

DO FIRM CREDIT CONSTRAINTS IMPAIR CLIMATE POLICY?

Disclaimer: the views expressed in this paper represent the authors' personal opinions and do not necessarily reflect the views of the Deutsche Bundesbank or the Eurosystem.

SUMMARY

Credit-constrained firms respond less to climate policy shocks

Micro Level

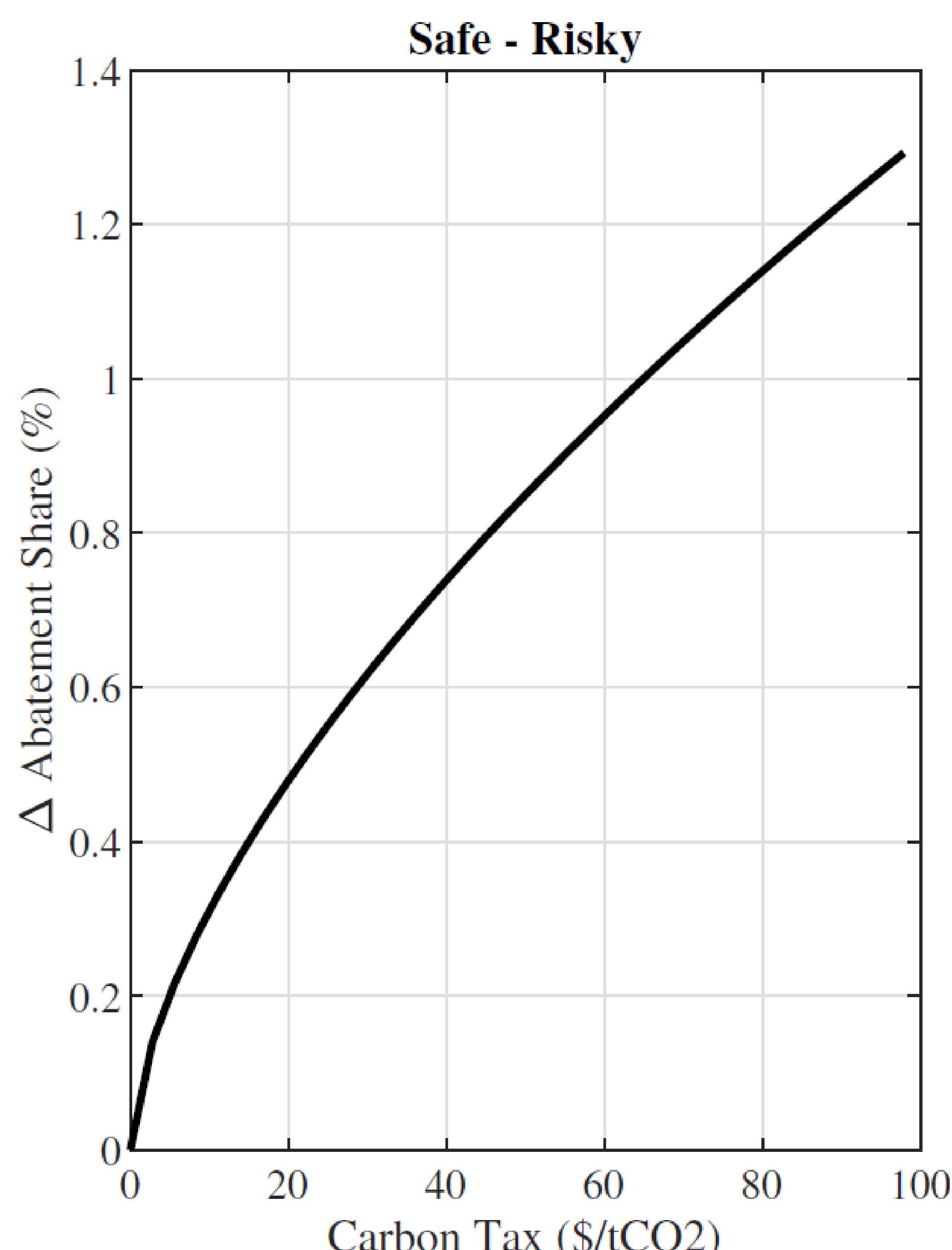
- How firm credit constraints shape the pass-through of climate policy to firm-level climate performance
- Firms with **lower** distance-to-default (D2D) exhibit a **smaller** emission reduction after a carbon tax increase

Macro Level

- DSGE model with heterogeneous firms, credit frictions, carbon emissions, and emissions taxes
- Achieving net-zero emissions requires **higher** carbon taxes for **constrained** firms
- Credit frictions reduce the welfare gains from ambitious climate policy, but aggregate welfare effects remain **modest**

EMPIRICAL STRATEGY

$$\Delta \log(\text{Emi})_{j,t} = \beta_0 + \beta_1 D2D_{j,t-1} \times \Delta \text{Tax}_{c(j),t} + \beta_2 D2D_{j,t-1} \\ + \beta_3 \Delta \text{Tax}_{c(j),t} + \beta_4 X_{j,t-1} + \chi_c + \delta_j \times \delta_t + \varepsilon_{j,t}.$$


- β_1 : how much credit constraints impair the pass-through of climate policy
- Firm controls and country & industry-by-year fixed effects are included; Standard errors are clustered at the country level

EMPIRICAL RESULTS

	(1)	(2)
	$\Delta \log(\text{Emi})_{j,t}$	$\Delta \log(\text{Emi})_{j,t}$
$D2D_{j,t-1} \times \Delta \text{Tax}_{c(j),t}$	-0.002** (0.001)	-0.005*** (0.002)
Sectors	All	Manuf

- A SD increase in D2D **reduces** emissions growth by 1.1 pp in full sample and 2.74 pp in manuf after a \$10/tCO₂ tax increase

MODEL MECHANISM

- Credit constraints arise endogenously because firms borrow subject to default risk
- Firms facing **tighter constraints** are **less likely** to receive the payoff from abatement investments
- Credit-constrained firms **invest less in abatement** for each carbon tax level
- The abatement gap widens to about 1.3 pp at high tax levels

NET ZERO TAX

	Baseline
\$10/tCO ₂ Tax shock	
$\Delta E \text{constr.-unconstr. (\%)} \quad -0.35$	
$\Delta V \text{constr.-unconstr. (CE, \%)} \quad -0.06$	
<i>Transition</i>	
Net zero tax, unconstr. (\$/tCO ₂)	92
Net zero tax, constr. (\$/tCO ₂)	94
$\Delta T_{2100} \text{incomplete - net zero (}^{\circ}\text{C)} \quad 0.01$	
$\Delta V \text{incomplete - net zero (CE, \%)} \quad -0.02$	

- **Pass-through:** constrained firms **reduce** emissions **less** after a \$10/tCO₂ tax increase (emission: -0.35 pp; welfare: -0.06% CE)
- **Net zero:** achieving net zero requires about **\$2/tCO₂ higher** taxes for **constrained** firms
- Aggregate effects are **modest** (welfare: -0.02% CE; temperature: 0.01°C)

FURTHER DETAILS

Scan for the paper and appendix