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Social scien+sts o-en es+mate how actors respond to each-other. However, 
data is usually aggregated temporally, into days, weeks, or years, when 
response occurs at higher frequency. How does temporal aggrega+on affect 
standard regression es+mates? We show that studying interac+ons aggregated 
(or disaggregated) into predetermined intervals, rather than the actual 
response, can distort es+mates, genera+ng aDenua+on, amplifica+on and even 
reverse signs. We provide analy+c deriva+ons, simple examples, and empirical 
Monte Carlo simula+ons. We conclude by examining how temporal aggrega+on 
can distort our understanding of the Israel-Gaza conflict from 2007 to 2017. 
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And have no doubt — we will hold all those responsible to account at a 5me and in 

a manner [of] our choosing. 

• Former President Biden discussing the United States’ response to missile 
and drone aDacks targe+ng United States military installa+ons resul+ng in 
three casual+es (2024). 

1 Introduc*on 

How can a researcher es+mate a country’s response to a recurring conflict (e.g. trade 

wars, cyber-aDacks, rocket fire) using data which temporally aggregate ac+ons into fixed 

+me units (such as months)? Enders and Sandler (1993) provide one of the first applica+ons 

using Vector Autoregressions (VAR), a flexible reduced form approach popularized within 

macroeconomics which relies on data recorded at fixed units (e.g., years, quarters or 

months). Researchers have since applied VAR to many strategic se_ngs, including 

Israel/Pales+nian conflicts (Jaeger and Paserman 2008; Haushofer, Biletzki, and Kanwisher 

2010), poli+cians’ campaign strategies (Box-Steffensmeier, Darmofal, and Farrell 2009), 

poli+cal-media interac+ons (Barberá et al. 2019), and most recently Myanmar state 

violence (Davis, Paula Lopez-Pena, and Wen 2023). In these se_ngs players choose both 

how and when to respond to each other. That results in irregularly spaced responses which 

are o-en+mes aggregated to some arbitrary +me interval, like a day. Yet in a single day 

mul+ple responses and counter-responses could occur –so that aggrega+on might conflate 

them.  

A useful dis+nc+on in this se_ng is between calendar 5me –measured in units of fixed 

dura+on (e.g., days) and ac5on 5me, which records when ac+ons occur, their magnitude, 

and dura+on. For example, an evening ac+on might respond to an a-ernoon ac+on, but last 
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past midnight.  We show that temporally aggrega+ng such a sequence into daily data can 

cause misleading point es+mates and distorted inference in VAR analyses. 

We first mo+vate our findings using data recorded at high frequency (five-minute 

intervals) from the Israeli-Gaza conflict between 2007 and 2017. The conflict during this 

period is best described as par5al deterrence: Israelis and Gazans launch violent aDacks at 

one another, some+mes many +mes daily, but do not reach the level of war seen following 

October 7th, 2023. We highlight three facts from the data: i) sides tend to respond to aDacks 

within a day, ii) violence tends to last only a few days with lulls of quiet between, and iii) 

sides vary their response +me. We then es+mate reduced form VARs and impulse 

responses func+ons (IRFs) at the daily level following Jaeger and Paserman (2008). That 

exercise reproduces results like those of Jaeger and Passerman on the Second In+fada 

period: our VAR and IRF analysis suggests long, drawn out responses las+ng nearly 40 days 

–in contrast to fact (ii). 

Why does a VAR and IRF analysis produce prolonged responses when the data suggests a 

conflict defined by spats of violence between days of calm? We argue this can occur 

because of a temporally aggregated unit of observa+on. Strategic interac+ons can be 

thought of as sequen+al games, where each player performs ac+ons (e.g. airstrikes, mortar 

fire) resul+ng in damages (e.g., casual+es, property damage).4 Studying the problem at a 

predefined temporal level (e.g., day or week) can cause standard VAR modeling to es+mate 

prolonged lag lengths, misleading point es+mates and empirical responses. This distor+on 

can result from actors strategically wai+ng different amounts of +me to respond, or from 

ac+ons spanning temporal units (e.g., mul+ple days). For example, an airstrike is nearly 

instantaneous, but an incursion or barrage of rocket fire can last days. 

 
4 Maskin and Tirole (1988) make a similar argument when modeling pricing strategies. 
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Put simply, aggrega+ng (and disaggrega+ng) the +ming of behavior can create severe 

misspecifica+on in VAR analysis. We analy+cally show that it can cause VAR coefficients to 

be aDenuated, inflated, or even have the wrong sign compared to an ac+on level analysis. 

We next develop a Monte Carlo simula+on to examine the extent of distor+on in data 

one might use. First, we generate data at the ac+on level (e.g., ac+on +me), in which each 

side only reacts to the previous ac+on (a Markovian game). We then aggregate that data 

into fixed +me units observa+on (e.g., calendar +me) and perform standard VAR and IRF 

analyses. VAR applied to that temporally aggregated data fails to es+mate the parameters 

of the ac+on-level parameters. The op+mal Bayesian Informa+on Criterion (BIC) lag length 

tends to equal the average response +me between ac+ons. The es+mated impulse 

response func+ons also produce sta+s+cally significant effects for many periods into the 

future. Finally, point es+mates are severely distorted compared to the ac+on-level 

parameters, in magnitude and sta+s+cal significance. 

We then revisit the Israeli-Gazan conflict and find signs that temporal aggrega+on 

distor+ons may be present and driven by mul+-day ac+ons. There is liDle evidence that 

strategic wai+ng is driving temporal distor+ons in this se_ng. The average +me between 

ac+ons is about 11 hours in our ac+on +me specifica+on. However, there are mul+ple 

instances of Israeli and Gazan performing mul+-day ac+ons. These longer ac+ons contribute 

to the prolonged impulse responses, and poten+al temporal aggrega+on distor+ons. Using 

a Markovian response func+on in ac+on +me, we can recreate daily Israeli impulse 

response func+ons that remain sta+s+cally significant at the 5% level over 10 days a-er the 

ini+al shock. These results suggest that temporally aggregated units of observa+on may 

have contributed to previously drawn conclusions about the Israel-Gaza conflict. 

This paper is the first to study how strategic behavior and temporally aggregated 

observa+ons may affect our understanding of the Israel-Gaza conflict. Previous work 
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assumed a daily unit of observa+on (Jaeger and Paserman 2008), then proceeded to study 

different damage metrics (Haushofer, Biletzki, and Kanwisher 2010)5 and func+onal form 

(Asali, Abu-Qarn, and Beenstock 2017). We can go a step further and study how the 

temporal unit of observa+on affects empirical findings, using our high frequency data on 

the conflict. 

Our findings extend the temporal aggrega+on literature to the strategic se_ng. Previous 

econometric works focused on temporal aggrega+on distor+ons in nonstrategic se_ngs, 

such as the associa+on between economic indicators (Working 1960; Zellner and 

MontmarqueDe 1971; Silvestrini and Veredas 2008; Brewer 1973; Tiao and Wei 1976; 

Geweke 1978; Wei 1978; Freeman 1989; Marcellino 1999; Jordá 1999). We extend this work 

by studying how temporal aggrega+on affects es+mates of strategic behavior with 

observa+onal data. Given researchers’ increasing access to high frequency data, we expect 

our findings to highlight an ever-growing issue in es+ma+on. 

The remainder of the paper is organized as follows: Sec+on 2 mo+vates the problem. 

Sec+on 3 provides the economic se_ng and Sec+on 4 analy+cally derives poten+al 

distor+ons from analyzing ac+ons in +me intervals. Sec+on 5 presents a Monte Carlo 

simula+on. Sec+on 6 inves+gates how temporal aggrega+on may affect understanding the 

Israeli-Gaza conflict. Sec+on 7 concludes. 

 

2 Mo*va*ng example 

We first mo+vate our problem using data from the Israeli-Gaza conflict. Between 2007 and 

2017, the United Na+ons recorded casual+es and muni+ons launched across the Israeli-

Gazan border at the five-minute level (Berman et al. 2024). We refer to one of the five-

 
5 See Golan and RosenblaD (2011) for a comment on this work. 
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minute reports as an a<ack. This includes injuries and fatali+es on both sides. It also 

includes Israeli airstrikes, shellings, small arms fire, and incursions, and Gazan mortars, 

qassams, and small arms fire. 

Figure 1 plots the number of Israeli and Gazan aDacks per day. The magnified por+on 

highlights December 2013, a randomly chosen month within the data. 

 

Figure 1 Israeli and Gazan a<acks per day 
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The daily data depicts prolonged violence with interspersed lulls of quiet. The grey bars 

highlight days in which neither Israel nor Gaza aDacked. There were no aDacks during about 

a quarter of the days in the sample. 

There are three takeaways from the graph. First, sides tend to respond to aDacks within 

the same day. Over the full sample period, there were about 3.97 aDacks per day, with no 

aDacks on 24.5% of days and only one aDack on 23.7%. There were on average 5.26 aDacks 

per day, condi+onal on an aDack occurring. 

Second, violence is interspersed between periods of calm. When an aDack occurred, the 

violence ended within the day about half the +me, followed by at least one day of calm. The 

median length of +me preceding at least one day of calm was 0.8 days, which typically 

included three aDacks. The longest stretch of con+nuous violence lasted 78 days; the 

second longest was 54 days; the longest stretch of quiet was just under 12 days. 

Third, the graph depicts both sides varying their reac+on +mes. Israel reacted to the 

previous aDack on average a-er 40 minutes while Gazan militants responded a-er about 50 

minutes on average. However, response +mes vary considerably: the Israeli response 

standard devia+on is 0.62 days, and the Gazan is 0.49 days. Both sides reacted within a 

minute about 0.2% of the +me, and Israel took longer than a day to respond 8% of the +me. 

The Gazans did so 5% of the +me. 

These takeaways highlight two challenges when using observa+onal conflict data. First, 

daily data masks strategic behavior within days. More than one aDack occurs over half the 

days in our sample, and nearly a quarter of the days have more than three aDacks. Second, 

each side varies their response +me. Israel and Gaza’s response +me both have large 
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standard devia+ons, compared to their means. Sta+s+cal approaches that ignore this 

varia+on effec+vely average over the strategic response +me. 

We next es+mate impulse response func+ons employing the methods from Jaeger and 

Paserman (2008) using data from Berman et al. (2024). Following their work, we first 

temporally aggregate to the daily level. While Jaeger and Paserman (2008) focused their 

analysis on fatali+es, follow-up work iden+fied strategic behavior studying fatali+es and 

projec+les (Haushofer, Biletzki, and Kanwisher 2010). Therefore, we combine casual+es and 

muni+ons into one index by regressing fatali5es + 0.8	 × injuries on muni+ons (with no 

intercept) to create Israeli and Gazan expected damage metrics. Intui+vely, the fiDed values 

capture each side’s intended damage, measured in casual+es. 

We then calculate the orthogonal impulse response func+on from a VAR with 14 lags.6 

Figure 2 plots the empirical response func+ons for Israel and Gaza with 95% confidence 

intervals. Each response maps 60 days a-er an ini+al aDack. Israel appears to inflict damage 

above the mean for nearly 30 days following a Gazan aDack. Conversely, the Gazan 

response is far more muted than the Israelis, with less damage and a shorter aDack 

dura+on. In the online appendix, we show that damage to Israel (weakly) Granger causes 

damage to Gaza, but not the converse.  

 
6 VAR(14) has become the standard model specificaBon for the Israel-Gaza conflict (Jaeger and Paserman 

2008; Asali, Abu-Qarn, and Beenstock 2024). See the appendix for the VAR esBmates, and alternaBve 
outcome and model specificaBons. 



 

8 

 

Figure 2 Daily-level impulse response func5ons for Expected Fatali5es 

Taken at face value, the empirical response func+ons and accompanying VAR analysis 

suggest a long dura+on of response to a single aDack, 30 or 40 days. Yet, 99% of violent 
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episodes in the dataset last less than 30 days. On average, violence lasted 0.4 days before at 

least one day of calm. In the remainder of the paper, we inves+gate how strategic response 

+me and temporal aggrega+on may cause VAR and impulse response func+ons to produce 

findings that appear inconsistent with features of the underlying data. 

 

3 Setup 

Sec+on 3.1 introduces and extends the Berman et al. (2024) economic framework to 

repeated conflict and then maps it to es+ma+ng equa+ons. Sec+on 3.2 sets up challenges 

of studying conflict when the data is collected in predetermined intervals.  

3.1 Economic framework 

Berman et al. (2024) assumes players A and B are compe+ng in a two-sided sequen+al 

game. For every turn 𝑖 = 1,… , 𝐼,	players A and B alternate receiving damage, denoted as 𝑑!" 

and 𝑑!# respec+vely. We refer to data organized by ac+on as being in ac5on 5me.7 This 

records damage inflicted per ac+on, rather than tradi+onal +me (e.g., minutes, days, years). 

There can be a millisecond, day, or even a year between ac+ons, and dura+on varies from 

ac+on to ac+on.  

Responses are based on damage suffered: player A inflicts 𝑑!# = 𝑅"/𝑑!$%" 0 on player 

B, and player B inflicts 𝑑!" = 𝑅#(𝑑!$%# ) damage on player A. We model both player’s 

response curves as linear dependent only on the previous ac+on: 8 

 
7 Engle and Russell (2004) refer to this as “event-space”. 
8 While we focus our aXenBon on an AR(1) response curve, the framework can accommodate more lags, 
higher order polynomials, and moving averages. The AR(1) specificaBon translates to a Markov one process 
mixed strategy employed in many sequenBal games, a common modeling choice outside conflict analysis 
(e.g., Noel 2007). 
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𝑅"/𝑑!"0 = 𝑑!# = 𝛼&" + 𝛼%"𝑑!$%" + 𝜖!        (1) 

𝑅#(𝑑!#) = 𝑑!" = 𝛼&# + 𝛼%#𝑑!$%# + 𝜖!        (2) 

where 𝜖!  is condi+onal mean zero with variance 𝜎!'.  

This approach to conflict provides unique escala+on and deescala+on es+ma+on and 

hypothesis tes+ng. A sequence of responses and counter-responses de-escalates if 

𝑅#/𝑅"(𝑑")0 < 𝑑"	and 𝑅"/𝑅#(𝑑#)0 < 𝑑", at a point (𝑑", 𝑑#). Researchers can study 

conflict stability, mul+ple equilibrium, and changes in strategy with this approach. 

The game’s sequen+al nature allows us to combine the two reac+on curves into one 

using a player indicator. Let 𝑧! = 𝐼(𝑃𝑙𝑎𝑦𝑒𝑟	𝐴	𝑚𝑜𝑣𝑒𝑠	). Then equa+ons (1) and (2) can be 

equivalently wriDen as: 

𝑅(𝑑!|𝑑!$%, 𝑧!) = 𝑑! = 𝛼&# + (𝛼&" − 𝛼&#)𝑧! + 𝛼%#𝑑!$% + (𝛼%" − 𝛼%#)𝑑!$%𝑧! + 𝜖!  (3)  

 

Leaders consider both how and when to aDack. Timing therefore influences the 

decision process as well. Wait too long, and the antagonist may misinterpret the 

protagonist’s response for the beginning of a new conflict. Respond too predictably, and the 

antagonist can parry the protagonist’s response.  

Based on this observa+on, we allow each player to also choose the dura+on between 

the end of current and previous ac+ons, denoted 𝑤! 	≥ 	0. Let 𝑓((𝑤!|𝑑! , 𝑧!) be the 

distribu+on between the ending of 𝑑!$% and 𝑑!. Like before, we model Player A and Player 

B’s dura+on as one func+on with an indicator. 

The response curve and dura+on distribu+on combine to form the joint ac+on 

distribu+on. We write the joint distribu+on using matrix nota+on, which will be used in 

following sec+ons: 

𝑓(𝐷,𝑊|𝑍) = 𝑓!(𝑊|𝐷, 𝑍)𝑅(𝐷|𝑍) 
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𝑅(𝐷|𝑍) = 𝑋)𝛼 + 𝜖 

𝑋) = [1		𝐿)𝐷		𝑍		𝑑𝑖𝑎𝑔(𝑍)𝐿)𝐷])	×, 

𝛼′ = [𝛼&# 		(𝛼&" − 𝛼&#)		𝛼%# 		(𝛼%" − 𝛼%#)]%	×, 

𝐸[𝑋)𝑋)-] < ∞ 

𝐸[𝜖|𝑍, 𝐿)𝐷] = 0 

𝐸[𝜖'|𝑍, 𝐿)𝐷] = Σ 

where D, W, and Z are the respec+ve vectors, 𝐿)  is the lag matrix in ac+on +me,9 

𝑑𝑖𝑎𝑔(·) is a diagonal matrix with vector · along the diagonal, and Σ is a diagonal matrix. 

This general framework follows a marked process, first popularized within financial 

econometrics by Engle and Russell (1998) and Engle (2000). The specifica+on allows us to 

clearly highlight distor+on caused from studying conflict at predetermined intervals.  

 

3.2 Ac3ons recorded in calendar 3me 

Assume that a researcher observes damage to Players A and B at a specified +me 

interval (e.g. days), which we call calendar 5me. Examples of calendar +me include daily, 

weekly, and monthly data. Let d./  and d.0  denote the damage that the researcher observes 

at period t = 1,...,T. As before, let 𝐷"  and 𝐷#  denote vectors with d./  and d.0  the t12  element. 

Assume that the researcher observes data at the same +me-unit (e.g., a day) at which the 

data is aggregated. ac+on +me maps to calendar +me by adding all the ac+ons within that 

day together (mirroring Jordá (1999) and Jordá and Marcellino (2000)): 

 
9 For those less familiar with the lag operator, 𝐿!𝑑! = 𝑑!"! for any variable.  
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𝑑1" =Uℎ! WXU𝑤3

!

34%

Y ∈ [𝑡, 𝑡 + 1]\ 𝐼(𝑧! = 1)𝑑!
!

 

(8) 

𝑑1# =Uℎ! WXU𝑤3

!

34%

Y ∈ [𝑡, 𝑡 + 1]\ 𝐼(𝑧! ≠ 1)𝑑!
!

 

The  ℎ!  func+on captures how an ac+on is distributed over days. If the ac+on is 

instantaneous, such as an airstrike, then  ℎ!() is the indicator func+on, equal to one the day 

the ac+on occurred and zero else. The ac+on may be a prolong incursion, barrage or 

shelling, in which case the ac+on is dispersed across days. 

Equa+on 8 can be rewriDen in matrix nota+on. Let P be a T	 × I aggrega+on matrix with 

𝑝1,!  the [t,i] element of P. p1,!  captures the percent of ac+on i that occurred on day 

t. The columns of P sum to one because every ac+on is fully mapped to the days. 

Addi+onally, let 1 be a vector of ones, and diag(Z) is a square matrix with the Z vector 

along the diagonal. Then  

D/ = 𝑃𝑑𝑖𝑎𝑔(𝑍)𝐷 

and  

D0 = 𝑃𝑑𝑖𝑎𝑔(1 − 𝑍)𝐷. 

We provide a simple example in the appendix. 

4 Challenges to VAR in calendar *me 

A k order reduced-form vector autoregression is commonly applied to data in calendar 

+me. The first equa+on in this example is: 
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	𝑑1" = 𝛽&" + ∑ f𝛽",3" 𝑑1$3" + 𝛽#,3" 𝑑1$3# g6
34% + 𝜂1  (9) 

In matrix form:  

𝐷" = 𝑋7𝛽" + 𝜂 (10) 

where 𝑋7  is the design matrix. 𝑋7  can be rewriDen using ac+on +me observa+ons and 

the aggrega+on matrix as: 

𝑋7 = [1	𝐷$%" …	𝐷$6" , 		𝐷$%# …	𝐷$6# ]   

Where 𝐷$6" = 𝐿76𝐷, and LT is the lag matrix in +me-space. In words, the first column of X 

is the intercept, the next k columns are lags of player A’s ac+ons 1 to k days before, and the 

final k columns are player B’s ac+ons 1 to k days before. 

How does 𝛽" relate to the reac+on func+on parameters, 𝛼? Plugging Equa+on (2) into 

the standard regression formula and taking condi+onal expecta+ons yields: 

𝛽" = 𝐸[(𝑋7-𝑋7)]$%𝐸[𝑋7-𝐷"] 

= 𝐸[(𝑋7-𝑋7)]$%𝐸[𝑋7- 𝑃𝑑𝑖𝑎𝑔(𝑍)𝑋)]𝛼 

Where 

𝑃𝑑𝑖𝑎𝑔(𝑍)𝑋) = [𝑃𝑑𝑖𝑎𝑔(𝑍)1		𝑃𝑑𝑖𝑎𝑔(𝑍)𝐿)𝐷		𝑃𝑑𝑖𝑎𝑔(𝑍)𝑍		𝑃𝑑𝑖𝑎𝑔(𝑍)𝐿)𝐷] 

For convenience, let Υ = 𝐸[(𝑋7-𝑋7)]$%𝐸[𝑋7𝑃𝑑𝑖𝑎𝑔(𝑍)𝑋)], and 𝜐1,6  be the [t,k] element 

of 𝜐. 𝛽" equals 𝛼 if 𝑃𝑑𝑖𝑎𝑔(𝑍)𝑋) = 𝑋7. No+ce that 𝛽"  equals 𝛼 when 𝑋7  is a +me-
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manipula+on of 𝑋)  during A’s turn. Examples of this include manipula+ng the data between 

monthly, quarterly, and yearly units of analyses (Zellner and MontmarqueDe 1971). 

This equality is unlikely to hold in most strategic se_ng because the ac+on-+me response 

curve may not follow the VAR +ming of lags. In our se_ng, 𝛼 is four-dimensional while 𝛽"	 

is 2𝑘 + 1. Rather than mapping directly to the reac+on curve parameters, the VAR 

parameters are a linear combina+on of 𝛼 scaled by 𝛶. 

We’ll focus for a moment on the intercept to solidify ideas. Let 𝜄) 	 be an I-length column 

of ones, the first column in 𝑋). Similarly, let 𝜄7  be a T length column of ones, the first column 

in 𝑋7  . If 𝜄7 	= 	𝑃𝑑𝑖𝑎𝑔(𝑍)𝜄), then (𝑋7- 	𝑋7 	)$%𝑋7- 	𝜄7  equals a T length vector where the first 

element of the vector equals one and all else are zero. Only 𝛽&  is a func+on of 𝛼&  because 

all the other elements are zero. Suppose instead that player A performs 𝛾	ac+ons each 

period. Mathema+cally, 𝜄7 	= 	𝛾𝜄). The ac+on-space intercept s+ll only contributes to the 

+me-space intercept because only the first vector’s element is nonzero. However, 𝛽&" 	=

	𝛾𝛼&  to account for the mul+ple ac+ons per period. 

Suppose instead that 𝜄7 ≠ 	𝛾𝜄). This occurs when side A performs a different number of 

ac+ons each day. Now, 𝑃𝑑𝑖𝑎𝑔(𝑍)𝜄)  is no longer guaranteed to be a column of 𝑋7. The first 

element of (𝑋7- 	𝑋7 	)$%𝑋7- 	𝑃𝑑𝑖𝑎𝑔(𝑍)𝜄)  need not equal one, nor do the other elements need 

not equal zero. Every element of 𝛽"  can be some linear combina+on of 𝛼&  since none of the 

(𝑋7- 	𝑋7 	)$%𝑋7- 𝑃𝑑𝑖𝑎𝑔(𝑍)𝜄) 	elements are guaranteed to equal zero. All the +me-space 

coefficients may be a func+on of the ac+on-space intercept and number of ac+ons per day 

because of Player A’s strategic responses. 

4.1 Illustra3on 

In this sec+on, we illustrate how VAR analyses using calendar +me data may be 

misleading. We assume that each side’s strategic response follows an exponen+al 
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distribu+on, both sides react symmetrically to one another, and each ac+on occurs 

instantaneously: 

𝑤!|𝑑! , 𝑧! ∼ exp(1) 

𝑑!|𝑧! , 𝑑!$% ∼ 𝑁(𝛼& + 𝛼%𝑑!$%, Σ) 

ℎ!(∗) = 𝐼(∗) 

where 𝛴 is a diagonal matrix. In this simple example, each side has the same wai+ng and 

response func+on with an idiosyncra+c error. We drop the 𝛼 superscripts for ease of 

reading. 

The econometrician observes data at the calendar +me, as in Equa+on 8. They then 

es+mate the VAR following Equa+on (10) with 𝑝	 = 	5. This guarantees that each side’s 

reac+on is always captured in the VAR lag structure. We present VAR es+mates for side A 

below:  
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Figure 3 Player A VAR slope es5mates and 95% CI under different ac5on 5me 
response curves. 
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Figure 3 plots VAR es+mates under three sets of parameters for the ac+on +me response 

func+on, (𝛼&, 𝛼%). The three panels highlight three poten+ally misleading findings from a 

calendar +me VAR analysis. In Panel A, the first three lagged es+mates for side B are 

sta+s+cally larger than the ac+on-level slope coefficient, 𝛼% = 	0.1. We refer to this as 

amplifica5on. Panel B shows the opposite effect: the VAR coefficients are all smaller than 

the true reac+on curve slope (again 𝛼% = 	0.1). We refer to this as a<enua5on. Finally; 

Panel C shows an example where the +me-space slope coefficients for side B are all 

posi+ve. This would imply that side A escalates a conflict. However, the true reac+on curve 

slope coefficient is nega+ve, 𝛼% =	−0.1, which is a de-escalatory posi+on. We refer to this 

as sign flippage. We provide addi+onal breakdowns and intui+on in the appendix. 

 

5 Simula*ons 

We develop a simula+on to study how calendar +me may distort VAR es+mates using 

realis+c data. Sec+on 4.1 introduces the simula+on setup and Sec+on 4.2 showcases how a 

VAR analysis may lead to erroneous conclusions when behavior occurs in ac+on +me. 

5.1 Simula3on setup 

We first provide func+onal forms to dura+on and response func+ons. The response follows 

a normal distribu+on, and the wai+ng follows an exponen+al distribu+on: 

𝑑!|𝑧! , 𝑑!$% 	∼ 	𝑁(𝛼&# 		+ 	𝛼%# 	𝑑!$% 	+ 	(𝛼&" − 𝛼&#)		𝑧!$% 	+ 	(𝛼%" − 𝛼%#)𝑧!𝑑!$%, 𝜎') 

𝑤!|𝑑! , 𝑧! ∼ exp w
1
𝜆y 

ℎ(∗) = 𝐼(∗) 
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where h() = I() implies that each ac+on is instantaneous. In prac+ce, the op+mal number 

of lags may be more than one and can be empirically tested. We limit our simula+on to one 

lag to clearly isolate the effects of temporal aggrega+on. We then es+mate the simula+ons 

using the following parameters: {𝛼&# , 𝛼%# , 𝛼&", 𝛼%", 𝜎'} =

	{0.0056, 0.1354, 0.0078,−0.7404, 0.1}. We generate 15,000 ac+ons per simula+on. 

Mul+ple func+onal forms have been proposed to model the +me between financial 

transac+ons (Pacurar 2008). We opt to use a basic exponen+al distribu+on with a constant 

parameter 𝜆. While an abstrac+on from reality, the modeling assump+on allows us to 

concisely isolate the effect of shorter or longer wait +mes. We also assume that ac+ons 

occur instantaneously. 

Finally, the ac+on +me data is transformed to calendar +me data following Equa+on (8). 

We evaluate VAR performance on three metrics: 

OpFmal VAR lag length: We determine op+mal lag length using the Bayesian 

Informa+on Criterion assuming a constant op+mal lag length for both sides per 

simula+on run. We set 𝜆	 ∈ 	 {. 5,1,2, … ,7}. Intui+vely, we allow the average response 

+me to vary between a half day, then from a day to a week. 

VAR coefficient and significance: Based on the op+mal lag length, we es+mate a VAR 

at the daily level following Equa+on (10). We then report the coefficients and 

standard errors. We set 𝜆	 = 	7,1, %
'
, corresponding to sides wai+ng, on average, one 

week, one day, and half a day between ac+ons. 

Impulse Response: We plot the empirical impulse responses for each side three 

weeks a-er an ini+al shock with 95% confidence intervals. We set	𝜆	 = 	7,1, %
'
, 
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corresponding to sides wai+ng, an average, one week, one day, and half a day 

between ac+ons. 

We repeat this exercise 1,000 +mes for each 𝜆 value for 6,000 total simula+on runs. 

5.2 VAR findings 

We first inves+gate how a VAR performs in this se_ng using Equa+on (10) by es+ma+ng the 

op+mal lag length based on the BIC criterion, the coefficient es+mates, and orthogonal 

impulse responses. 

Table 1 shows the BIC-op+mal lag lengths compared to varying values of λ. As the average 

response +me increases, the op+mal lag length increases, nearly one-to-one. The variance 

also increases as the average response +me increases. This is a biproduct of the exponen+al 

variance equals the mean. 

 

Table 1 Op5mal BIC over Monte Carlo Simula5ons with varying lag length. 

Response Time Average BIC Minimum BIC Median BIC Maximum BIC 

0.5 1.0 1 1 1 

1.0 1.9 1 2 2 
2.0 3.1 2 3 4 
3.0 4.2 3 4 6 
4.0 5.2 4 5 7 

5.0 6.0 5 6 8 

6.0 6.8 5 7 9 
7.0 7.5 6 8 10 

Note: The simulaBon is repeated 1,000 per response Bme. 
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Even though each side responds to the previous ac+on, each VAR coefficient es+mate is a 

linear combina+on of the underlying ac+on +me parameters. Longer wai+ng periods cause 

larger scalars for each ac+on +me coefficient leading to a BIC sugges+ng more lags. 

Figure 4 plots the percent of simula+ons for each lagged VAR coefficient which are 

sta+s+cally significant at the 5% level. The le--hand side plots the coefficients when the 

outcome is Player A’s ac+on, while the right-hand side plots coefficients for player B’s 

ac+on. Each row showcases a different simula+on specifica+on. The top row assumes each 

side waits, on average half a day before responding, the middle assumes a full day, and the 

boDom assumes a full week. 

Each dot represents the percent of lagged coefficients sta+s+cally significant at the 5% 

level. For example, the second red triangle in the top le--hand panel indicates that Player 

B’s ac+on two days ago was sta+s+cally associated with Player A’s ac+on today for 100% of 

the simula+ons when the wait +me was a day.  
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Figure 4 VAR coefficients over 1,000 Monte Carlo Simula5ons for players A and 
B. 
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The wait +me, W, affects the percent of sta+s+cally significant lags. When the wait +me is 

less than a day, only the first few lags are sta+s+cally significant for most of the simula+ons. 

As the wait +me increases, the number of sta+s+cally significant lags increase. When the 

wait +me is on average seven days, coefficients on the opposite side’s previous days are 

sta+s+cally significant over the past two weeks. Moreover, the own-lagged values are also 

sta+s+cally significant more than 5% of the simula+ons eight lags back. This highlights how 

calendar +me VAR coefficients are a linear combina+on of the ac+on +me parameters. 

Finally, Figure 5 plots orthogonal impulse response func+ons over 1,000 Monte Carlo 

simula+ons. The top le--hand panel maps Player A’s response to a shock to Player B’s ac+on 

21 days a-er the shock when the average response +me is %
'
, one, five, and seven. The 

boDom three panels present the same for A’s response to a shock to B. 

The first period following a shock is sta+s+cally different from zero for all wai+ng periods 

for both A and B’s empirical responses using 95% confidence intervals. The empirical 

response effects quickly die out when the response +me is one day or less on average. Less 

than 5% of the simula+ons iden+fied a sta+s+cally significant effect at the 5% level four 

periods a-er the shock or a-er. Assuming an average wait +me of five days, the A empirical 

response is sta+s+cally significant at the 5% level for 16 of the +me periods a-er the shock. 

The B player empirical response is sta+s+cally significant at the 5% level more for 18 periods 

a-er the shock. The impulse response sta+s+cally differs from zero more than 5% of the 

+me for every lag studied when the wait +me is increased to seven days on average. 
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Figure 5 Simulated Orthogonal Impulse Response Func5on. 
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The simula+ons highlight poten+al challenges to analyzing calendar +me data. Standard 

regression tools can suggest prolonged responses even when the underlying ac+on +me 

responses resemble a +t-for-tat strategy, with only immediate response. 

6 Empirical example: Temporal aggrega*on and the Israeli-
Gaza Conflict from 2007-2017 

How much of the long impulse response func+ons presented in Sec+on 2 can be 

explained exclusively by temporal aggrega+on? Using the five-minute report data from the 

Israeli-Gaza conflict, we first create ac+on +me data. We then es+mate 𝑅  following a 

Markov one process and calculate the P matrix from the data. Daily level data is simulated 

1,000 +mes from empirically es+mated reac+on curve 𝑅 and 𝑃, and VAR/IRF analysis is 

performed on each dataset. 

We vary 𝑃 to include all ac+ons, only ac+ons that occurred within one day, and only 

ac+ons that occur over mul+ple days. Simula+ng over all ac+ons allows us to inves+gate 

how data aggrega+on contributes to the es+mated prolonged responses. Simula+ng only 

daily ac+ons with varying wait +mes and mul+-day ac+ons with a daily response helps us 

iden+fy which temporal aggregate contributes more to prolonged impulse responses in this 

se_ng. 

6.1 Setup 

We convert five-minute aDack reports into ac+ons using a simplified version of the 

Berman et al. (2024) approach. The authors use ac+on +me data to es+mate Israeli and 

Gazan response curves from 2007 to 2017, omi_ng the Cast Lead, Pillar of Defense, and 
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Protec+ve Edge major opera+ons. They transform the UN-reported five-minute aDack data 

into a sequence of ac+ons based on +me between aDacks, muni+ons used, and loca+on. 

ADacks are organized in chronological order, ignoring loca+on. An ac5on is a sequence of 

aDacks by one side i) uninterrupted by the other side’s aDack and ii) with less than 48 hours 

between aDacks. These coding rules assume that both sides perform coordinated aDacks 

over +me and across muni+ons. They also assume that both sides have the capabili+es to 

respond within two days to the other side’s ac+on.10  Finally, we add two ac+ons where no 

damage occurs, which we refer to as zero damage ac5on, for every 48 hours of calm. This 

captures each side’s choice not to respond. 

These transforma+ons create a dataset where the unit of observa+on is an ac+on. The 

dataset includes an indicator if the Israelis executed the ac+on, the expected damage as 

described in Sec+on 2, the days an ac+on occurred, and what percent of the ac+on 

occurred each day. 

Table 2 presents ac+on-level sta+s+cs for Israel and Gaza. Because of the sequen+al 

setup, Israel performs 4,451 ac+ons while Gaza performs 4,450 for a total of 8,901 ac+ons. 

Both sides perform zero damage ac+ons between a fi-h to a fourth of the total ac+ons. 

Both sides take just under half a day to respond on average and responded a-er at least a 

day under 10% of the +me. Israeli ac+ons lasted just over half a day on average, while 

Gazan ac+ons tend to last just under a day. Finally, Israeli ac+ons tended to cause more 

damage. The average Israeli ac+on caused 0.521 expected damage (measured in fatali5es + 

. 8	 × casual5es), while the Gazans cause 0.0216 in expected damage. 

  

 
10 See Berman et al. (2024) for more discussion. 
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Table 2 Ac5on-level summary sta5s5cs 

Variable Gaza Israel 

Number of Ac+ons 2,952 2,953 

Propor+on Zero Damage Ac+ons 0.36 0.30 
Average Days Between Ac+ons 0.65 0.65 
Propor+on Days Between Ac+ons Longer than One Day 0.10 0.10 
Average Length of Ac+ons (days) 0.53 0.88 

Average Number of ADacks per Ac+on 1.30 2.35 

Propor+on Ac+ons Longer than One Day 0.11 0.16 
Predicted Damage 0.03 0.21 

 

Next, we approximate the expected damage condi+onal expecta+on func+on following 

Equa+on 3: 

𝑅(𝑑!|𝑑!$%, 𝑧!) = 𝑑! = 𝛼&8 + (𝛼&) − 𝛼&8)𝑧! + 𝛼%8𝑑!$% + (𝛼%) − 𝛼%8)𝑑!$%𝑧! + 𝜖!    

 

 where 𝑧! = 𝐼(𝐼𝑠𝑟𝑎𝑒𝑙	𝑚𝑜𝑣𝑒𝑠	𝑜𝑛	𝑡𝑢𝑟𝑛	𝑖). We limit our es+ma+on to a single lag linear 

regression to isolate the effects of poten+al +me aggrega+on.  

Table 3 presents the results. Both Israel and Gaza have posi+ve intercept and posi+ve 

slopes. The Israelis appear to respond to Gazan aDacks, while we fail to find evidence the 

Gazans respond linearly to the Israelis.  

We next calculate the 𝑃 matrix directly from the data. We iden+fy how many days occur 

before each ac+on, and how many days an ac+on span. We calculate 𝑝!,1  as the percent of 

ac+on i’s damage on day t divided by the total damage. For example, if ac+on 𝑖 occurred 

over days 𝑗, 𝑗	 + 	1 and 𝑗	 + 	2 causing 0.1, 0.2, and 0.3 expected damage, then 

f𝑝!,3 , 𝑝!,39%, 𝑝!,39'g = �%
:
, '
:
, ;
:
�. 

Together, we can calculate the daily level +me series as: 
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𝐷) 	= 	𝑃𝑑𝑖𝑎𝑔(𝑍)𝐷 

𝐷8 		= 	𝑃(𝐼	 − 	𝑑𝑖𝑎𝑔(𝑍))𝐷 

where 𝐷)  is a vector of daily level predict damage to Gaza (caused by Israel) and 𝐷8  is 

daily level predicted damage to Israel (caused by Gaza). 

Table 3 Es5mated Israeli-Gaza Response Curves 

 (1) (2) (3) 

𝛼&8  
0.034*** 
(0.001) 

0.031*** 
(0.001) 

0.034*** 
(0.001) 

𝛼%8   
0.014*** 
(0.004) 

0.003 
(0.002) 

𝛼&)  
0.214*** 
(0.008) 

0.213*** 
(0.008) 

0.191*** 
(0.009) 

𝛼%)  
 

0.014*** 
(0.004) 

0.634*** 
(0.148) 

 

Observa+ons 5905 5901 5901 

Standard Errors HAC HAC HAC 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 
Notes: outcome is expected damage. FiXed values from regressing deaths + .8 x fataliBes on 
muniBons type. We drop the first acBon in the dataset and the first acBon following each major 
operaBon. 
 

6.2 Simula3on 

We simulate 3,000 daily level datasets using the model described above. Algorithm 1 

summarizes the steps. 
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Algorithm 1: Simula+ng Israeli-Gazan violence. 

 
Result: VAR and IRF simula+on es+mates Using ac+on level data; for i in (all 

ac5ons, daily ac5ons, and mul5-day ac5ons with daily waits) do 

for 𝑠	 = 	1,2, … ,1000 do 
Simulate Ds using column 3 in Table 3 for 8,901 ac+ons. ϵi is drawn from the 

empirical residuals; 

Simulate Ps by drawing 8,901 ac+ons with replacement following i; 

Generate 𝐷),< 	= 	𝑃𝑠𝑑𝑖𝑎𝑔(𝑍)𝐷<	𝑎𝑛𝑑	𝐷8,< 	= 	𝑃<(𝐼	 − 	𝑑𝑖𝑎𝑔(𝑍))𝐷s; 

Es+mate op+mal lag length VAR (up to 14 lags) and IRF 25 periods a-er the ini+al 

shock; 

Save results 

end 

end 

 
 

The data is first generated at the ac+on level. Damage is generated using Table 3, column 

3. We then draw strategic behavior, which includes the wait +me before an ac+on begins, 

how many days it occurs and the distribu+on of the days. We first draw from all possible 

ac+ons, then limit the simula+ons to daily ac+ons and mul+-day ac+ons. Finally, the 

simulated ac+on level data is transformed to daily level data, then standard regression 

analysis is performed. We repeat this process 3,000 +mes. 
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6.3 Results 

Figure 6 presents the rejec+on frequency over 1,000 simula+ons. The column headers 

iden+fy the outcome, while the row labels indicate whether all the ac+ons, daily ac+ons, or 

mul+-day ac+ons were used to simulate the data. The green squares represent coefficients 

for lagged damage to Israel (Gazan ac+ons) while the blue value represent the lagged 

damage to Gaza (Israeli ac+ons).11  

 
11  As an example, focus as the top led panel. It shows the percent of simulaBons the coefficients are 

staBsBcally significant when regressing Gazan acBon on lagged acBons using all acBons. The first green 
square in the top led panel shows that the previous Gazan acBon is staBsBcally significant nearly all the 
simulaBons. The first blue triangle in the top led-hand panel shows that the previous Israeli acBon is 
staBsBcally significant in nearly three quarters of the simulaBons. 
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Figure 6 Percent coefficients significant from 1,000 Monte Carlo simula5ons. 
Coefficients calculated using VAR at daily level. 
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Focusing first on the top row, lagged coefficients tend to be sta+s+cally significant at least 

the first five lags. Lagged damage to Israel ac+ons are sta+s+cally significant for both Israeli 

and Gazan ac+ons. The lags coefficients in the Israel regression (top-right hand panel) tend 

to remain sta+s+cally significant for the first seven lags, while previous damage to Gaza 

remains significant the first four. 

The prolonged significant lags are mostly driven by the mul+-day ac+ons. The boDom 

row simulates the data only using mul+-day ac+ons. The lagged coefficients remain 

sta+s+cally significant at a higher rate compared to using all ac+ons. In comparison, daily 

ac+ons with strategic +ming does not lead to many significant lagged coefficients. This 

suggest that temporal aggrega+on may bias point es+mates. Furthermore, this bias is 

driven by mul+-day ac+ons, not strategic wai+ng, in this context. 

We next turn our aDen+on to the simulated impulse response func+ons. Figure 7 plots 

the average Gazan (le- hand side) and Israeli (right hand side) impulse response func+ons 

simula+ng from all the ac+ons, only daily ac+ons, and only mul+-day ac+ons. As before, the 

top row plots the percent of impulse responses significant at the 5% level using all ac+ons, 

the middle using only daily ac+ons, and the boDom using mul+-day ac+ons. We show the 

IRF magnitudes in Figure A7. 
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Figure 7 Percent IRFs significant at 95% level from 1,000 Monte Carlo 
simula5ons. Ini5al shock based on es5mated standard devia5on from each 
simula5on. 
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The model recreates prolonged impulse responses for Israel using all ac+ons, but not 

Gaza. Averaging over all ac+on simula+ons, the Israeli impulse response remains sta+s+cally 

significant over 5% of the +me for all 25 periods. The Gazan impulse response shows signs 

of sta+s+cal significance within the first week, then dies out. The effect again is driven by 

the mul+-day ac+ons. Impulse responses generated by daily data exhibit strong reac+ons in 

the first one to two days but die out quickly. 

Temporal aggrega+on can cause sta+s+cally significant lagged coefficients and prolonged 

impulse responses through strategic wai+ng and mul+-day ac+ons. Our findings suggest 

that temporal distor+on in the Israeli-Gazan context is driven primarily from mul+-day 

ac+ons. 

7 Conclusion 

Es+ma+ng a player’s reac+on curve during strategic interac+ons is important for both 

academics and policymakers. We show that if the underlying nature of a conflict is not 

considered, then standard econometric prac+ces can lead to misleading results. In our 

examples, we assume that two players engage in a sequen+al game with varying response 

+mes, and responses that can last days. Applying standard regressions techniques to 

temporally aggregated data, e.g., aggregated in days, rather than to the sequence of 

ac+ons, can generate misleading coefficient es+mates and impulse response analyses. 

When we take these insights to the Israeli-Gaza conflict between 2007 and 2017, we find 

evidence that response +mes are especially influenced by mul+-day ac+ons. Researchers 

studying the conflict using data aggregated to days may well infer that responses are long 

and drawn out, when they may be beDer described as responses to the previous ac+on. 

Our findings can be summarized as follows: study strategic ac+on at the unit of behavior, 

not predetermined intervals. If a researcher has data in ac+on +me, they should seriously 
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consider performing analysis with it. If they have data in calendar +me, then they should try 

to convert it to ac+on +me before modeling response curves. Studying strategic behavior in 

calendar +me, instead of ac+on +me, can meaningfully distort our understanding of actors’ 

strategies.  
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A Appendix 

A.1 An example for Sec3on 3.2 
 

 

Figure A1: Graphical example of ac+ons recorded at pre-specified +me intervals. 

Figure A1 provides a graphical illustra+on of six instantaneous ac+ons over ten days when 

the +me interval is always shorter than the response +me.12 Suppose Player A and Player B 

are observed over 10 +me-units (e.g. days). Within each unit, a player may perform an 

ac+on causing posi+ve damage or wait to perform an ac+on. The black circle represents an 

ac+on, and empty slots represent wai+ng. In this example, Player A first inflicts posi+ve 

damage to Player B over two days (t = 1 and t = 2). Player B then waits two +me periods and 

aDacks Player A (t = 4). Player A then aDacks inflic+ng posi+ve damage at t = 6, leading to a 

retalia+on from Player B followed by further aDacks from Player A. 

The example highlights that studying the sequen+al game in arbitrary +me intervals can 

cause the lag structure to differ across ac+ons. Even though Player B’s first and second 

ac+ons (e.g. t = 4 and t = 7) are reac+ng to Player A’s previous ac+on, Player B is reac+ng to 

the third lagged +me in their first ac+on (t = 1) and first lagged +me period in the second 

 
12 Mathematically, 𝑤! 	≥ 	1	∀𝑖. 

	



 

1 

ac+on (t = 6). We refer to the mapping between recording ac+ons at the ac+on-level and 

+me-interval level as the data aggrega5on process. 

We present the example mappings in matrix form of Player A: 

𝑃𝑑𝑖𝑎𝑔(𝑍)	 = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼 0 0 0 0 0

1 − 𝛼 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

where the ones are bolded for easier reading. The wai+ng periods lead to many rows of 

only zeroes. This is one of three data distor+on from aggrega+ng to arbitrary +me intervals. 

The second is many ac+ons occurring in one day. This is represented by rows having 

mul+ple ac+ons. 

Finally, an ac+on may be spread over mul+ple days. This is represented by a column 

having two nonzero entries, but that add to unity. For example, side A’s ith ac+on (like a 

shelling campaign) may begin on day t and conclude on t + 1. If they dropped a third of 

their bombs on t and the rest on t+1, then the [t,i] entry for PZ is    and   for [t+1,i]. 

A.2 Addi3onal parameter decomposi3on for Sec3on 3.3.1 

Equa+on (12) shows that each 𝛽 is a linear combina+on of α, where each scalar term is 

unbounded. Formally and without loss of generality, 𝛽=,3" = ∑ 𝜐(%9693),@𝛼A,
34%

 
 .  



 

2 

 

Figure A2: VAR decomposi+on under different ac+on-level response curves  

 

Figure A2 decomposes each 𝛽 slope coefficient between the 𝛶 values. The x-axis plots 

the υ value mul+plied by α0 for all the 𝛽 coefficients, while the y-axis does so for 𝛼%. The 



 

3 

panels correspond accordingly to the panels in Figure 3. Most slope coefficients are a 

combina+on of both the slope and the intercept. Previous B ac+on scalars (depicted in 

blue) are posi+ve in Panels A and C, but less than one. The scalars become smaller with 

more lags, highligh+ng the diminishing effects of previous lags. Conversely, previous A 

ac+ons tend to receive nega+ve weights on both the slope and intercept in Panels A and C. 

The coefficients in Panel B tend to have larger slope scalars than intercept scalars, in line 

with the intercept being null. 

 

The decomposi+on highlights two points. First, the +me-space 𝛽  slope parameters are a 

linear combina+on of all the ac+on-space α parameters. The VAR es+mates capture a mix 

of the slope and intercept for both sides A and B. Second, the scaling terms are, without 

further assump+ons, unbounded. Therefore, the 𝛽 slope parameters may be amplified, 

aDenuated or even switch signs. Sign flippage can even occur if all the ac+on-space α 

coefficients are posi+ve because the scaling terms need not be posi+ve. 

A.3 Addi3onal Es3ma3on for Sec3on 4.2 

Figure A3 plots the average VAR coefficients over the simula+ons. The op+mal lag length is 

iden+fied using BIC for each simula+on, then es+mated. The points show the average 

coefficient es+mate per lagged value. The 95% confidence intervals use the average 

standard error over the average response +me simula+ons. 



 

4 

 

Figure A3: VAR coefficients over 1,000 Monte Carlo Simula+ons for players A and B. 



 

5 

Recall Player A’s ac+on-level response curve is 0.01	 +	−0.74	𝑑!$%, implying a nega+ve 

slope. In all three itera+ons, the coefficients on Player B’s past ac+ons are nonposi+ve. 

When the response +me is shorter (i.e. 1 day), the lagged coefficients beyond four periods 

tend to be economically and sta+s+cally insignificant. Addi+onally, the magnitudes tend to 

be much smaller than the ac+on-level slope. Player B’s lagged ac+ons also remain 

sta+s+cally significant well beyond the average response +mes. The +me distor+on may 

lead a researcher to erroneously aDribute Player A’s previous ac+ons in determining future 

reac+ons. 

Conversely, Player B’s ac+on-level response curve had a posi+ve slope. In all three 

simula+on itera+ons, Player A’s lagged daily ac+ons are nonnega+ve. Player B’s own lagged 

daily ac+ons tend to be nega+ve, but sta+s+cally insignificant. Together, these simula+ons 

highlight how longer response +mes create a facade of prolong reac+ons. 



 

 

8 
A.4 Addi3onal Facts and Figures for Sec3on 5 
 

Table A1: VAR results Comparing Data to Simula+ons 

 

 Data Simulated 
All Ac7ons 

Simulated 
Daily ac7ons 

Simulated 
Mul7 ac7ons 

Data Simulated 
All Ac7ons 

Simulated 
Daily Ac7ons 

Simulated 

Mul7 

Ac7ons 

Expected 

Israeli 

Ac7on, lag 1 

0.345*** 0.0311 -0.031 0.2937 0.00302*** -0.0169 0.0097+ -0.0172 

 
(0.017) (0.0092) (0.031) (0.0054) (0.00047) (0.0065) (0.0201) (0.0039) 

Expected 

Israeli 

Ac7on, lag 2 

0.326*** 0.0079 -0.011 -0.0059 -0.00207*** -0.0032 0.0068* 0.0049 

 
(0.018) (0.0092) (0.030) (0.0056) (0.00049) (0.0065) (0.0204) (0.0041) 

Expected 

Israeli 

Ac7on, lag 3 

0.107*** 0.0019 0.0044+ 0.0016 0.00094+ -0.00047 0.010* -0.00023 

 
(0.019) (0.0091) (0.0306) (0.0056) (0.00051) (0.00648) (0.021) (0.00411) 

Expected 

Israeli 

Ac7on, lag 4 

0.052** 0.0016 0.011* -0.00073 -0.00011 -0.00062+ 0.011* -0.00069 

 
(0.019) (0.0091) (0.031) (0.00562) (0.00051) (0.00648) (0.021) (0.00410) 

Expected 

Israeli 

Ac7on, lag 5 

0.092*** 0.00065 0.020* 0.0013 0.00198*** 0.00018+ 0.0066* -0.00014 

 
(0.019) (0.00903) (0.031) (0.0056) (0.00051) (0.00650) (0.0207) (0.00408) 

Expected 

Israeli 

Ac7on, lag 6 

-0.170*** -0.0011 0.025* -0.0011 -0.00051 -0.00039+ 0.015* -0.00031+ 

  



 

 

Con+nued next page 



Table A1: VAR results Comparing Data to Simula+ons (Con+nued) 

8 

Expected 

Israeli 

Ac7on, lag 
7 

 (0.019) (0.0089) (0.031) (0.0055) (0.00051) (0.00652) (0.0203) (0.00404) 

Expected 0.098*** -0.0024+ 0.019* -0.0024 -0.00151** 0.00031* 0.0076** -0.00013+ 

Israeli 

Ac7on, lag 8 

 (0.019) (0.0089) (0.031) (0.0055) (0.00051) (0.00647) (0.0206) (0.00403) 

Expected 0.112*** -0.00021+ 0.016* 0.00058 0.00201*** -0.00018* 0.003** -0.00027* 

Israeli 

Ac7on, lag 9 

 (0.018) (0.00888) (0.031) (0.00549) (0.00051) (0.00646) (0.020) (0.00402) 

Expected 0.113*** -0.00057+ 0.042* -8.9e-05 0.00105* -0.00026* 0.025** 0.00011* 

Israeli 

Ac7on, lag 

10 

 (0.018) (0.00881) (0.031) (5.5e-03) (0.00051) (0.00644) (0.021) (0.00403) 

Expected 0.094*** 0.00012* 0.035** 0.0026 0.00131* 0.0006* 0.0071** -0.00018* 

Israeli 

Ac7on, lag 

11 

(0.018) (0.0089) (0.031) (0.0056) (0.00051) (0.00650) (0.021) (0.00407) 

0.027 -0.0018 0.016** 0.0026 -0.00176*** 0.00032* 0.0072* 
-
0.00013+ 



Table A1: VAR results Comparing Data to Simula+ons (Con+nued) 
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 (0.019) (0.00875) (0.032) (0.0054) (0.00051) (0.0065) (0.0213) (0.00402) 

Expected -0.090*** -0.0058* 0.036** -0.0012 -0.00163** -0.0012* 0.027** 0.00025* 

Israeli 

Ac7on, lag 

12 

 

Con7nued next page 
Expected 

Israeli 

Ac7on, lag 

13 

 (0.017) (0.0088) (0.031) (0.0053) (0.00048) (0.0068) (0.021) (4.0e-03) 

Expected -0.097*** 0.0038* 0.021** 0.0037+ 0.00041 0.0050* 0.026** 5.1e-05* 

Israeli 

Ac7on, lag 

14 

 (0.017) (0.0087) (0.031) (0.0051) (0.00046) (0.0071) (0.022) (3.8e-03) 

Constant -0.0051 0.0673 0.692 0.0178 0.00449*** 0.0206 0.186 0.00559 

 (0.0335) (0.0046) (0.057) (0.0012) (0.00092) (0.0032) (0.037) (0.00084) 

Expected 1.95** 0.240 0.172 0.0905 0.380*** 0.1031 -0.0048* 0.3490 

Gazan 

Ac7on, lag 1 

 (0.62) (0.014) (0.051) (0.0084) (0.017) (0.0093) (0.0312) (0.0054) 

(0.019) (0.0088) (0.032) (0.0054) (0.00051) (0.0066) (0.022) (0.00402) 

-0.176*** -0.0053* 0.036** 0.0026 -0.00203*** -0.0023** 0.025** 
-8.6e-
05* 



Table A1: VAR results Comparing Data to Simula+ons (Con+nued) 
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Expected 3.79*** 0.104 0.103 0.106 0.187*** 0.0327 -0.0042* 0.0203 

Gazan 

Ac7on, lag 2 

 (0.66) (0.015) (0.049) (0.009) (0.018) (0.0095) (0.0312) (0.0058) 

Expected -1.50* 0.067 0.054+ 0.0688 0.073*** 0.0166 -0.0018* 0.0238 

Gazan 

Ac7on, lag 3 

 (0.67) (0.015) (0.049) (0.0091) (0.018) (0.0095) (0.0315) (0.0059) 

 

Con7nued next page 
Expected 0.51 0.046 0.041+ 0.0711 0.089*** 0.0109 -0.0025* 0.0026 

Gazan 

Ac7on, lag 4 

 (0.67) (0.014) (0.050) (0.0092) (0.018) (0.0095) (0.0318) (0.0059) 

Expected -1.26+ 0.045 0.026* 0.0524 -0.046* 0.0102 0.0041* 0.014 

Gazan 

Ac7on, lag 5 

 (0.67) (0.014) (0.050) (0.0092) (0.018) (0.0095) (0.0319) (0.006) 

Expected -2.01** 0.038 0.012* 0.0345 -0.030 0.0084 -0.0047* 0.0042 

Gazan 

Ac7on, lag 6 

 (0.67) (0.014) (0.050) (0.0093) (0.018) (0.0094) (0.0319) (0.0060) 



Table A1: VAR results Comparing Data to Simula+ons (Con+nued) 
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Expected 2.05** 0.042 0.038* 0.0348 0.074*** 0.0075+ 0.006* 0.0082 

Gazan 

Ac7on, lag 7 

 (0.67) (0.014) (0.051) (0.0093) (0.018) (0.0094) (0.032) (0.0060) 

Expected -3.76*** 0.033 -0.005* 0.0285 -0.040* 0.0029* -0.007** 0.00059 

Gazan 

Ac7on, lag 8 

 (0.67) (0.014) (0.051) (0.0092) (0.018) (0.0094) (0.032) (0.00601) 

Expected 0.62 0.029 0.057* 0.0227 0.065*** 0.0081+ 0.010** 0.0058 

Gazan 

Ac7on, lag 9 

 (0.67) (0.014) (0.051) (0.0092) (0.018) (0.0094) (0.032) (0.0060) 

 

Con7nued next page 
Expected 0.45 0.025 0.00056* 0.0326 0.0013 0.0057* -0.012** 0.0021 

Gazan 

Ac7on, lag 

10 

 (0.67) (0.014) (0.05143) (0.0091) (0.0185) (0.0093) (0.032) (0.0060) 

Expected 2.30*** 0.023+ -0.0059** 0.019 -0.018 0.0061* 0.0051** 0.0062 

Gazan 

Ac7on, lag 

11 



Table A1: VAR results Comparing Data to Simula+ons (Con+nued) 

12 

 (0.67) (0.014) (0.0513) (0.009) (0.018) (0.0093) (0.0325) (0.0060) 

Expected -0.97 0.043+ 0.074* 0.0253 0.0093 0.0087* 0.031** -0.00061 

Gazan 

Ac7on, lag 

12 

 (0.67) (0.014) (0.050) (0.0089) (0.0184) (0.0093) (0.032) (0.00598) 

Expected 3.51*** 0.037+ 0.122** 0.0286 -0.0033 0.0067* -0.018** 0.0041 

Gazan 

Ac7on, lag 

13 

 (0.66) (0.013) (0.052) (0.0087) (0.0181) (0.0093) (0.032) (0.0059) 

Expected -1.17+ 0.047+ 0.046** 0.0323 0.017 0.0096* 0.049** 0.0032 

Gazan 

Ac7on, lag 

14 

 (0.62) (0.013) (0.054) (0.0084) (0.017) (0.0092) (0.033) (0.0057) 

 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 



 

13 

 

Figure A5: Op+mal VAR lag length over 1,000 Monte Carlo simula+ons using Bayesian 
Informa+on Criterion. 
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Figure A6: Coefficients from 1,000 Monte Carlo simula+ons. 



 

15 

 
 

 

Figure A7: Average IRFs from 1,000 Monte Carlo Simula+ons. Ini+al shock removed from 
graph. Ini+al one standard devia+on shock varies based on es+mated standard 
error. 


