 0.689 0.695 0.041 0.696 0.697 0.902 0.021 0.496 0.497 0.935
250 0.069 0.867 0.870 0.927 0.924 0.142 0.510 0.529 0.591 0.077 0.405 0.412 0.873 0.049 0.377 0.380 0.922
500 0.068 0.363 0.369 0.952 0.940 0.245 0.299 0.387 0.447 0.148 0.261 0.300 0.852 0.062 0.270 0.277 0.929

1’000 0.051 0.219 0.225 0.942 0.942 0.110 0.247 0.271 0.408 0.054 0.181 0.189 0.934 0.092 0.192 0.213 0.921
8’000 0.014 0.061 0.063 0.948 0.948 0.126 0.063 0.141 0.026 0.017 0.060 0.063 0.939 0.100 0.067 0.121 0.662

h = 5, θ(h)0 = 0.0258
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.099 1.794 1.796 0.949 0.927 0.148 0.705 0.720 0.669 0.082 0.729 0.734 0.898 0.032 0.551 0.552 0.921
250 0.077 0.937 0.940 0.931 0.926 0.119 0.532 0.545 0.584 0.068 0.421 0.427 0.884 0.036 0.394 0.395 0.918
500 0.063 0.384 0.389 0.951 0.943 0.216 0.308 0.376 0.491 0.131 0.271 0.301 0.862 0.047 0.283 0.287 0.943

1’000 0.039 0.233 0.236 0.946 0.938 0.097 0.256 0.274 0.445 0.047 0.193 0.198 0.927 0.071 0.202 0.214 0.933
8’000 0.010 0.068 0.068 0.951 0.951 0.116 0.071 0.136 0.040 0.013 0.067 0.068 0.941 0.082 0.078 0.113 0.789

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with one stochastic process. Except for the LP estimator, nuisance functions are estimated
with gradient boosting. For the DML estimator we use 10-fold cross-fitting and set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data
generating process are n = 12, σϵ = 1.0, γ = 0.6, p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the
coverage at the given confidence level using asymptotic and fixed-bandwidth critical values, respectively.
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Table C7: Simulation results for a linear DGP (n = 12, σϵ = 1.0) and random forest nuisance function estimates
h = 0, θ(h)0 = 0.3321

DML RA DR LP
T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.121 1.375 1.381 0.927 0.918 0.851 0.550 1.013 0.270 0.669 0.498 0.834 0.503 -0.006 0.219 0.219 0.911
250 0.060 1.043 1.044 0.944 0.935 0.675 0.325 0.749 0.095 0.525 0.292 0.601 0.334 0.004 0.146 0.146 0.956
500 0.069 0.348 0.355 0.959 0.941 0.537 0.203 0.574 0.031 0.388 0.185 0.430 0.240 -0.001 0.106 0.106 0.947

1’000 0.062 0.164 0.176 0.944 0.942 0.445 0.126 0.463 0.000 0.280 0.116 0.303 0.186 -0.000 0.074 0.074 0.956
8’000 0.019 0.040 0.044 0.942 0.942 0.381 0.066 0.386 0.000 0.108 0.038 0.114 0.152 -0.001 0.025 0.025 0.940

h = 1, θ(h)0 = 0.1992
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.173 1.539 1.549 0.916 0.900 0.893 0.590 1.070 0.287 0.708 0.542 0.892 0.485 -0.030 0.317 0.319 0.918
250 0.067 1.273 1.275 0.943 0.921 0.732 0.364 0.817 0.119 0.567 0.332 0.657 0.354 -0.005 0.224 0.224 0.934
500 0.105 0.372 0.386 0.945 0.936 0.597 0.223 0.638 0.023 0.433 0.207 0.480 0.262 -0.008 0.151 0.151 0.947

1’000 0.094 0.195 0.216 0.913 0.910 0.509 0.148 0.530 0.002 0.324 0.139 0.352 0.200 0.002 0.109 0.110 0.945
8’000 0.028 0.050 0.057 0.922 0.922 0.447 0.073 0.453 0.000 0.128 0.046 0.136 0.163 0.001 0.038 0.038 0.950

h = 2, θ(h)0 = 0.1195
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.217 1.495 1.511 0.917 0.892 0.818 0.659 1.050 0.372 0.649 0.615 0.894 0.610 -0.042 0.454 0.456 0.918
250 0.082 1.058 1.061 0.917 0.905 0.656 0.418 0.778 0.238 0.510 0.393 0.644 0.546 -0.014 0.326 0.326 0.931
500 0.114 0.412 0.427 0.944 0.932 0.547 0.270 0.610 0.102 0.399 0.257 0.475 0.483 -0.009 0.218 0.218 0.954

1’000 0.102 0.237 0.258 0.898 0.895 0.470 0.192 0.508 0.033 0.303 0.185 0.355 0.429 0.004 0.165 0.165 0.936
8’000 0.027 0.066 0.072 0.926 0.924 0.420 0.084 0.428 0.000 0.119 0.061 0.134 0.457 0.000 0.055 0.055 0.957

h = 3, θ(h)0 = 0.0717
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.221 1.641 1.656 0.920 0.895 0.696 0.709 0.993 0.431 0.554 0.669 0.869 0.724 -0.051 0.562 0.564 0.917
250 0.055 1.522 1.523 0.912 0.899 0.569 0.488 0.750 0.346 0.438 0.463 0.637 0.660 -0.019 0.418 0.418 0.913
500 0.113 0.462 0.475 0.951 0.937 0.478 0.310 0.570 0.220 0.352 0.301 0.463 0.642 -0.006 0.281 0.281 0.945

1’000 0.106 0.275 0.295 0.913 0.902 0.413 0.227 0.471 0.100 0.270 0.223 0.350 0.590 0.007 0.209 0.209 0.935
8’000 0.027 0.082 0.086 0.938 0.937 0.376 0.092 0.387 0.000 0.107 0.077 0.132 0.638 0.000 0.071 0.071 0.952

h = 4, θ(h)0 = 0.0430
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.283 1.587 1.612 0.892 0.892 0.594 0.744 0.952 0.530 0.478 0.714 0.860 0.807 -0.023 0.660 0.661 0.915
250 0.092 1.054 1.058 0.907 0.897 0.476 0.545 0.724 0.409 0.369 0.524 0.640 0.715 -0.016 0.493 0.493 0.917
500 0.103 0.489 0.499 0.961 0.935 0.396 0.345 0.526 0.335 0.291 0.337 0.446 0.733 -0.016 0.326 0.326 0.957

1’000 0.102 0.318 0.334 0.914 0.909 0.357 0.261 0.442 0.194 0.237 0.257 0.350 0.693 0.010 0.247 0.247 0.937
8’000 0.023 0.097 0.100 0.942 0.941 0.329 0.100 0.343 0.002 0.092 0.091 0.130 0.756 -0.001 0.084 0.084 0.948

h = 5, θ(h)0 = 0.0258
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.280 1.696 1.719 0.902 0.886 0.500 0.809 0.951 0.560 0.411 0.777 0.879 0.794 0.001 0.738 0.738 0.919
250 0.091 1.178 1.182 0.923 0.916 0.407 0.579 0.708 0.489 0.313 0.558 0.640 0.765 -0.009 0.532 0.532 0.927
500 0.091 0.531 0.539 0.958 0.938 0.327 0.377 0.499 0.402 0.241 0.370 0.442 0.779 -0.020 0.364 0.364 0.953

1’000 0.094 0.348 0.360 0.913 0.912 0.303 0.283 0.414 0.270 0.202 0.280 0.346 0.757 0.008 0.272 0.272 0.946
8’000 0.019 0.109 0.111 0.934 0.934 0.282 0.107 0.302 0.009 0.077 0.102 0.128 0.821 -0.003 0.096 0.096 0.946

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with one stochastic process. The outcome variable is generated from a linear DGP, i.e.
b(Xt) = 0.5

∑5
i=1Xi,t and τ(Xt) = θ

(0)
0 . Except for the LP estimator, nuisance functions are estimated with random forest. For the DML estimator we use 10-fold cross-fitting and

set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data generating process are n = 12, σϵ = 1.0, γ = 0.6, p = 2, q = 1, σu = 1.0,
αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the coverage at the given confidence level using asymptotic and fixed-bandwidth
critical values, respectively.
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Table C8: Simulation results for a linear DGP with interactions (n = 12, σϵ = 1.0) and random forest nuisance
function estimates

h = 0, θ(h)0 = 0.3321
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.115 1.926 1.930 0.810 0.786 0.900 1.076 1.403 0.404 0.714 1.020 1.245 0.513 0.556 0.858 1.023 0.579
250 0.079 1.248 1.251 0.814 0.810 0.700 0.726 1.009 0.468 0.551 0.702 0.892 0.580 0.595 0.589 0.837 0.527
500 0.085 0.618 0.624 0.839 0.830 0.571 0.511 0.767 0.473 0.419 0.495 0.649 0.633 0.624 0.404 0.743 0.364

1’000 0.084 0.395 0.403 0.856 0.849 0.479 0.367 0.603 0.487 0.312 0.359 0.476 0.684 0.632 0.297 0.698 0.206
8’000 0.025 0.066 0.070 0.947 0.945 0.416 0.086 0.425 0.000 0.124 0.064 0.140 0.460 0.329 0.053 0.333 0.000

h = 1, θ(h)0 = 0.1992
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.173 1.778 1.787 0.863 0.843 0.821 0.825 1.164 0.350 0.627 0.759 0.985 0.543 0.308 0.592 0.667 0.771
250 0.113 1.003 1.009 0.881 0.878 0.662 0.562 0.868 0.330 0.498 0.525 0.723 0.519 0.375 0.425 0.567 0.705
500 0.112 0.502 0.514 0.859 0.859 0.542 0.390 0.668 0.300 0.381 0.368 0.530 0.539 0.413 0.303 0.512 0.567

1’000 0.103 0.300 0.318 0.868 0.863 0.464 0.276 0.540 0.267 0.289 0.264 0.392 0.571 0.433 0.222 0.487 0.341
8’000 0.029 0.062 0.069 0.919 0.919 0.449 0.082 0.456 0.000 0.127 0.058 0.139 0.355 0.231 0.051 0.237 0.006

h = 2, θ(h)0 = 0.1195
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.202 1.573 1.586 0.901 0.894 0.707 0.730 1.016 0.383 0.532 0.668 0.854 0.627 0.151 0.564 0.584 0.905
250 0.042 2.297 2.297 0.920 0.912 0.555 0.497 0.745 0.312 0.412 0.465 0.621 0.607 0.225 0.415 0.472 0.895
500 0.111 0.467 0.480 0.917 0.909 0.461 0.341 0.574 0.280 0.320 0.323 0.455 0.595 0.266 0.301 0.402 0.818

1’000 0.106 0.281 0.301 0.887 0.880 0.406 0.248 0.476 0.198 0.254 0.237 0.347 0.566 0.302 0.220 0.374 0.645
8’000 0.025 0.070 0.074 0.935 0.934 0.411 0.086 0.419 0.000 0.111 0.065 0.129 0.540 0.156 0.061 0.167 0.301

h = 3, θ(h)0 = 0.0717
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.208 1.625 1.638 0.915 0.901 0.594 0.720 0.933 0.454 0.453 0.669 0.808 0.709 0.072 0.612 0.617 0.929
250 0.105 0.913 0.919 0.913 0.912 0.462 0.498 0.679 0.394 0.339 0.470 0.579 0.670 0.128 0.459 0.476 0.911
500 0.102 0.470 0.481 0.940 0.927 0.388 0.334 0.512 0.296 0.269 0.322 0.420 0.686 0.171 0.331 0.372 0.903

1’000 0.102 0.285 0.303 0.911 0.908 0.350 0.243 0.426 0.191 0.222 0.236 0.324 0.658 0.214 0.237 0.319 0.827
8’000 0.023 0.082 0.085 0.934 0.933 0.363 0.092 0.375 0.001 0.097 0.078 0.124 0.706 0.104 0.074 0.128 0.709

h = 4, θ(h)0 = 0.0430
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.242 1.594 1.612 0.919 0.899 0.504 0.742 0.897 0.486 0.389 0.701 0.802 0.722 0.045 0.696 0.697 0.924
250 0.108 0.967 0.973 0.905 0.900 0.399 0.529 0.662 0.418 0.300 0.504 0.587 0.712 0.090 0.512 0.520 0.920
500 0.086 0.552 0.559 0.938 0.921 0.319 0.353 0.476 0.365 0.222 0.343 0.409 0.755 0.104 0.363 0.378 0.934

1’000 0.090 0.299 0.313 0.938 0.935 0.294 0.251 0.386 0.251 0.187 0.244 0.308 0.751 0.146 0.255 0.294 0.911
8’000 0.021 0.094 0.096 0.938 0.938 0.318 0.097 0.333 0.004 0.085 0.089 0.123 0.786 0.071 0.084 0.110 0.866

h = 5, θ(h)0 = 0.0258
DML RA DR LP

T Bias std(θ̂h) RMSE Cb(95%) Ca(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%) Bias std(θ̂h) RMSE Cb(95%)

125 0.242 1.669 1.686 0.899 0.899 0.428 0.786 0.894 0.516 0.342 0.745 0.820 0.757 0.043 0.770 0.771 0.912
250 0.106 0.977 0.983 0.930 0.920 0.328 0.552 0.642 0.482 0.244 0.528 0.582 0.749 0.047 0.539 0.541 0.934
500 0.084 0.533 0.540 0.943 0.923 0.269 0.370 0.457 0.403 0.190 0.362 0.409 0.775 0.067 0.386 0.392 0.941

1’000 0.084 0.317 0.328 0.942 0.937 0.251 0.265 0.365 0.303 0.162 0.260 0.306 0.797 0.102 0.274 0.292 0.939
8’000 0.016 0.104 0.105 0.942 0.942 0.273 0.103 0.292 0.009 0.071 0.099 0.121 0.829 0.045 0.095 0.106 0.924

NOTE: The table depicts simulation results across N = 1′000 draws obtained for the scenario with one stochastic process. The outcome variable is generated from a linear DGP, i.e.
b(Xt) = 0.5

∑5
i=1Xi,t and τ(Xt) = θ

(0)
0 +

∑3
i=1Xi,t −

∑5
i=4Xi,t. Except for the LP estimator, nuisance functions are estimated with random forest. For the DML estimator we use

10-fold cross-fitting and set kT = T/10. For sample size T = 125, probabilities are winsorized at 1%. The parameters of the data generating process are n = 12, σϵ = 1.0, γ = 0.6,
p = 2, q = 1, σu = 1.0, αA = 0.3, αM = 0.3, ρA = 0.35, ρM = 0.7, β1 = 0.3, β2 = 0.5. Ca(·) and Cb(·) in the tables denote the coverage at the given confidence level using
asymptotic and fixed-bandwidth critical values, respectively.
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Figure C5: Estimated cumulative effects of target rate changes on the bond yield curve
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NOTE: The figure shows the estimated cumulative effects of target rate changes on the bond yield curve for the time period July
1989 to December 2008. The left (right) column shows the effect of decreasing (increasing) the target rate by 25 basis points. The
estimated effects on the yield curve are depicted for 0 (top row), 12 (middle row), and 24 (bottom row) months after the target
rate change. The nuisance functions are estimated by random forest using 10-fold cross-fitting removing kT = 24 observations
from the estimation sample at the boundary to the inference sample. The shaded areas represent 68% and 95% confidence intervals
with fixed-bandwidth critical values (Kiefer & Vogelsang, 2005). The variances are estimated using bandwidth determined by the
procedure of Newey and West (1994).
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