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Abstract

We study the design of futures contracts using the cryptocurrency market as a natu-
ral laboratory. In these markets, constrained arbitrage capital and volatile speculative
demand frequently drive futures prices away from their underlying assets. Perpet-
ual futures emerged in response, using small, frequent funding payments to keep prices
aligned. We document that these contracts now dominate trading volume, enhance liq-
uidity, and reduce extreme price dislocations. A tractable model of capital-constrained
arbitrage explains these findings. Finally, we argue that perpetual futures may en-
hance financial stability by improving crisis-time liquidity and substantially reducing
the drawdowns of arbitrage strategies.
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1. Introduction

Cryptocurrency exchanges have evolved into massive and largely unregulated financial

markets. Leading venues such as Binance report hundreds of billions of dollars in annual

trading volume and are valued in the tens of billions of dollars.1 Despite their scale, cryp-

tocurrency markets remain highly volatile and fragile. Whereas the US stock market has

experienced only four daily drops exceeding 10% over the past century, cryptocurrency mar-

kets have recorded more than fifty such declines in just the past decade.2 The fragility of

this asset class is further evidenced by the frequent failures of major exchanges, including

Mt. Gox and FTX, and the collapse of cryptocurrencies themselves, such as Terra/LUNA

and Mantra.

Despite this volatile environment, speculators eager for leverage have made cryptocurrency

futures contracts extremely popular. Most cryptocurrency trading does not take place on a

blockchain. Instead, trading volume is concentrated on centralized exchanges like Binance

and takes place using perpetual futures contracts.

Unlike standard futures, which converge to the spot price via a single transfer at maturity,

perpetual futures enforce convergence through frequent, small payments between long and

short positions. If the futures price is below the spot, shorts pay longs; if it is above, longs

pay shorts. On BitMEX, for example, these funding payments occur every eight hours and

are based on the average price difference over that interval. This structure imposes persistent

convergence pressure, keeping perpetual futures closely aligned with their underlying, and

as a result the actual funding payments are generally small.

We use data on perpetual futures and standard quarterly futures from cryptocurrency

markets to establish several empirical facts. First, perpetual futures rapidly gained popu-

1For instance, Binance routinely reports daily volumes exceeding $30 billion, raised $2 billion from a UAE
sovereign wealth fund in early 2025, and maintains an associated token (BNB) with a market capitalization
of $80 billion.

2Author’s calculations using daily Coinbase data.
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larity across many venues. These contracts were introduced by BitMEX in May 2016, as

the end result of an evolution from quarterly to monthly to weekly and even daily futures.

This contractual form quickly came to dominate BitMEX and has since displaced standard

futures as the dominant instrument for cryptocurrency derivatives on every major non-U.S.

venue, with U.S. regulators considering allowing this form.

Second, perpetual futures are more liquid than quarterly futures, with spreads that are

49–83% tighter than comparable quarterly futures. Although this liquidity advantage partly

reflects their overwhelming popularity, our analysis shows that perpetual futures offered su-

perior liquidity even immediately following their introduction, suggesting inherent structural

advantages. Further, we show that standard futures are less liquid farther from maturity.

Third, we document a shift in trader liquidations from quarterly to perpetual futures.

Perpetual futures exhibit frequent liquidations throughout, whereas quarterly futures show

frequent liquidations prior to the introduction of perpetual futures and fewer afterward. This

is consistent with higher-risk traders showing a stronger preference for perpetual futures.

Fourth, we find that perpetual futures exhibit lower risk than quarterly futures during

large spot price movements. Quarterly futures prices decline 8–10% more than spot prices

during large market events, while perpetual futures decline just 3% more than spot prices.

The tendency of quarterly futures to overshoot spot price movements makes them riskier

than perpetual futures.

We emphasize that such a divergence between futures and spot prices is particularly

hazardous for arbitrageurs engaged in futures-spot-basis trades. These traders buy the spot

asset and hedge that by selling futures (or vice versa) using leverage, a strategy that makes

them extremely vulnerable to diverging spot and futures prices. Perpetual futures show

drawdowns that are about one-third the size of those shown by quarterly futures; moreover,

the perpetual futures drawdowns quickly mean revert while the quarterly futures drawdowns

persist. These results have financial stability implications as futures-spot-basis arbitrage is
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a key stabilizer in many markets, including U.S. Treasuries, equity indices, and non-crypto

currencies.

Finally, we show that perpetual futures’ liquidity advantage is even larger during times

of market volatility. Although both types of futures become less liquid around large market

movements, quarterly futures spreads increase much more than perpetual futures spreads.

We interpret these findings using a tractable theoretical model in which futures contracts

are traded by market makers, liquidity traders, and long-term hedgers. Liquidity traders and

market makers are risk-averse to mark-to-market trading losses, whereas long-term hedgers

seek to minimize the risk of a timed hedging exposure. Time-varying liquidity trader demand

drives futures price away from the spot price. Contracts with shorter maturities or continuous

funding payments (like perpetuals) better track the spot price, reducing risk. That risk

reduction increases trading volumes and welfare for both the market maker and the liquidity

trader.

Perpetual futures can also benefit hedgers. By lowering risk, these contracts reduce the

compensation demanded by market makers, lowering the hedger’s costs. Standard futures

can perfectly hedge exposures that occur at their maturities, but exposures with other tim-

ings expose hedgers to the risk that the futures price may differ from the spot price when

contracts are sold early (if they expire after the hedging need) or rolled over (if they expire

before). We show that if hedging needs are randomly assigned and not bunched to match

contract expiration, hedger welfare is better with a perpetual future than any standard

futures.

A futures price that closely tracks the spot price is well suited for some markets but poorly

suited to others. For example, a perpetual future that tracks the (low) price of natural

gas during summer does not allow a utility to hedge winter consumption. This mismatch

helps explain why trading in standard futures on physical commodities and non-investible

financial assets often spreads across multiple maturities. In contrast, as Fett and Haynes
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(2017) document, trading in equity index and U.S. Treasury futures is heavily concentrated

on a single maturity. This pattern suggests that market participants are not hedging date-

specific exposures and instead seek general market exposure with low collateral demands,

operational simplicity, no counterparty risk, and high liquidity. As such, perpetual futures

are best suited for tradable financial underlyings.

Our study makes a novel contribution by demonstrating how perpetual futures represent

an evolutionary adaptation in contract design that specifically addresses the unique volatility

and capital constraints of cryptocurrency markets. This work is the first to comprehensively

analyze how this contractual innovation enhances market stability and liquidity by reducing

the risk of the futures price diverging from the spot price.

These results link to several lines of prior work. First, two early papers discuss perpetual

futures in traditional financial markets. Gehr (1988) documents that these contracts were

originally used by the Chinese Gold and Silver Exchange of Hong Kong and Shiller (1993)

proposes offering these futures on illiquid assets as a way to better match hedger needs and

encourage the production of long-term information. Following these early contributions, the

literature remained largely silent on perpetual contracts until their resurgence in cryptocur-

rency markets. In the cryptocurrency context, the mechanics and pricing of perpetual futures

have been discussed by Ackerer et al. (2024) and He et al. (2022), with Deng et al. (2020)

additionally constructing optimal hedging strategies in the context of exchange liquidations.

A second group of papers document persistent inefficiencies in cryptocurrency markets.

Makarov and Schoar (2020) analyze cross-exchange arbitrage and show that pricing devi-

ations in cryptocurrency markets reflect constraints on arbitrage capital and market frag-

mentation. Focusing on cryptocurrency derivatives, Christin et al. (2022) articulate an ar-

bitrage strategy using perpetual futures and link its outsized returns to speculator demand.

Schmeling et al. (2023) similarly describe futures-spot-basis arbitrage, ascribing its cause to

outsized retail demand and a scarcity of arbitrage capital. He et al. (2022) also describe
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a speculative strategy to exploit demand imbalances. Alexander et al. (2024) document

significant—though declining—inefficiencies in cryptocurrency options markets. Ruan and

Streltsov (2022) show empirically that perpetual futures’ funding settlements increase ad-

verse selection risk in spot markets, leading to higher volumes but wider spreads. De Blasis

and Webb (2022) document seasonality and exchange opening effects in perpetual futures

liquidity. Alexander et al. (2021) show that perpetual futures improve spot market price

discovery and argue that perpetual futures serve an effective hedge against spot BTC price

movements.

Our insights on cryptocurrency futures market structure connect to broader themes in

financial economics, notably the literature on limits to arbitrage. The noise trader risk

channel we focus on builds on work by De Long et al. (1990) and Foucault et al. (2011).

We build on Shleifer and Vishny (1997a), extended by Brunnermeier and Pedersen (2009),

and applied by Acharya et al. (2013) to commodity futures markets under a relative scarcity

of arbitrage capital. Our focus on futures tenor and the risk of price divergence leverages

Rutledge (1976) and Castelino and Francis (1982) who report that divergence risk increases

with time to maturity. Our paper is perhaps closest to Hazelkorn et al. (2020), who link the

difference between spot and futures prices to dealer financing costs in traditional financial

markets, and to Figlewski (1984), who examine the pricing gap between equity index futures

and their underlyings and link this to limits to arbitrage.

Finally, our paper builds on the literature on contractual innovation and evolution. As

Pagano and Roell (1990) and Catalini and Gans (2020) argue, frictions and institutional

weaknesses can spur innovation–in this case, the crisis-heavy and arbitrage-capital-light

worlds of cryptocurrency futures evolved towards contracts that derisk arbitrage. By of-

fering a new form of risk transfer, these contracts completed the futures market (Duffie and

Rahi, 1995; Allen and Gale, 1994). This innovation reduced the need for arbitrage capital

(Shen et al., 2014) and addressed unmet trader demands (Tufano, 2003) in this novel mar-
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ket (Miller, 1986). Although completing markets may improve welfare through better risk

sharing and reduced hedging costs (Allen and Gale, 1994; Duffie and Rahi, 1995), they can

also spur destabilizing speculation or amplify liquidity shocks, particularly when arbitrage

capital is limited (Allen and Gorton, 1993; Brunnermeier and Pedersen, 2009; Shleifer and

Vishny, 1997b).

2. Futures trading under arbitrage constraints

2.1. The structure of perpetual futures

Traditional futures contracts, which we refer to as standard futures, settle via cash or

physical delivery at a predetermined maturity date. Prior to maturity, traders are credited

(or debited) based on changes in the futures price. The eventual settlement of these futures

causes the futures price converges to the price of its underlying. For futures with financial

underlyings, arbitrage typically keeps the spot price in line even prior to maturity. If the

futures price trades 2% above the spot price, an arbitrageur can buy the spot asset and short

the futures contract and earn a profit of 2% at the futures settlement (minus financing costs

and dividends, if any).

In normal conditions, this may suffice to keep prices aligned. But when arbitrage capital

is scarce or maturities are long, these forces may be too weak to constrain futures prices.

Shortening maturities increases arbitrage pressures, but extremely short maturities make it

challenging to hold long-term positions.

Perpetual futures eliminate expiry dates entirely and instead, they maintain price align-

ment through regular funding payments between long and short positions. In an idealized

form, the long pays the short at a continuous rate:

FundingPayment t = δ(Pt − St) = δBt, (1)
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where δ is a scaling parameter, Pt is the futures price, St is the spot price, and Bt = Pt− St

is the basis. When the futures price exceeds the spot price, the long side pays the short

side, and vice versa. These expected payments create strong price pressure: any divergence

triggers an opposing payment stream, pulling futures and spot prices together.

Larger values of δ create stronger convergence incentives, and so by adjusting δ, exchanges

can create stronger or weaker convergence pressures. Standard perpetual futures formulas

translate a 2% price dislocation into an arbitrage profit of at least 2% per day–a far stronger

incentive than 2% paid only at the maturity of a standard future that might be months away

for a quarterly future. In practice, the prospect of these payments means futures prices stay

close to spot prices, and funding payments are typically small.

Beyond varying δ, exchanges implement variations of Equation (1) to suit their own trad-

ing environments. Differences include how Pt and St are measured, the timing and averaging

of funding calculations, and modifications to reduce noise or prevent manipulation.3

2.2. A model of futures contract structure under arbitrage frictions

We model the equilibrium design and pricing of futures contracts in an environment with

constrained arbitrage capital and heterogeneous agents.

Our model begins with the standard assumption that the underlying asset price St follows

a geometric diffusion process:

dSt = rdt+ σSdY
S
t , (2)

where r ≥ 0 denotes the constant risk-free rate, and Y S
t is a standard Brownian motion.

We define futures contracts using two parameters: an expiration date T and a funding

3For example, the Deribit BTC-USD perpetual uses a mark price for Pt, applies an eight-hour funding
period, shrinks the resulting payment by up to 0.003125% × St, and caps it at 0.0625% × St. Kraken uses
similar bounds but sets δ to target a one-day payout, bases the payment on the prior clock hour’s average
difference between a reference future and the spot price, and adjusts for volatility. BitMEX weights the
price difference over the previous eight hours, incorporates bounds, adjusts for imputed borrowing costs, and
applies a bid-ask-spread-based dampening factor. He et al. (2022) discuss the mechanics of these contracts.
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rate δ. Standard futures are characterized by no funding δ = 0 and expiration at a fixed T ,

whereas perpetual futures have positive funding δ > 0 and no expiration, T = ∞. When a

contract has a finite maturity, it settles at expiration for the spot asset price ST .

Let Pt be the price of the futures contract on that asset and so Bt = Pt−St is the contract’s

basis. The contract is in zero net supply and is traded by three types of agents: a (normalized)

unit mass of long-term hedgers (H), mass nS of liquidity traders (denoted S), and mass nM

of market makers (M). Hedgers seek long-term exposure, market makers provide liquidity

but face inventory risk, and liquidity traders (speculators) derive time-varying utility from

futures exposure, capturing demand shocks or belief heterogeneity. Each agent i holds xit

units of the contract and their wealth, Wi, evolves according to

dW i
t = xitdPt − xitδdt. (3)

Liquidity traders derive an additional benefit from futures exposure, drawing on evidence

of unbalanced speculative demand (Christin et al., 2022; Schmeling et al., 2023). Specifically,

they receive utility flow xiGS
t dt, whereG

S
t is the liquidity trader demand factor. This demand

factor could represent time-varying hedging needs, liquidity constraints, or sentiment.4

We assume GS
t follows an Ornstein-Uhlenbeck process, a continuous-time analogue of an

AR(1) process:

dGS
t = −ψGS

t dt+ σGdY
G
t , (4)

where Y G
t is a standard Brownian motion independent of Y S

t . The parameter ψ > 0 governs

the speed at which the liquidity trader demand factor reverts to zero, whereas the parameter

σG governs its volatility.

4An equivalent interpretation of GS
t is as a belief wedge: liquidity traders hold heterogeneous beliefs

about the asset’s drift. In particular, they believe the asset follows dSt = (GS
t + r)dt + σSdY

S
t . Under

that interpretation, GS
t is the disagreement between market makers and liquidity traders about the asset’s

drift rate. This dual interpretation is standard in models of speculative trading under heterogeneous beliefs
(Harrison and Kreps, 1978).
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Liquidity traders and market makers have mean-variance preferences over instantaneous

changes in wealth:

dW i
t − rW i

t +GS
t x

iI[i = S]dt− 1

2
γiVar(dW i

t ). (5)

The variance penalty reflects either risk aversion or inventory holding costs, consistent with

the fragmented nature of cryptocurrency exchanges and constrained arbitrage capital (Gar-

leanu and Pedersen, 2011; Makarov and Schoar, 2020). We use γM to denote the risk aversion

parameter for market makers and γS for liquidity traders.

These preferences and the variation in the liquidity demand factor drive trade between

liquidity traders and market makers. Long-term hedgers do not trade and instead have

constant hedging demand xH .

We conjecture that the futures basis B depends on time t and the liquidity demand factor

GS
t . Following standard assumptions in continuous-time analysis, we take B = B(GS

t , t) to

be differentiable in t and twice continuously differentiable in GS
t .

Given that setup, we define an equilibrium as follows:

Definition 2.1 (Equilibrium). An equilibrium consists of a futures basis function B(GS
t , t),

liquidity trader strategies xSt , and market maker strategies xMt , such that the following

conditions hold:

1. Given B(GS
t , t), market makers choose their futures contract positions xMt to maximize

their utilities;

2. Given B(GS
t , t), liquidity traders choose their futures contract positions xSt to maximize

their utilities; and

3. The market clears: xH + nMxMt + nSxSt = 0 for ∀t ∈ [0, T ].

The following proposition characterizes the structure of a linear equilibrium in this setting.

All proofs are provided in Appendix A.
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Proposition 2.2. There exists an equilibrium in which the futures basis is a linear function

of the liquidity trader demand factor GS
t and long-term hedger demand xH :

B = k(t)GS
t + j(t)xH . (6)

In the proof, we derive closed-form expressions for the coefficients k(t) and j(t). The

liquidity trader price coefficient is given by

k(t) =
nS/γS

nS/γS + nM/γM︸ ︷︷ ︸
Proportional risk-aversion

1− e(ψ+δ)(t−T )

ψ + δ︸ ︷︷ ︸
Liquidity factor risk

(7)

and the long-term hedger price coefficient by

j(t) =
1

nS/γS + nM/γM︸ ︷︷ ︸
Aggregate risk-aversion

(
σ2
Gk

2(t) + σ2
S

) 1− eδ(t−T )

δ
.︸ ︷︷ ︸

Hedger demand risk sensitivity

(8)

The comparative statics of the price coefficients are intuitive. A shorter time to maturity

(T − t), a higher funding rate (δ), faster mean reversion in liquidity trader demand (ψ),

lower market maker risk aversion (γM), or a greater number of market makers (nM) all

attenuate both the liquidity trader and hedger price coefficients. Higher liquidity trader risk

aversion (γS) or a smaller mass of liquidity traders (nS) reduces the liquidity trader price

coefficient and has an indeterminate effect on the hedger price coefficient: while liquidity

traders create price risk for market makers, they also absorb some of the hedger demand.

Lower volatility of the underlying asset (σ2
S) or of liquidity demand shocks (σ2

G) reduces the

hedger price coefficient but does not affect the liquidity trader price coefficient, since both

types of trading agents are averse to this volatility. In equilibrium, this volatility affects the

trading volume between liquidity traders and market makers but does not affect the price.
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In the case of standard futures, j(t) is replaced by its limit as δ → 0, yielding

Bt =
nS/γS

nS/γS + nM/γM
1− eψ(t−T )

ψ
GS
t +

1

nS/γS + nM/γM
(
σ2
Gk

2(t) + σ2
S

)
(t− T )xH . (9)

For the standard future, the liquidity trader and long-term hedger price coefficients both

monotonically converge to zero as t→ T and the future approaches expiration.

For perpetual futures, we take the limit as T → ∞, yielding

Bt =
nS/γS

nS/γS + nM/γM
1

ψ + δ
GS
t +

1

nS/γS + nM/γM
(
σ2
Gk

2(t) + σ2
S

) 1
δ
xH . (10)

Because perpetual contracts have no expiration date, this basis does not converge to zero

at a fixed time. However, the funding rate δ disciplines deviations from the spot price. As

shown in the expression, a sufficiently large δ can shrink the basis arbitrarily close to zero.

For the general contract, the equilibrium liquidity trader positions are given by

xSt =
1

nS
1

γM/nM + γS/nS
1

σ2
Gk

2(t) + σ2
S

GS
t −

1

nS
γM/nM

γM/nM + γS/nS
xH (11)

and the market maker positions by

xMt = − 1

nM
1

γM/nM + γS/nS
1

σ2
Gk

2 + σ2
S

GS
t −

1

nM
γS/nS

γM/nM + γS/nS
xH . (12)

The first terms in each expression capture trading between liquidity traders and market

makers. It is driven by the incentive to trade (GS
t ), reduced by total risk (σ2

Gk
2(t)+σ2

S) and

the aggregate risk aversion of the two groups (γM/nM + γS/nS). The second terms reflect

the hedging demand from long-term hedgers, which is allocated between liquidity traders

and market makers according to their risk tolerance.

Because hedging demand xH is constant, trading is driven by market makers and liquidity
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traders and instantaneous trading volume is therefore proportional to

1

γM/nM + γS/nS
1

σ2
Gk

2(t) + σ2
S

σ2
G. (13)

Lower basis volatility increases risk-bearing capacity for both market makers and speculators,

and so many of the comparative statics of k(t) carry over: trading volume is higher when

market makers are less risk averse (γM is lower), more numerous (nM is higher), or when the

contract has a shorter time to maturity (T is lower) or a higher funding rate (δ), or when

there is faster mean reversion in liquidity trader demand (ψ). Although higher volatility

in liquidity trader demand (σG) increases price impact, the net effect of increasing that

volatility is a rise in trading activity because fluctuations in GS
t directly drive trades.

The effect of liquidity trader risk bearing is more nuanced. A lower risk aversion (γS)

or larger mass (nS) increases demand for trade, but also raises basis volatility, deterring

participation. When liquidity traders are sufficiently risk averse (or few in number), the first

effect dominates, and reducing γS (or increasing nS) increases trading volume. However, the

second effect can also prevail, with increasing liquidity trader risk bearing raising volatility

to the point where market makers are deterred from participating–an effect akin to the

limits-of-arbitrage mechanism described in Shleifer and Vishny (1997a).

We now present our main result, which is that both liquidity traders and market makers

prefer well designed perpetual futures over delivery contracts.

Corollary 2.3. The utilities of both liquidity traders and market makers are increasing in the

funding rate δ. For any standard futures contract with expiration T , there exists a threshold

δ such that liquidity traders and market makers prefer the perpetual futures contract if and

only if δ ≥ δ.

We conclude our model by analyzing the preferences of long-term hedgers. Hedgers are

born at a constant rate xH/l, live for a fixed duration l, and maintain unit exposure to futures
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throughout their lifetime. Each hedger has mean-variance preferences over the difference

between their wealth and the spot price of the asset at the time of death.

A sufficiently risk-averse hedger prefers a futures contract that matures at exactly their

exit date. However, a single futures contract cannot support every hedger’s specific needs.

We assume that there is a single tradable future at all times. In particular, we assume that

for futures contracts with fixed maturities, a futures contract maturing at time (n + 1)T is

available for trade between nT and (n + 1)T for integer n. This stylized structure reflects

the fact that the liquidity on CME equity-index and U.S. Treasury futures concentrates in

the nearest-to-expiry contract (Fett and Haynes, 2017).

This setup mirrors equity-index and U.S. Treasury futures, where there is only a single,

near-expiry contract is liquid (Fett and Haynes, 2017).

This series of contracts allows the hedger to maintain constant exposure by rolling from

one contract to the next as older contracts expire, which is common practice on equity-index

and U.S. Treasury futures markets. For instance, a hedger born at time τ < T who lives

until time τ with T < τ + l < 2T will at time t purchase a futures contract maturing at T ,

at time T roll that future by closing it for ST and purchase a future maturing at 2T , and at

time τ + l close that second future. For standard futures, the hedger’s terminal wealth is as

follows:

−PT,τ + ST − P2T,T︸ ︷︷ ︸
Futures roll

+P2T,τ+l − Sτ+l︸ ︷︷ ︸
Early winding

+Sτ+l, (14)

where PnT,s denotes the price at time s of a futures contract maturing at nT .

The following corollary shows that appropriately set perpetual futures offer higher aggre-

gate welfare than any such series of delivery futures.

Corollary 2.4. Consider an equilibrium where a series of standard futures are offered with

the contract maturing at time (n+1)T being tradable between nT and (n+1)T for integer n.

There exists a single perpetual futures contract that delivers higher aggregate hedger welfare
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than the series of standard futures.

Standard futures benefit hedgers whose needs align to those futures’ maturity dates.

However, in aggregate, that benefit is outweighed by the risk of futures rolls and early

unwindings borne by hedgers with misaligned dates. Moreover, all hedgers benefit from

the lower expected costs that arise because perpetual futures reduce the compensation that

market makers and liquidity traders demand for bearing the hedgers’ risk.

Combining Corollaries 2.3 and 2.4, we conclude that perpetual futures contracts can lower

the magnitude of the futures basis, increase trading volume, and enhance the welfare of all

three types of market participant. This result illustrates that well-designed perpetual futures

not only discipline prices through funding but also better accommodate the heterogeneity in

investor horizons, avoiding the roll frictions created by standard futures.

3. Empirical analysis

3.1. Cryptocurrency trade and orderbook data

We test our model’s predictions using a combination of aggregate market data and high-

frequency trading records. Appendix Figure B1 summarizes the product offerings of all

exchanges that launched cryptocurrency futures prior to 2019. While nearly all surviving

cryptocurrency futures exchanges now offer perpetual futures as their primary contract type,

we focus on three: BitMEX, Deribit, and Kraken.

These three exchanges are ideal for our analysis for several reasons. First, they were

the first to offer perpetual futures contracts. By the time other exchanges introduced these

contracts, perpetual futures were already arguably the market standard. Second, all three

provide complete historical trading data, which we use from each venue’s inception through

to a cutoff date of December 31, 2023. Third, and unlike the next set of adopters, these
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three exchanges have not been credibly accused of manipulating trading data.5

BitMEX was the first cryptocurrency exchange to offer cryptocurrency perpetual futures.

It provides both trade and top-of-the-book data for essentially its entire existence starting

November 11, 2014.

Deribit specializes in cryptocurrency options trading and was the second exchange to

adopt perpetual futures. It provides trade, liquidation, and mark-to-market pricing data

from its inception in February 2017 onward.

Kraken was the third exchange to adopt perpetual futures and the first regulated venue

to do so. It was founded as CryptoFacilities, before being aquired by U.S.-regulated Kraken

and rebranded as Kraken Futures. For simplicity, we refer to it as Kraken throughout.

Kraken provides trade, liquidation, and mark-to-market pricing data from January 1, 2018

onward.

Spot prices are taken from Coin Metrics and calculated as the median of the last traded

prices from Coinbase, Bitfinex, and Bitstamp. These are three of the longest-standing and

most liquid exchanges. We use a median to mitigate the effect of outages or anomalies;

however, these exchanges are well-aligned in price, unlike venues in jurisdictions with capital

controls (Choi et al., 2022).

Aggregate futures volume and product listing data are also drawn from Coin

Metrics and cover 20 futures exchanges, accounting for the majority of global cryptocurrency

futures activity.

Futures contract structures varied across the sample. In the initial sample period,

futures contracts were typically denominated in cryptocurrency because the early exchanges

5Our assessment of exchange credibility follows prior research identifying wash trading and fake volume,
including Chen et al. (2022), Cong et al. (2022), Bitwise’s 2019 SEC report, and the Blockchain Transparency
Institute. These studies suggest that other early perpetual futures exchanges, such as HTX and OKX, may
have provided unreliable data, making them unsuitable for our main analysis. Manipulation is a well-
documented issue in cryptocurrency markets, partly because platforms generally act as exchange, custodian,
and broker.
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lacked access to the banking system. Inverse futures are crypto-denominated contracts

referencing the price of USD in that crypto, as opposed to USD-denominated contracts

referencing the price of cryptocurrency in USD.6 Assets other than BTC are often BTC-

quoted, for example, a future on ETH which was quoted and settled in BTC. Somewhat less

commonly, quanto futures are based on the ratio of two currencies and paid out in a third

currency. For example, an XRP/USD future settled in BTC, whose value (in BTC) is tied

to the price of XRP in USD. Later in the sample period, most futures trading occurs using

standard futures that pair a cryptocurrency with either U.S. dollars or (more commonly) a

“stable coin” cryptocurrency that is pegged to the U.S. dollar. While these structures differ

in accounting, they have no bearing on our results. Throughout, we analyze returns in USD

and control for these structural differences.

3.2. The rise of perpetual futures

A core prediction of our model is that market participants prefer perpetual futures to stan-

dard futures. Figure 1 supports this: across the exchanges that introduced them, perpetuals

rapidly became the dominant contract type.

As the figure shows, BitMEX was the first exchange to apply the perpetual futures con-

tract to cryptocurrency and experienced a rapid shift in trading activity toward these con-

tracts.7 After their success on BitMEX, in 2018 these contracts spread to Deribit and Kraken,

who quickly saw the new contracts eclipse their established standard futures offerings. HTX,

OKX, and bitFlyer later underwent similar transitions. In all cases, perpetual futures saw

6Writing BTC-denominated contracts on USD was pioneered by ICBIT’s founder Alexey Bragin to allow
futures trading without reliance on fiat currency exchanges, as detailed in Bragin (2015). To illustrate,
suppose a trader goes long $100 (4 BTC) of a futures contract at a price of $25 per BTC and at settlement
the BTC price is $50. If she was long a conventional BTC/USD future as offered by the CME, she would
have a profit of $100 = 4 × ($50 − $25) because she had a USD-denominated long claim on 4 BTC each
of which increased by $25. If she was long a so-called inverse BTC future, she would have a profit of
2BTC= $100 × (1/25 − 1/50) because she had a BTC-denominated short claim on $100 and the dollar fell
from 1/25th of a BTC to 1/50th.

7The temporary rebound in standard futures volume in 2017 is driven by a surge in popularity of BTC-
JPY standard futures, which did not have an associated perpetual future.
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immediate popularity.

Exchanges like Bybit and Binance, which entered the cryptocurrency market later, almost

always started with a perpetual futures offering. In many cases, exchanges started with only

a perpetual futures offering. For example, the offshore subsidiaries of U.S.-based Coinbase

and Gemini initially offered only perpetual futures and did not offer standard futures at

all. A similar focus on perpetual futures is seen on emerging decentralized blockchain-based

derivatives platforms such as Jupiter, dYdX, and Hyperliquid, which are transparent by

nature and have perpetual futures as their only derivative offering.

A notable exception to this global trend is found in the three U.S.-based exchanges: the

CME, Coinbase Financial Markets, and ErisX (now owned by CBOE). This divergence is not

coincidental. While perpetual futures are not explicitly prohibited in the United States, their

regulatory status remains ambiguous and potentially limited by strict rules on swaps. To

date, no perpetual futures contracts have been approved by the Commodity Futures Trading

Commission (CFTC), the primary U.S. futures regulator. This may change in the future, as

the CFTC is exploring the possibility of liberalizing the regulatory framework surrounding

perpetual futures.8

Figure 2 focuses on the months surrounding the launch of perpetual futures on BitMEX,

Deribit, and Kraken. We consider only inverse BTC futures here, because that was the

dominant quoting structure for both standard futures and the newly introduced perpetual

futures.

For each exchange, we divide BTC futures into three categories based on expiration: (i)

quarterly standard futures with calendar-quarter expirations; (ii) short-maturity standard

futures, with maturities other than quarter ends; and (iii) perpetual futures. The set of

short-maturity contracts varies across exchanges and includes monthly, weekly, 48-hour, and

even 24-hour contracts.

8See, for example, the CFTC’s request for comment on the regulation of perpetual futures.
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The top set of subplots shows the normalized futures basis: the difference between the

futures price and the spot price, all divided by the spot price. Consistent with our model, the

basis of quarterly futures is large, volatile, and converges to zero at maturity. In Bitmex’s

case, the quarterly futures traded up to 40% above the spot price, while for Deribit and

Kraken they traded up to 8% above. Looking back at Equation (6), the larger effects we

see on BitMEX could be explained by the relatively scarce arbitrage capital (low ηM) in the

early cryptocurrency markets.

Also consistent with the model, the short-maturity standard futures track the spot price

more closely thant the quarterly futures. The perpetual futures used by cryptocurrency

exchanges track the spot price even more closely due to their high funding rates.

The bottom row of subplots presents the number of trades by contract type.9 The rapid

rise of perpetual futures is clearly visible on all three exchanges. Moreover, the introduction

of perpetual futures is associated with an increase in total trading activity, rather than

merely a reallocation of trades away from existing contracts. This is consistent with the

model prediction that reduced basis risk increases participation.

Also evident is that perpetual futures effectively replaced short-maturity standard futures

on all three venues. Because almost all trading occurs using perpetual futures or quarterly

futures, we drop short maturity futures from the subsequent analysis.

These patterns are unlikely to be driven by fees or margin requirements. Perpetual fu-

tures did not offer fee advantages: they had fee parity with standard futures on BitMEX

and Kraken, and were actually subject to higher fees on Deribit (perhaps explaining why

perpetual futures are associated with increasing platform volume for Kraken and BitMEX

but not Deribit).

Margin requirements are another salient contract feature that could influence trader de-

9Traded volume displays qualitatively similar patterns. We focus on trade counts rather than trade
volume due to the extreme volatility of BTC prices during the period.
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mand. Kraken and Deribit initially launched perpetual futures with the same margin require-

ments as their standard futures, yet still experienced rapid adoption of perpetual contracts.

BitMEX offered lower margin requirements for short-maturity futures and perpetual futures

than for quarterly futures; however, the higher margin requirements for longer-maturity fu-

tures appear to have been driven by their erratic pricing behavior rather than an attempt

to steer demand.

Appendix Figure B2 confirms that elevated basis volatility in quarterly futures persists

over time, supporting the model’s prediction that perpetual futures offer more stable pricing

environments. High and unstable futures bases were present even in recent years, highlighting

that the divergence of spot and futures prices is not just a historical artifact.

3.3. Liquidity of quarterly and perpetual futures

A second prediction of the model is that the prices of high-funding-rate perpetual futures

are less sensitive to changes in demand, either from liquidity traders or hedgers. We test

this prediction using standard measures of market liquidity.

Quoted spread. As we have top-of-the-book data from BitMEX, we construct the

quoted spread at time t as

QuotedSpreadt =
PASK
t − PBID

t

PMID
t

, (15)

where PASK
t and PBID

t denote the best ask and bid quotes at time t, and PMID
t is the midpoint

between them. For each day d, we compute the average of the quoted spread measured at

the end of each minute.

Roll Spread. We also implement the Roll (1984) estimator of transaction costs, which

infers the spread from the absolute value of the serial covariance of price changes. For day
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d, we define this as

RollSpreadd = 2
√∣∣AUTOCOVARt∈Nd [Pt/Pt−1]

∣∣, (16)

where
∣∣AUTOCOVARt∈Nd [·]

∣∣ is computed over all trades on day d. We exclude symbol-day

observations with fewer than 10 trades to ensure reliability.

Effective Spread. The effective spread of a trade is twice the difference between its price

and a pre-trade reference price, signed based on which side of the trade was the aggressor:

EffectiveSpreadt = 2×


Pt/P

Ref
t− − 1 if trade j is a buyer-initiated

1− Pt/P
Ref
t− if trade j is seller-initiated,

(17)

where PRef
t− is the pre-trade reference price. For BitMEX, we use the midpoint from one

second before the trade as the reference price. For Kraken and Deribit, we use the exchanges’

reported mark prices, which are smoothed estimates of PMid
t designed to be robust to manip-

ulation.10 For Deribit, we lack trade initiator flags, so we classify a trade as buyer-initiated if

it occurs above the mark price, and seller-initiated if it occurs below. To minimize bias from

imbalanced trade flow, we compute the daily effective spread as the midpoint between the

average of spread of buyer-initated trades and the average spread of seller-initiated trades.

If the average effective spread on a day is negative, we set it to zero. Finally, we discard this

measure for symbol-days with fewer than 10 buys or sells.

10Both Kraken and Deribit compute the mark price as St + EWM30[P
ImpactMid
s − Ss], where EWM30[·] is

a 30-second exponentially weighted moving average, P ImpactMid
s is the midpoint between the average price

a market sell of a certain quantity would realize and the average price a market buy of that same quantity
would realize, and Ss is the exchange-defined spot reference price. Details are provided online by Kraken
and Deribit.
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Realized spread. The realized spread of a trade is calculated similarly to the effective

spread, except that instead of using the mark price prior to the trade, we use the price of

the next trade to occur that is at least five minutes from the trade in question. As before,

we discard this measure for symbol-days with fewer than 10 buys or sells.

Table 1 reports summary statistics for our market quality metrics. We report these metrics

for quarterly futures and perpetual futures on BitMEX, Deribit, and Kraken.

The first set of columns reports our liquidity measures for BTC futures on each venue.

Across all three exchanges and all liquidity measures, perpetual futures are much more

liquid than quarterly futures. In particular, perpetual futures exhibit 5–8 times as many

daily trades and spreads that are 49–83% narrower.

The second set of columns repeats that analysis but includes all contracts. Here, the

pattern is mixed: perpetual futures continue to show higher trading volumes, but in some

cases exhibit wider average spreads. This reflects the endogenous nature of contract struc-

ture: the least liquid coins are listed only as perpetual futures and not as quarterly futures.

For example, Deribit offers quarterly futures only on BTC, ETH, and SOL–its most liquid

assets–while it lists perpetual futures on 15 different coins. Because less liquid coins have

higher spreads, the fact that perpetual futures are listed on less liquid coins means the cross

coin average liquidity is lower.

The third set of columns attempts to control for that by considering only coin-day-

exchanges where both perpetual futures and quarterly futures are listed and restricting

consideration to the most liquid contract on that coin-day-exchange. With this restricted

sample, we see a similar pattern to the first set of columns: for a given coin and venue, the

perpetual futures are more popular and more liquid, across venues and across measures.

Table 2 explores the determinants of liquidity using a panel regression design. We use

the more-liquid sample identified in the third set of columns of Table 1, considering only the

most liquid . Letting yc,v,s,t be a liquidity measure taken on day t for coin c using futures
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contract structure s on venue v:

yc,v,s,t = β′Xs,t + υc,t + γv + εc,v,s,t. (18)

The covariate vector Xs contains contract-structure characteristics. In particular, we con-

sider an indicator for the symbol being a perpetual future (as opposed to a standard future)

and the log of one plus the number of days until the future’s expiration, with perpetual

futures set to 0. Coin–day fixed effects υc,t absorb market conditions, while venue fixed ef-

fects γv capture time-invariant platform heterogeneity. Standard errors are clustered at the

coin-month level.

Specification (1) shows that perpetual futures trade at effective spreads that are 4.6 bp

narrower than comparable quarterly futures: comparable to the magnitudes from our match-

ing exercise and large given the 10-14 bp average spreads on these contracts. Specifications

(2)–(4) rerun these effective spread tests venue-by-venue and yield qualitatively similar re-

sults. Specification (5) introduces Tenor, our measure of time to maturity and confirms

the model prediction that liquidity is worse at longer maturities. Specifications (6) and (7)

repeat the tests in Specification (1) using realized spreads and Roll spreads, respectively; the

liquidity advantage of perpetual futures remains robust across these alternative metrics.

3.4. Liquidity around the introduction of perpetual futures

Our model suggests that the perpetual futures structure has intrinsically better liquidity

in markets with excess speculation. Although Tables 1 and 2 confirm the superior liquidity of

perpetual futures, these estimates are hard to interpret in light of perpetual futures’ market

dominance. The better liquidity of perpetual futures might simply reflect their current

dominance, rather than anything intrinsic to their contractual design.

To isolate the effect of contract design, Figure 3 looks back to the launch of the first
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perpetuals. In these early days, perpetual futures were the entrants rather than the dominant

incumbents. For each of our three early adopters, it shows the Roll spreads and effective

spreads on perpetual and for front-month quarterly BTC futures.

Perpetual futures exhibit markedly tighter spreads on every exchange and for both liquid-

ity measures, even immediately after their introduction. The economic magnitudes differ.

BitMEX shows the largest gains, while Deribit and Kraken record more modest improve-

ments and more noise. These differences may be driven by the level of basis risk during these

periods. As Figure 2 shows, BitMEX introduced perpetual futures during a period when the

quarterly futures basis was high and volatile–conditions under which the model predicts that

the quarterly futures form would inhibit trading. Deribit and Kraken introduced perpetuals

when basis volatility was lower, muting the theoretical benefit of perpetual futures.

Table 3 tests how the introduction of perpetual futures impacted market quality using a

panel event study design:

yc,v,s,t =
∑
i

γi I
[
t ∈ Quarter ic,v

]
I
[
Perpetuals

]
+

∑
i

αi I
[
t ∈ Quarter ic,v

]
+ β′Xs,t + υc,t + γv + εc,v,s,t.

(19)

Here, yc,v,s,t is again a liquidity measure, and the variables of interest are indicator variables

for quarter and contract type. I
[
t ∈ Quarter ic,v

]
equals one if day t falls in quarter i, where

quarter 0 is the 91 days immediately after the introduction of perpetual futures on coin c on

venue v, quarter 1 is 91–181 days after, quarter ≥ 2 is more than 182 days after, and quarter

≤ −2 is greater than 91 days prior. We isolate the time-variation in liquidity differentials by

interacting these quarter indicators with an indicator variable equal to one if the contract is

a perpetual future. Other variables follow Equation 18, including the perpetual indicator,

exchange fixed effects, contract controls, and coin-month fixed effects. As before, all standard

errors are presented after clustering standard errors at the coin-month level.
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Table 3 shows that perpetual futures have significantly lower Roll spreads and significantly

more trades than quarterly futures, even in the days following their introduction. For the

subsequent quarter and the quarters after that, perpetual futures show large improvements

on effective spread, Roll spread, realized spread, and the number of trades.

These interaction terms are not driven by a decline in the liquidity of quarterly futures.

quarterly futures liquidity is mostly unchanged, with the Roll spread shrinking and the

number of trades growing later in the sample.

3.5. Liquidations

Another notable feature of cryptocurrency markets is the prevalence of large, forced liq-

uidiations. Although data on liquidations in traditional futures markets is lacking, anecdotal

evidence suggests liquidations are much more prevalent in cryptocurrency. One driver of

this may be that cryptocurrency futures exchanges are non-recourse for both perpetual and

quarterly futures, and traders commonly use position-level margin and strategically triggered

liquidations as a way to limit downside exposure.11 That contrasts with traditional futures

markets, where futures are recourse and losing traders can not just lose their collateral but

be driven into debt.

Figure 4 reports data on the liquidations on Deribit and Kraken, the two venues for

which we have complete liquidations information. The top set of plots in each panel report

the portion of each venues’ trading volume that is accounted for by liquidation trades. On

Kraken, we see much higher levels of liquidation and what appears to be a transition of

liquidation activity from quarterly futures to perpetual futures. Before the introduction of

perpetual futures, liquidations accounted for 2.8–3.6% of quarterly futures volume. After

the introduction of perpetual futures, the prevalence of liquidations on quarterly futures

11For example, on many venues a trader could enter long position on a BTC future and fund that position
with only part of their account value. If BTC’s price fell, that trader would be liquidated, but only the part
of their account that they committed to the futures contract would be at risk.
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plumeted to 0.3-0.7%, whereas the liquidations on perpetual futures stayed high at 1.9-3.0%.

The apparent transition of liquidations from quarterly futures to perpetual futures on

Kraken occurs despite both contracts having the same margin requirements. This is consis-

tent with the model prediction that shorter-horizon, financially-constrained traders would

prefer perpetuals and migrate toward them once offered.

On Deribit, we see no such pattern and both contracts have similar reported liquidations

accounting for 0.4–0.8% of trading volume. The SOL quarterly futures see volatile patterns,

but that is associated with the standard future being discontinued due to lack of activity. A

potential explanation for this is that Deribit is primarily an options exchange–with the risk

seeking traders on Deribit choose options, rather that poorly capitalized futures positions.

The bottom plots in each of Figure 4’s panels show the effective spread at which those

liquidations occur. Even though these are forced sales, the price impact is limited, with

spreads of only a few basis points. Consistent with the rest of the paper, the spreads are

higher for standard futures than for perpetual futures. Liquidations (a demand shock) has a

smaller effect on the perpetual futures price than on the standard futures price, in the model

this is driven by perpetual future’s lower liquidity trader price coefficient.

4. Futures contract structure and market stress

4.1. Futures returns during market stress

The cryptocurrency market, with its frequent manias and panics, offers a rich laboratory

to study how futures perform in times of market stress. Figure 5 assesses the risk created by

basis movements by reporting the returns to spot, futures, and arbitrage positions. We focus

on BTC contracts on BitMEX, because it has the longest continuous history of perpetual

futures and because it reports quoted spreads.

Our analysis focuses on hourly periods in which the spot BTC price changed by more
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than 5%. In these moves, the spot BTC prices move by an average of 5.8% within two

hours. Such moves indicate severe market stress as throughout our sample, BTC comprised

the bulk of total crypto-market capitalization. For context, the worst single-day declines of

the 2008 financial crisis were roughly 7–8%. Every futures contract has a long and a short

side, and these charts are based on the losses borne by the losing side–i.e., returns to short

(long) positions when the price rises (falls).

The left plots reports the returns to four strategies that each maintain a constant no-

tional exposure to BTC: (i) a spot position, (ii) BitMEX’s original XBTUSD perpetual

future, (iii) the front-quarter (nearest-maturity) standard future, and (iv) the second-nearby

(second-nearest-maturity) standard future. All four strategies incur sharp drawdowns, but

all the three futures strategies have greater peak losses than the spot strategy. The front

quarterly quarterly futures lose 8% (0.5 percentage points) more than the spot strategy and

the second-nearby standard future overshoots by 10% (0.6 percentage points). Perpetual

futures prices stay closer to the spot prices and so the perpetual futures strategy only over-

shoots by 3% (0.1 percentage points). Strong arbitrage pressure keeps the perpetual futures

price close to the spot price, even during these extreme minutes.

The two quarterly futures contracts suffer similar losses, despite the front quarterly futures

contract being far more liquid than the second-nearby standard future. This is inconsistent

with liquidity-stories, but entirely consistent with the model. Under the model, the initial

overshoot of the futures prices is driven by changes in the liquidity trader demand, whether

due to sentiment swings or simply liquidations (e.g., of the optimists). If liquidity trader

demand shifts are not persistent, this shock will have a similar effect on both the front and

second-nearby quarterly futures.

Remarkably, within 16 hours of the shock the perpetual-futures position has lost less

than the spot strategy. This cushioning comes from funding: once the futures–spot gap

opened, the losing side of the perpetual futures contract began receiving transfers from
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the winning side, partially offsetting the losing sides losses. quarterly futures amplify spot

shocks; perpetual futures, through funding, dampen them.

The right plot on Figure 5 shows the losses of BTC basis arbitrage trades, where futures

positions are hedged using offsetting spot positions. This type of spread trade is popular

both in cryptocurrency and in traditional finance, for example, the treasury cash-futures

basis trade or the covered interest parity trade. In the long term, these arbitrage strategies

converge to a nearly risk-free profit. In practice, they can realize large losses when markets

are under stress.

We again plot the returns to the losing side of these basis trades. To reflect the prevalence

of leverage in these trades (e.g., Siriwardane et al. (2022)), we have scaled these arbitrage

trades by 10 to reflect hypothetical 10-times leverage and assumed 10% annual interest for

spot leg. In our data, this basis trade loses 4.3-4.6% in the two hours surrounding the

> 5% spot drawdowns if it is conducted using the quarterly futures contracts. Using the

perpetual future reduces that peak drawndown to 1.5%, a roughly two-thirds reduction that

is consistent with the reduction in divergence. As before, the losses are not only less severe,

the are also shorter lived.

By reducing basis risk, perpetual futures reduce the losses arbitrageurs bear in crises.

This might ease the pressure on the financial system, as large arbitrage drawdowns can

amplify market turmoil (Edwards, 1999; Glicoes et al., 2024). Because arbitrage capital and

market liquidity are tightly linked (Mitchell and Pulvino, 2012; Rösch, 2021), broader use of

perpetuals could also bolster liquidity in stressed conditions.

4.2. Futures liquidity during market stress

The limits to arbitrage are particularly acute during crises. Figure 6 illustrates the rela-

tionship between liquidity and market stress by showing the median quoted (bid-ask) spread

of BitMEX BTC-USD futures around the same set of 5% hourly spot price movements. We
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plot large price increases (left-plot) and decreases (right-plot) separately.

For perpetual futures, the quoted spread climbs only modestly: in the two hours around a

> 5% spot rally it averages 0.66 bp, just 34% above the 0.49bp baseline observed 1–12 hours

earlier. A comparable 25% widening (0.49 − −0.66bp) occurs during spot declines. The

front future has worse initial liquidity and suffers far larger liquidity deterioration, its spread

jumping 161% on the rallies (1.66−−4.36bp) and 249% on the sell-offs (1.44−−5.03bp).

The second-nearby quarterly future begins with spreads roughly twice those of the front

standard future (3.19—3.39bp). After the shock, its spread widens less than the front stan-

dard future in percentage terms (115—161% versus 161—249%) but more in absolute terms

(1.42—2.10bp versus 0.61—1.12bp). This suggests that the better crisis performance of the

perpetual future may not be solely driven by its better overall liquidity: the perpetual fu-

ture has far better performance than the somewhat-less-liquid front quarterly future, while

the front quarterly future performs has only slightly better relative performance than the

somewhat-less-liquid second quarterly future.

Table 4 formally tests these relationships by comparing the liquidity of perpetual and

quarterly futures. We test whether the liquidity advantage of perpetual futures holds during

periods of market stress, using minute-level spreads and a panel regression with stress-by-

contract interactions. We focus on the BitMEX exchange because it reports quoted spreads

and BTC futures because of their superior liquidity. Here, the liquidity measure in minute

t in month m using futures contract structure s is

ys,m,t =αP I[Perpetuals] + γP I[Perpetuals]×Υt

+ αBI[Back-months,t] + γBI[Back-months]×Υt

+ γt + νs + ϵs,m,t, (20)

where Υt is a minute-level measure of market stress defined as either the absolute change
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in the log spot BTC price for minute (Current volatility) or the average of such minute-

level absolute changes over the prior 15 minutes (Past volatility). For clarity, we scale

Υt to be in percentage terms. Our variable of interest is this measure of market stress

interacted with dummies indicating perpetual futures or back-month (non-nearest expiring)

quarterly futures. Minute-level fixed effects γt absorb variation in Υt and symbol-level fixed

effects νs absorb variation at the contract level, meaning the interaction of market stress

and the perpetual (or back-month futures) futures form is identified by the extent to which

the futures spread of the contract structure differentially respond to market stress. Other

variable definitions mirror Equation 19, with standard errors clustered at the month-level.

In Specifications (1) and (2), we see that perpetual futures spreads shrink relative to

front month quarterly futures spreads immediately following periods of high spot BTC price

volatility. This holds both when we look at log of quoted spreads plus one basis point (Spec-

ification 1) or quoted spreads (Specification 2). These effects are economically meaningful–a

one standard deviation increase in past volatility (0.057) translates into a 10 bp (0.23 log)

increase in the spread of the front quarterly future relative to the perpetual future. The

effects in periods of peak market stress are even more pronounced, with a movement from

the median (0.048) to the 99th percentile (0.28) of past volatility translating into 42 bp

(0.94 log) increase in the front quarterly futures relative spread. Although the back-month

quarterly future is much less liquid than the front-month future, we do not see statistically

significant market-stress-liquidity interactions.

In Specifications (3) and (4), we repeat these tests using within-minute absolute price

movements. This measure captures the spread at the end of the minutes in which there

were large price movements. We see similar effects to the measure of past volatility: in

the minutes with the largest market movements, the front-month quarterly futures spread

increases significantly and the back-month shows only a limited change. Importantly, the

minute-level price changes are measured based on spot BTC, somewhat reducing the concern
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that our measures are contaminated.

5. Conclusion

Perpetual futures maintain alignment with underlying assets through regular “funding

rate” payments exchanged between long and short positions. While standard futures con-

verge to spot prices only at maturity, perpetual futures achieve continuous convergence

through their funding payment mechanism. Analysis of cryptocurrency exchange data

demonstrates that perpetual futures consistently track spot prices more closely than their

quarterly counterparts.

These contracts now dominate trading on every major non-U.S. venue and, even after

accounting for their popularity, exhibit superior market quality. In particular, perpetual

futures remain more liquid during periods of market instability.

Tighter alignment between spot and futures prices reduces risk. Following large spot

price movements, quarterly futures exhibit losses 8–10% greater than the spot decline, while

perpetual futures move nearly one-for-one with spot. This price divergence is particularly

hazardous for arbitragers conducting basis trades because quarterly futures strategies impose

crisis drawdowns that are three times as large as perpetual futures strategies.

We build a continuous-time model of financially constrained arbitrageurs to rationalize

these facts. Funding rate payments increase arbitrage pressure and cause the futures price to

closely track the spot price. Reducing the risk of price divergence reduces the compensation

arbitrageurs demand, leading to more trade and higher welfare. Hedgers benefit from these

reduced costs and can also benefit from better hedging. Hedger risk is minimized by standard

futures whose expiration perfectly coincides with their hedging needs, however, those needs

may not coincide with the maturity of the standard futures. Because of these misaligned

hedgers, perpetual futures can improve aggregate hedger welfare by reducing the risk of

rolling futures or closing them prior to maturity.
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Our results suggest that perpetual futures emerged as a contractual innovation tailored

to the volatile, arbitrage-capital-constrained environment of cryptocurrency markets. The

success of this contractual form in this challenging setting highlights its potential as a finan-

cial innovation. This has important policy implications, particularly as the CFTC considers

whether to permit perpetual futures in U.S. markets.
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Figure 1: Rise of perpetual futures across exchanges.
This figure shows the share of futures volume accounted for by perpetual futures on the twenty
cryptocurrency exchanges covered by Coin Metrics. These exchanges represent the bulk of global
cryptocurrency futures volume. For BitMEX, Kraken, and Deribit, we use our own scraped data;
for all other exchanges, we rely on Coin Metrics.
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Figure 2: Futures markets around the introduction of perpetual futures.
This figure reports key features of Bitcoin (BTC) futures markets on BitMEX, Deribit, and Kraken
around the time each introduced perpetual futures contracts. We group contracts into three cate-
gories: (i) quarterly futures, which have standard calendar-quarter expirations; (ii) short-maturity
standard futures, including contracts with monthly, weekly, 48-hour, or daily expirations; and (iii)
perpetual futures. The top set of panels show the weekly average basis for each contract type nor-
malized by the spot price, measured as the ratio of the futures price to its spot underlying minus
one. The bottom plots show the share of daily trades accounted for by each contract type.
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Figure 3: Futures market quality following perpetual future introduction.
This figure reports the liquidity of Bitcoin (BTC) futures markets on BitMEX, Deribit, and Kraken
around the time each introduced perpetual futures contracts. We group contracts into three cate-
gories: (i) quarterly futures, which have standard calendar-quarter expirations; (ii) short-maturity
standard futures, including contracts with monthly, weekly, 48-hour, or daily expirations; and (iii)
perpetual futures. The top set of panels show the Roll spread in basis points, computed as twice
the square root of the autocorrelation of relative price changes. The bottom set of panels show the
effective spread in basis points, which is the average amount that liquidity takers overpay relative
to a fair pre-trade price. For this chart only, we set the effective spread equal to 1/2 of a basis
point for days where the effective spread is negative, to allow for the use of logorithmic scales.
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Figure 4: Liquidations by product type.
This figure shows the portion of weekly volume that is liquidations using Deribit (panel a) and
Kraken (panel b) data. The top panel reports dollar-weighted monthly averages. Each line marks
the percentage of trades in a given month that are liquidations for a different type of contract.
The bottom panel shows the effective spread on liquidation trades. Monthly futures includes both
monthly and quarterly futures. The dotted vertical line marks the introduction of perpetual futures.

Panel a: Deribit

Panel b: Kraken
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Figure 5: Crisis returns of futures and hedged arbitrage strategies.
This figure shows the average cumulative returns of various futures strategies around the time
of > 5% absolute spot price movements. We consider the BTC-USD set of BitMEX contracts
for events in the 2015-2023 period where both perpetual futures and two quarterly futures were
available. If multiple > 5% absolute changes occur, we consider the first such change in a 36-hour
period. The left plot shows the cumulative returns of a strategy that holds $100 spot BTC (using
the average of Coinbase, Bitstamp, and Bitfinex prices) and the cumulative returns to portfolios
with the same BTC exposure constructed using BitMEX XBTUSD perpetual futures, front month
(closest-maturing) futures, and second nearby (second closest-maturing) quarterly futures. The
right panel shows the returns to arbitrage strategy that buys spot BTC and shorts the respective
future with 10X leverage. Each line presents the cumulative cash-flows to the losing side of each
trade, e.g., a long BTC trade around price decreases and a short BTC trade around price increases.
We plot 15-minute averages of 1-minute cross-scenario medians.
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Figure 6: Quoted spreads of futures around the time of price jumps.
This figure shows the median quoted spread of various types of futures around the time of > 5%
hourly spot price increases (left plot) and < −5% spot price decreases (right plot). We consider
BTC-USD BitMEX contracts for market movements in the 2015-2023 period where both perpetual
futures and two quarterly futures were available. If multiple > 5% changes occur, we consider the
first such change in a 36-hour period. Each line presents the quoted (bid-ask) spread for a type of
contract. We plot rolling 5-minute averages of 1-minute cross-event medians.
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Table 1: Summary of market quality measures.
This table reports averages of liquidity metrics for standard quarterly futures and perpetual futures
across BitMEX, Deribit, and Kraken. The first set of columns summarizes the entire sample and the
second set of columns summarizes matched pairs of standard and perpetual futures. This matching
pairs each quarterly future symbol-day with the perpetual future which has a number of trades
closest to the quarterly future’s number of trades, considering only matches within venue-coin-
month and provided there exists a matching future with 70-120% the number of trades. Differences
are tested using standard errors clustered at the coin-month level. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

BTC All coins Matched coin-days
Qtly. Perp. Diff. Qtly. Perp. Diff. Qtly. Perp. Diff.

BitMEX
Observations 3,069 2,788 -281 12,335 17,557 5,222 7,284 7,962 678
Distinct coins 1 1 0 12 31 19 8 8 0
Distinct symbols 54 3 -51 199 64 -135 132 17 -115
Daily trades 3,716 35,193 31,477∗∗∗ 1,905 8,181 6,276∗∗∗ 2,022 17,424 15,402∗∗∗

Effective spread (bp) 14.4 2.1 -12.3∗∗∗ 19.9 12.2 -7.7∗∗∗ 9.7 3.6 -6.1∗∗∗

Roll spread (bp) 28.3 3.8 -24.5∗∗∗ 31.8 26.4 -5.3∗ 22.3 9.7 -12.6∗∗∗

Realized spread (bp) 19.2 2.8 -16.4∗∗∗ 24.5 21.7 -2.8 16.9 7.5 -9.5∗∗∗

Kraken
Observations 2,045 1,938 -107 9,063 29,053 19,990 8,657 9,289 632
Distinct coins 1 1 0 5 54 49 5 5 0
Distinct symbols 27 2 -25 134 60 -74 129 11 -118
Daily trades 602 8,454 7,852∗∗∗ 310 1,205 895∗∗∗ 318 3,178 2,860∗∗∗

Effective spread (bp) 9.2 2.7 -6.5∗∗∗ 14.1 11.8 -2.3∗∗∗ 14.0 6.9 -7.1∗∗∗

Roll spread (bp) 12.4 4.7 -7.7∗∗∗ 29.0 36.5 7.5∗∗∗ 28.5 11.1 -17.4∗∗∗

Realized spread (bp) 7.6 3.2 -4.4∗∗∗ 16.7 19.2 2.6∗∗∗ 15.7 7.2 -8.5∗∗∗

Deribit
Observations 2,537 1,966 -571 4,420 9,985 5,565 3,849 3,862 13
Distinct coins 1 1 0 3 15 12 3 3 0
Distinct symbols 30 2 -28 53 18 -35 47 6 -41
Daily trades 2,378 16,165 13,787∗∗∗ 1,823 6,026 4,203∗∗∗ 1,707 15,065 13,358∗∗∗

Effective spread (bp) 8.3 3.9 -4.5∗∗∗ 10.0 16.3 6.3∗∗∗ 10.3 4.5 -5.8∗∗∗

Roll spread (bp) 7.6 2.1 -5.6∗∗∗ 9.6 15.7 6.1∗∗∗ 9.1 2.6 -6.5∗∗∗

Realized spread (bp) 8.8 1.3 -7.5∗∗∗ 11.9 9.6 -2.4∗∗∗ 11.6 1.9 -9.6∗∗∗
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Table 2: Market quality of perpetual and delivery futures.
This table reports regressions of market quality metrics on various features for standard quarterly
futures and perpetual futures on BitMEX, Deribit, and Kraken. A data point is a symbol-exchange-
day, considering only six of the most liquid cryptocurrencies (BTC, ETH, SOL, XRP, BCH, LTC).
The dependent variable is the effective spread in basis points for Specifications (1) to (5), the
realized spread in basis points for (6), and the Roll spread in basis points for (7). Perpetual
denotes perpetual futures. Tenor is the log of one plus the contract’s maturity in days, where the
maturity of perpetual futures is assumed to be 0. Inverse, BTC-quoted, and Quanto are contract
features. Exchange refers to the futures trading venue. Standard errors are clustered at the coin-
month level. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

Realized Roll
Effective spread spread spread

(1) (2) (3) (4) (5) (6) (7)

Perpetual −4.49∗∗∗ −2.88∗∗∗ −5.39∗∗∗ −6.81∗∗∗ 0.55 −5.47∗∗∗ −5.02∗∗∗

(0.30) (0.81) (0.68) (0.89) (0.91) (0.32) (0.34)
Tenor 1.15∗∗∗

(0.20)
Inverse 4.19∗∗∗ −8.00 0.74 −1.88 4.03∗∗∗ 0.40 2.40∗∗∗

(0.65) (6.48) (1.14) (1.78) (0.65) (0.56) (0.72)
BTC-quoted 4.50∗∗∗ −1.40 3.10 4.90∗∗∗ −1.49∗∗∗ 0.94

(0.83) (2.09) (2.84) (0.83) (0.50) (0.65)
Quanto 3.44∗∗∗ −1.59 3.47∗∗∗ −0.95 1.23

(0.94) (2.22) (0.94) (0.72) (0.99)
Kraken 6.47∗∗∗ 16.43∗∗∗ 6.69∗∗∗ 0.23 4.85∗∗∗

(0.66) (1.42) (0.66) (0.52) (0.55)
Deribit 8.32∗∗∗ 14.77∗∗∗ 8.16∗∗∗ −0.45 0.25

(0.83) (0.98) (0.82) (0.45) (0.41)
Coin-day FE Yes Yes Yes Yes Yes Yes Yes
Exchange All BitMEX Deribit Kraken All All All
Observations 54,926 21,454 11,004 22,468 54,926 54,926 54,926
R2 18.99% 13.91% 51.88% 26.00% 19.36% 11.98% 9.98%
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Table 3: Perpetual futures introductions and market quality.
This table reports a panel event study of market quality metrics for standard quarterly futures
and perpetual futures on BitMEX, Deribit, and Kraken. A data point is a symbol-exchange-day,
considering only six of the most liquid cryptocurrencies (BTC, ETH, SOL, XRP, BCH, LTC).
The dependent variables are measures of spread (columns 1-3) and market activity (column 4).
The variables of interest are indicators for the months surrounding the introduction of perpetual
futures for that coin on that venue, with Month t being the month of introduction. The month
prior to the introduction (t−1) is the omitted variable. The indicators for the months following the
introduction of perpetual futures are interacted with Perpetual, which is a dummy variable equal
to one for perpetual futures contracts. ***, **, and * denote statistical significance at the 1%, 5%,
and 10% levels, respectively, for standard errors based on coin-month clustering.

Effective spread Roll Spread Realized spread # Trades
(1) (2) (3) (4)

Perpetual × Quarter 0 −2.98 −2.21∗ −4.42 0.59∗∗∗

(2.54) (1.23) (2.89) (0.16)
Perpetual × Quarter 1 −3.36∗∗∗ −2.88∗∗ −3.51∗∗ 0.62∗∗∗

(0.67) (1.39) (1.41) (0.13)
Perpetual × Quarter ≥ 2 −4.61∗∗∗ −5.16∗∗∗ −5.44∗∗∗ 2.00∗∗∗

(0.29) (0.35) (0.33) (0.06)
Quarter ≤ −2 −3.40 −2.15 −1.92 0.59

(5.38) (2.79) (2.89) (0.44)
Quarter 0 0.43 2.17 0.21 −0.22

(3.54) (2.33) (3.80) (0.29)
Quarter 1 −2.40 −0.13 −4.39∗ 0.09

(2.40) (2.21) (2.43) (0.30)
Quarter ≥ 2 1.42 −0.69 −7.08∗∗∗ 1.15∗∗∗

(2.19) (1.53) (2.07) (0.22)
Inverse 4.26∗∗∗ 2.22∗∗∗ 0.04 −1.00∗∗∗

(0.67) (0.73) (0.54) (0.12)
BTC-quoted 4.66∗∗∗ 0.76 −1.99∗∗∗ −1.61∗∗∗

(0.87) (0.66) (0.50) (0.11)
Quanto 3.77∗∗∗ 1.01 −1.79∗∗ −0.95∗∗∗

(0.98) (1.02) (0.75) (0.16)
Coin-day FE Yes Yes Yes Yes
Exchange FE Yes Yes Yes Yes
Observations 54,926 54,926 54,926 54,926
R2 19.19% 10.20% 13.32% 66.25%

46



Table 4: Perpetual futures and market stress using high-frequency data.
This table reports the association between contractual form and market liquidity during periods
of market stress. A data point is a minute-level observation of a BTC-USD inverse future on the
BitMEX cryptocurrency exchange. The dependent variables are the log of the end of minute quoted
spread plus 1 basis point (columns 1 and 3) and the end of minute quoted spread in basis points
(columns 2 and 4). The variables of interest are the interaction between market stress measures
and indicators for futures contract forms. Past volatility is the absolute log change in spot BTC
prices averaged over the preceding 15 minutes. Current volatility is the absolute log spot BTC price
change in the current minute. Perpetual is an indicator variable equal to one for perpetual futures
contracts and Back-month is an indicator variable equal to one for standard quarterly futures that
are not the nearest to expiration future. ***, **, and * denote statistical significance at the 1%,
5%, and 10% levels, respectively, for standard errors based on two-way clustering at the symbol
and month level.

Log quoted Quoted Log quoted Quoted
spread spread bp spread spread bp
(1) (2) (3) (4)

Perpetual × Past volatility −4.00∗∗∗ −179.51∗∗∗

(0.91) (27.76)
Back-month × Past volatility −0.14 154.01

(0.50) (123.91)
Perpetual × Current volatility −1.56∗∗∗ −63.88∗∗∗

(0.37) (9.63)
Back-month × Current volatility −0.10 57.46

(0.20) (44.99)
Back-month 0.53∗∗∗ 6.46∗ 0.53∗∗∗ 13.09∗∗

(0.16) (3.73) (0.15) (6.25)
Minute FE Yes Yes Yes Yes
Symbol FE Yes Yes Yes Yes
Observations 12,250,302 12,250,314 12,250,302 12,250,314
R2 11.31% 1.80% 9.97% 1.15%
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Appendix A Proofs

A.1. Proof of Proposition 2.2

Proof. For an agent of type i ∈ {M,S} and her time t position of future contract xit, her

wealth evolves as:

dW i
t =x

i
tdSt + xitdB

(
GS
t , t

)
− xitδB

(
GS
t , t

)
dt

=xit[(G
i
t + r)dt+ σSdY

S
t +Bt(.)dt− ψGS

t BG(.)dt+
1

2
σ2
GBGG(.)dt

+ σGBG(.)dY
G
t − δB(.)dt],

(21)

where Bt(.) is the first order derivative with respect to t, BG(.) is the first order derivative

with respect to GS
t , and BGG(.) is the second order derivative with respect to GS

t .

For an agent of type i, she chooses the optimal xit to maximize her expected preference:

E[dW i
t − rW i

t +GS
t x

iI[i = S]dt− γi

2
V ar(dW i

t )]. (22)

Substituting equation (21), one can solve the optimal xit, for i ∈ {M,S}:

xit =
GS
t I[i = S] +Bt(.)− ψGS

t BG(.) +
1
2
σ2
GBGG(.)− δB(.)

γi (σ2
GB

2
G(.) + σ2

S)
. (23)

The market clearing condition xH + nSxSt + nMxMt = 0 suggests that

xH
(
σ2
GB

2
G(.) + σ2

S

)
+(

nM

γM
+
nS

γS
)[Bt(.)−ψGS

t BG(.)+
1

2
σ2
GBGG(.)−δB(.)]+

nS

γS
GS
t = 0. (24)

We conjectureB
(
GS
t , t

)
= k(t)GS

t +j(t)x
H . Then we haveBt(.) = k′(t)GS

t +j
′(t)xH ;BG(.) =
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k(t); and BGG(.) = 0. Substituting those and canceling out terms, we have

0 =[nSγM + (nSγM + nMγS)(k′ − ψk − δk)]GS

+ [(j′ − δj)(nSγM + nMγS) + γMγS(σ2
Gk

2 + σ2
S)]x

H .

(25)

Because in equilibrium the market clear condition always holds for any GS
t and xH . We

can solve k(t) and j(t) separately. Start with k(t), given the boundary condition k(T ) = 0

(because basis converges to 0 as t approaches T ), and nSγM+(nSγM+nMγS)(k′−ψk−δk) =

0, one can solve the ODE:

k(t) =
nSγM

nSγM + nMγS
1

ψ + δ

(
1− e(ψ+δ)(t−T )

)
. (26)

Similarly, we can solve j(t) given the the boundary condition j(T ) = 0 and (j′− δj)(nSγM +

nMγS) + γMγS(σ2
Gk

2 + σ2
S) = 0:

j(t) =
γMγS(σ2

Gk
2 + σ2

S)

(nSγM + nMγS)δ
(1− eδ(t−T )). (27)

Thus,

Pt = St +
nSγM

nSγM + nMγS
1

ψ + δ

(
1− e(ψ+δ)(t−T )

)
GS
t +

γMγS(σ2
Gk

2 + σ2
S)

(nSγM + nMγS)δ

(
1− eδ(t−T )

)
xH .

(28)

To show that the absolute basis is decreasing in both ψ and δ, we only need to show that

both k(t) and j(t) are (weakly) decreasing in both ψ and δ. That is equivalent to show that

1
x
(1− e−x(T−t)) is decreasing in x, for ∀x > 0. Taking the first order derivative with respect

to x, we obtain:

d

dx

1

x
(1− e−x(T−t)) =

1

x2
[(1 + x(T − t))e−x(T−t) − 1]. (29)
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We then want to show that (1 + x(T − t))e−x(T−t) − 1 < 0. To achieve this, notice that

(1+ x(T − t))e−x(T−t) − 1 = 0 when x = 0, and taking the first order derivative with respect

to x again, we have (T − t)e−x(T−t) − (T − t)[1 + x(T − t)]e−x(T−t) < 0, for ∀x > 0.

A.2. Proof of Corollary 2.3

Proof. Given the equilibrium price equation 28 and market clear condition, we can further

obtain xit:

xSt = − 1

nSγM + nMγS
(γMxH − nMGS

t

σ2
Gk

2 + σ2
S

), (30)

and

xMt = − 1

nSγM + nMγS
(γSxH +

nSGS
t

σ2
Gk

2 + σ2
S

). (31)

We then show that the trading volume is increasing in ψ and δ. Because xH is a constant,

the instantaneous trading volume can be characterized as:

|dn
SxSt
dt

| = nSnM

(nSγM + nMγS)(σ2
Gk

2 + σ2
S)
|dG

S
t

dt
|

=
nSnM

(nSγM + nMγS)(σ2
Gk

2 + σ2
S)
| − ψGS

t dt+ σGdY
G
t |.

(32)

Since k(t) is decreasing in both ψ and δ, the instantaneous trading volume increasing in both

ψ and δ.

From the proof of Proposition 2.2, the subjective expected utility of speculators S is

E[
γS (σ2

GB
2
G(.) + σ2

S)

2
(xSt )

2] =QE[(γMxH − nMGS
t

σ2
Gk

2 + σ2
S

)2]

=Q[(γMxH)2 + (
nM

σ2
Gk

2 + σ2
S

)2
σ2
G

2ψ
],

(33)

where Q ≡ γS(σ2
GB

2
G(.)+σ

2
S)

2(nSγM+nMγS)
is a constant. Because k(t) > 0 is decreasing in δ, specualtor S’s

subjective expected utility is increasing in δ. Similarly, one can prove the same result for
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market maker M .

To prove the last result, first notice that we only need to show that for any standard

delivery contract, there exists δ such that the all perpetual future contracts with a refunding

rate higher than δ will have a lower k(t). It is straightforward to see that when δ = δ ≡

( 1
1−eψ(t−T ) − 1)ψ, the perpetual future contract and the standard delivery future share the

same basis. Then the perpetual future contracts have a lower absolute basis and higher open

interest if and only if δ ≥ δ.

A.3. Proof of Corollary 2.4

Proof. Let τ be the random birth time. We reuse k(t) and j(t) to denote k(t mod T ) and

j(t mod T ). Let Hτ denote G shifted by the hedger’s random birth time, Hτ
s = Gs+τ . An

agent born at time τ almost surely has total cash flow

π(τ, {Hτ}) =Hτ
l k(τ + l) + j(τ + l)h−Hτ

0 k(τ)− j(τ)h

−
∑

n∈Z:0<Tn−τ<l

(
Hτ
Tn−τk(0) + j(0)h

)
−
ˆ τ+l

τ

δ (k(τ + t)Hτ
t + j(τ + t)h) dt.

Use ¯ to denote the realized means of variables between 0 and T . Then

E[π(τ, {Hτ})|{Hτ}] = 1

T

ˆ T

0

π(τ, {Hτ})dt

=(Hτ
l −Hτ

0 ) k̄ − l

(
1

T

(
H̄k(0) + j(0)h

)
+ δ

(
k̄H̄ + j̄h

))
.

Which allows us to calculate unconditional moments

E[π] = E[E[πτ |{H}]] = −lh
(
1

T
j(0) + δj̄

)
,
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V ar[π] = V ar[E[πτ |{H}]] + E[V ar[πτ |{H}]]

≥ V ar[E[πτ |{H}]]

= V ar

[
(Hτ

l −Hτ
0 ) k̄ + H̄

l

T

(
k(0) + δk̄

)]
,

with that inequality binding for perpetual futures.

Fix T for the delivery future and consider a perpetual future with δ′ such that

1

ψ

(
1− 1− e−ψT

ψT

)
=

1

ψ + δ′
,

letting ′ denote this future’s properties. By construction, we have k(0) > k̄ ≥ k̄′ and so

1
T
j(0) > δj′. Thus, this perpetual futures contract has a higher expected cash flow without

higher variance.

Appendix B Additional tables and figures
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Figure B1: Contractual evolution of BTC futures.
This chart summarizes the futures products offerings of exchanges offering cryptocurrency futures
prior to Dec. 2018. Product offering data are sourced from the Wayback Machine - Internet
Archive, following a procedure akin to Akey et al. (2022) and by scraping the longest-living BTC
forum, BitcoinTalk.org. This chart considers only futures contracts and does not consider exchanges
offering margin loans for spot trading (e.g., the early days of Bitfinex) or bilateral bets (e.g., over-
the-counter contracts for difference or TeraExchange). This chart excludes ErisX which offered
futures trading starting 2019 and was acquired by the CBOE in 2021.
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Figure B2: Cryptocurrency futures prices relative to spot prices.
This figure shows the daily average futures basis for the nearest two expiring quarterly BTC-USD
futures and the perpetual BTC-USD future on the cryptocurrency exchange BitMEX. The basis
for each trade is calculated as the ratio of the futures price to the price of the underlying spot asset,
minus one. The spot price is the simple average of the last traded price on Bitfinex, Coinbase, and
Coinstamp. The futures price is the mid-point at the end of the minute. The plotted basis is the
average of the minutes in two-week periods.
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Appendix C Additional Theoretical Results

Our last result concerns the change of the speculator population. Given the high volatility

in the cryptocurrency market, liquidity traders are often wiped out of the market, resulting

in a large drop of n after a dramatic price move. The following corollary studies the effect

of massive speculative position liquidation on future market trading.

Corollary C.1. The absolute speculative basis decreases in nM

nS
.

When the market power of liquidity traders drops, the speculative demand in the future

market becomes less volatile and the absolute basis shrinks. Consequently, market makers

can afford a larger inventory capacity and are willing to trade with a bigger open interest in

the future market.

C.1. Proof of Corollary C.1

Proof. From the proof of corollary 2.2, k(t) can be rewritten as

k(t) =
nSγM

nSγM + nMγS
1

ψ + δ

(
1− e(ψ+δ)(t−T )

)
=

1

1 + nM

nS
γS

γM

1

ψ + δ

(
1− e(ψ+δ)(t−T )

)
.

(34)

Then k(t) is decreasing in nM

nS
.
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