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Abstract

The widespread adoption of Generative Al raises concerns about potential risks, particularly
those arising from excessive reliance on Al This paper examines both the benefits and
drawbacks of this emerging technology through the lens of data quality. We develop a
semi-endogenous growth model in which production depends on two types of data: Al-
generated data and producer data, the latter representing real-world information. Although
Al-generated data are substantially cheaper to produce, their use involves a trade-off in the
form of lower data quality, which leads to higher error rates in production. Our analysis shows
that firms, operating under competitive equilibrium, tend to underutilize both types of data
relative to the optimal allocation. We further demonstrate that, while multiple Generative
Al firms exist in the market, the optimal number is one. These findings support the case for

government intervention in the Al industry.
Keywords: Data factor, data quality, Generative Al, economic growth

JEL Classification: H43, 131, O31, and O41

*All the authors contribute equally to this work. The authors are especially grateful to Charles I. Jones for
his detailed feedback and invaluable guidance. They also thank the conference participants at the 9th China
Center for Economic Research Summer Institute at Peking University, Chinese Economists Society 2025 Annual
Conference at Sun Yat-sen University, and 2026 AEA Annual Meeting. Xie is grateful for the financial supports
from the National Science and Technology Major Project of China (Grant No. 20227D0120301) and the National
Natural Science Foundation of China (Grant No. 72373079), and Zhang is grateful for the financial supports
from the National Natural Science Foundation of China (Grant No. 72303261, 72550001). The contents of this
publication are solely the responsibility of the authors.

Hnstitute of Economics, School of Social Sciences, Tsinghua University, chang-qing@tsinghua.edu.cn.

HInstitute of Economics, School of Social Sciences, Tsinghua University, xiedanxia@tsinghua.edu.cn.

$(Corresponding author) School of International Trade and Economics, Central University of Finance and
Economics, zhanglongtian@cufe.edu.cn.


mailto:chang-qing@tsinghua.edu.cn
mailto:xiedanxia@tsinghua.edu.cn
mailto:zhanglongtian@cufe.edu.cn

1. INTRODUCTION

In recent years, the significance of data has been widely acknowledged by both academia
and industry. As newly emerging industries that leverage data as a key factor of production
and innovation—such as robot manufacturing, drones, and self-driving vehicles—continue
to develop, another transformative technology, represented by Generative Al, primarily in
the form of large language models (LLMSs), is reshaping various aspects of our lives by
producing an increasing volume of content. Trained on human-written texts and other real-
world information, Generative Als derive their understanding of language structure and
meaning. They appear to possess their own judgment and can respond to (seemingly) any
input provided. Since the introduction of ChatGPT, Generative Al have been regarded as one
of the most significant drivers of economic growth in the coming decades. Meanwhile, as
documented by Bail (2024), this technology is reshaping the social sciences by streamlining
routine research tasks such as writing, data cleaning, and software programming.

The integration of Al into economic systems has transformed industries by enabling data-
driven decision-making and predictive analytics, while the rapid adoption of Generative Al
has led to an unprecedented surge in Al-generated content. According to projections by the
European Union Law Enforcement Agency, Al-generated content could eventually account
for up to 90% of online material.! del Rio-Chanona et al. (2023) show that the introduction of
LLMs such as ChatGPT has reduced human-generated contributions on platforms like Stack
Overflow, and Brooks et al. (2024) document the growing presence of Al-generated content
on Wikipedia. However, the performance and reliability of Al systems critically depend on
the quality of the data they employ. Poor data quality—characterized by inaccuracies, biases,
or incompleteness—poses significant risks to the integrity of Al applications, potentially
leading to flawed economic outcomes and systemic vulnerabilities, commonly referred to as
“Al hallucinations.” Li et al. (2023) introduce an index called “HaluEval” within a ChatGPT-
based framework to assess the accuracy of various prevalent LLMs. In addition, the company
Vectara proposes the “Hughes Hallucination Evaluation Model” to evaluate how frequently
an LLM introduces hallucinations when summarizing a document, and periodically releases
a leaderboard, as shown in Figure 1.2 Meanwhile, serious security incidents arising from
the misuse of Generative Al have also emerged.> Given the prevailing trends documented

For more information, see the report titled Facing Reality? Law Enforcement and the Challenge of Deepfakes:
An Observatory Report from the Europol Innovation Lab.

2For more information, please refer tohttps://github.com/vectara/hallucination-leaderboard. Note
that this evaluation is relatively conservative, as it focuses solely on one of the most fundamental tasks typically
assigned to LLMs. For more complex tasks, such as generating original content, LLMs may be even more prone
to producing inaccurate information.

For example, Samsung Electronics experienced three incidents of confidential information leaks within
just 20 days due to employees” improper use of ChatGPT; the U.S. tech news site CNET faced widespread factual
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above, the implications of data quality deficiencies remain underexplored from an academic

perspective—particularly with regard to their broader economic and societal impacts.
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Figure 1: Hallucination Rate for Selected LLMs

Note. This figure presents the hallucination rates for the top 26 LLMs, updated as of March 25,
2025. The rates are computed using the HHEM-2.1 hallucination evaluation model developed by
Vectara. This metric measures how frequently an LLM introduces hallucinations when summarizing
a document.

In light of this, we propose a semi-endogenous growth model incorporating two types of
data, each representing different levels of real-world information, and analyze the model’s
behavior with an emphasis on data quality. Specifically, we begin with a simple framework
tfeaturing only exogenous growth and Al-generated data. This new type of data is derived
from existing datasets, with labor introduced as the sole marginal input in the generation
process. We model Al-generated data as significantly cheaper to produce than conventional
data types and as a key input in production. However, its usage increases error rates in
production, thereby reducing total economic output through an additional channel. Our
model thus captures a trade-off between enhancing production efficiency and elevating the

likelihood of production errors.

errors after using Al software to mass-produce news articles; and iFLYTEK’s Al learning device was found to
have trained on inappropriate content due to a failure in its review mechanism, ultimately triggering a public
backlash and causing a significant loss in the company’s market value.
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Furthermore, we extend our framework to a semi-endogenous growth model in which
Al-generated data and producer data jointly contribute to the production process. The latter
type of data originates from real-world production activities and enhances overall dataset
quality, although its associated costs are higher due to the absence of the multiplier effects
present in Al-generated data. We emphasize a key concept, data quality, which is determined
by the ratio of the two types of data used and directly influences the error rate in produc-
tion. We compare the outcomes under two settings—competitive equilibrium and optimal
allocation—and find that production firms tend to underutilize producer data, even at the
risk of losing their monopoly power due to excessively high error rates. Consequently, we
conclude that governments should implement policies to mitigate potential negative effects,
such as imposing an upper limit on Al-generated data usage or mandating its combination
with real-world data by adjusting labor allocations through taxes and subsidies.

More specifically, our results can be categorized into three regimes: Al-generated data
dominance, producer data dominance, and balanced growth of both data types. In the
first regime, beyond the main finding that firms consistently underutilize producer data, we
identify a key distinction: under the optimal allocation, the social planner assigns a large
fraction of labor to the Al-generated data sector, whereas under the competitive equilibrium,
the labor share in this sector remains low. We also find that the growth rate of data quality
is significantly higher under the optimal allocation than under the competitive equilibrium.
These results underscore the importance of regulating the use of different data types to
mitigate the declining trend in data quality caused by the reliance on Al-generated data. In
the second regime, although differences in labor allocation persist, Al-generated data become
negligible across both settings, leading to labor concentration in the producer data sector.
Finally, in the third regime, while only numerical solutions can be obtained, the results are
consistent with our main conclusions, demonstrating that the model exhibits stable behavior
across a wide range of parameter values.

Additionally, we examine how many Generative Al firms exist in the market and what
their optimal number should be. This is a central question raised when modeling the newly
introduced Generative Al sector in this paper. As the number of firms increases, fewer
resources (e.g., labor) are allocated to each firm. Thus, the less concentrated the industry is,
the more difficult it becomes for Al-generated data to accumulate in the economy. We find
that the competitive equilibrium tends to permit multiple firms to enter the market, while
the optimal allocation always involves a single firm. This result calls for further discussion
on how the government should address the monopolistic tendencies in the Al industry.

The potential risks of Generative Al have emerged as a prominent topic in recent years.
Inspired by Acemoglu and Lensman (2024) and Jones (2024), which provide only concise
models to illustrate key features in this field, we extend their approach by developing a



more integrated framework. These studies highlight the potential risks associated with the
widespread application of Al technologies, arguing that such technologies may negatively
impact production or even pose existential threats to human lives. Other research in com-
puter science, such as Shumailov et al. (2024) and Wenger (2024), also emphasizes that Al
models can collapse and start generating meaningless content if real-world data are not
continuously incorporated. On a broader scale, the economics of Generative Al has gained
increasing attention in recent years. For example, Acemoglu (2024) estimate the potential
effect of Al on total factor productivity growth, and Korinek and Vipra (2024) analyze the
concentration of Al firms from the perspective of cost structures, and Brynjolfsson et al.
(2025) examine the potential impact of Al on employment and find that Al can assist new
workers.

We link the economics of Al with recent studies on the data economy and offer a new
perspective for evaluating the advantages and disadvantages of these emerging technologies.
Our framework on the data economy builds upon the foundational work of Jones and Tonetti
(2020), Farboodi and Veldkamp (2023), and Cong et al. (2021). These studies all trace their
origins to the seminal endogenous growth models introduced by Romer (1990) and Jones
(1995), and our paper further contributes to the extensive literature on economic growth.
Beyond these studies on the long-run effects of data, research on the data economy also
explores micro-level aspects, such as information and privacy. For example, recent studies
analyze the nonrival nature of data and highlight the competitive dynamics among digital
platforms and intermediaries (Ichihashi, 2021; Yang, 2022; Bergemann and Bonatti, 2024).
Our research approaches this topic from the perspective of data quality and calls for further
investigation into the micro-foundations of this emerging concept.

The remainder of the paper is organized as follows. Section 2 introduces a simple model
that considers only the effect of Al-generated data and derives preliminary results on their
economic impact. Section 3 extends this model into a general framework by incorporating
both Al-generated data and producer data. Section 4 examines the optimal allocation and
provides an initial discussion of the model’s implications. Section 5 then analyzes the com-
petitive equilibrium and presents the corresponding solutions. Building on the findings from
the previous two sections, Section 6 conducts comparative statics across various dimensions

and explores the policy implications of this study. Finally, Section 7 concludes.

2. A SiMPLE MoODEL WITH AI-GENERATED DATA

We begin with a simple model that features only the key type of data analyzed in this
paper—Al-generated data. Suppose the economy consists of N varieties of intermediate
goods, which are combined to produce final goods for consumption. The population consists
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of homogeneous consumers, denoted as L; at time ¢, growing at a constant rate n, with an
initial population of Ly. The production of intermediate goods relies not only on labor, as is
conventional in related models, but also on data. In this simplified setting, firms exclusively
use Al-generated data rather than other types of data (e.g., consumer data or producer data),
with these Al-generated data acting as a productivity-enhancing factor in production.
There is a single Generative Al firm in the economy that supplies Al-generated data. For
simplicity, we assume that the firm must incur a substantial upfront investment before it can
begin providing Al-generated data to other firms, denoted by a fixed cost G. Let D4 ¢ denote

the stock of Al-generated data at time ¢. The generation process of this type of data is given

by:

Day = EDDEULA,t —0aDa, (1)

where Ly denotes the labor employed in the Generative Al firm at time ¢. The parame-
ters ¢, C, and 0 < 64 < 1 represent the efficiency parameter, the contribution of existing
Al-generated data to the creation of new data (i.e., the spillover effect), and the depreciation
rate of Al-generated data, respectively. We typically assume 0 < C < 1, as Al-generated
data are expected to exhibit diminishing returns in the generation process. In other words,
the production of new Al-generated data becomes increasingly difficult or inefficient as the
existing stock accumulates. This accumulation formulation captures the self-generating na-
ture of Al-generated data, which is its most distinguishing characteristic and fundamentally
differentiates it from traditional capital.

The fixed cost G can be interpreted as capturing the emergent capabilities of Al—referring
to the phenomenon whereby a large-scale Al system unexpectedly exhibits new abilities or
behaviors once it surpasses a certain threshold in terms of parameters, training data, or
computational resources. These capabilities are not explicitly programmed into the model
and may not be observable at smaller scales. In this context, we interpret the constant G
as the threshold at which AI models become operational and begin generating new data.
Cottier et al. (2025) estimate the rising cost of training frontier AI models and report that the
most expensive publicly announced training runs to date are OpenAl’s GPT-4 at $40 million
and Google’s Gemini Ultra at $30 million.

If Das grows at a constant rate gp, in the long run—corresponding to the balanced
growth path analyzed in subsequent sections—then from equation (1), we obtain:

Dt

, C-1
DA,t = BbDfl,t LA,t - 6A = 8DA-




Thus, along the balanced growth path, the term Df‘_tl L, must remain constant, implying:

1
(C-lgp,+n=0 = gDA:q”- (2)

We then derive the steady-state level of Al-generated data as:

. Y(1-10)
b Tl+(5A(1—C)

LI
Ap = l (L )75 (3)

This result shows that D4 ; is directly related to L4 ; with a proportionality factor in the long
run. Moreover, the elasticity of D4 ; with respect to La ; is given by 1/(1 — (), which exceeds
1 under standard parameter values of C. This reflects the low cost of Al-generated data, a
key feature in the subsequent analysis.

Next, we examine the usage of Al-generated data. Following the framework of Jones
and Tonetti (2020), the production function for variety i of the intermediate good at time ¢,
denoted as Y; ¢, is given by:

Yii =D}, Lit, 4)

where L;; represents the labor employed in production, and the parameter n captures the
importance of data in this process. Due to the nonrival nature of data, D4 can be utilized
not only in its own generation process but also in the production of intermediate goods.
However, unlike other types of data studied in previous literature, Al-generated data are
inherently prone to errors, as highlighted by Shumailov et al. (2024) and Wenger (2024).
That is, firms relying on these data in production may encounter errors, which, rather
than enhancing productivity, may lead to efficiency losses. For simplicity, we assume that
the probability of errors occurring is an exogenous parameter, denoted as 0 < e < 1, and
focus on the variation of this parameter in subsequent sections. When an error occurs, the
production of the corresponding variety of intermediate goods falls to zero for that period.
Thus, the parameter e can also be interpreted as the error rate associated with Al-generated
data. Aggregating over all varieties of intermediate goods affected by Al errors, i.e., within
the range [0, eN|, the total consumption of the final good Y; is given by the combination of
the remaining (N — eN) varieties of intermediate goods:

N 5 \&T
yt:(/ Yi;di) , 6)
eN ’

where ¢ represents the elasticity of substitution among different varieties of intermediate

goods. Since we do not assume heterogeneity among these varieties, substituting (4) into (5)



and considering the balanced growth path, we obtain:

Y, = [(1-e)N|7TY;,

n
n

1- T n +L
| e, ©

71+(5A(1—

1

=(1-e)IN#T

where I’ is the labor share allocated in the Generative Al firm. The second line follows from
the labor market clearing condition, given by L4 ¢ + fON Li¢di < L.

From equation (6), we derive the growth path of the economy’s output level, Y/, which
depends on three main driving forces: population growth L;, the nonrival nature of data
N#1, and the error rate of Al-generated data e. The first force, population growth, is
ubiquitous in growth models and represents the scale of the economy. The second force,
the nonrival nature of data, is also present in models of the data economy, such as Jones
and Tonetti (2020), Cong et al. (2021), and Cong et al. (2022). This property introduces a
multiplier effect of N in our simplified framework.* The third force, the error rate of Al-
generated data, is the primary focus of our study, as it introduces a negative relationship
between Al errors and economic growth. This leads to a fundamental insight of this paper:
since Al-generated data are prone to errors, their application should be carefully managed,
and measures should be implemented to mitigate their negative effects.

The richer model developed in the remainder of this paper builds upon this simple
framework. We endogenize the variety of intermediate goods by introducing an innovation
sector, leading to a semi-endogenous growth model. Additionally, we endogenize the error
rate by incorporating the substitution effect arising from the use of an alternative data type—
producer data—as well as other potential costs associated with mitigating the negative effects
of Al-generated data.

3. THE GENERAL MODEL

In this section, we introduce a general model with data generated from multiple sources.
In addition to the Al-generated data discussed in the simple model, we also consider data
derived from the production process, referred to as “producer data.” The properties of

producer data have been explored in emerging literature such as Farboodi and Veldkamp

4Note that if data were rivalrous, then equation (4) would take the form Y;; = N7 DZ‘ ;Lit. Following
similar derivations, the output level along a balanced growth path would be:

/i

1- - n +-L
e LIRS

* o .1 _
(Yt )riVal = (1 — 8)0—1Nﬂ—1 n — 6A(1 —

Thus, the multiplier effect arising from the nonrival nature of data is given by Y;/(Y} )rivar = N
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(2023) and Xie and Zhang (2023), and the combination of these two data types provides a
more comprehensive framework for understanding the data economy.> We contribute to the
literature by introducing the concept of data quality, which influences the overall error rate
in production. Data quality is endogenously determined by firms’ choices regarding the
composition of different data types. We first outline the economic environment and discuss
in detail the distinctive properties of Al-generated data. We then derive results under both

the optimal allocation and the competitive equilibrium.

3.1 Economic Environment

Similar to the simple model, the economy consists of representative consumers, a final goods
producer, intermediate goods producers, and several Generative Al firms. In addition, we
introduce an innovation sector to ensure endogenous growth and incorporate various data
intermediaries to facilitate data transactions in the competitive equilibrium. Some notations

are reused or redefined in this section to enhance the clarity of the model.

Representative consumer. The population of the representative consumer, denoted as L,
grows at a constant rate n, and utility is derived from the consumption of the final good.
Additionally, consumers care about the quality of the goods they consume. To capture this
concern, we introduce an additional term related to data quality.® Moreover, each consumer
supplies one unit of labor inelastically and allocates it across four sectors: intermediate
goods production, innovation, and data generation (which includes both producer data and

Al-generated data). The utility function of consumers is specified as follows:

u= / e~ (P In ¢ dt, ?)
0
where c; represents per capita consumption and N; is the number of varieties. The parameters
p corresponds to the consumers’ discount rate.

Final good producer. There is a single final goods producer that assembles intermedi-
ate goods to produce the final good for consumption in a competitive environment. The

SSome previous studies, such as Jones and Tonetti (2020) and Cong et al. (2021), focus on data generated
from consumers, referred to as “consumer data,” which may introduce privacy costs. In this paper, we do not
examine consumer data and instead focus on the interaction between producer data and Al-generated data
for the following reason: producer data and Al-generated data share greater similarities, as neither contains
personal information and thus does not pose privacy risks. For tractability, this similarity allows us to better
highlight the unique characteristics of Al-generated data and the trade-offs involved in its application.

®If firms excessively rely on Al-generated data, leading to a high probability of errors, consumers may
become dissatisfied with the goods produced and even lose confidence in Al-related industries as a whole.
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production function is given by:

a

N; a-1 -1
y, = ( / Y di) . ®)
R

Other variables are defined analogously to those in the simple model.

In addition to production, the final goods producer also generates data as a byproduct,
referred to as producer data. Following the framework of Farboodi and Veldkamp (2023) and
Xie and Zhang (2023), the producer employs labor for data collection and cleaning, and the
volume of producer data generated increases with the scale of production. Consequently,

we specify the generation function of producer data as:

Dp; =ylLpy, 9)

where y; = Y;/L; represents per capita output, Lp ; denotes the labor allocated to this process,
and the parameter 0 captures the importance of output in data generation. Notably, we use
per capita output y; instead of total output Y; in this function, as the former eliminates the
scale effect of the economy, making it a more suitable reference variable rather than a direct
input in the data generation process.

Generative Al firms. Unlike the simple model, we assume that there are M > 0 homoge-
neous Generative Al firms in the economy. Each firm generates Al-generated data indepen-
dently, and for simplicity, we assume that data from these firms are perfect substitutes—that
is, their sum constitutes the total stock of Al-generated data in the economy. As a result, the
production and accumulation function of Al-generated data is given by:

day = %diltLA,t —0aday, (10)

where da; denotes the Al-generated data produced by a single firm. Thus, the aggregate
Al-generated data is given by Ds; = Mda ;. At any time ¢, intermediate goods producers
rent these Al-generated data in a nonrival manner. As shown in the calibration analysis in
Section 6.1, the depreciation rate of Al-generated data, 6 4, is typically very high (approaching
1). Consequently, the primary driver of Al-generated data growth stems from labor input

and the recursive use of existing data to generate new data.

Intermediate good producers. There are N; intermediate good producers, each specializ-
ing in a distinct variety of intermediate goods at any time ¢. In addition to employing labor
in the production process, these producers utilize a combination of data sourced from both

the final goods producer and the Generative Al firm. Formally, the overall dataset available
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to an intermediate goods producer is given by:

&1
€

el =1
Di,t = [ﬁDp,i,t + (1 - ﬁ)DAii,t] ’

(11)

where D; ; represents the overall dataset, Dp ; ; denotes producer data, and D4 ; ; corresponds
to Al-generated data for variety i. The parameter ¢ captures the elasticity of substitution
between the two types of data.

From equation (10), we observe that Al-generated data accumulate by using themselves
as one of the inputs, which results in a multiplier effect and lower costs compared to producer
data in the data generation process. However, as discussed in the simple model, concerns
regarding the quality of Al-generated data remain significant. Formally, there exists a prob-
ability e; ; that the output of an intermediate goods producer specializing in variety i falls to

zero due to errors arising from the use of Al-generated data. This probability is given by:

eit = e exp(=&Qit), (12)

where Q; ; > 0denotes the quality of the overall dataset for variety i at time t and & represents
the sensitivity of quality to the error rate.” Furthermore, data quality Q; ; is determined by the
ratio of producer data to Al-generated data used in forming the overall dataset, as specified
by:

(13)

where 7 > 0 denotes the elasticity of quality with respect to this ratio. When the proportion
of Al-generated data in the overall dataset increases, quality Q; ; declines, whereas a higher
share of producer data leads to an improvement in quality. This is the key variable we focus
on in this paper, and we will provide further discussion in Section 3.2.

Based on the evolution of data quality discussed above, the allocations of producer data
and Al-generated data are determined to optimize intermediate goods production, which
inherently involves a certain risk of zero output. Formally, the production function for an

intermediate goods producer specializing in variety i is given by:

Yi,t = (1 - el.,t)DZ‘TI,tLl',tl (14)

which is analogous to equation (4) in the simple model, except that the overall dataset D; ; is

7 Alternatively, we could assume that the output of an intermediate goods producer falls to a level below
that of a scenario without data usage. However, for simplicity and tractability, we assume zero output in the
event of an error.
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used instead of relying solely on Al-generated data.

Innovationsector. We follow the framework of Romer (1990) to model the innovation sector,
distinguishing between data and ideas. In this paper, an idea is defined as the blueprint for
creating a new variety of intermediate goods, denoted as N, and each blueprint is developed
by employing x units of labor. Formally, the innovation process is specified as follows:

- 1
Nt = —Lr, (15)
X

where Ly represents the labor allocated to innovation, and x > 0 is a constant reflecting
entry costs. As the number of intermediate goods varieties increases, the output level grows
in a sustained manner, ensuring that the model follows a balanced growth path in the long
run.

Loss of business. Finally, we consider the possibility that when an incumbent firm ex-
cessively relies on Al-generated data in production, leading to a high probability of errors,
potential intermediate goods producers may have an opportunity to displace it. Formally,
we assume that ownership of variety i changes according to a Poisson process with an arrival
rate O(e; ¢), which is specified in quadratic form for simplicity:

S(eir) = doer,, (16)
where 0 parameterizes the arrival rate when e; ; reaches its maximum value, eg. Importantly,
equation (16) is not an explicit component of the economic environment. That is, while the
social planner does not account for this process in decision-making, it plays a crucial role

when analyzing the competitive equilibrium.

3.2 Discussions

The economic environment of the general model is summarized in Table 1. Several important
issues should be clarified before we proceed to solve the model. We summarize them in the
following three points. First, we clarify the selection of producer data. In our framework,
in addition to Al-generated data, which serve as the primary focus of our discussion, we
introduce another type of data that represent real-world information. Although producer
data emerge from the production process and enhance productivity, this type of data pos-
sesses distinct properties compared to the “learning by doing” concept developed in Arrow
(1962). In our setting, the generation of producer data requires labor as an input and can be
traded among firms, unlike the “learning by doing” effect, which remains an internalized
knowledge accumulation process within a firm. Given that producer data are directly linked
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to the production process, we select this type of data to interact with Al-generated data in

our analysis.

Table 1: Economic Environment

Meanings Equations

Utility u=[ °°e—<P—">f In c;dt

Final good production ( fo Yl t" dz) ,witho > 1
Producer data generation Dpi =y, Lp,t, with 6 € (0,1)
Al-generated data accumulation d At ;D/Id A Lat—06adat, with C € (0,1)and ¢ >0
Al-generated data summation Dy =Mdps, withM >0
Formation of overall dataset D;; = [5DP it (1- ﬁ)DA ; t] EéTl, with e > 1
Intermediate good production Yir=(1- ei,t)Di’tL,',t, withn € (0,1)
Error rate et =ep-exp(—&Q;), withey > 0and & > 0
Quality of data Qir= (gzii )T, witht € (0,1)
Innovation (new varieties) N; = —LR ¢

Labor resource constraint Lpt+Las+ fONt Lisdi+Lgs =Ly
Nonrivalry of data Dpit <Dpsand Dai; < Day
Population growth (exogenous) Ly = Loe™

Aggregate output Y; = c;L;

Per capita output yr =Y /L

Loss of business due to errors oleir) = 5081.2/ ;

Secondly, the assumptions regarding Generative Al firms need to be specified. This new
type of firm leverages data and computing power to develop automated solutions such as text
generation, image synthesis, and code creation, significantly reducing production costs and
enhancing productivity. These firms operate with high fixed costs and low marginal costs,
benefiting from economies of scale and network effects. Since AI models require substantial
investment in training but can be deployed at near-zero marginal cost, market dynamics
often lead to oligopolistic competition, where leading firms establish dominance through
data access and advanced algorithms. As a result, although we introduce a fixed cost G in

this section, it has no effect in the long run. We also consider the general case when there
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are multiple Generative Al firms in the economy for further implications on the scale of Al
industry. Furthermore, we do not use real-world data (represented as producer data) as an
input for generating new Al-generated data but instead consider labor as the sole input. This
assumption is made because the overall dataset applied in production already consists of a
combination of different types of data.

Moreover, we should further elaborate on the microfoundation of data quality. As doc-
umented in Acemoglu and Lensman (2024) and Jones (2024), the use of transformative
technologies such as generative Al may increase risk, despite their potential to enhance pro-
ductivity. We argue that the key underlying reason is that Al cannot generate genuinely
new information about reality, nor can it make decisions based on new events occurring in
the real world. As a result, Al-generated data merely replicate and reformulate past infor-
mation, gradually deviating from optimal production decisions, which ultimately leads to
a decline in overall data quality. To mitigate this negative effect, new information must be
continuously updated by incorporating real-world data—represented as producer data in
our model. This motivates our definition of data quality, which is simply expressed as the
ratio of the two types of data.

4. OPTIMAL ALLOCATION

We first define and characterize the optimal allocation in our environment. Since we do
not introduce heterogeneity among different varieties of intermediate goods and given the
nonrival nature of data (including both producer data and Al-generated data), the structure
of the economy can be significantly simplified. Specifically, all subscripts i in equations (11),

(12), and (13) can be omitted, and equation (14) is then rewritten as:
;= (1-e)D/Liy,

indicating that each intermediate goods producer utilizes the entire dataset available in the
economy. Moreover, by combining the formation of the overall dataset (11), the definition
of the error rate (12), the intermediate goods production function (14), and the labor market
clearing condition, the final goods production function is derived as:

Y, = NTTY,,

-1
&

ne
1 17T
= [1 - egexp(-EQ)| N/ [ﬁDP,t +(1-B)D ), 1 (L = Lpt —Lat — Lrt) - (17)

Based on the above analysis, we now formally state the social planner’s problem. The key

allocations to be determined are the labor shares across the four different sectors, given the
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parameter values. The optimal allocation solves:

max / e~ (P~ n ¢,dt,
0

Lp¢,Lai, LRt
subject to:
Yy
Cr=Yr=—, 18
=Yt L, (18)
L; = Lge™,

and the constraints given by equations (10), (9), (13), (15), and (17). To simplify the presen-

tation of results, we introduce the following parameter:

1-0)[p+1-0)o4]
n+(5A(1—C) ’

A = (19)
which is always positive given the definitions of the related parameters.

The planner seeks to allocate labor across the four sectors, with particular emphasis on
the labor employed in the generation processes of the two types of data, as this allocation
directly influences the error rate. The planner prefers to utilize more Al-generated data
rather than producer data if the former grows at a higher rate. However, given the additional
utility derived from higher data quality—which, in turn, results from a greater reliance on
producer data—the planner must balance the benefits and costs associated with the use of
Al-generated data. Conversely, if producer data grows at a higher rate, Al-generated data
becomes negligible. As a result, the comparison of the growth rates between the two types of
data plays a central role in our analysis. Accordingly, the optimal allocations under different
regimes are presented in the following two propositions: Proposition 1 provides the results
for the case where the two types of data grow at different rates, while we leave the results
for the case where they grow at the same rate in Appendix A. In the following propositions,
we use the superscript “sp” to denote variables derived in the optimal allocation.

Proposition 1. (The Optimal Allocation When Producer Data and Al-Generated Data Grow at
Different Rates) Along a balanced growth path, as the population L grows large, the optimal allocation
converges to the following results.

The growth rates of producer data and Al-generated data are given by:

1-06
1+9( L +L)]n, if ?1+1§—17

sp_ o-—1 1—(: o 1—(:,
Spr 1+ 0 1 + ] +1>1_617
T—onglo=1 | T 5 1-C




and

0 1 . T—=1n{( 6 1-06n 0
1+1—9’7(0—1+n)ln' if - (G_1+1)< 1-¢ <G_1+1,

sp T
&p 4 1
n, otherwise.

The growth rates of labor shares allocated to producer data and Al-generated data are given by:

g, =0,
and
(t-mA-0{( 6 . t—-n( 6 1-0n 0
glsr’: [ (1 -6n) a—1+1 —lin T o—1+1 < 1-C <o—1+1’
A
0, otherwise.
The labor shares allocated to different sectors are given by:
1-6
0, if i +1< 77,
lsp N oc-1 1- C
P np(o —1) . 0 . 1-0n
n+p(l+n)(oc-1) f -1 1-C’
-1 1-06
plo — 1) , if 9 +1<—n,
l;ﬁ_><ﬂn+p(o—1)(ﬂ+n) 051 11—8C (20)
0, if —=+1> T Cn'
and 1o
An . 0 - 0n
, 1< ——=,
lsp_)<ﬂn+p(0—1)(ﬂ+1’]) if a—1+ < 1—6C
R n : 0 1-60n
1
n+pl+n)(oc-1) f o-1 7 1-C’
where A is a constant defined in equation (19).
Given the labor shares derived above ( l;p , lff, and l;p ), other variables are determined as follows:

sp _ . SP
¢ =Y
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( 11+1nc)n’ i 61+1<11_an’
o- - o - -
g =8/ =1"" (23)
=0y (o —3 +17) n, otherwise.
Proof. See online Appendix A. O

The most important result in the proposition is the solution for per capita output when
the two types of data grow at different rates, as shown in equation (21). Since the labor shares
allocated across different sectors converge to constant values along a balanced growth path,
these equations indicate that per capita output is proportional to the scale of the economy
(or, equivalently, the population) raised to some power. From equation (23), we observe that
the growth rates of per capita output and consumption are divided into two regimes, with
the threshold determining which type of data grows at a higher rate. In both regimes, the
growth rates reflect the degree of increasing returns to population growth and consist of two
additive components. The first term, 1/(c — 1), corresponds to the well-documented “love of
variety” effect, which diminishes as the elasticity of substitution among different varieties of
intermediate goods increases. The second term is novel and captures the differential effects
of the two types of data, which are linked to their respective generation processes. Beyond
the common parameter n appearing in both regimes, which signifies the importance of data
to the economy, each regime incorporates an additional distinct parameter representing the
characteristics of its respective data type. In the first regime, C enters the solution, denoting
the spillover effect of Al-generated data in generating new data of the same type. Conversely,
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in the second regime, 0 appears instead of C, reflecting the reference effect of per capita output
in the generation of producer data. Notably, in the second regime, the “love of variety” effect
is further amplified by the producer data generation process through the term 1/(1 — 6n),
highlighting the stronger link between the production process and this type of data.

The remaining results under the optimal allocation yield several important implications.
First, the labor shares allocated across the two data-generation sectors, l;p and ZZP , concen-
trate entirely in one sector when the economy is in the corresponding regime. Specifically, lejp
shrinks to zero when Al-generated data dominate the economy, and similarly, l;p becomes
negligible when producer data are the dominant type. Although the error rate in interme-
diate goods production converges to one when Al-generated data accumulate much faster
than producer data—resulting in a near-zero survival rate for the corresponding intermedi-
ate goods—the economy still grows at a positive rate due to the low cost and large volume
of Al-generated data used in production. In contrast, in the regime where producer data
dominate, Al-generated data become ineffective, as they can no longer accumulate efficiently
and thus lose their competitive advantage relative to other data types. Moreover, it is notable
that while the spillover effect of Al-generated data, C, influences labor allocation through the
constant A, the counterpart parameter for producer data generation—the reference effect of
output, 0—has no impact on this allocation. A more influential parameter is the importance
of data in intermediate goods production, 1, which appears throughout the expressions for
labor shares across regimes. This is the key parameter in our model and has been carefully
calibrated in Jones and Tonetti (2020).

Next, equation (22) indicates that the optimal level of variety, N : P is proportional to the
population in the economy. This proportionality factor depends on the population growth
rate 1, the entry cost x, and the labor share allocated to the innovation sector, l;p . Although
a larger population leads to a higher level of variety, a higher population growth rate slows
down the growth of variety. This outcome reflects the trade-off between economic scale
and population growth in determining variety: while a larger economy allows more labor
to be allocated to the innovation sector, thereby fostering greater variety creation, a higher
population growth rate introduces a dilution effect that crowds out resources allocated to
the innovation process.

We will revisit these results after analyzing the allocations in the competitive equilibrium
within this environment. The labor shares allocated across different sectors and the resulting

data quality under various allocations will play a crucial role in the comparison.
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5. COMPETITIVE EQUILIBRIUM

We now consider an allocation in which consumers own the generative Al firm. From
equation (3), it is evident that the generative Al firm exhibits increasing returns to scale, as
the exponent on its sole input, La, is greater than one. In other words, the firm’s profit
will be positive if it possesses some degree of monopolistic power that prevents potential
competitors from entering the market. In this section, we assume that the M Generative Al
firm operating are all operated in a monopolistic environment and that their profits are used
to pay for the investments before entering the economy. Throughout the paper, both sellers
and buyers are assumed to be price takers in the data market.

5.1 Decision Problems

Household Problem. Households supply one unit of labor inelastically at a wage rate w;.
They hold assets a4;, which earn a return at rate r;. These assets can also be interpreted
as the profits redistributed to households due to the monopolistic power of firms. The
representative household then solves the following optimization problem:

Uy = max/ e~ (P~ n ¢, dt (24)
{et} Jo
subject to
ar = (ry —n)ay + wy — cy. (25)

Here, we normalize the price of the final consumption good to 1.

Final Good Producer Problem. The final good producer must determine two inputs: the
intermediate goods used in final good production and the labor employed in generating
producer data. Since producer data are typically considered a byproduct of production,
these two decisions should be treated jointly. Thus, the final good producer solves the

following optimization problem:

1A% Ni
{Yﬁiﬁt} Yi + Pyt (L_t) Lp; - /0 piYirdi —wiLp, (26)

subject to equation (8). In the above equation, pp,  and p;  represent the prices of producer
data and intermediate goods of variety i, respectively. Taking the first-order condition with
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respect to Y; ;, we obtain the demand function for intermediate goods:

1
Yt v 9_1LPt

—_— 1 YT —| =pis. 27
(Yz’,t) ( + 0ppy 1Y, o | = Pit (27)

t

Generative Al Firm Problem. Each Generative Al firm operates in a monopolistic environ-
ment, where they can determine the price of Al-generated data from the demand behavior
of intermediate good producers. Due to the nonrival nature of data, the Generative Al firm
can continue using Al-generated data to produce new data even after selling it to other firms.
Meanwhile, it must also determine the amount of labor employed in each period. Since the

firm engages in intertemporal decision-making, its optimization problem is formulated as

00 t
max II= exp (—/ erT)
{datLatt 0 0

subject to the evolution equation of d4 given in equation (10). Here, pp, + represents the

follows:
Lay
M

poat(dat) - das —wy dt, (28)

price of Al-generated data, which can be derived from the intermediate good producer
problem. Considering the emergent capabilities G, the free-entry condition of Generative Al

firms is written as [1 = G.

Intermediate Good Producer Problem. Given the demand function for intermediate goods
in equation (27), each intermediate good producer across different varieties must determine
the optimal usage of the two types of data and the employment of labor. Letting V; ; denote
the market value of variety i at time ¢, the firm’s optimization problem is formulated as

follows:

{Li+,Dp,it,Dais} LY tt

: o-1Lpit |, 1-1 d d
rVige=  max Y |1+ 0pp,Y] Y;, " —wiLiy —pp, Dp,it —pp, (Da,it+
t

Vi,t - 5(€i,t)Vi,t, (29)

where pldjplt and pdDA, , represent the demand-side prices of producer data and Al-generated
data, respectively. These prices differ from those faced by the supply side of data, an issue
that will be further examined after introducing the role of data intermediaries. Similar to
the optimal allocation, while the joint usage of both types of data enhances firm production,
their relative proportions may have counteracting effects. Specifically, a higher reliance on
Al-generated data increases the error rate in production, raising the likelihood of output
disruptions. Additionally, firms must account for the “loss of business” effect induced by an

increasing error rate— a consideration absent in the optimal allocation framework.
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Data Intermediary Problem. We follow the framework established in Jones and Tonetti
(2020) to model data intermediaries. In this setting, we introduce two types of data inter-
mediaries: one that handles producer data and another that handles Al-generated data. We
assume that both intermediaries operate as monopolists in their respective data markets but
are constrained by free entry into data intermediation. As a result, the optimization problem

for the producer data intermediary is formulated as follows:

N
max p]djp,t ‘/0 DP,i,tdi - pr,tDP,t/ (30)

d
pDP/trDP,t

subject to
Dp,it < Dpt. 31)

Due to the nonrival nature of data, the data intermediary earns zero profit in equilibrium.
Similarly, the optimization problem for the Al-generated data intermediary follows the same
structure and is omitted here for brevity.

Innovation Problem. Potential firms must employ labor Lg ; before entering the economy
as an intermediate good producer. Additionally, incumbent firms are subject to the “loss of
business” effect if their error rates are excessively high. The free entry condition is given by:

N, .
Jo " oein)Vidi
N; '

xwy = Vi + (32)
The left-hand side represents the entry cost. The right-hand side consists of two components:
the first term corresponds to the value of a new variety, while the second term captures the
additional value arising from the “loss of business” effect, which benefits each potential
entrant upon entering the economy. This condition follows a similar structure to that in
Jones and Tonetti (2020), but the interpretation of the second term on the right-hand side

differs, leading to distinct analytical implications.

5.2 Equilibrium Definition

The equilibrium in which the generative Al firm operates as a monopolist is an allocation
where all households choose {c;, a;} to maximize their discounted utility. The final good
producer optimizes over {Y;, Lp}, the generative Al firm selects {L4;}, and intermediate
goods producers determine {L;, Dpt, D4} to maximize their respective profits. The
two types of data intermediaries set {pdDP,t, Dp;} and {pdDA’t, D}, respectively, but both

operate under zero-profit conditions. The evolution of {w;, 7, pi ¢, PDpt, PD4,t} 1S governed
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by market-clearing conditions for labor, assets, intermediate goods, producer data, and Al-
generated data. The number of varieties { N;} evolves according to the innovation possibility
frontier given in equation (15). Finally, the resource constraint Y; = ¢;L; holds at all times,

and population L; grows exogenously at rate 7.

5.3 Solving the Model

Unlike the optimal allocation, intermediate good producers do not account for the additional
utility derived from higher data quality, while households cannot directly influence the usage
of different types of data. Consequently, we expect labor to be concentrated in one of the
data-generating sectors when one type of data exhibits a higher growth rate. Specifically, at
least the labor share allocated to the dominated data sector shrinks to zero along the balanced
growth path. We use the superscript “dc” to denote the results derived in the competitive

equilibrium and define the following constant:

nx(o—1)(p+o0e5) 0 1-0n
5 , if 1+1< 1 ,

C= (7’1+60€0) (1+T]—UT]) 0 — _C (33)
—)(p(a—l) if 0 +1> 1-0n
1+n-on’ o-1 1-C°

We do not provide the definition of C for the case 1+ 6/(c — 1) = (1 - 6n)/(1 - C), as
this parameter does not influence the economy in that regime. We then state the following

proposition.

Proposition 2. (The Competitive Equilibrium) When (1 — t)e > 1, which is usually the case given
the standard values of parameters, along a balanced growth path, as the population L; grows large, the
competitive equilibrium converges to the following results.

The growth rates of producer data and Al-generated data are given by:

1 (On-7t 0 .0 1-0n
1 _— 1< —
e NS A= Aehh e
S T PO S ;o0 1-6
TR | fosatizaog
and
-~ 1-0
C1_1[15_61( ?1+1)—e]n, if %+1>T2 and Ce <1,
85, =19 n\o h - -
- otherwise .

The growth rates of the labor shares allocated to generating producer data and Al-generated data
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are:
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0, otherwise .
The labor shares allocated to different sectors converge to:
1-—
0, if 0 1< T],
ldc_) o-1 1—C
P Cn if 0 +1>1—61]
Cl+n)+nx’ o—-1 1-C’
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d , if 0 +1< 77’
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Here, C is a constant defined in equation (33). The labor employed by a single intermediate goods

producer converges to a constant:

1— e — pde — e

=C.
d
I

L?C =ny

For the labor shares when gl‘éCA = gg‘;, we can only obtain numerical solutions, which are provided in

Appendix B.2.
Finally, given the labor shares derived in this proposition, other key variables such as Dict, Dgct,
cfc, yfc, and N tdc can be determined analogously to Proposition 1, with the growth rate of the economy

remaining identical to that in equation (23).

Proof. See online Appendix Section B. |
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In addition to the labor shares and the growth rates of key variables presented in Propo-
sition 2, the competitive equilibrium also determines the prices of various types of goods.
We now state the following proposition. For brevity, we present only the growth rates of
prices in this proposition, as they play a crucial role in the subsequent analysis. Since these
variables exist solely in the competitive equilibrium, we omit the superscript “dc” for clarity.

Proposition 3. (Prices in the Competitive Equilibrium) Along a balanced growth path, as the popu-
lation Ly grows large and given the labor shares presented in Proposition 2, the prices of various types
of goods in the competitive equilibrium converge to the following results.

The price of intermediate goods is given by:

dey L
(ch)a—l Lﬁ

pae t
1-0(1-1) ]
d d d
M O e

Pit =

(nx)71

Given (1 — t)e > 1, the growth rates of wages, the market value of intermediate goods, and the
prices of producer data and Al-generated data are as follows:
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Proof. See online Appendix Section B. O

Similar to the optimal allocation, the balanced growth path also becomes asymptotic with

lgc — 0 when Al-generated data dominate, while the results become reversed as producer
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data become dominant. The underlying reason is that intermediate goods producers do not

internalize the externality arising from the dynamics of data quality, specifically the ratio of

producer data to Al-generated data usage. Although we introduce the “loss of business”

effect, 6(e; ¢)Vi +, to constrain excessive reliance on Al-generated data in the decision-making

process of intermediate good producers, this effect proves to be relatively insignificant in the

long run.

To illustrate this effect, we derive the first-order conditions for the problem defined by
equation (29) with respect to Dp; ; and D4 ; + as follows:

1

Seli)

o) \Yit LY

Wit  PDpt

1+0 yo-1
PDet %t oDp.i N

—2gréoe§/tD;;}tD;fi/tw,t, (35)

8pp, ~NSgVH(T-1)gfy ~T8F,
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aYi,t _ PDA,t
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+25150e§tDT DMV, (36)
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The right-hand sides of equations (35) and (36) can be interpreted as the effective prices of
producer data and Al-generated data, respectively. The second terms in these expressions
capture the marginal effects of D4 ;; and Dp,; embedded in the “loss of business” effect,
which reduces the effective price of producer data while increasing that of Al-generated data.
This mechanism also reflects the incentive for intermediate goods producers to enhance data
quality.

When g%‘; < g%i, indicating that producer data dominate the economy, the “loss of

de _
Da —
results in Section C.2 show that the “loss of business” effect become trivial compared with

business” effect becomes negligible since e; ; — 0in this regime. When g gf)i), numerical

other externalities, which is consistent with the findings presented here. However, when
g%CA > gl‘écp, implying that Al-generated data dominate the economy, the analysis becomes
more complex. From equation (36), we know that the “loss of business” effect term can be
omitted since the growth rate of the Al-generated data price term is higher. Meanwhile,
Proposition 3 states that the condition (1 — 7)e > 1 implies that the sensitivity of data quality
should not be excessively large and that the elasticity of substitution between the two types
of data should not be too low. This also suggests that intermediate good producers will
not face a rapidly increasing risk of replacement as they adopt more Al-generated data,

while this type of data can substitute for producer data at a relatively high level. Under this
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assumption, considering equation (35), we determine that the growth rate of Ip ; is negative
in this regime, leading to Ip; — 0.° Consequently, although the “loss of business” effect
plays a significant role in determining the effective price of producer data, the declining
labor share in generating producer data, Ip ;, remains irreversible, which does not change
the conclusion of the model.

5.4 Further Comparisons Between Optimal Allocation and Competitive
Equilibrium

Data quality. A key insight from the competitive equilibrium is that the growth rates of the
two types of data differ from those derived in the optimal allocation. This result is notable,
as semi-endogenous growth models typically exhibit equal growth rates along the balanced
growth path in both settings. This deviation also leads to differing growth rates of data
quality between the two settings, which are given by:
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It can be shown that the growth rate of Q% is always greater than that of Q9. Further
numerical results are provided in Section 6. This discrepancy arises due to the asymptotic
balanced growth path, where the growth rates of the two types of data diverge. As labor
shares in the dominated data sector shrink to zero, the negative growth rates of these labor
shares reduce the growth rates of the corresponding type of data. For example, when D4
is dominated by Dp;, the growth rate gl‘é‘; is lower than when Dj4; is the dominant data
type. However, since the usage of the dominated data type is significantly lower than that

of the dominant type (due to their differing growth rates), we consider only the effect of the

8The condition (1 — 7)¢ > 1 is derived through substituting the growth rate of variables involved in
equation (36). For details on the derivation, please refer to Appendix B.1.
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dominant type in the long run.

Number of Generative Al firms. We further examine the number of Generative Al firms
under both the optimal allocation and the competitive equilibrium. In the former case, the
number is determined by maximizing social welfare, while in the latter, it is determined
by a free-entry condition. We restrict our analysis to the case in which Al-generated data
dominate the economy (¢p, > gp,), as the number of Generative Al firms is economically

relevant only in this scenario. Proposition 4 presents the solution.

Proposition 4. (Number of Generative Al Firms) When gp, > gp,—indicating that Al-generated
data dominate the economy—along a balanced growth path, the optimal number of Generative Al firms
is ONE, regardless of the magnitude of emergent capabilities G. In contrast, under the competitive
equilibrium, this number converges to:

p(1-0)
n+ (5A(1 — C)

1+

e T
O el qdeni+ L
(1) 71 (I5°) "L, , (37)

e {(ﬂ -0 (0= 1) (1-ep)
an(p - n)nx)=1G

de jpdc dc ; i
where 55, 15°, and 135 are derived from Proposition 2.

Proof. See online Appendix Sections A.3 and B.4. m|

As the number of Generative Al firms increases, the economy faces repeated investment in
emergent capabilities. At the same time, labor allocated to each Generative Al firm decreases,
which in turn reduces the production of Al-generated data. As a result, the optimal number
of such firms is one, allowing all available resources to be concentrated in generating Al-
generated data for production. In contrast, under the competitive equilibrium, Generative
Al firms can earn positive profits when operating in a monopolistic environment, which
induces potential entrants. As more firms enter, profits decline and eventually converge to
zero. Clearly, from equation (37), the equilibrium number of firms exceeds one and depends
on various parameters such as 1, , and G. Numerical results are presented in Section 6.3 for

further discussion.

6. NUMERICAL EXAMPLES AND FURTHER DISCUSSIONS

In this section, we present several numerical examples to support our further discussion of
the model, including comparative statics on key parameters and comparisons between the

competitive equilibrium and the optimal allocation. Due to the lack of precise estimates for
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some of the relevant parameters, our results should not be interpreted as a formal simulation
of real-world dynamics. Instead, they serve as a useful exercise to illustrate how the various
forces in the model interact.

6.1 Calibration

Table 2 presents the estimated parameter values, selected to align the model more closely
with real-world conditions. Most parameters either adopt standard values from the literature
or are estimated based on reasonable projections. For parameters that are novel and lack
reliable estimates, we conduct extensive robustness checks over a wide range of values. In
all subsequent analyses, we set the initial population as Ly = 100, where one unit of labor

corresponds to one million people.

Table 2: Parameters Values

Parameters Meaning Value Comment
Subjective discount rate 0.03 Standard
n Population growth rate 0.02 Standard
o Elasticity of substitution (goods) 4 Standard
X Labor cost of entry 0.01 Standard
n Importance of data in production 0.06  Jones and Tonetti (2020)
oA Depreciation rate of Al-generated data 0.2 Estimated
C Contribution of existing Al-generated data 0.25 Estimated
o} Importance of output in producer data generation 0.81  Calculated from model
1 Efficiency term in Al-generated data generation 1 Normalized
€ Elasticity of substitution (data) 50 Discretionary
€o Basic error rate 0.95 Discretionary
B Share of producer data in overall dataset 0.5 Normalized
'3 Sensitivity of data quality to error rate 1 Normalized
T Elasticity of data ratio to data quality 0.5 To be discussed
K Weight on data quality versus consumption 0.10 To be discussed
00 “Loss of business” effect 0.4 To be discussed

Note: Baseline parameter values for the numerical examples. When ¢p, = ¢p,, parameters C and 0
are set simultaneously. We also discuss other values of these two parameters when gp, # ¢p,.

First, we assign standard parameter values that are widely used in related studies. For
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example, the subjective discount rate p, also referred to as the rate of time preference, is set
to 0.03, which is higher than the population growth rate n = 0.02. Furthermore, the elasticity
of substitution ¢ among different varieties of intermediate goods is set to 4, ensuring that
these goods are substitutes and that the degree of increasing returns in the absence of data
is approximately 1/(c — 1) = 0.33. For the labor cost of entry x, we set it to 0.01, implying
that the invention of a new patent requires approximately 100 researchers.

Second, we refer to empirical evidence to determine the values of certain parameters.
Following the estimation in Jones and Tonetti (2020), we set the importance of data in pro-
duction, 1, to 0.06. In that paper, the authors reference studies in computer science to derive
a rough estimate and conduct robustness checks, concluding that 0.06 is the most suitable
value for analysis. On the other hand, the depreciation rate of Al-generated data, 4, is esti-
mated at 0.2, consistent with the widely used depreciation rate of intangible capital. Data are
typically regarded as a special form of intangible capital for firms, which generally exhibits a
much higher depreciation rate than physical capital. We choose this value under the assump-
tion that data will be fully depreciated in approximately five years. For the contribution of
existing Al-generated data to new data generation, C, we take an unconventional approach
by directly consulting ChatGPT on how many existing data it uses when generating new
content. After verifying multiple responses, we estimate this proportion to be between 25%
and 40%, depending on the type of content being generated. Given that, in our model, data
are used to enhance production—a process more creative than routine tasks—we adopt the
most conservative estimate of 0.25 for C. Once the values of o, 1, and C are determined, we
compute the importance of output in producer data generation, 0, to ensure that the growth
rates of the two types of data are equal. This yields a value of 0.81. In the subsequent analysis,
we also conduct robustness checks by varying C between 0.02 and 0.99 while keeping 0 fixed
at this value, allowing us to examine allocations when the growth rates of the two types of
data differ.

Third, two parameters are selected to simplify our analysis. For the elasticity of substitu-
tion between the two types of data, ¢, we choose a large value of 50 to ensure that the two
data types can substitute each other nearly perfectly. Additionally, the basic error rate, ey,
which represents the maximum error rate when Al-generated data dominate the economy,
is set to 0.95, slightly below 1. Meanwhile, three parameters are chosen to avoid introducing
additional heterogeneity. We set the share of producer data in the overall dataset, g, to 0.5,
and the sensitivity parameter related to data quality, &, is fixed at 1.

Last, there are three parameters that cannot be precisely determined: the elasticity of
the data ratio with respect to data quality, 7, the weight on data quality, x, and the “loss of
business” effect, 69. While we can reference the estimations discussed in Jones and Tonetti
(2020) for the latter two parameters, their interpretations in that paper differ from those in
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our model. These three parameters represent two key channels in our framework: 7 and x
influence utility, which is crucial in the optimal allocation, while 6¢ affects the decisions of
intermediate good producers, playing a central role in the competitive equilibrium. Given
these considerations, we set T = 0.5, x = 0.10, and 69 = 0.4 as baseline values to ensure
well-behaved results, and we further explore the impact of these parameters on the economy

through sensitivity analyses, which are shown in Appendix C.2.

6.2 Numerical Examples When ¢p, # ¢p,

The key parameter in this subsection is the contribution of existing Al-generated data to
their own generation process, C, which determines the growth rate of D4 ;. As C increases
from 0.02 to 0.99, the economy transitions from a regime where producer data dominate to
one where Al-generated data become the primary data source.” We first examine the labor
allocations across the four different sectors and then analyze the growth rates of consumption

and data quality to illustrate the model’s behavior.

Labor allocations. Given the values of other parameters, labor allocations across different
sectors in both settings with respect to C are shown in Figure 2. From the figures, we first
observe that labor allocated to the intermediate goods production sector constitutes the
largest share in both settings. This result is intuitive, as most labor is expected to be devoted
to production in order to enhance consumption and, consequently, welfare. In contrast,
we find that under both of the regimes, labor employed in the producer data sector shifts
entirely to the Al-generated data sector once C crosses a certain threshold. The reallocation of
labor exhibits a discrete shift as C transitions across regimes, reflecting significant structural
changes induced by variations in the growth rates of the two types of data. Finally, we
observe that labor in the innovation sector declines, while labor in the Al-generated data
sector increases. This suggests that Al-generated data become increasingly influential and, in
some cases, even substitute for the effects of innovation as their multiplier effect strengthens.
Moreover, it is noteworthy that the social planner allocates more labor to the Al-generated
data sector and less to the innovation sector than in the competitive equilibrium. This
indicates a failure to fully utilize Al-generated data under the latter, as multiple Generative
Al firms compete for limited labor resources, as discussed in Proposition 4. At the same
time, insufficient producer data are generated by the final goods producers, leading to lower

data quality.

9Referring to equation (34), we start our analysis of C from 0.02 since g%‘;\ becomes negative when C < 0.02,
which is inconsistent with the assumptions of our model.
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Figure 2: Labor allocations in the four different sectors

Note. These figures illustrate labor allocation in both the optimal allocation and the competitive
equilibrium. The purple area represents the intermediate good production sector, the yellow area
corresponds to the innovation sector, the blue area denotes the producer data generation sector, and
the red area indicates labor employed in the Al-generated data sector. A black dashed line separates
the regimes where gp, < gp, (left region) and where gp, > gp, (right region).

Growth rates. The differences between the competitive equilibrium and the optimal allo-
cation can be further illustrated by examining the growth rates of per capita consumption
and data quality, as shown in Figure 3. From the figure, we first observe that per capita con-
sumption grows at a higher rate as  increases, reflecting the positive impact of Al-generated
data on the economy. However, when considering data quality, the welfare analysis becomes
more complex—both consumption and data quality must be accounted for in calculating
welfare. Generally, data quality in the optimal allocation always grows at a rate no lower
than that in the competitive equilibrium, indicating a tendency to insufficiently use producer
data in the absence of encouraging policies, particularly when Al-generated data dominate
the economy. As shown in the figure, the growth rate of data quality declines sharply as
C increases, while the increase in consumption is relatively modest and fails to offset this
negative effect. In this regime, the potential risks associated with data quality become a
significant concern for the economy, underscoring the need for regulatory intervention in
this sector.
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Figure 3: Growth rates of consumption per capita and data quality

Note. These figures illustrate the growth rates of consumption and data quality. While the growth rates
of per capita consumption remain the same across different settings, the growth rates of data quality
vary. The blue solid line represents per capita consumption, the orange dashed line indicates data
quality in the optimal allocation, and the yellow dotted line denotes data quality in the competitive
equilibrium. A black vertical dashed line separates the two regimes: gp, < gp, (left region) and
8p, > §p, (right region). It is important to note that in the competitive equilibrium, when ngCA > ggcp,
we derive only an upper bound for the growth rate of producer data. Consequently, the actual growth
rate of data quality in this setting may be even lower than the dotted line depicted in the figure.

6.3 Number of Generative Al Firms

In Proposition 4, we show that multiple Generative Al firms may exist under the competitive
equilibrium, whereas the optimal number of such firms is always one. Figure 4 illustrates
how this number varies with respect to two key parameters, C and G. We present only the
case in which C is sufficiently large, as Generative Al firms have a negligible impact on the
economy when producer data dominate. The emergent capabilities parameter G is shown in
logarithmic form, given its relatively large absolute value. All other parameters take standard
values as reported in Table 2.

From the figure, we observe that the number of Generative Al firms decreases as G
increases, which is consistent with our analysis. Currently, a potential entrant to the Gener-
ative Al industry must make substantial upfront investments. This explains why only a few

oligopolistic enterprises are currently developing LLMs. If these investment requirements
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Figure 4: Number of Generative Al firms in Competitive Equilibrium

Note. This figure presents the quantitative analysis of the number of Generative Al firms in the
competitive equilibrium across a wide range of values for C and G. We consider only the case in
which Al-generated data dominate the economy, and we use the logarithmic values of the emergent
capabilities parameter G to more clearly illustrate changes in the number of firms. The yellow and
light-colored regions correspond to parameter regimes in which the number is relatively large, while
the blue and dark-colored regions indicate the opposite. To facilitate comparison with the optimal
allocation, we include a contour line representing the case in which the number of Generative Al
firms is one.

decline in the future, more firms will likely enter the industry. On the other hand, it is
noteworthy that the number of Generative Al firms also declines as C increases. As the con-
tribution of existing Al-generated data to the production of new data becomes larger, firms
must accumulate a sufficient stock of data before earning profits. In this case, the presence
of more firms disperses the stock of Al-generated data available to any single firm, thereby

limiting the number of firms the market can sustain.

6.4 Policy implications

Several issues related to the development of generative Al and the mitigation of potential risks
are highlighted by this framework. First, although Al-generated data serve as a powerful
substitute for conventional data in many fields of production, we must remain cautious about
the dystopian aspects of their widespread use. The potential risks associated with this new
type of data may be more severe than those posed by other data types, as Al-generated data
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often contain limited or even inaccurate information about the real world.' As a result, Al-
generated data should always complement, rather than replace, other types of data collected
from consumers or production processes. This is crucial for ensuring sustainable economic
growth, as our model demonstrates that firms in the competitive equilibrium tend to neglect
the usage of real-world data, such as producer data. Given this, while encouraging the
usage of Al-generated data, governments should introduce policies to impose an lower limit
on the use of producer data (or other real-world data) to mitigate potential risks, including
the existential threats associated with Al overuse, as discussed in Jones (2024). Alternative
policies could include providing subsidies for the combination of Al-generated data and
real-world data sales.

Another important conclusion to highlight is that, in most cases, there are too many
Generative Al firms in the market. The cumulative nature of Al-generated data makes such
data more desirable when the resources used to produce them are concentrated within a
single firm. The presence of multiple firms leads to redundant investment, and there appears
to be little justification for supporting this market structure. This conclusion aligns with the
scenario discussed in Begenau et al. (2018), where the authors show that large firms, due
to their longer histories and greater data accumulation, are more likely to generate profits
than smaller firms. As a result, the government need not be overly concerned about the
concentration trend in the Al industry. Instead, regulatory efforts should focus on ensuring

that such firms do not harm overall societal welfare.

7. CONCLUSION

We develop an endogenous growth model that incorporates Al-generated data from the per-
spective of data quality to highlight the potential risks of production errors arising from the
widespread use of Generative Al In addition, we emphasize the importance of integrating
real-world data, such as the producer data considered in our model. The conclusions of the
model are categorized into three regimes based on the relative growth rates of different types
of data, with each regime exhibiting distinct properties under both the optimal allocation
and the competitive equilibrium. Overall, we find that firms tend to underutilize producer
data due toits relatively high cost and the absence of a multiplier effect, unlike the generation
process of Al-generated data. We also find that the number of Generative Al firms in the
market exceeds the socially optimal level, supporting the concentration trend of the Alindus-

1'We acknowledge that other types of data, such as consumer data, contain personal information about
individuals, but privacy risks associated with these data can be mitigated through technologies like desensiti-
zation. Moreover, producer data, which are more commonly used in production, pose significantly fewer risks
compared to the concerns surrounding Al-generated data discussed in this paper.
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try. These findings raise important policy considerations regarding whether governments
should regulate the use of Al-generated data and oversee the broader development of the Al
industry.

In addition to the two recently published papers that examine the risks of Al technologies,
Jones (2024) and Acemoglu and Lensman (2024), we develop an integrated model that
incorporates production, innovation, and the selection between different types of data. Our
study contributes to the literature by advancing growth theory on risks associated with Al
technologies and data as a factor of production. For the sake of tractability and focus, we
have, by necessity, omitted several important aspects, such as discussions on property rights
of Al-generated data and the integration of Al-generated data with other data types beyond
the producer data analyzed in this paper. Thus, our study should be viewed as an initial
attempt to comprehensively examine Al-related risks rather than as a precise representation
of current reality. We hope future research will extend our framework to explore these issues
further.

REFERENCES

Acemoglu, D. (2024). The Simple Macroeconomics of AI. NBER Working Papers 32487,

National Bureau of Economic Research.

Acemoglu, D. and T. Lensman (2024). Regulating Transformative Technologies. American
Economic Review: Insights 6(3), 359-376.

Arrow, K. J. (1962). The Economic Implications of Learning by Doing. Review of Economic
Studies 29(3), 155-173.

Bail, C. (2024). Can Generative Artificial Intelligence Improve Social Science? Proceedings of
the National Academy of Sciences 121(21), e2314021121.

Begenau, J., M. Farboodi, and L. Veldkamp (2018). Big Data in Finance and the Growth of
Large Firms. Journal of Monetary Economics 97, 71-87.

Bergemann, D. and A. Bonatti (2024). Data, Competition, and Digital Platforms. American
Economic Review 114(8), 2553-2595.

Brooks, C., S. Eggert, and D. Peskoff (2024). The Rise of AI-Generated Content in Wikipedia.
arXiv:2410.08044.

Brynjolfsson, E., D. Li, and L. R. Raymond (2025). Generative Al at Work. Quarterly Journal
of Economics 140(2), 889-942.

34



Cong, L. W., W. Wei, D. Xie, and L. Zhang (2022). Endogenous Growth Under Multiple Uses
of Data. Journal of Economic Dynamics and Control 141, 104395.

Cong, L. W, D. Xie, and L. Zhang (2021). Knowledge Accumulation, Privacy, and Growth in
a Data Economy. Management Science 67(10), 6480-6492.

Cottier, B., R. Rahman, L. Fattorini, N. Maslej, T. Besiroglu, and D. Owen (2025). The Rising
Costs of Training Frontier AI Models. arXiv:2405.21015v2.

del Rio-Chanona, M., N. Laurentsyeva, and J. Wachs (2023). Are Large Language Mod-
els a Threat to Digital Public Goods? Evidence from Activity on Stack Overflow.
arXiv:2307.07367.

Farboodi, M. and L. Veldkamp (2023). A Model of the Data Economy. NBER Working Papers
28427, National Bureau of Economic Research.

Ichihashi, S. (2021). Competing Data Intermediaries. RAND Journal of Economics 52(3),
515-537.

Jones, C.1.(1995). R&D-Based Models of Economic Growth. Journal of Political Economy 103(4),
759-784.

Jones, C. I. (2024). The AI Dilemma: Growth versus Existential Risk. American Economic
Review: Insights 6(4), 575-590.

Jones, C. I. and C. Tonetti (2020). Nonrivalry and the Economics of Data. American Economic
Review 110(9), 2819-2858.

Korinek, A. and J. Vipra (2024). Concentrating Intelligence: Scaling and Market Structure
in Artificial Intelligence. NBER Working Papers 33139, National Bureau of Economic
Research.

Li, J., X. Cheng, W. X. Zhao, ].-Y. Nie, and J.-R. Wen (2023). HaluEval: A Large-Scale
Hallucination Evaluation Benchmark for Large Language Models. arXiv:2305.11747v3.

Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy 98(5),
S71-5102.

Shumailov, I., Z. Shumaylov, Y. Zhao, N. Papernot, R. Anderson, and Y. Gal (2024). Al Models
Collapse When Trained on Recursively Generated Data. Nature 631, 755-759.

Wenger, E. (2024). Al Returns Gibberish When Trained on Generated Data. Nature 631,
742-743.

35



Xie, D. and L. Zhang (2023). A Generalized Model of Growth in the Data Economy. Available
at SSRN 4033576.

Yang, K. H. (2022). Selling Consumer Data for Profit: Optimal Market-Segmentation Design
and Its Consequences. American Economic Review 112(4), 1364-1393.

36



Online Appendix

A. OrPTIMAL ALLOCATION

The social planner’s problem is formulated as:

max / e~ (P~ n ¢,dt,
0

Lp,t,Lat, LRt

subject to

day = %dg,tLA,t —0adayt,

Dat =Mday,
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Here, equations (A.1) and (A.2) follow from the resource constraint (18). The first and

second condition can be combined to form the law of motion of D4 ;:

Y pe Lat—6aDay. (A.4)

Das = M Par

Next, we define the current-value Hamiltonian with state variables D4 ; and N;, control

variables {Lp;,Lat,Lr}, co-state variables A¢ and p;, and shadow prices mp, i+, and

Qb
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The FOCs with respect to ¢, Qt, Dayt, Lat, Dpt, Lpt, Nt, Lr ¢ are shown as follows:
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A.1 Growth Rates Along the Balanced Growth Path

First, observe that from the innovation possibility frontier (15), we obtain

&_1 Lr
N, x N;°



Along a balanced growth path, the labor share Lg; grows at the same rate as the total
population, while N; expands at a constant rate. Hence, the growth rate of N; is given by
gn = n. Consequently, we derive
Lr,
N
Next, we determine the growth rate of the overall dataset D;. From the definition (11),
it follows that

=ny. (A.13)

Dy, i gD, = &Dp,
gD:gA gA gP (A14:)

gDP’ lf gDA < gDp'

In the simple model, we derive the growth rate of D4 as given in equation (2). However,
this rate may change when ¢p, < gp, since /4 may shrink to zero. Therefore, we define
the growth rate of D ; as

1

n, if gp, = &y,
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+ 314
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if gp, < gDp-

Meanwhile, from equation (A.1), we obtain gp, = 04, + n, where g, denotes the growth
rate of consumption. Substituting this into equation (A.14), we further derive

Ln if >
gD _ 1 —C 7 gDA = gDp/
0gc+n, if gp, < gpp-

(A.15)

Next, from equation (13), we observe that along a balanced growth path, data quality
Q: follows one of the following patterns: Q; — oo if ¢p, < gp,, Q¢+ — 01if gp, > gp,, or
Q: converges to a constant if gp, = gp,. Since Q; determines the long-run trajectory of the

error rate e;, we obtain

1, if 8D,y > 8Dp,
er = Yeoexp(—EQ), if gp, = gD», (A.16)
0, if 8D, < 8Dp

where Q is determined by the values of D4 and Dp; when their growth rates are equal.



From the resource constraint (A.2), the growth rate of consumption is derived as:
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Here, the threshold is obtained by substituting the growth rates of D4 and Dp ;. Specifi-

cally, we require
1-0n - 0
1-C c—1

when ¢p, < gp,, with the inequality sign reversing when ¢p, > gp,. Consequently, the

+1

growth rate of producer data is given by
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n, if gp, < &pp-

We now derive the growth rate of /4 ; when ¢p, < ¢p,. From equation (A.6), we obtain

Qn. + SN +1N8D + 1 = gny- (A.18)
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Meanwhile, from equations (A.10) and (A.2), we have
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Furthermore, from equation (A.5), it follows that
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Thus, we obtain
S, +gc+n=0. (A.21)
Additionally, from equation (A.10), we have
Qnp +08c = gr. + Q- (A.22)
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Substituting equations (A.18), (A.21), and (A.22) into (A.9), we find that the growth rate of

the second term exceeds that of the first term. Consequently, we obtain

grn. + (M —1)8pp + gc + 1 = grny + (T —1)¢Dp — T&DA,
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Since the growth rate of the labor share /4 ; must be negative, we require

1-0
(T—n)(%+l)<’r(TCn).

Otherwise, we obtain the corner solution: g;, = 0,14 =0,and Da; — 0.
By now, we derive the growth rates of all the variables.

A.2 Labor Shares Allocated in Different Sectors

First, we derive the relationship between the co-state variables and the shadow prices. From
equation (A.10), the relationship between the two shadow prices, p ; and n, is given by
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Similarly, from equation (A.8), we obtain the relationship between the co-state variable A;

and the shadow price 7. :
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By combining equations (A.23) and (A.24), we derive the relationship between the co-state

variable A; and the shadow price mtp ; as
cy/. (A.25)

Substituting equations (A.24) and (A.25) into (A.9), we obtain the relationship between the

co-state variable A; and the shadow price mg ;:
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From equations (A.24) and (A.26), we derive the relationship between the two shadow

prices, 1o, and 7t ¢
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Finally, from equation (A.12), the relationship between the shadow price 7t ; and the co-state
variable y; is given by
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Next, we proceed to derive the labor share and the levels of the variables. Substituting
equations (A.24) and (A.26) into (A.7), we obtain
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= _/'\t +(p—n)Ay

A
= YM D [CLas—c;%Dpy +n(Li - Lpt—LAt—LRt)]——A—i+p—n+6A



-Cpt- A
= yM CDfx,tl |CLas—Lps+n(Le —Lps —Las —Lpy)| = =2+ p—n+064

Ay
-1 /'\t
= YM °D;, [nLe = (L +n)Lps = (= OLas —Llr ] = L tPntoa (A.29)
D (A +mlps == Olas —nl '
_ ( At 5A) l’] A +n)lps— (M —0C)las —nlr, _ M fp—n+ o (A.30)

Here, the fourth equation follows from the market clearing condition for producer data
(A.1), while the final equation is derived from the law of motion of D4, in equation (10).
The variables Ip;, Ir+, and I represent the labor shares employed in their respective
sectors, all of which remain constant along a balanced growth path.

Next, substituting equations (A.24) and (A.25) into (A.5), we obtain

1 B B . L
o+ MOPM DL ey — Ay M DG [1- coexp(-£Qn] T N, T

ne
1 Te-1
€

el e-1
6Dy, + (1 -0, | L =0

1 \
= o+ AYM D5 ;7 [0Lp s = (L = Lps — Las — Lrs)] = 0 (A.31)
A.t DAL‘
= —+(——+n=0 A32
Y CDA,t ( )
D —(1+n)lp;—(n—=0)ly; —nl
R (A't+(5A)|C—n X +nlps—(—0Olas —nlr b pt (=00 =0
DA,t ZA,t
— (A +lps = (= Olas—nl
= (gDA+6A) C—n (L + e ljrt[ Ola = nlv, +p+(1-0064a=0
+(1-0)6
= (1+n)lps+ 17+M] lat+nlre—n=0. (A.33)
gDA"‘éA

Here, the third equation is obtained by expressing variables in terms of growth rates, noting
that the labor shares employed in all four sectors grow at the same rate 7, which matches
the growth rate of the total population. The fourth equation follows from substituting the
result derived in equation (A.30). Since we have established the growth rates of ¢; and
D4, along a balanced growth path, equation (A.33) serves as the first key equation for the
allocation of labor shares across different sectors.
Next, we derive the second key equation for the labor shares. From equation (A.32), we
obtain ) .
At Da 1
AT Da T TToCh

Then, combining the law of motion of D4 ; from equation (10) with the resource constraint




(A.2), and using equation (A.24), we derive

Av La . Ct

Tiet  (§ps +04)Dar (I =1Ipi—1las—Iry)
_ fep A _I_DA,t_ﬁ

Tt At Dai ¢

1 n )

. — + —+1 f >

e [0—1 —c " 1 8Da = &br/
- =

Tet (A +n|l+1|n, if <

1 _ 61'] o — 1 TI 4 gDA gDP'

From equation (A.28), it follows that

& = Tet + ﬁ = —1n. (A34)
Lt et Ct

Substituting (A.28) into (A.11), we obtain

1 _ [t
—— NY(Li=Lpy—Las—Lry)=——+p—n, A.35
Yo—1 (Lt —Lpt—Lay R,t) m P ( )
n (1 —lIpt—las— lR,t) Lt
= =——+p-—n,
o-1 IR ¢ Lt
- n (1=Ips—1las—Ir: _
oc-—1 lR,t P
plo—1) B
= Ipi+la+ |1+ It —1=0. (A.36)

The second equation follows from equation (A.13), while the third equation results from
substituting the growth rate of y; from equation (A.34). We thus obtain the second key
equation that determines the allocation of labor shares.

Finally, we derive the third key equation for the labor shares. Substituting (A.27) into
(A.6), we obtain

ne
e=1 =1
€

1 ezl 177
Tt &eo exp(=EQ )N,/ [ﬁDp,t +(1- ﬁ)DAft] (Lt =Lpt—Lat—Lgt) — ...

1
1 B 1 = 16T
;nc,tD;/tD}); [1-eoexp(—£Qy)| N [ﬁDp,f +(1- ﬁ)DAit]

—1

e=1 &=
E

{c;e - pn [ﬁDpl‘t +(1- ﬁ)DAit] Dpfi (Le—=Lpy—Lays— LR,t)} =0

eoexp(—£Q4) L — 1 - ctLy
c,

Tetey eo exp(—&Q;) Q¢

1=Ips—las—Igs
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-1

el _1
{l“ —Fn [5Dm +(1- ﬁ)DAif] Dy, (1= Ipy = las = lm)} =0. (A.37)

When gp, > gp,, equation (A.37) simplifies to

- eo exp(—=EQy) oL — 1 - ctLy
et 1 —epexp(=£Q}) tt Q¢ Ctl—lpt—lAt—ZRt.
el - 1-1
D € D
Ip ¢ =B ﬁ(Dj) +1-p (Dj) (L=lp = las —Ir) [ =0
€o 1 lPt
= — : =0
é1—80 tQi1—=Ips—lasr—Irs
Ip (1 —
- Qt — P,t( eO) (A38)

(I=Ips—lat—Ire)téep’

The second equation follows from the fact that Q; — 0 when gp, > gp,, while the third
equation follows from the observation that the growth rate of 7. ¢c;L; is zero, given that
ﬁc Ct

+—+n=0.
Tle,t  Ct

Since we have Ip; — 0 in this scenario, equation (A.38) always holds but cannot serve as a
key equation for determining the labor shares.

When ¢p, < gp,, i.e., as Q; — oo, the first and last terms on the left-hand side of
equation (A.37) converge to zero in the long run, while the second term remains constant.

Consequently, equation (A.37) simplifies to

eo exp(—£Qy)
1 —epexp(=£Q+)

Tl t ctLy =0,

which trivially holds but cannot serve as a key equation for determining the labor shares.
When ¢p, = gp,, we have (Dp/Da;)" = Q € (0, +0). Consequently, equation (A.37)

simplifies to

K €0 eXP(—EQ) 1 ciLy
= + Tt —ctLy — Tl t—=
Q 1-epexp(—EQ) tQ1=1Ips—las—Ir:

{ZP t — BN ﬁQ w1 ,3) 87__51(1 —lIpt—las— lR,t)} =0

eg exp(—£Q) 1=1Ips—1las—Irs 1 1
EQ)1-(+0)pt—lap—Iry tQ1-A+0)ps—las—Igs

+&

L
Q 1-epexp(-



= -1 -1 _
llP,t - Bn (ﬁQ? +1- ,3) Qw(@—Ipt—Ilasr—Igt)| =0, (A.39)

where the second equation follows from substituting equation (A.20) into the expression.
Substituting equation (3), Q can be derived as

T

— (Dp,f )T CtQLP,t
Q= iy -

At YyM(1-0) ™ (Lant
n+oa(1-20) At

In the above equation, consumption c; is given by

e
-1

Dp,\ T

¢t =[1—epexp(—EQ)| N7 T |B (%) +1-B| D3, (A=Ips—las—Irs)
i g\ [ S pMEA-0 ™
_[1—eoexp( EQ)] (_X) (ﬁQ e +1—ﬂ) n+6A(1—C) lA,;,‘:"'

L”

(I=Ips—las—Ir)L/ T
Thus, we obtain

775

6
@%:{[1—eoexp<—e@>1(i)”‘l(ﬁ #1-p)" <1-1Pf-lAf-lRf>}

n-1
QDM_C(l _ C) 1=C o elnT—Cl
rewsvimel BRI SURE (A.40)

Then, Q can be determined from the above equation, given the solutions for labor shares
across different sectors. Given Q(lp/t, lat, Irt), equation (A.39) serves as the third key
equation for determining labor shares in this regime.
Let

Cp+(A-08a  (1=0[p+1-0)d4]

T g +0a  n+0a1-0)
We now solve for the labor shares. When ¢p, > g¢p,, we have Ip; — 0, using equa-
tions (A.33) and (A.36), we obtain

lsp| _ T]P(U - 1)
A 1804780p T Ap + p(o — 1)(A +1)
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and
An

sp _
g lg0,>90, = An+plo-1)(A+n)

When ¢p, < gp,, we have l;p — 0. Then, using equations (A.33) and (A.36), we obtain

np(o -1)
n+p(l+n)oc-1)

sp
P |gDA<gDp -

and
n

nrp -1
When ¢p, = gp,, the labor shares can be derived from equations (A.33), (A.36), (A.39),
and (A.40). However, due to the complexity of these equations, the labor shares in this

Spl —
R 18D, <8Dp —

regime can only be analyzed numerically.

A.3 Levels of the Key Variables

Given the labor shares lpp, l Ap , and l;p derived in the previous subsection, we can further

determine the levels of some key variables.
First, from equation (A.13), we obtain

1
sp sp
Nt = _XIR L;.

Similarly, from equation (3), we derive

5P _
At T

YM=(1-10) e spy e 7 T
n+6A(1—C)] =L

Next, the level of consumption c¢; must be analyzed under different regimes. When
gD, > §Dp, using equation (A.2), we obtain that consumption per capita can be derive from

the following equation:

1 Dsp ) s s s
C:plgDA>gDp = (1 - 60)(1\]:;7)m :B ( fi;t) +1 _ﬁ D:Zl,t(l - le - lAp - ZRp)
DA,t
_(-p YyM (1 -0 l = a2 sp sp_pp _ppy i
- P ——— ) I°7)o= = 1- l - l - l .
mel( o || @G L]

A-11



When ¢p, < gp,, we have

ne
17T
Sp \
DAt sp sp sp
DF)a-1F -7 - 1)

Sp|gDA<gDp =(N, P)ﬁ B+(1-p)

P t
£
ﬁ ( ?P)QW(ZSP)W(ZSP)—(l _ ZSP _ ZSP _ ZSP)LTH" T
(n)c)v I
qé‘

1-0
= (R LIRS T gy Sp)] )

1 t

|

When gp, = ¢p,, consumption is given by

YM~c1-0) |

e T oo
7/1+6A(1_C)l (ZA) (Ig)7

Ct =

) [ e 2
(nx)7 (ﬁQ ﬁ)

Q-5 -l -hHr; S S
Finally, the usage of producer data can be determined from equation (A.1) as
DY = ("L L.

Thus, we have derived the levels of all key variables.

Finally, from C?p| gD,

>¢p, We know that the consumption decreases as M increases along

a BGP, and we can further derive that M act negatively to the social welfare in the long run.

Thus, the optimal number of Generative Al firms in the optimal allocation is M*V = 1.

B. CoMPETITIVE EQUILIBRIUM

In this section, the co-state variables and shadow prices are redefined to simplify the

notation. From the household problem defined by equations (24) and (25), and considering

the homogeneity among different varieties of intermediate goods, we define the current-

value Hamiltonian equation as:

Hce, ae, Ay) =Incy + Ay [(rr — n)ay + wy — c¢].
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Notably, in this problem, the household does not control data generation and therefore
takes data quality Q; as given. The first-order conditions with respect to c¢; and a; are:

oH 1
a—Ct—C—t—/\t—O (B.1)
and Py
(9 a = )\t(rt - T’l) —/.\t + (p - ﬂ)/\t. (BZ)
From equations (B.1) and (B.2), we obtain
e _
C_t =71 —p. (B.3)

From the final good producer problem defined by equation (26), the first-order condi-
tions with respect to Y; ; and Lp are given by

1
Y; \° o— 1L
— 1+06 Y B.4
(Yi,t) ( PDp,t Lt = Pit ( )
and

Y;
PDp,t (L—i) = W. (B.5)

From the intermediate good producer problem defined by equations (29) and (B.4), the
firm’s optimization problem can be rewritten as

1
Yt g 9_1LPt d
reVis = max — 1+6 Y —|Yi: —wiL D Da i+
L D D) (Yi,t) PDet %y Lo f pD PPt = Pp, PA it
Vip = 6(eit)Vip. (B.6)
The following partial derivatives hold:
aYl t T Y
= =(1-e)D], = =,
8L1’t ( l,t) it Ll/t
Yt .
aD; [ t - ETei’tD (Li tDPzt wip t(1—ei t)ﬁ’]D77 +£Dpaz (Lits
A,
and Sy
.,t 1 & &
b, = ~&TeusD] LDy DT+ (1= ei)(1 = inD]; DL L
i,
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The first-order conditions with respect to L; ;, Dp i+, and D4 i ; are given by

1
1\ (Y \° o-1Lpt| Yir
1-=)[=—| [1+ Y, — =
( ‘7) (Yi,t)( opoet Ly | Lis w
1
1 Yt o g_lLP,t aYi,t d 1
(1‘5) (Y_) 1+ 0p0, Y™ 5 | S50 = Py, = 287001, Dy D3 Vi,
and
&Yit —1-1

1
1\ (Y ) 91LP
1-—|l=—1| |1 Y,
( U) (Yi,t) ( + Oppes dDa,ip

Combining equations (B.4) and (B.5) and considering symmetry, we obtain

0
1 Lt _LPt
N/ 1+9wt(—) Y 1—']:pt
t t ) 1
Yi L
1 L
= N/ 1+6wt%)—p,t
t
L 1 YiiLp
= N 1|1+0(1- —_
1 1 Lp;
= N//"+0(1-- s =
¢ ( G)Pz,tNtth it
1
Ntofl
= pit= 1 LPt
1-0(1- )NtLlit
L
=

Pit = ;
(n)()o% [1 - (1 - —) i

1—Ips—lar— IRy

— 4 2
PDA,t + 25Téoei,t P,i, tDA it Vz,t-

(B.7)

(B.8)

(B.9)

(B.10)

Here, the third equation follows from substituting equation (B.7) into the expression. Com-

bining equations (B.8) and (B.9), we obtain

o) \Yi:

t

1
1\ (Y )° Lp,
(1 - —) (—t) (1 + Oppp YO 0 ) (1-ei1)D},Lit = Dpiip}, , + Daiiph,

1
1\ (Y \° _,Lp;
= 7 (1 - —) (Y—ft) (1 + Oppy 1YY 1—L9 ) Y, = Dp,i,tp%P,t + DA,i,tpi'l)A,t.
Z/

t
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Substituting equation (B.7) into the above equation, we obtain

nwiLiy = Dpiipf  +Daiip}, . (B.11)

When gp, > gp,, along the BGP, equation (B.9) can be further derived as
1 — _1.1+-L
mhiz(1—E)mﬂl—mxl—ﬁMD2;LmN;58%&%ﬁ“% (B.12)

1
Here, & is a constant. This equation comes from the fact that p; ; o« L7 and N; o L;.
From the Generative Al firm problem defined by equation (28), and plug equation (B.12)
into the equation, the current-value Hamiltonian equation is given by
¢ La

t
v oadat],

L L
7_((dA,t/ LA,i’/ [Jt) = Sdl’tl‘2+a—1 - wt% + /Jt (¢d

where y; is the co-state variable. The first-order conditions with respect to d4 and La ; are

oH _1La, )
EXp =NPDut + Ut (Ebcdiltlﬂt - 5A) = =l + 1 (B.13)
and Py
M%tZﬂm+M¢éJ=O (B.14)

Combining equations (B.13) and (B.14), we obtain

_ day C L
41 TIPDy,t4A, s
W, Lag (—thA,t + M 0A _[Jt + 7t
i Dy i
— M CDC lL M _ - ) .
v A —AL ( wiLA ¢ tef o4 Ut i (B.15)

We will come back to the discussion on the free-entry condition after we derive the profit
of the firm.

From the data intermediary problem defined by equations (30) and (31), and considering
the symmetry among different varieties of intermediate goods, the prices of data can be

readily derived as:
i _ PDpt

= B.
pr,t Nt ( 16)
and
d PDy,t
= . B.17
pDA,t Nt ( )
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These two equations ensure the non-zero profit condition for the data intermediary. For
further derivations, please refer to the appendix in Jones and Tonetti (2020).

Finally, from the free entry condition of the innovation sector defined by equation (32),
and by symmetry, we obtain

Nidoe?, Vi
xw; = Vi + ———
—LRt
X
6()61.2,t
= XW: = Vi,t 1+ Tl . (B18)

Here, the second equation follows from the result derived in equation (A.13) along the
balanced growth path.

B.1 Growth Rates Along the Balanced Growth Path

Obviously, most of the growth rates of key variables are identical to those derived in the
optimal allocation, which can be found in Appendix A.1. However, in the competitive
equilibrium, since households cannot determine the usage of the two types of data and
intermediate good producers do not account for household utility, we expect that the labor
share allocated to Al-generated data production, /4 ¢, may shrink when gp, > ¢p,, and the
labor share allocated to producer data generation, Ip ;, may also shrink when gp, < gp,-
Denoting ¢;, and g, as the respective growth rates when these two labor shares are no
longer constant, the growth rates of the two types of data are now given by

QI if gDA > gDp/ (B 19)
Dy — .
8P4 giA_ Cn/ if D4 < 8Dp-

and

n+8ip, if 8D > 8Dps

1 Ui
l1+9(0_1+m)

1+ 0 1 + n if <
1-on\o—1"")|™ 8Da = 8Dy

&Dp =

Additionally, in this subsection, we derive the growth rates of prices along the balanced
growth path.

First, from the labor market clearing condition shown in Table 1, it is evident that Lp,
Lat, Lrt, and the integral fONt L;.di all grow at the same rate as the total population L;
along the balanced growth path, which is n. By symmetry, the growth rate of N;L;; is also
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n. Additionally, since the growth rate of N; is n, it follows that L; ; remains constant along
the balanced growth path. Thus, the denominator of equation (B.10) remains constant, and

the growth rate of p; ; is given by
1
8= "

Next, noting that e;; remains constant along the balanced growth path (see equa-
tion (A.16)), from equation (B.7) we obtain

1
Wy =pi, (1 - E) (1-eis)D] (B.20)
= 8w = &p; T 118D
1 Ul .
0—1+1—C n, if ¢p, > gDy,
= Qw= 1
m(o__l'Fﬂ)n, if o, < 8Dp-

Meanwhile, considering equation (B.8), when ¢p, < ¢p,, this equation can be rewritten

as
1 Fn=1-1 d
(1 - g) nBpisLitD; " Dpty =P, -
Rewriting the equation in terms of growth rates, we obtain
1 1
Spit|\z+n—1|8p— 8Dy = &po, ~8N

= 8ppp, = 8pi T (m—1)gp, +n

1-6 1
= gpp, = ﬁ ( + 17) n. (B.21)

o-1

Similarly, when ¢p, > gp,, equation (B.8) can be rewritten as

1 n -1 y- d -1 -
(1 - 5) piftETDi,tLirtDlg,i,tDA,Ti,t =Pppt ~ 25T60D1T’,i,tDA,Ti,tVift' (B.22)
On the left-hand side of equation (B.22), the growth rate of the first term,
pi,tDZtLi,tDlﬂftD;i,t, is given by

n
-1

+ngp + (1 —1)gp, — 18D, = +(n—1)gp, + (1 = 1)(gD4 — §D»)-

o-1
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1

.. -1+1 -1 .
Similarly, the growth rate of the second term, Pi,tDZ ; i DP,‘;, tLi,t/ is given by

n n

1 1 1
+ (77 -1+ g) §p = -80p = ——7 + (1= 1)gps + (804 — 8Dy)-

o-1

Thus, the growth rate of the left-hand side depends on whether (1 — 7)e¢ is greater than 1.
On the right-hand side, it is straightforward to see that the growth rate of the second term
is given by gy + (t — 1)¢p, — 7¢p,. From equation (B.18), we know that gv = gy = gc =
ngp, +n/(c — 1), so this growth rate matches that of the first term on the left-hand side.
Since we assume the elasticity of substitution between the two types of data, ¢, to be
large, itis typically expected that (1-7)e > 1. Consequently, the growth rate of the left-hand

side depends primarily on the first term. Furthermore, we have

8ppp, — 8N Sgpi‘l'(’?_l)gDA+(1_T)(gDA_gDP)
1 1 1 1 n
= ngPSG_1n+(17—1)1_Cn+(1—T) m—l—e(mﬁ'm)
-1+(1-6nd-1 1-(1-1)6
= g, < |1 2—Cm( ) 1= T)4ﬂ¢n—ﬂ—TMm (B.23)

n+n-1-1)g

-1

Meanwhile, from equation (B.5), we can also express gp,,, as

1
ngP:gw—Qgc:(l—Q)(G_1+1?C)n. (B24)

Combining equations (B.23) and (B.24), we derive the growth rate of Ip ; as

B n-1+0Q-6pl-7 1-1-96 1 n
(1-1)g1, < T T (1 6)0—1+T?Z n
1-6
= (1-1)g, < 7191_7(1_6’?)_‘_,[ n
T 0 1-0n
= glPlgDA>gDP S 1 -7 (0__1 - 1 —C +1)n‘ (B.25)

Thus, the growth rate of Dp; in this regime is given by

1 (On-7 0 1
gDP|gDA>gDPS 1-7\1-C +G—1+ -
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Notably, in this case, we require g;, < 0, implying that

1-06n 0
+1,
1-C o-1

which always holds when ¢p, > gp,.

Last, we determine the growth rate of the price of Al-generated data. From equa-
tion (B.3), we derive that the interest rate r; remains constant along the balanced growth
path, given by

It = gc tp. (B.26)

From equation (B.14), we derive the growth rate of the shadow price y; as

u Mth
t =
D3,
= & — ﬁ — _DA’t
Ut wt DA,t
1 -C .
G—1+1}——C n, if gDAZgDPl
= &u= 1 1 C C (B.27)
1_9n(0_1+ﬂ)—sz ”—szﬁm if gp, < &Dp-

Substituting equations (B.26), (B.27), and the dynamic equation of Al-generated data (10)
into (B.15), we obtain

Npp,tDat

(30 +6A>( L

+C)—6A:—%+gc+p. (B.28)
t
Given the constancy of the terms in the above equation, we derive

8pp, = 8w T 8ly T = 8Dy
1 n-1

1+m+1 n, if gDAZgDP,

[— O -
= ngA - 1

L +n|+1- ! n-— ¢ if <
1-6n\o-1 n 1-C 1_CglA’ 8D < &Dp-

When g¢p, < gp,, equation (B.9) simplifies to

(B.29)

1) o141 n-1+1 -1 PDat

1 1
= 8, =gpi+gN+(n—1+;)gDp—;gDA
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0 1 11 1 g,
€ 1+1—91](a—1+n)l sl—C}n el-C
1 0 1 1 1 1 1 1 81,
1"‘(’7 1+e)1—917]0—1 81—C+(n 6n+e)1—61]} el-C
(B.30)

1 1
= gWA:{G_1+1+(W_1+_)

= 8pp, :{

Combining equations (B.29) and (B.30), we derive the growth rate of the labor share /4 as

A NN
%%+(n—9n+%)1_16n}n_%%

e e B e e - Fe s B ]

= g’A:cge_—ll [11—_6(:17(6?1”)‘1]”' (B.31)

Substituting (B.31) into (B.19), (B.27), and (B.29), respectively, we obtain the growth rates of
Dayt, pt, and pp,, as

1 e—-1 0
gDAlgDA<gDP = Cg_l 1_617 G_1+1 - ¢ nl

[ Oe=D) 1, 1 (_e=D)
g}llgDA<gDP_[1—617(1_ Ce—1 )U—1+6C+1_6n(n Cg_l)ln’

and

B -1 1 1 1 1 1-¢
ngAIgDA<gDP—{[1 Ce—1 ll—@na—1+Ce—1+1—9n(n on Cs—l)}n

Since we require g;, < 0, this implies the following condition:

1_

?, - 917’
o—1 1-C
+1>1_6h7
o-1 1-C’

if Ce>1,

if Ce<1.

However, considering that when ¢p, < ¢p,, we have

+1>1_617
o-1 1-C°

Thus, g1, is negative only when Ce < 1. Otherwise, we obtain the corner solution: g;, =0,
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lat =0,and Da s — 0.
By now, we derive all the growth rates of the variables.

B.2 Labors Employed in Different Sectors

First, from the labor market clearing condition shown in Table 1, we have

N;
/ Liydi=L —Lpy—Las—Lrt
0

= NiLiy=Li—Lpt—Las—Lgry
N
= L—tLi,t =1-Ips—Ias—IRrs
t

1—Ipt—1las— IRy (B.32)

= Li;=ny Ir
*t

Here, the last line follows from substituting the result derived in equation (A.13). Mean-

while, when gp, > gp,, we further refine equation (B.28) as

NppatDAt 8 +g9c+tp+ oA ¢

weLa B gD, + 04
postDar _Cn+(p+064)(1-0 C_A (B.33)
wiLa ¢ nln+06a(1-0)] noon '
Next, combining equations (B.5) and (B.33) with (B.11), we obtain
Nw¢N¢Liy = Dpppp,t + DaAtPD,t
A
= nw¢NiLj; = wiLp + ?thA,t
Ny A
= ﬂLz,tL—t =Ip; + ; Iat
l
= T]Li,tﬁ =lps+ ﬁlA,t
nyx n
A
= n(—=Ips—las—Irs) =1Ips+ ?ZA,t
A
= (L+n)lps+ (7 + 77) lay+nlg: —1=0. (B.34)

Here, the fourth line follows from the result derived in equation (A.13). Thus, we obtain

the first key equation for determining the labor shares.
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Next, from the intermediate good producer problem defined by equation (B.6), we obtain

1

Y \° _Lpy

(Y_t) (1 + Oppp Y, 1_L9 ) Yit —wiLip — P%P,tDP,i,t - P%A Dait
b t

%
re +0(eit) — v
_pitYir — (L+n)wLiy
gc+p+50€,-2,t -qv
o
o
“1-n)wd
:(a -1 M) Wikt
p+ 6061’2,1‘

Then, combining the above equation with equation (B.18), we obtain

x(p + doe?,)
L= 5
L ( ° 1 )
n o-1 1
x(p + doe] .
> , it gp, > gDp,
L ( o _q- )
= 9 n -1 1
X )
5 P , if ¢p, < 8gDp-
o—1 -

i
S

Substituting into equation (B.32), we obtain the second key equation for determining the
labor shares:
nxlps +nxlay+mx +C)lgs —ny =0. (B.35)

Combining equations (B.34) and (B.35), we derive the labor shares across different
sectors. When gp, > gp,, we have ch| gn,>gp, — 0, while the other labor shares are given
by

I 30,580, = Cr
AT C(A+1?) +nxA
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and
nxA

d -
lﬁ@%*%_(mﬂ+n%+nmﬂ'

dc . ..
Conversely, when ¢p, < gp,, we have I)|¢, <¢,, — 0, while the remaining labor shares

are given by

ldC| _ CT]

PREDASEY T C(1+ 1) +nx
and

d _ nx

g’ lsn, <spp = Cl+n)+nx

Finally, we derive the labor shares when gp, = ¢p,, which corresponds to the condition
(1-n10)/(1-0C)=1+0/(c —1). In this regime, the ratio of the two types of data converges
to a nonzero and finite constant. Denoting the data quality in this regime as Q, we obtain

AN
ot _Des _\Ls "
" Day Day

[1—eoe><p(—€Q)]6(ﬁQ3 +1- ﬁ) (nX)lﬂLptDZtLﬁiL?tLtg

Da,
776& a0 M C(l_C) _C
- [1-evexp(-20)]° (07 +1-) " o | B |
Ip,il llgfl 7 L¢,. (B-36)

Here, the third line follows from the fact that in this regime, we have

’“_

Du:Dt[M) +(1-p)D; ]

el 1

Da

Dp;)\ ¢
‘ﬁ(m) +1-p

= (pQ +1-p) " Das,

and the last line follows from the result derived in equation (3). Given Ip, Ia+, I+, and
L; ;, we can determine Q using the equation above. Furthermore, from equation (B.8), we
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obtain

Given Q, the labor shares can be determined using equations (B.32), (B.34), (B.35), and the

1
th

)_\

m
N —
|:

L

P

Tep ex i} i}
lf_ 600 exi)(( écfQQ)) QT+ pn (ﬁQ?
28Tdon X [eo exp(—éQ)]2

n+ o [eoexp(—& _)]2
l Etegexp(—EQ) -
1-epexp(—£Q)

() (ﬁQ_1 +1- 5)_“

2E1d0nx [eo exp (- EQ)] 0=
n + o [eo exp (- EQ)]

equation above.

B.3 Levels of the Key Variables

Given the labor shares 1%¢, [9¢, and ldc d
to determine the levels of other key variables. Similar to the optimal allocation results
presented in Appendix A.3, the variety of intermediate goods N, per capita consumption
ct, per capita output y;, Al-generated data D4, and producer data Dp; can be expressed

P’ A7

as follows:

de _
N/* =

Etegexp(— Q

-1 _
se) 0t (3

Q= +pn(pQT +1-p) Q@

YyM~¢(1 - () ll”e
7’1+5A(1—C)l At "Rt

1 2&tdony [eoexp(-£Q)]” w,
n + o [eo exp(—EQ)]2 Dy

Ly o Da B
N

1

%l it = [1—eoexp(—€

9
106

Cl olL—

1
— 14,
ny R™
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(B.37)

erived in the previous subsection, we now turn



The per capita consumption and output are given by:

71
a-p= ):7— M-C(l—oq N
_ L
( _ lgc _ ldc ldC) C’ if g4 > 8§Dy,
. o
1-egexp(-£Q) [ . & yM (1 - O]“
dc = dc = T_{« + 1 - - - . _< e
Yi ) (n)()ﬁ (ﬁQ ﬁ) ., nn+ 041-20)
(19) ™ (1) 751 (1 = 14° — 14¢ — 1)L, if $0, = gD,
1
&1 o g 1
: gt = (ldc)n(ldc)ﬁ(l ldc _ lic _ lﬁc) Ltl—en(77+a—1)’ if ¢p, < gDy
n}( o— 1

The levels of Al-generated data and producer data are determined as follows:

1

1
YyMc1-0) | ER T
- [eaa—p, ", if > ,
b, = lwvaaa-g) AT T gz s0
< Dgct, if  ¢p, < 8Dy,
and
de _ < Df‘llct’ if 8Da > 8Dp/
Pt =

(th)Qlch if 8D4 = &Dp-
The above derivations provide a comprehensive characterization of key economic variables

in equilibrium, depending on the relative growth dynamics of Al-generated data and

producer data.
Besides, from equation (B.7), we can derive the wage as follows:

1
wy =1~ g) pit(1— ei,t)DZt
( - %) (1 ﬁ)npl t(l - 60)(D )77 . if gDA > gDpl
=1 (1= 2)pis(1-eip) (ﬁQ w +1- /3) (Ddc )1, if gD, = §Ds,
( - %) ﬁnpl f(D )77, if 8Dy < &Dp-

Furthermore, from equation (B.33), the price of Al-generated data is given by:

A
PD, ¢ = , —w,1%¢(D4 ‘) I7,. (B.38)
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Similarly, from equation (B.5), the price of producer data can be expressed as:

PDpt = wt(Cfc)_Q-

B.4 Free-entry of the Generative Al Firms

The instantaneous profit of a Generative Al firm is derived as

A = das—w ﬂ
A = PDy,t0A, t M
1
=M (pDatDar —wilay)
A—
_ Aﬁﬁwﬂth (B.39)

where the third line follows from substituting equation (B.38). We focus on the case in
which gp, > gp,, so from equation (B.20) we obtain

1
Wt = Pit (1 - E) (1- eo)DZM

N
YM A =0 ™ o 1 e L
(1 - %) (1 - 60) m (lgc)o—l (lflc)l—é N
= E L7 (B.40)
1 1 P
(n)()(r_l 1_6(1_5)1_lgc_lzc_lﬁc
Substituting this into the expression for instantaneous profit yields
1
¢M_C(1 -0 | 1 o
(ﬂ - T]) (1 - %) (1 - 60) m (lﬁc)o—l (liC)l+1—C ey
A = Lo (B.41)

. 1 ldc
Mﬂn@:f1—6@—— P

oh_$_$_$

The discounted sum of profits that a Generative Al firm earns is then given by

YyM (10

n

-C
dcg% dc1+%
n+5A(1—C)l (ZR) 1(lA) <

@-n{1-1)a-e

bl [ (el
H — LO o-1"1-C e—r f+( +m+q)7’lfdt
0

Mn(ny)s

14
1-0(1-13) ]
d d d
01— e — de - pde
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(A - 17)(1—1)(1— eo)

C(1-n-1 1+ L 4
M T L, T (B42)

¢(1_C) LC dc de 1+1C
+6A(1_C)l (18)7T (19)

14
1-0(1-1
( “H—%—%—%

n(p — n)(nx)#1

Applying the free-entry condition Il = G, the number of Generative Al firms in the com-

petitive equilibrium is derived as

L _7
1-C

‘P(l_c) i[ c c il Tt
—n+6A(1—C)l (1)1 (e e L

(A-m)(1-3)1-eo)

ldc
1_6(1__)1_ldc_ldc lﬁc]g

n(p — n)(ny)=

(B.43)

which differs from the result obtained under the optimal allocation.

C. QUANTITATIVE ANALYSIS

C.1 Preparation Work
We begin by analyzing the optimal allocation. From equations (A.33) and (A.36), given the

value of I'?, the values of l;p and ZZP can be derived as follows:

1-A)N +A
(C.1)

lsp_
(n+ﬂ)[1+p(g 1)] n

and

sp_ sp plo-1) sp
ZA —1—ZP —(1+T)ZR

MG—Dl_n plo - 1)

T C2

plo-1] 2
n

T+n)|1+

sp
lP +

plo-1)
n

n+A) |1+ n+A) |1+

To ensure that the labor shares satisfy 0 < l;p <land0 < lzp < 1, the feasible range of | Pp

must satisfy: )
_ A < ls < P(U— )(T]-l-ﬂ)
1-A~ 7P n(l—A)

A-27



and
An+plo-1)] sp np(c —1)
_ <1 < :
pl+mo-1D+n = P = p(l+n)(c-1)+n

By combining the above two conditions, we obtain the final range for l;p :

(C.3)

0< l;p < min {P(U -+ A) np(o -1) }

nl-A) "pl+n)(c-1)+n

Finally, substituting (C.1) and (C.2) into (A.40) and (A.39), respectively, and considering the

feasible range of l;p derived in equation (C.3), we numerically solve for lffJ and Q°*.
Similarly, we now turn to the analysis of the competitive equilibrium. From equa-

tions (B.34) and (B.35), given the value of 19¢ the values of lgc and lff can be derived as

P
follows: P
e (1= AF+ A
de =
(n2+ﬂ)(1+£)—n2
nx
and
C
15 :1—1;10—(1+H) 1%
(n+1n%) (1 + 3) -1 p<
_ nx ch+ nx
i (n? + A) 1+£ - 2P (n?+ A) 1+£ - 2
U el Il U el Ikl

To ensure that the labor shares remain within valid bounds, the feasible range of lff is
derived from equations (B.34) and (B.35) as follows:

2
Oslfmein{(ﬂJr”)C Cn }

nx(n-A) 1+nC+ny

Finally, substituting the above results into equations (B.36) and (B.37), we numerically solve
for 14° and Q.

When 7, x, and §g all take their baseline parameter values, the two functions in both the
optimal allocation and the competitive equilibrium are shown in Figure C.1.

The overall welfare of the economy is given by the integral:

/ e~ P (Incy + x In Q) dt
0
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(b) Competitive equilibrium
Figure C.1: Implicit functions determining /p and Q
Note. These figures display the implicit functions Q1 (Ip) (solid line) and Q»(Ip) (dashed line) in both

the optimal allocation and the competitive equilibrium. We utilize the equations [4(Ip) and Ir(Ip) to
refine the feasible range of Ip.
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In this expression, ¢ represents the constant component of cfp and cfc under the respec-
tive settings. By computing the welfare levels under both the optimal allocation and the
competitive equilibrium, we can derive the welfare ratio between the two settings.

C.2 Quantitative Analysis When ¢p, = ¢p,

We now present numerical results for the case where the two types of data grow at the
same rate, as explicit solutions could not be derived in Sections 4 and 5. First, we outline
the process for determining labor shares and data quality in this regime. Then, we conduct
comparative statics on the three key parameters: 7, x, and 0o.

The process of solving the model numerically. We take the solution of the optimal al-
location as an example. The three labor shares, l;p , lzp , and llsf , along with data quality,
Q°F, are derived from equations (A.33), (A.36), (A.39), and (A.40). Since equations (A.33)

and (A.36) are linear, we can easily express lzp and llsf as functions of l;p, and substitute

these into the remaining two equations, (A.40) and (A.39), to obtain two functions, Qip (l;p )

and Q;p (llsjp ).11 The derivations are detailed in Appendix C. The solution in the compet-

itive equilibrium is derived similarly, yielding two corresponding functions, ch (lgc) and

o (1)

Implicit functions for solving /p and Q. Whenrt, k, and 6 all take their baseline parameter
values, the two functions in both the optimal allocation and the competitive equilibrium
are shown in Figure C.1. To simplify notation, we omit superscripts when representing
variables in both settings. From the figure, we determine the solutions for Ip and Q in

the corresponding regime by identifying the intersections of these functions. Additionally,

We also determine the feasible range of lls,p by ensuring that 0 < lff (llsf ) <land0 < llsf (llsf ) < 1, thereby
narrowing the range of this variable.
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we observe that both equations, Q1(Ip) and Q(Ip), in the two settings are monotonic

d

within the feasible range of relevant variables, and that Q{¢ (lgc) always grows faster than

ch (lldf). This ensures that the solutions in both settings are unique, and that when
parameters take alternative values, the equations can still be solved without the concern
of multiple solutions. Finally, in this particular regime, we find that data quality in the
optimal allocation is significantly higher than in the competitive equilibrium. This finding
reinforces our main argument that firms do not internalize the externality associated with

excessive reliance on Al-generated data.

Quantitative analysis of welfare. We then compare welfare outcomes between the com-
petitive equilibrium and the optimal allocation. The parameters with the highest degree
of uncertainty are 7, x, and 6g, so we examine the model’s behavior across a wide range
of values for these three parameters while holding all other parameters at their calibrated
values.!”> We compute the ratio of welfare in the two settings, denoted as A = W /W*P.
Welfare in both settings is given by:

gc In¢+xInQ

W = + ,
(p—n)? p-—n

(C.4)

where ¢ represents the constant term in cfp and cfc in each setting. In other words, per capita
consumption can be expressed as ¢; = ELfCt. By holding one of the three parameters fixed,
we compute A while varying the other two, with results presented in Figure C.2. Overall,
we find that this ratio remains relatively stable across parameter variations, supporting the
robustness of our calibration.

From the model presented in this paper, we observe that 69 does not influence the
competitive equilibrium significantly compared with the other two parameters x and 7.
Although this parameter is necessary in the competitive equilibrium, its impact in welfare
calculation is negligible, which is consistent with the analysis when the two types of data
grow differently. From Figure C.2(a), we find that k¥ has a much stronger impact on the
welfare ratio A than &g, and W4¢ converges to W*? as k decreases. However, 0 still influences
welfare, albeit to a lesser extent, as indicated in the figure. Likewise, from Figure C.2(b), we
observe that the effect of 7 is significantly greater than that of 69. Furthermore, Figure C.2(c)
reveals that the effect of x diminishes as 7 increases, and the welfare ratio A increases when
k decreases and 7 increases. As «k increases, the additional utility coming from data quality
becomes more important, thereby amplifying the externality present in the competitive

equilibrium.

2Gpecifically, we vary x and §p from 0.01 to 0.99, and 7 from 0.2 to 0.99, as smaller values of 7 lead to
irregular solutions. The model remains well-behaved within the studied parameter range.
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Figure C.2: Quantitative analysis of welfare

Note. These figures present the quantitative analysis of welfare across a wide range of values for 7,
k, and 0¢. The yellow and light-colored regions correspond to regimes where the welfare ratio A is
close to 1, while the blue and dark-colored regions indicate the opposite extreme.

To summarize, the sensitivity analysis presented above confirms that our model remains
well-behaved even when the two types of data grow at the same rate, complementing the
solutions derived in Propositions 1 and 2. In this regime, data quality is consistently
greater than 1, indicating that the use of producer data is economically advantageous. In
the competitive equilibrium, the weak influence of 69 on welfare demonstrates that the “loss
of business” effect is trivial compared with other externalities. Firms lack the intension of
allocating more producer data to mitigate this potential loss, thus lead to lower data quality
in the competitive equilibrium.
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