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Abstract

This paper investigates the effectiveness of collaborative engagement in influenc-

ing corporate behaviour. Specifically, I examine the impact of Climate Action 100+,

the world’s largest climate-related investor coalition, on targeted firms. To proxy the

coalition’s engagement goals, I collect novel data on climate-related disclosure, sector-

specific carbon intensities and emission reduction targets. I find that collaborative

engagement influenced only target setting among a subgroup of firms selected on a

discretionary basis. Surprisingly, the coalition’s scale does not amplify impact and

there is no evidence of spillovers to non-target firms. These findings question whether

investor coalitions drive corporate decarbonisation.
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1 Introduction

The transition to a low-carbon economy is a critical global challenge, necessitating substantial

shifts in how entire industries operate. Investors can play a key role in accelerating this

transition by leveraging their influence over their investees. However, they often hold only

small individual stakes in companies. To strengthen their impact, investors have formed

coalitions to collectively engage with companies.

Several reviews of the sustainable finance literature note a lack of empirical evidence re-

garding the role of investors in driving change (Kölbel et al., 2020). While recent studies have

started to fill this gap (Azar et al., 2021; Heeb and Kölbel, 2024), many areas of investor im-

pact remain under-researched. Notably, investor coalitions have received surprisingly limited

attention despite their growing importance.1

These initiatives combine self-regulatory mechanisms among investors with quasi-regulatory

pressure on companies. As such, they represent a new form of collective investor action whose

effectiveness remains largely untested. This paper aims to fill this gap by asking: What is the

impact of a large investor coalition on corporate climate action? Developing a conceptual

framework and providing new evidence on this question is important to assess the role of

investor coalitions in the low-carbon transition.

An important feature of investor coalitions is their impressive collective scale. Climate

Action 100+ (CA100+), the world’s largest investor coalition on climate change, represents

the “biggest shareholder action plan ever”(Financial Times, 2017). As illustrated in figure

1, CA100+ grew from 225 founding investor signatories representing a combined 26 trillion

USD of assets under management (AUM) in 2017, to more than 700 members with 68 trillion

1For example, investors have established Climate Action 100+ in 2017, the Net-Zero Asset Owner Alliance
in 2019 and the Net-Zero Asset Manager Alliance in 2020 to coordinate action on climate change.
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USD in AUM by 2023.2 Based on my calculations, CA100+ investors collectively held an

average of 4% of outstanding shares in focus companies in 2017 – a figure that rose to 19.5%

by 2023. Despite recent departures starting from 2024, the coalition still includes over 600

members as of July 2025.

Figure 1: Growth in CA100+ membership. This figure illustrates the growth in the
number of CA100+ investor signatories (in yellow) and their combined AUM (in red) from
2017 to 2023.

CA100+ aims “to ensure the world’s largest corporate greenhouse gas emitters take

necessary action on climate change” (Climate Action 100+, 2024) by engaging with a focus

group of 169 large corporate polluters. Indeed, there is ample anecdotal evidence for the

success of CA100+. For instance, The Economist (2021) found that CA100+ companies

improved their climate-related disclosure and target setting more than other firms. Moreover,

the initiative’s website features numerous success stories. In fact, investors deemed the

CA100+ model so successful that it inspired the launch of a similar initiative in 2022 on

biodiversity: Nature Action 100. At the same time, the Republican party in the United

2The combined AUM figures may include some instances of double counting, as CA100+ is supported
by both asset owners and managers.
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States accuses CA100+ of acting as a “climate cartel” that allegedly pressures companies to

commit to ”net zero” (Judiciary Committee, 2024).

Distinguishing causation from correlation is a central challenge in research on investor

impact. In the case of CA100+, several endogeneity concerns exist. Firstly, CA100+ operates

in a dynamic environment where multiple external factors can influence firm behaviour. It

is crucial to control for confounding factors, such as other regulatory policies, technological

advancements and market forces. Secondly, CA100+ companies may differ systematically

from other firms in their climate strategies. There is a risk of selection bias: investors

could have deliberately chosen companies that were already inclined to improve their climate

actions. This concern is amplified by the fact that CA100+ targets some of the world’s largest

corporate polluters – firms that operate in sectors that face heightened public scrutiny,

making them more likely to act on climate even absent of CA100+ engagement. These

considerations underscore the need to examine the company selection process and carefully

select a suitable comparison group based on companies’ emission profiles rather than relying

on a broad stock market index. Thirdly, measuring the specific engagement goals of CA100+

is difficult due to limited data availability. Previous studies on investor impact typically rely

on self-reported measures of engagement success or firms’ Scope 1 and 2 carbon intensities

based on financial metrics – both of which are prone to measurement error.3 The omission

of Scope 3 emissions is particularly problematic for CA100+ companies, many of which

operate in sectors where the bulk of emissions occur downstream. In addition, financial-

based carbon intensity metrics can distort results, as fluctuations in the denominator – such

as volatility in revenue driven by commodity price changes – may not reflect underlying

changes in corporate climate action. Notably, CA100+ itself does not use financial-based

3Scope 1 refers to direct emissions from owned or controlled sources, Scope 2 to indirect emissions from
purchased energy and Scope 3 to indirect emissions across the value chain (GHG Protocol Initiative, 2004).
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carbon intensities to assess company progress.

This study addresses these challenges in three steps. First, I use a series of two-way fixed

effects (TWFE) and staggered Difference-in-Differences (DiD) specifications to estimate the

impact of CA100+ on the focus companies. I also calculate the collective ownership share of

CA100+ investors as a shift-share variable to assess treatment heterogeneity and potential

spillover effects. However, a DiD approach does not, by itself, ensure causal identification.

For the results to be interpreted causally, the treatment must plausibly constitute an ex-

ogenous shock. Moreover, even firm and time fixed effects may not fully capture systematic

differences between CA100+ and significantly smaller emitters. In a second step, I therefore

examine the treatment assignment – the CA100+ company selection process – and identify

two subgroups: the first addition to the CA100+ focus group (the ”CA100 companies”)

which can be considered a quasi-exogenous shock and the second addition (the ”Plus com-

panies”) for which endogeneity cannot be ruled out. Then, I identify a suitable universe of

counterfactuals which selects companies by sector based on their absolute carbon footprint

and market capitalisation. Third, I employ multi-dimensional and novel metrics that closely

match the engagement objectives of CA100+. In particular, I use sector-specific carbon

intensities – including all material Scope 1, 2 and 3 emissions from a lifecycle perspective –

based on production output rather than a financial metric. I also collect new primary data

on the ambition of corporate climate targets and apply a domain-specific language model to

analyse companies’ climate-related disclosure.

Overall, my findings suggest rather limited effectiveness. I find no statistically significant

impact on climate-related disclosure or carbon intensities. However, I observe a significant

treatment effect on medium- and long-term target setting. Yet closer examination reveals

that this effect is driven primarily by the Plus companies, for which endogeneity cannot
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be ruled out. Unpacking the effect further, it stands out that CA100+’s impact is absent

on short-term targets. This raises concerns about the backloading of corporate decarboni-

sation efforts, i.e., companies are relying on steeper emission reductions in the distant fu-

ture. Surprisingly, I do not find that the impact of CA100+ is significantly moderated by

the coalition’s collective ownership share, suggesting that greater collective ownership does

not necessarily translate into greater engagement impact. Moreover, I find no evidence of

spillover effects from coordinated CA100+ engagement into investors’ individual engagement

activities, as higher collective ownership is not associated with changes among non-target

firms. All results are robust to a comprehensive set of checks, including alternative measures

of climate action (i.e., CDP responses4 and financial carbon intensities from Trucost), as

well as controls for regulatory heterogeneity and sectoral dynamics.

This paper aims to advance the literature on investor impact by providing new causal

evidence on the effectiveness of coordinated investor action. In their pioneering studies,

Slager et al. (2023) and Dimson et al. (2023) analyse which factors determine the effectiveness

of subgroups of investors engaging through the United Nations Principles for Responsible

Investment (PRI). My study differs in focus. Rather than examining subgroups, I provide,

to the best of my knowledge, the first causal assessment of the investor coalition itself – that

is, the governance institution that organises and coordinates these engagements. Moreover,

while both PRI and CA100+ are key players in organising collective engagements, they differ

in focus and approach. PRI engagements are broad, addressing a wide range of sustainability

issues across many companies. In contrast, CA100+ focuses explicitly on decarbonisation

objectives, targeting a smaller group of companies that account for a significant share of

global carbon emissions.

4CDP is a voluntary environmental disclosure platform for companies, investors, governments and cities.
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A few studies offer correlational results suggesting that CA100+ may be effective in influ-

encing corporate climate behaviour. Bingler et al. (2024) document an association between

the CA100+ focus list and more precise climate commitments while Chang and Fang (2024)

find a negative effect on the carbon emissions of focus companies’ customers and suppliers

in China. The study most closely related to mine is Chuah et al. (2025), who find that

the focus firms reduced their carbon intensities, particularly in countries with more climate

laws. They also report possible spillover effects via directors who sit on the boards of both

CA100+ companies and other firms. While these studies offer valuable suggestive evidence,

they stop short of establishing causality. In particular, they do not assess the CA100+ com-

pany selection, rely on counterfactuals that may face different decarbonisation challenges

and use financial-based carbon intensities excluding Scope 3.

This paper also seeks to enhance the field on the measurement of corporate climate

action. While there is a recognised inconsistency in large datasets concerning companies’

sustainability and climate actions (Berg et al., 2022; Busch et al., 2022), these are still often

used in research due to a lack of alternatives. By constructing new primary datasets of

refined measures of corporate climate actions, I provide precise proxies for investors’ specific

engagement asks. In this context, I contribute to the literature on firm pledges (Ioannou

et al., 2016; Bolton and Kacperczyk, 2025; Jiang et al., 2025) by introducing a novel measure

of target ambition that accounts for firms’ differing starting points and enables consistent

comparisons across different time horizons.

Additionally, this study is positioned within the subfield of climate finance, specifically

examining how investors try to mitigate climate risks among their investees. Evidence from

Flammer et al. (2021) and Ilhan et al. (2023) shows that institutional investors actively

seek improved climate disclosures, aligning with one of CA100+’s engagement objectives.
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Furthermore, Azar et al. (2021) highlight that the Big Three asset managers actively engage

their investee companies to lower their carbon footprint. However, the simultaneous impact

of investor action on different aspects of companies’ climate action, particularly on forward-

looking metrics, has not been extensively researched. Moreover, by analysing the CA100+

company selection process, I present first empirical evidence that investor selectivity may

indeed matter for engagement outcome – a potential endogeneity concern raised by Heeb

and Kölbel (2024).

In section 2, I provide a conceptual framework for the effectiveness of investor coalitions.

In section 3, I analyse the CA100+ company selection process. Section 4 explains challenges

in measuring corporate climate action and describes how this study tries to overcome those.

Section 5 presents the research design and section 6 evaluates the results. After showing a

series of robustness checks in section 7, I discuss my findings in section 8 and conclude in

section 9.

2 Conceptual framework

Why would investor coalitions be able to influence companies’ climate action? While in-

vestors have a long history of engaging with companies on sustainability issues individually

(Dimson et al., 2015), their ability to do so in isolation is often limited. Apart from the

world’s largest asset managers (Azar et al., 2021), individual investors often lack sufficient

ownership stakes. Their position is further weakened when individual demands diverge from

those of other shareholders. Consequently, the impact of engagement is likely to depend on

both the represented ownership share and the degree of consensus among shareholders.

Stewardship work also requires investors to expend time and resources, while the benefits

7



of improved company performance accrue to all shareholders. This creates a classic collective

action problem, where individual efforts are disincentivised despite potential benefits for the

group (Olson, 1965) and has been widely discussed as the issue of free-riding in investor

engagement (Doidge et al., 2019).

Investor coalitions are an opportunity to overcome these challenges. By bringing to-

gether committed investors, they provide an infrastructure for coordinated engagement and

reduce free-riding incentives (Gond and Piani, 2013). Through shared expectations, pooled

resources and coordinated targeting of companies, collective engagement could amplify in-

vestor influence well beyond what individual member could achieve alone (Dimson et al.,

2015, 2023).

This is the fundamental idea behind CA100+. CA100+ frames climate change as a

material financial risk that could lead to systemic financial instability. Investors can address

this risk “[b]y working together” and driving corporate change through collective engagement

(Climate Action 100+, 2024). Each CA100+ investor signs a commitment to encourage their

investee companies to align with the goals of the Paris Agreement. Every target company is

assigned a group of lead and supporting investors. While investors can only take decisions on

behalf of their own AUM over which they have fiduciary duty, they engage with companies

as part of CA100+. The coalition’s significant combined AUM – and the resulting collective

ownership stakes – provide the financial weight that underpins the engagement efforts.

Investors can conduct engagement in private and in public. Several studies provide

evidence of improved sustainability outcomes following individual investor engagement with

companies behind closed doors (Bauer et al., 2023; Hoepner et al., 2024). When private

engagement is unsuccessful, investors may resort to more coercive public tools – most notably,

exercising their voting rights. Shareholder proposals have been shown to prompt corporate
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responses on climate issues (Flammer et al., 2021). As Dyck et al. (2019) argue, such

proposals are often used strategically to reinforce private engagement efforts.

Given the ongoing debate over the relative effectiveness of engagement versus divestment

strategies (Broccardo et al., 2022), it is important to note that investor coalitions do not

publicly advocate for capital reallocation. Nonetheless, the effectiveness of engagement may

ultimately rest on the implicit threat of divestment. If a critical mass of investors withdraws

capital in response to poor sustainability performance, a company’s cost of capital may rise

(Heinkel et al., 2001; Rohleder et al., 2022). Firms may therefore comply with the demands

of investor coalitions in part to maintain future access to capital. Consequently, I derive the

following baseline hypothesis:

H1: CA100+ has a positive effect on targeted companies’ climate action.

While some of the world’s largest pension funds – such as the California Public Employ-

ees’ Retirement System and Japan’s Government Pension Investment Fund – were among

the earliest signatories, CA100+ reached a new scale in 2020 when BlackRock and other

major asset managers joined. In parallel, CA100+ introduced new tools to publicly moni-

tor and incentivise corporate climate action, notably the Net Zero Company Benchmark in

2021 which evaluates the performance of the focus companies across fourteen key indicators.

Prior research shows that such benchmarking can drive behavioural change, particularly

when companies are assessed alongside competitors (Chatterji and Toffel, 2010; Sharkey

and Bromley, 2015). Given CA100+’s continuous growth and development until 2024, it is

plausible to expect that the coalition’s influence has increased.

H2: The impact of CA100+ on targeted companies becomes stronger over time.
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However, the influence over targeted companies is likely to vary based on the collective

ownership shares of CA100+ investors. Dyck et al. (2019) show that a higher share of

institutional ownership is positively associated with improvements in corporate sustainability

performance. I therefore propose a third hypothesis:

H3: The collective ownership share of CA100+ in targeted companies moderates the impact.

Thus far, I have focused on the direct impact of CA100+ on its focus companies. However,

CA100+ may also have indirect effects beyond its official focus list. In particular, coordinated

engagement may facilitate knowledge sharing among investors and enhance their stewardship

capabilities – what Marti et al. (2024) refer to as “field building”. This could, in turn,

strengthen individual engagement efforts with non-CA100+ companies and create a spillover

effect.5 If such an effect exists, it can be expected to be stronger among non-CA100+

companies with higher collective CA100+ ownership, as these firms are likely subject to

more individual engagement by CA100+ investors. I therefore propose a fourth hypothesis:

H4: Non-CA100+ companies with a higher collective ownership share of CA100+ exhibit

greater improvements in climate action than those with a lower share.

3 The CA100+ company selection process

When CA100+ launched in December 2017, it initially aimed to target the 100 largest pub-

licly listed corporate greenhouse gas emitters (the “CA100 companies”), e.g., Exxon Mobil

and Coal India. In June 2018, the focus list was extended to include 61 additional “Plus”

firms identified as “transition enablers”, such as Walmart and BMW, although no clear se-

lection criterion was disclosed. As of July 2025, the focus list comprises 169 companies,

5While I use the term “spillover effect” for simplicity, this does not represent a spillover in the classical
sense, i.e., the treatment itself is not diffusing from treated to control units. Strictly speaking, the mechanism
reflects a secondary treatment effect.
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reflecting subsequent additions and changes due to mergers and acquisitions. This study

focuses on the CA100 and Plus companies (together the “CA100+ companies”), as these

constitute the earliest and most significant additions. Figure 2 shows their sectoral distribu-

tion and internet appendix IA1 includes the full lists of companies.

In 2020, Climate Action 100+ (2024) stated that the focus companies accounted to-

gether for 80% of all global industrial emissions. This figure is likely overstated due to

double-counting across Scope 1, 2 and 3 emissions which occurs when direct and indirect

emissions are aggregated across firms without adjusting for overlaps in their value chains. In

an effort to avoid double-counting, Heede (2020) traces historical carbon emissions back to

major corporate polluters, using only Scope 1 and Scope 3 (category 11 use of sold product)

emissions. While only thirty-six CA100+ companies – less than one-quarter of the focus

list – are covered by his analysis, these account collectively for over 21% of global cumula-

tive emissions from 1850 to 2018.6 If CA100+ is successful, its impact on the low-carbon

transition could therefore be substantial.

6Author’s calculations based on the Carbon Major database 2020.
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Figure 2: Sectoral distribution of CA100+ companies. This figure shows the distri-
bution of the CA100 (in red) and Plus (in yellow) companies by sector.

Importantly, the focus companies could not self-select or opt-out. The initial CA100

companies were chosen mechanically by identifying the top 100 corporate emitters based

on reported and estimated Scope 1, 2 and 3 emissions from the CDP 2015 database. This

selection rule represents a quasi-exogenous shock for two reasons.

First, emissions data – particularly for Scope 3 and in earlier years like 2015 – are known

to be highly modelled and uncertain (Busch et al., 2022). In fact, emissions rankings vary

substantially across data providers. While CA100+ used CDP data, sorting companies by

absolute emissions in the 2015 Trucost database – a widely used alternative in the literature

(Bolton and Kacperczyk, 2023) – yields striking differences: only 46 CA100+ firms appear

in Trucost’s top 100 emitters, and 23 do not even appear in the top 300.

Hence, a top-down selection rule using only one database does not necessarily allow

for a selection of companies based on pollution levels. The discrepancies across databases
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reflect measurement noise which is plausibly orthogonal to firm responsiveness to investor

engagement. As a result, the mechanical selection rule introduces quasi-random variation.

I exploit this by selecting counterfactuals based on Trucost absolute emissions and other

factors, as explained in section 4.

Second, even if CA100+ had selected the top 100 polluters based on perfectly measured

emissions, absolute emissions alone are unlikely to predict a firm’s propensity to reduce them.

A company’s carbon footprint is typically driven by sector and size. By definition, the major-

ity of the initial focus group are therefore large companies in hard-to-abate sectors. However,

from an economic perspective, a company’s capability or willingness to reduce carbon emis-

sions is inversely proportional to marginal abatement costs (MACs) rather than directly

dependent on firm size (Gillingham and Stock, 2018). Some aspects of abatement costs may

depend on fixed costs, potentially increasing larger firms’ willingness to reduce emissions.

Specifically, larger companies may spread fixed abatement investments over greater output,

lowering the average cost per ton abated. While this does not reduce MAC in a strict sense,

it could make certain abatement options financially feasible. However, MACs are influenced

by various other factors such as the cost-effectiveness of different mitigation options that are

often difficult to observe and likely unknown to investors. Even if such data were available,

a comparison of MACs across companies would require an intensity-based analysis rather

than sorting companies by their absolute carbon footprint. In section 4, I show that CA100

companies do not differ systematically in their carbon intensities from other companies.

A nuance to consider is that this second argument holds for the propensity to reduce

carbon emissions but may not apply as well to other measures of climate action. For example,

larger companies may have more resources to enhance climate-related reporting (Drempetic

et al., 2020). Thus, firm size remains an important factor when selecting counterfactuals.
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On the other hand, there was no clear selection criterion for the Plus companies. Based

on interviews conducted with CA100+ investors7, these companies were selected due to their

strategic importance in the low-carbon transition and with consideration given to regional

balance. This process relied on investors’ prior knowledge of the companies, introducing

a potential selection bias – investors could have targeted firms they expected to be more

responsive to engagement. Given these differences in selection, I assess the impact of CA100+

on the full focus group, as well as separately for the CA100 and Plus companies.

4 Data and descriptive statistics

4.1 The CA100+ engagement goals

A central challenge in assessing the effectiveness of investor engagement lies in accurately

measuring the intended outcomes, which are rarely directly observable to researchers. Pre-

vious studies have dealt with this issue in two main ways. One approach relies on using

readily available outcome metrics, such as sustainability ratings (Dyck et al., 2019; Barko

et al., 2022) or carbon emissions (Azar et al., 2021) – without necessarily establishing whether

these metrics align with the specific engagement goals. The other approach uses self-reported

measures of success, such as internal engagement records made available by investors (Dim-

son et al., 2015, 2023; Hoepner et al., 2024). The latter research design provides valuable

insights into how engagement is designed and implemented. Yet, it may be prone to bias if

investors have incentives to overstate their effectiveness.

In this context, CA100+ presents a unique empirical setting. Unlike most engagement

7The author was part of a parallel research project examining the role of CA100+ through interviews
with both investors and target companies.

14



campaigns, CA100+ articulated its goals publicly at its launch in 2017. While they have

been refined over time, the three core engagement objectives have remained consistent:

1. Board-level accountability and oversight of climate-related risks,

2. Adoption of emission reduction targets aligned with the Paris Agreement – a focus on

actual emission reductions was added in 2023, and

3. Disclosure of climate-related information in line with the recommendations of the Task

Force on Climate-related Financial Disclosures (TCFD).

I therefore use a multi-dimensional measurement strategy to systematically align my re-

search outcomes with these three goals, drawing on both newly collected primary data and

public sources. First, I construct a new dataset with the ClimateBERT-TCFD model by

Bingler et al. (2022) to evaluate climate-related disclosure, including a governance dimen-

sion. Then, I assess corporate decarbonisation and the ambition of forward-looking targets

using sector-adjusted carbon intensity metrics from the Transition Pathway Initiative (TPI).

TPI is an investor-led initiative supported by an independent research team based at the

London School of Economics and Political Science, which develops sector-specific method-

ologies grounded in the Sectoral Decarbonisation Approach (Krabbe et al., 2015). To extend

the available time series, I augment the publicly available TPI database with newly collected

historical data. Notably, CA100+ relies on TPI data in its Net Zero Company Benchmark.

This enables a transparent assessment of the coalition’s effectiveness against its own stated

goals and tracking metrics.
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4.2 Selecting a suitable base universe

Collecting new primary data first requires establishing a baseline universe of companies. By

design, the CA100 companies constitute some of the world’s largest corporate polluters and

the Plus list similarly includes companies with substantial carbon footprints. A credible

causal design must therefore address the challenge of identifying suitable counterfactuals.

Even within a DiD setting, firm and time fixed effects may not fully capture systematic

differences across companies with varying emissions levels. One key concern is that firms

face distinct decarbonisation challenges depending on the sector in which they operate. For

instance, technology and service companies may be able to reduce emissions more rapidly

than hard-to-abate sectors, where the CA100+ companies are disproportionately concen-

trated. A second concern is firm size. Larger firms are more likely to face public scrutiny

and pressure, potentially prompting climate action independent of CA100+ engagement.

Based on these considerations, I aim to compile a base universe of large firms with

substantial carbon footprints operating in the same sectors as CA100+ companies. The

corporate universe assessed by TPI is well suited for this purpose. TPI selects firms using

a top-down approach based on absolute carbon emissions from Trucost and market capital-

isation. I therefore adopt as my baseline universe 512 companies covered by TPI from the

14 CA100+ sectors.

4.3 TCFD reporting

The TCFD published its recommendations in June 2017, aiming to enhance corporate re-

porting across four main areas: governance, strategy, risk management and metrics and

targets. Since CA100+ was launched only six months later, obtaining pre-treatment data
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that precisely follow the TCFD recommendations is challenging. Nonetheless, a broader

assessment of corporate disclosures on these topics is possible. The ClimateBERT-TCFD

model categorises disclosure into non-climate-related and climate-related content, which is

then classified into the four TCFD categories. Due to the inconsistency and incomparability

of voluntary disclosures, investors tend to rely more on mandatory disclosures when assessing

sustainability information (Ho, 2020). I therefore follow Bingler et al. (2022) and focus on

companies’ annual reports (AR).

I collect all available ARs for the TPI universe for the period from 2014 to 2022.8 Then,

I extract the raw text, split it into sentences and analyse them with ClimateBERT-TCFD.9

Lastly, I measure the proportion of AR content (in percentage of total sentences) discussing

climate-related information and each of the four TCFD categories. After excluding com-

panies with missing values, I retain a sample of 425 companies, including 84 CA100, 53

Plus, and 288 Non-CA100+ companies. Figure 3 shows that both CA100 and Plus compa-

nies generally report more climate-related information than Non-CA100+ companies. In all

groups, climate-related reporting increased in the post-treatment period. The proportions

of ARs dedicated to climate-related content are similar to the findings on TCFD supporting

companies by Bingler et al. (2022). Yet, companies from the TPI universe report primarily

on strategy rather than governance.

8Public filing requirements vary by country. In cases where ARs were unavailable, I select the most
comparable annual disclosure in English, such as the Universal Registration Document in France or the
Annual Integrated Report in Japan

9I first apply the ClimateBERT base model to retain only climate-related sentences with an accuracy
score of 99.5%. Then, I use the TCFD model to classify the climate content into the four categories.
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Figure 3: TCFD reporting by group and by period. This figure shows the average
shares of CA100, Plus and Non-CA100+ companies’ ARs that are dedicated to the four
TCFD categories in the pre- and post-treatment periods. The governance category is in
blue, strategy in purple, risk in black and metrics and targets in grey.

4.4 Carbon emission reductions

Researchers face a persistent dilemma when measuring corporate carbon emissions. Despite

widespread recognition of the limitations in standard emissions datasets, these remain widely

used due to a lack of alternatives. Most studies on investor impact rely on carbon intensity

metrics with Scope 1 and 2 emissions in the numerator (Rohleder et al., 2022; Chuah et al.,

2025). Given the inconsistencies in how Scope 3 emissions are measured (Busch et al.,

2022), they are often omitted or used only in robustness checks. However, excluding Scope 3

emissions is particularly problematic in the case of CA100+ companies, which often operate

in sectors where the majority of lifecycle emissions occur downstream.

Financial metrics in the denominator can introduce additional measurement issues. For

18



example, revenue or market capitalisation can fluctuate due to factors unrelated to carbon

efficiency. In some cases, this can lead to non-classical measurement error. For instance, the

2022 energy price spike lowered revenue-based carbon intensities in the oil and gas sector,

although absolute emissions increased due to higher sales. The resulting measurement errors

are correlated with companies’ “true” climate performance.

To address these concerns, I rely on sector-adjusted carbon intensities from TPI, which

are also used by CA100+. TPI has developed methodologies for nine CA100+ sectors –

airlines, automotives, cement, coal, electricity, oil and gas, paper, steel and shipping. For

each sector, companies’ most material carbon emissions from a lifecycle perspective are

calculated using publicly available corporate and regulatory data. For instance, in the oil and

gas sector, Scope 1 and 2 emissions are taken directly from company disclosures, while Scope

3 downstream emissions are estimated by applying emissions factors to different categories

of energy sales volumes (Dietz et al., 2021). The resulting absolute emissions are normalised

by physical production output, such as energy sold or tonnes of steel produced. For this

analysis, I use carbon intensity from 2014 and 2022. After excluding firms with missing

values, my final sample includes 226 companies: 50 CA100, 40 Plus, and 136 Non-CA100+

firms. Internet appendix IA2 provides further details on the TPI methodology and the

distribution of my sample by sector.

Figure 4 presents the average carbon intensities in the pre- and post-treatment periods

by sector and by group. I find no systematic pattern in pre-treatment carbon intensity levels

across groups. Plus companies have higher average intensities in the electricity and airline

sectors, CA100 companies lead in steel and oil and gas, while Non-CA100+ firms have

the highest intensities in coal and cement. Differences in the paper and shipping sectors

are negligible due to their small number of CA100+ companies. Meaningful reductions in
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average carbon intensity between the pre- and post-treatment periods are observed only

in the electricity and automotive sectors. The airline and coal sectors show increases in

their carbon metrics over time. These are driven by external shocks, such as “ghost flights”

operated by airlines during the pandemic and the global rebound in coal demand.

4.5 Carbon emission reduction targets

TPI uses companies’ climate targets to calculate forward-looking carbon intensities until

2050. Importantly, these projections include again Scope 3 emissions in sectors where these

are material. For example, if an oil and gas firm sets a Scope 1 and 2 net-zero target,

projected Scope 3 emissions are held constant. For firms without targets, TPI assumes a flat

trajectory holding the latest historical carbon intensity constant.
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Figure 4: Average carbon intensity reductions. This figure shows the average sector-specific carbon intensi-
ties in the pre- (light green) and post-treatment (dark green) periods with standard deviations across the CA100,
Plus and Non-CA100+ groups for the airlines, automotives, cement, coal mining, electricity utilities, oil & gas,
paper, shipping and steel sectors.
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This method improves on common approaches in the literature, which typically focus

only on Scope 1 and 2 targets. Calculating the projected slope relative to the company’s

starting point also provides a more robust measure of target ambition. While taking reported

reduction rates at face value – such as a 70% target being deemed more ambitious than

a 50% target over the same horizon (Ioannou et al., 2016; Jiang et al., 2025) – offers a

first approximation, it can introduce bias if the starting point is not accounted for. Firms

can inflate ambition by selecting a base year with unusually high emissions (Bolton and

Kacperczyk, 2025). Anchoring the targeted emissions level to the most recent historical

data point mitigates this bias. Moreover, the forward-looking pathways by TPI allow for

the analysis of target ambition across different time horizons. Since CA100+ tracks progress

across the target years 2025, 2035 and 2050, I also focus on these reference points.

The relevant time variable for my analysis of target ambition is the year in which the

TPI assessment was conducted. Internet appendix IA2 illustrates how a company’s forward-

looking emissions pathway evolves across research cycles as targets are updated. However,

TPI was launched only five months before CA100+ and expanded its coverage gradually.

Consequently, there are almost no pre-treatment observations in the readily available TPI

dataset. I therefore construct a new primary dataset, extending the TPI target data back

to a hypothetical 2015 research cycle. I identify historical targets from corporate disclosures

and calculate projected carbon intensities in strict accordance with the TPI methodologies

for the previously mentioned 226 companies. Internet appendix IA3 provides further details

on this process.
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Figure 5: Average ambition of corporate climate targets. This figure shows the average targeted sector-
specific carbon intensities in the pre- (light green) and post-treatment (dark green) periods with standard de-
viations for the years 2025, 2035 and 2050 across the CA100, Plus and Non-CA100+ groups for the airlines,
automotives, cement, coal mining, electricity utilities, oil & gas, paper, shipping and steel sectors.
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Figure 5 shows average projected carbon intensities for 2025, 2035 and 2050 across the

pre- and post-treatment periods by group and by sector. Targeted carbon intensities are

lower in the post- than in the pre-treatment period across nearly all sectors and target years.

This suggests that target ambition has increased over time. Electricity utilities exhibit the

most pronounced targeted reductions. By contrast, ambition declines strongly in the airline

sector, likely due to the rebaselining of emissions targets after the pandemic. Given the

magnitude of this distortion, I exclude the sector from the further analysis.

4.6 The collective CA100+ ownership share

Lastly, I calculate the collective ownership share of CA100+ investors for the TPI universe.

CA100+ maintains an up-to-date list of current investor signatories on its website but does

not disclose the timing of entries or exits. To construct a time-varying ownership measure, I

compile a panel of entry and exit years for all current and former signatories based on annual

snapshots of the CA100+ website from the Internet Archive.

I then merge this information with historical firm-level data on outstanding shares from

Refinitiv. Since Refinitiv lists separate entities within the same investment group (e.g.,

State Street UK vs. State Street US) as distinct owners, I use fuzzy matching to link the

CA100+ investor names with Refinitiv’s investor names. I apply a strict matching threshold

of 6.5% in string distance determined through multiple rounds of manual checks. Given the

concentration of global AUM among a relatively small number of players, I also manually

verify matches for the 15 largest CA100+ asset managers. Due to the conservative matching

procedure, I expect the resulting estimates to represent a lower bound.

Figure 6 shows the evolution of average collective CA100+ ownership across the three

firm groups. In 2017, founding signatories already held an average stake of 4% across all
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firms. Similar to AUM, ownership shares increased substantially in 2020 with the entry of

several large U.S. asset managers. Notably, CA100+ holds the highest average ownership in

the Plus group.

Figure 6: CA100+ equity ownership. This figure shows the average collective ownership
share of CA100+ investors in terms of outstanding shares by CA100 (dark blue), Plus (light
blue) and Non-CA100+ (grey) companies from 2017 to 2023.

5 Research design

As a baseline specification, I estimate a TWFE DiD regression model to measure the im-

pact of CA100+ on corporate climate action. The model is run for the whole focus group

and separately for the CA100 and Plus companies, comparing them against Non-CA100+

companies:

(1) Yit = α+ β1CA100i ∗ Postt + β2CA100i + β3Postt + γi + µt + ϵit

Y is the climate action of company i in year t, CA100i is a dummy variable that takes the
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value of 1 for CA100+ companies, Postt is a time dummy that takes the value of 1 after the

start of the treatment (2018 for the combined analysis, 2018 for CA100 companies and 2019

for Plus companies). Company fixed effects, denoted by γi, control for any time-invariant

differences between CA100+ and Non-CA100+ companies. Year fixed effects, denoted by µt,

account for shocks that affect CA100+ and Non-CA100+ companies alike in specific years,

such as the Covid-19 crisis. The model is estimated using a linear OLS regression. Standard

errors are clustered at the company level.

I also run a staggered DiD specification to analyse the simultaneous effect of CA100+

on the CA100 companies and the Plus List and to explore temporal changes. Given the

limitations of the TWFE specification in estimating heterogeneous and dynamic treatment

effects in staggered models (Goodman-Bacon, 2021), I use the robust estimator developed

by Callaway and Sant’Anna (2021).

Next, I analyse treatment intensity by incorporating the CA100+ collective ownership

variable. An important consideration is that collective ownership may not be entirely ex-

ogenous. It is plausible that CA100+ investors adjust their portfolio holdings in response

to firms’ climate action – potentially increasing their stakes in companies that appear re-

sponsive to engagement and divesting from those that resist. For example, the Church of

England, a founding CA100+ member, divested from oil and gas firms after Shell and BP

rolled back their emissions targets in 2023 (The Guardian, 2023). To address this concern

of post-treatment bias, I construct a shift-share variable, leveraging variation in the timing

of investor entry into CA100+.

The identification strategy follows a standard shift-share logic: the expansion of CA100+

– that is, the staggered entry of new signatories – is plausibly driven by exogenous insti-

tutional dynamics (e.g., peer pressure, advocacy momentum), not by individual firm-level
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climate responses. From the perspective of the focus companies, this results in an exogenous

shock to investor composition – a company may experience an increase in CA100+ ownership

not because of changes in its own behaviour, but because a new signatory already holding a

stake in the firm joined the coalition.

Specifically, I calculate the shift-share variable in three steps. First, I use the CA100+

collective ownership shares of founding members for years prior to 2017, allowing for variation

over time in the pre-treatment period. Second, I fix the ownership shares of founding CA100+

members at their 2017 levels to represent baseline exposure. Third, for each subsequent

year, I add the ownership shares of new joiners only in the year they join, holding their

ownership constant thereafter (unless the investor exits the coalition). Formally, the shift-

share exposure Zit for firm i at time t is given by:

Zit =


∑

founders sit if t < 2017∑
founders s

(j=2017)
i +

∑
new joiners

j≤t
sjit if t ≥ 2017

where s denotes the ownership share held by a CA100+ investor in firm i at time t with j

showing the investor’s entry year into CA100+. From year j onward, the investor’s ownership

share is held constant in all subsequent years t (unless the investor exited CA100+).

I then estimate the effect of treatment intensity via a triple interaction term:

(2) Yit = α+ β1CA100i × Postt × Zit + β2CA100i × Postt + · · ·+ γi + µt + ϵit.

The coefficient β1 is the main parameter of interest. It captures whether the effect of

CA100+ engagement is stronger among firms with larger collective CA100+ ownership. All
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constituent lower-order interactions are included.

Finally, I examine potential spillover effects from CA100+ by testing whether investors’

collective engagement experience through CA100+ enhances their individual stewardship

efforts with other portfolio companies. Specifically, I assess whether Non-CA100+ firm show

differential changes in climate action following the initiative’s launch. To do so, I exclude all

CA100+ focus companies from the sample and estimate the following panel regression:

(3) Yit = α+ β1Postt × Zit + β2Postt + β3Zit + γi + µt + ϵit.

Here, the coefficient β1 tests whether non-target firms with higher collective CA100+

shift-share ownership experience greater improvements in climate outcomes after the initia-

tive’s launch, relative to non-target firms with lower ownership. A positive and significant β1

would suggest a learning or diffusion effect from coordinated engagement to individual en-

gagement. Yet this approach does not identify a causal treatment effect, as the analysis lacks

a well-defined counterfactual. Accordingly, the results should be interpreted as suggestive

rather than causal evidence.

6 Results

6.1 TCFD reporting and carbon emission reductions

Figure 7 plots the pre- and post-treatment trends for climate-related reporting and carbon in-

tensities for the whole focus group and Non-CA100+ companies. Since TPI carbon intensity

measures vary by sector, I standardise them using z-scores, reflecting differences in standard

deviations from the sector mean in 2014. A visual inspection shows similar pre-treatment
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trends across groups, supporting the parallel trends assumption. Yet the post-treatment

trends remain largely unchanged, suggesting no strong treatment effect on either of the two

engagement goals.

These observations are further corroborated by the TWFE DiD results in table 1, which

show no statistically significant treatment effects across the baseline models, interactions

with the shift-share ownership variable or tests for spillovers. Notably, the main treatment

effects and their corresponding standard errors are close to zero. The separate TWFE DiD

analyses for the CA100 and Plus companies, the disaggregated results by TCFD category

– including governance – and the event study plots in appendices A and B further support

these findings. There is little evidence to suggest that CA100+ had a meaningful impact on

firms’ TCFD reporting or carbon intensities.

6.2 Carbon emission reduction targets

For the analysis of target ambition, the time variable corresponds to TPI research cycles and

the outcome is the firm’s projected carbon intensity in a given target year. I standardise

the sector-specific carbon intensities again using z-scores, calculated relative to the forward-

looking sector means and standard deviations from the 2015 research cycle. The resulting

z-scores thus reflect standard deviation differences from the sectoral mean from research

cycle 2015 for each target year.

Figure 8 shows parallel pre-trends between CA100+ and Non-CA100+ firms from 2015

to 2017 across all target years. A visual inspection suggests that CA100+ engagement

did not meaningfully impact short-term (2025) targets. However, for medium- (2035) and

long-term (2050) targets, the trajectories begin to diverge post-treatment. These patterns

are confirmed by the DiD estimates in Table 2. The effect on 2025 targets is statistically
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insignificant, while the estimates for 2035 and 2050 targets are significant at the 1% level,

indicating that CA100+ had a positive impact on the ambition of firms’ medium- and long-

term climate targets.

Interestingly, CA100+ investors tend to hold disproportionate stakes in firms with less

ambitious targets, as indicated by the positive coefficients on the shift-share ownership vari-

able for 2035 and 2050. I find no evidence that higher collective ownership by CA100+

investors causally increases target ambition among focus firms, nor do I find significant

spillover effects on non-target firms.

For further investigation, I analyse the impact of CA100+ on the targets of the CA100

and Plus companies separately. Figure 8 includes the separate pathways and table 3 shows

the TWFE DiD results. Notably, the effect of CA100+ on companies’ 2035 and 2050 targets

appears to be primarily driven by the Plus group, where the average effects are significant

at the 1% level. For CA100 companies, the effect is only marginally significant for 2050

targets (10%) and substantially weaker in magnitude (–0.42 vs. –1.16 standard deviations).

While there is some evidence that higher collective ownership contributed to more ambitious

2035 targets among CA100 firms, the difference in overall treatment effects between the two

groups is striking.
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Figure 7: Trends in climate-related reporting and carbon intensities. This figure
shows the pre- and post-treatment trends in climate-related reporting and sector-specific
carbon intensities across the CA100+ (red) and Non-CA100+ (grey) companies from 2014
to 2022. The launch of CA100+ in 2017 is indicated by a vertical black bar.

Climate-related reporting Carbon Intensities
(1) (2) (3) (1) (2) (3)

treat*post 0.17 0.16 0.00 0.04
(0.36) (0.50) (0.05) (0.07)

treat*post*ownership 6.45 −0.33
(8.60) (1.81)

ownership −1.10 1.41 1.93 1.99
(3.75) (3.80) (1.61) (1.62)

post*ownership −1.88 −1.82 −1.83 −1.87
(3.51) (3.46) (1.62) (1.63)

Num. obs. 3825 3721 2515 1847 1750 1033
R2 0.75 0.75 0.77 0.92 0.92 0.91
Adj. R2 0.72 0.72 0.74 0.90 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 1: This table shows the results of the average CA100+ impact (first column), CA100+
impact moderated by shift-share ownership (second column) and the spillover analyses (third
column) on climate-related reporting in the left panel and historical carbon intensities in the
right panel, comparing CA100+ to Non-CA100+ companies. Standard errors are clustered
at the firm-level. t-Statistics are in parentheses.
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Figure 8: Trends in target ambition across the short-, medium- and long-term.
This figure shows the pre- and post-treatment trends in target ambition for the target years
2025, 2035 and 2050 from 2015 to 2023. The left hand side shows the CA100+ (red) and
Non-CA100+ (grey) companies. The right hand side shows the CA100 (dark blue), Plus
(light blue) and Non-CA100+ (grey) companies. The launch of CA100+ in 2017 is indicated
by a vertical black bar. The addition of the Plus list in 2018 is indicated by a dashed vertical
black bar.

I next examine the dynamics of the heterogeneous treatment effects. Figure 9 plots the

effects by research cycle, with the top panels showing the effect on the CA100 companies and
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TY 2025 TY 2035 TY 2050
(1) (2) (3) (1) (2) (3) (1) (2) (3)

treat*post −0.06 0.08 −0.30∗∗∗ 0.03 −0.66∗∗∗ −0.07
(0.06) (0.09) (0.11) (0.16) (0.21) (0.31)

treat*post*ownership −2.98 −4.80 −6.77
(2.20) (3.58) (7.26)

ownership 1.26 0.75 4.45∗∗ 2.33 9.26∗∗∗ 4.50
(1.64) (1.66) (2.15) (2.06) (3.10) (2.73)

post*ownership −1.39 −1.12 −3.25 −2.13 −6.01∗∗ −3.52
(1.74) (1.74) (2.20) (2.13) (2.96) (2.71)

Num. obs. 1847 1750 1032 1847 1750 1032 1847 1750 1032
R2 0.87 0.88 0.88 0.74 0.75 0.76 0.61 0.62 0.61
Adj. R2 0.86 0.87 0.86 0.70 0.72 0.72 0.55 0.57 0.56
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 2: This table shows the results of the average CA100+ impact (first column), CA100+
impact moderated by shift-share ownership (second column) and the spillover analyses (third
column) on carbon emission reduction targets set for 2025, 2035 and 2050, comparing
CA100+ to Non-CA100+ companies. Standard errors are clustered at the firm-level. t-
Statistics are in parentheses.

the bottom panels showing the effect on the Plus companies at 95% confidence intervals. For

CA100 firms, the effects remain statistically insignificant across all target years. By contrast,

the effect is significant for the Plus group for 2035 and 2050 targets from research cycle 2020

onwards, with growing magnitude through 2023.

7 Robustness checks

7.1 Alternative measures of disclosure and carbon intensity

A potential concern regarding the analysis of climate-related reporting is that the content

in ARs may not comprehensively capture companies’ disclosure. To address this, I conduct

a robustness check using companies’ responses to CDP’s climate questionnaire.
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Figure 9: Event study on short-, medium- and long-term climate target ambition.
This figure shows the dynamic treatment effects of CA100+ on the ambition of 2025, 2035,
and 2050 targets set by CA100 and Plus companies relative to Non-CA100+ companies.
Pre-treatment estimates are shown in red, post-treatment estimates in blue. Confidence
intervals are set at 95%.
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CA100 companies Plus companies
TY 2035 TY 2050 TY 2035 TY 2050

(1) (2) (1) (2) (1) (2) (1) (2)

treat*post −0.13 −0.20 −0.42∗ 0.14 −0.61∗∗∗ −0.44 −1.16∗∗∗ −0.65
(0.12) (0.17) (0.22) (0.34) (0.19) (0.31) (0.39) (0.65)

treat*post*ownership −8.48∗ −13.78 1.52 2.25
(4.42) (9.15) (5.46) (12.64)

ownership 3.38 7.68∗∗ 4.92∗ 8.75∗∗

(2.10) (3.10) (2.52) (3.38)

Num. obs. 1532 1462 1532 1462 1399 1320 1399 1320
R2 0.77 0.78 0.63 0.63 0.72 0.73 0.59 0.61
Adj. R2 0.74 0.75 0.58 0.58 0.68 0.69 0.54 0.56
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 3: This table shows the results of the average CA100+ impact (first column) and
CA100+ impact moderated by shift-share ownership (second column) on carbon emission
reduction targets set for 2035 and 2050, comparing CA100 (left panel) and Plus companies
(right panel) to Non-CA100+ companies. Standard errors are clustered at the firm-level.
t-Statistics are in parentheses.

CDP plays an important role in driving corporate transparency by annually sending

questionnaires to companies. A crucial aspect of the CDP disclosure process is the choice

companies have to respond or not respond. It is precisely this strategic decision to opt in

or opt out which I exploit for the period 2016 to 2022. If CA100+ increases the propensity

of focus companies to report to CDP, this would indicate a positive impact on companies’

climate reporting. Internet appendix IA4 provides more information on how I use the CDP

dataset.

Since the CDP variable is binary, I estimate a binned DiD model using a pre-post design.

I bin the data into pre- and post-treatment periods and compare the mean response rates

between CA100+ and Non-CA100+ firms. The model is estimated as follows:
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(4) Y it = α+ β1(CA100i ∗ Postt) + β2Postt + γi + ϵit

Y it is the binned climate action of company i in either the pre- or post-treatment period

t. The model is estimated using a linear OLS regression with standard errors clustered at

the company level.

I also conduct a robustness check for carbon intensities using Scope 1, 2 and 3 upstream

emissions relative to revenue from Trucost. While the concerns raised in section 4.4 remain

– specifically, the omission of material Scope 3 downstream emissions and volatility in the

financial denominator – the advantage of the Trucost dataset is its larger sample size. It

allows for an analysis from 2010 to 2023 for 86 CA100, 51 Plus and 241 Non-CA100+ firms.

The results presented in table 4 reveal no significant treatment effects. CA100+ does not

appear to have influenced firms’ likelihood of responding to CDP or their carbon intensities

relative to revenue.

CDP reporting Carbon intensities
(4) (1)

treat*post −0.02 −120.33
(0.02) (116.23)

Num. obs. 726 5292
R2 0.90 0.87
Adj. R2 0.79 0.86
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 4: This table shows the results of the binned DiD analysis (4) on CDP reporting and
the TWFE DiD (1) on carbon intensities (Trucost), comparing all CA100+ companies to
Non-CA100+ companies. Standard errors are clustered at the firm-level. t-Statistics are in
parentheses.
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7.2 Varying regulatory environments

The CA100+ firms operate across diverse regulatory contexts. While company fixed effects

control for time-invariant differences in national climate policy and year fixed effects for

common temporal shocks, time-varying regulatory stringency at the country level could still

bias the results.

To address this concern, I follow Bolton and Kacperczyk (2023) and incorporate the

Climate Change Performance Index (2023) (CCPI) as a control variable for national cli-

mate policy stringency in the TWFE DiD model (1). The CCPI provides annual scores of

countries’ climate policy efforts. I match firms to CCPI scores based on their headquarters’

location. Internet appendix IA5 provides further detail on how the CCPI data were used.

Table 5 shows that the results on target setting remain robust when accounting for cross-

country variation in regulatory environments. The CCPI coefficients are not statistically

significant.

Since even the CCPI data may not fully capture relevant variations in climate policy

stringency, I conduct an additional test by restricting the sample to firms headquartered in

North America, the region with the largest representation. Table 6 shows that the estimated

effect on target ambition remains insignificant for CA100 firms. Despite the lower statistical

power of this regional analysis, the effect on the Plus firms’ long-term targets persists at

the 10% significance level, while the effect on medium-term targets is slightly above this

significance level. Internet appendix IA6 shows that the non-results for TCFD reporting

and carbon intensities are robust to controlling for CCPI and restricting the sample to

North American firms.
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CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

treat*post 0.00 -0.13 −0.42∗ -0.15 −0.61∗∗∗ −1.18∗∗∗

(0.07) (0.12) (0.22) (0.10) (0.19) (0.39)
CCPI -0.00 0.00 0.00 -0.00 -0.00 -0.01

(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

Num. obs. 1532 1532 1532 1399 1399 1399
R2 0.89 0.77 0.63 0.86 0.72 0.60
Adj. R2 0.87 0.74 0.58 0.84 0.68 0.54
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 5: This table shows the results of the DiD analysis, including CCPI scores, assessing
the impact of CA100+ on climate targets set for 2025, 2035, and 2050. The analysis is
conducted separately for CA100 companies (left panel) and Plus companies (right panel),
relative to Non-CA100+ companies. Standard errors are clustered at the firm level. t-
Statistics are in parentheses.

CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

treat*post -0.04 -0.07 -0.12 -0.18 -0.61 −1.33∗

(0.12) (0.17) (0.22) (0.22) (0.37) (0.69)

Num. obs. 412 412 412 369 369 369
R2 0.88 0.78 0.69 0.80 0.63 0.54
Adj. R2 0.86 0.75 0.64 0.77 0.57 0.47
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 6: This table shows the results of the DiD analysis assessing the impact of CA100+
on climate targets set for 2025, 2035, and 2050 among North American firms. The analysis
is conducted separately for CA100 companies (left panel) and Plus companies (right panel),
relative to Non-CA100+ companies. Standard errors are clustered at the firm level. t-
Statistics are in parentheses.
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7.3 Varying sectoral dynamics

Lastly, as discussed in section 4.2 , different sectors face different decarbonisation challenges.

Consequently, variations in the sector compositions across the three groups could bias the

results. To rule out this possibility, I conduct a stringent test by re-estimating all models

within a single sector: electricity utilities.

Table 7 confirms that the effect on target setting remains insignificant for CA100 firms,

while the impact on long-term targets among Plus firms persists at the 5% level. Internet

appendix IA7 further shows that the non-effects on TCFD reporting and carbon intensities

also hold within this sector.

CA100 Plus
TY: 2025 TY: 2035 TY: 2050 TY: 2025 TY: 2035 TY: 2050

treat*post -0.11 -0.10 -0.14 -0.02 -0.27 −0.48∗∗

(0.14) (0.18) (0.24) (0.14) (0.17) (0.20)

Num. obs. 438 438 438 512 512 512
R2 0.89 0.81 0.71 0.88 0.79 0.70
Adj. R2 0.87 0.78 0.66 0.87 0.75 0.66
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 7: This table shows the results of the DiD analysis assessing the impact of CA100+
on climate targets set for 2025, 2035, and 2050 within the electricity sector. The analysis
is conducted separately for CA100 companies (left panel) and Plus companies (right panel),
relative to Non-CA100+ companies. Standard errors are clustered at the firm level. t-
Statistics are in parentheses.

8 Discussion and future directions

Despite strong conceptual reasons to expect CA100+ to influence real-economy outcomes,

I find only partial support for H1. Specifically, I find no significant effect of CA100+ on
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targeted companies’ TCFD reporting or carbon intensities five years after the initiative’s

launch. These findings contrast with anecdotal evidence and Chang and Fang (2024) and

Chuah et al. (2025) who report negative associations between CA100+ targeting and firms’

carbon emissions. Yet this study does find a significant effect of CA100+ on companies’

carbon emission reduction targets. The effect on medium- and long-term targets strengthens

over time, which provides partial support for H2. It is worth noting that CA100+ focused its

early engagement efforts on target setting, only explicitly requesting reductions in emissions

from 2023 onward. Hence, it is possible that effects on emissions may emerge in the future.

However, by examining the company selection process and testing for heterogeneity in

the treatment effect, I find that the effect on targets is primarily driven by the Plus list –

where endogeneity cannot be ruled out. CA100+ investors may have strategically targeted

firms for the Plus list that were predisposed to respond well to engagement. While Heeb and

Kölbel (2024) highlight investor selectivity as a potential concern, this study provides the

first empirical evidence on this potential mechanism. A sceptical view on the heterogeneous

treatment effect would suggest that investors had prior knowledge about the carbon emission

reduction targets the Plus companies were going to set anyway. Along similar lines, investors

might have anticipated “easy wins”. However, these explanations may be overly sceptical.

Based on interviews the author conducted with CA100+ investors, selecting the right target

companies is considered a crucial element of a successful engagement process. Some described

it as part of the “art of engagement.” Investor stewardship resources are limited, requiring

a focus on firms where engagement is likely to yield results. From this perspective, it is

reasonable that CA100+ signatories selected Plus companies they believed would be more

responsive to pressure.

Dimson et al. (2015) suggest that investors typically target firms based on a combination
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of prior sustainability performance, reputational risk and ownership stakes. To explore

potential differences between CA100 and Plus companies along these and other dimensions,

I conduct independent two-sample t-tests using variables that investors plausibly had access

to when the Plus list was compiled in 2017. These include average Scope 1, 2 and 3 upstream

emissions and emission intensities from Trucost, CA100+ collective ownership as well as

selected operational and financial metrics drawn from the Orbis database.

Table 8 shows that, on average, CA100 companies are nearly twice as large and emitted

twice as much as Plus companies, with differences statistically significant at conventional

levels. This is unsurprising, given that CA100 companies were selected based on absolute

carbon emissions. However, this finding may suggest that investor impact is stronger for

slightly smaller firms among the largest corporate emitters. In addition, the average collective

ownership share of CA100+ founding members in 2017 was 1 percentage point higher in

the Plus list. This could imply that the ownership of early joiners – arguably the more

committed members (Bauckloh et al., 2023) – may be more influential than the broader

collective ownership across all members

Moreover, I find no impact of CA100+ on short-term targets. While it is important to

acknowledge companies’ challenges in reducing their carbon enmissions in the near term,

setting medium- and long-term targets that are not underpinned by short-term milestones

raises questions about their credibility. Prior research suggest that ambitious climate targets

are linked to actual emission reductions (Ioannou et al., 2016; Bolton and Kacperczyk, 2025),

yet there is no evidence that companies are penalised for failing to meet such targets (Jiang

et al., 2025). This study does not seek to assess whether CA100+ companies will ultimately

deliver on their targets. Nonetheless, the absence of short-term ambition may reflect strategic

behaviour aimed at appearing climate-responsible while deferring substantive abatement. As
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Variable CA100 Plus Diff p-Value
Absolute emissions (Mt) 54.00 27.00 27∗∗∗ 0.00
Emissions intensity (g/USD) 1428.20 2094.50 −666.4 0.12
CA100+ Ownership (%) 3.90 4.90 −1∗ 0.06
Market cap (bn USD) 59.10 34.10 25∗∗∗ 0.01
Revenue (bn USD) 77.10 33.50 43.7∗∗∗ 0.00
Fixed assets (bn USD) 44.40 24.30 20.1∗∗∗ 0.00
EBIT (bn USD) 6.00 3.00 3∗∗∗ 0.00
Tobin’s Q 0.70 0.80 −0.1 0.50
Number of employees (k) 117.70 98.20 19.6 0.73
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 8: This table presents independent two-sample t-test results across absolute emissions,
emissions intensity, CA100+ ownership, market capitalisation, revenue, fixed assets, EBIT,
tobin’s Q and the number of employees, comparing the CA100 and Plus companies prior to
the launch of CA100+.

targets extend further into the future, accountability within both firms and investors becomes

more diffuse. This could be perceived as a form of greenwashing.

Surprisingly, I also find no evidence in support of H3 or H4 – that is, neither the collective

ownership share held by CA100+ investors in focus companies nor potential spillover effects

via ownership in non-targeted companies appear to influence outcomes. This challenges the

common assumption that the collective scale of investor coalitions – often promoted through

headline figures on membership and collective AUMs – plays a central role in driving real-

economy impact.

I acknowledge several caveats to the interpretation of my findings. First, CA100+ focuses

on some of the world’s largest publicly listed corporate emitters. As such, the results may not

generalise to smaller polluters, who may respond differently to investor engagement. How-

ever, from a climate mitigation perspective, the behaviour of the largest corporate emitters

matters the most.

Second, CA100+ organises engagement through company-specific subgroups, each com-
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prising different lead and supporting investors. The composition of these subgroups is not

comprehensively disclosed. Prior studies demonstrate that the configuration of such smaller

engagement groups can shape outcomes (Dimson et al., 2023; Slager et al., 2023). To be

clear, this study does not contradict these existing findings, nor does it suggest that all

private engagements conducted within CA100+ were unsuccessful. Rather, my analysis fo-

cuses on the broader initiative – evaluating the causal impact of CA100+ as a large-scale

coordinated investor coalition across its entire focus list.

Third, although I test for spillover effects operating through investor learning and the dif-

fusion of engagement practices, CA100+ could contribute to broader system-level spillovers

by influencing the institutional context in which firms operate (Matisoff, 2015). While ac-

knowledging this possibility, this study offers a key insight. Only focus companies were

directly targeted by CA100+’s coordinated engagement. My findings reveal no systematic

differences between CA100+ and Non-CA100+ companies, except for medium- and long-

term targets among the Plus firms, and no evidence of spillovers into individual investor

engagement. If CA100+ has influenced corporate behaviour more broadly, such effects are

unlikely to have arisen primarily through its formal engagement activities.

Fourth, it is possible that CA100+ simply requires more time to exert a meaningful

influence on corporate behaviour. A follow-up study could offer insights into how the initia-

tive’s impact evolves over a longer horizon. Notably, CA100+ has recently become smaller,

following the departures of several large US-based asset managers in 2024. In light of my

finding that collective ownership by CA100+ investors does not appear to drive engagement

outcomes, future research could investigate a potential “reverse” treatment effect – assessing

whether a smaller, but potentially more aligned coalition becomes more effective.

Lastly, another promising area for future research is to explore whether collective investor
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action affects capital reallocation or asset pricing – either by changing firm fundamentals or

by altering investor expectations about future transition risks. This could help assess the

broader financial ecosystem’s response to investor coalitions like CA100+.

9 Conclusion

This study provides the first causal assessment of the impact of a large investor coalition on

corporate climate action. Using novel data and a multi-dimensional measurement strategy

to proxy engagement goals, I find no significant effect of CA100+ on targeted firms’ TCFD

reporting or carbon intensities. However, the initiative has increased the ambition of firms’

medium- and long-term emission reduction targets, consistent with its early focus on target

setting. Notably, this effect is concentrated among the Plus companies, for which potential

selection bias cannot be ruled out. The absence of an effect on short-term targets raises

questions about the credibility of firms’ longer-term commitments. Finally, I find no evidence

that the initiative’s scale – measured via collective ownership and AUM – amplifies impact,

nor any spillover effects to non-target firms. Overall, the findings suggest that collaborative

investor action through CA100+ has had only limited influence on real corporate behaviour.
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Appendix

A DiD results on climate-related and TCFD reporting

Figure 10: Trends in climate-related reporting by CA100, Plus and Non-CA100+
companies. This figure shows the pre- and post-treatment trends in climate-related re-
porting across the CA100 (dark blue), Plus (light blue) and Non-CA100+ (grey) companies
from 2014 to 2022. The launch of CA100+ in 2017 is indicated by a vertical black bar. The
addition of the Plus list in 2018 is indicated by a dashed vertical black bar.
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Climate
CA100 Plus

(1) (2) (1) (2)

treat*post 0.37 0.07 −0.08 0.22
(0.47) (0.63) (0.43) (0.77)

treat*post*ownership 12.08 5.31
(12.96) (12.03)

ownership −0.70 −0.49
(3.77) (3.95)

post*ownership −1.93 −1.16
(3.46) (3.57)

Num. obs. 3348 3262 3069 2974
R2 0.75 0.75 0.77 0.77
Adj. R2 0.72 0.72 0.74 0.74
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 9: This table shows the results of the average CA100+ impact (first column) and
CA100+ impact moderated by shift-share ownership (second column) on climate-related
reporting, comparing CA100 (left panel) and Plus (right panel) to Non-CA100+ companies.
Standard errors are clustered at the firm-level. t-Statistics are in parentheses.
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Figure 11: Event study on climate-related reporting. This figure shows the dynamic
treatment effects of CA100+ on climate-related reporting by CA100 and Plus companies rel-
ative to Non-CA100+ companies. Pre-treatment estimates are shown in red, post-treatment
estimates in blue. Confidence intervals are set at 95%.

For governance-related reporting, the DiD results indicate a significant positive effect

when interacted with ownership. For risk-related reporting, the DiD results show both

a significant positive and a significant negative interaction with ownership. However, as

shown in Figure 3, governance- and risk-related content each account for only about 1% of

firms’ total annual reports. Moreover, these effects are not significant in the staggered DiD

results and do not remain consistently robust after the checks conducted in Section 7.2.
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Figure 12: Trends in TCFD-reporting. This figure shows the pre- and post-treatment
trends in TCFD-reporting across the CA100+ (red) and Non-CA100+ (grey) companies from
2014 to 2022. The measured TCFD categories are governance, strategy, risk and metrics
and targets. The launch of CA100+ in 2017 is indicated by a vertical black bar.

51



Figure 13: Trends in TCFD-reporting by CA100, Plus and Non-CA100+ compa-
nies. This figure shows the pre- and post-treatment trends in TCFD-reporting across the
CA100 (dark blue), Plus (light blue) and Non-CA100+ (grey) companies from 2014 to 2022.
The measured TCFD categories are governance, strategy, risk and metrics and targets. The
launch of CA100+ in 2017 is indicated by a vertical black bar. The addition of the Plus list
in 2018 is indicated by a dashed vertical black bar.
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Figure 14: Event study on TCFD reporting. This figure shows the dynamic treatment
effects of CA100+ on reporting on each of the four TCFD categories by CA100 and Plus
companies relative to Non-CA100+ companies. Pre-treatment estimates are shown in red,
post-treatment estimates in blue. Confidence intervals are set at 95%.
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Governance
(1) (2) (3)

treat*post 0.06 −0.03
(0.04) (0.06)

treat*post*ownership 3.00∗∗

(1.17)
ownership −0.79∗ −0.76∗

(0.43) (0.43)
post*ownership 0.21 0.20

(0.39) (0.39)

Num. obs. 3825 3721 2515
R2 0.66 0.67 0.66
Adj. R2 0.62 0.62 0.62
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 10: This table shows the results of the average CA100+ impact (first column), CA100+
impact moderated by shift-share ownership (second column) and the spillover analyses (third
column) on governance-related reporting, comparing CA100+ to Non-CA100+ companies.
Standard errors are clustered at the firm-level. t-Statistics are in parentheses.

54



Strategy
(1) (2) (3)

treat*post −0.11 −0.02
(0.24) (0.32)

treat*post*ownership 3.11
(5.03)

ownership 0.90 2.08
(2.66) (2.71)

post*ownership −1.66 −2.03
(2.37) (2.39)

Num. obs. 3825 3721 2515
R2 0.75 0.75 0.76
Adj. R2 0.72 0.72 0.73
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 11: This table shows the results of the average CA100+ impact (first column), CA100+
impact moderated by shift-share ownership (second column) and the spillover analyses
(third column) on strategy-related reporting, comparing CA100+ to Non-CA100+ com-
panies. Standard errors are clustered at the firm-level. t-Statistics are in parentheses.
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Risk
(1) (2) (3)

treat*post 0.08∗ 0.09
(0.04) (0.06)

treat*post*ownership −0.23
(1.02)

ownership −1.37∗∗∗ −1.10∗∗

(0.47) (0.48)
post*ownership 0.44 0.36

(0.45) (0.45)

Num. obs. 3825 3721 2515
R2 0.61 0.62 0.64
Adj. R2 0.57 0.57 0.59
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 12: This table shows the results of the average CA100+ impact (first column), CA100+
impact moderated by shift-share ownership (second column) and the spillover analyses (third
column) on risk-related reporting, comparing CA100+ to Non-CA100+ companies. Standard
errors are clustered at the firm-level. t-Statistics are in parentheses.
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Metrics
(1) (2) (3)

treat*post 0.15 0.12
(0.09) (0.13)

treat*post*ownership 0.57
(2.59)

ownership 0.16 1.20
(0.92) (0.91)

post*ownership −0.81 −1.13
(0.85) (0.84)

Num. obs. 3825 3721 2515
R2 0.68 0.68 0.73
Adj. R2 0.64 0.64 0.70
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 13: This table shows the results of the average CA100+ impact (first column), CA100+
impact moderated by shift-share ownership (second column) and the spillover analyses (third
column) on metrics-related reporting, comparing CA100+ to Non-CA100+ companies. Stan-
dard errors are clustered at the firm-level. t-Statistics are in parentheses.
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B DiD results on historical carbon intensities

Figure 15: Trends in carbon intensities by CA100, Plus and Non-CA100+ com-
panies. This figure shows the pre- and post-treatment trends in carbon intensity across
the CA100+ (dark blue), Plus (light blue) and Non-CA100+ (grey) companies from 2014 to
2022. The launch of CA100+ in 2017 is indicated by a vertical black bar. The addition of
the Plus list in 2018 is indicated by a dashed vertical black bar.
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Carbon intensities
CA100 Plus

(1) (2) (1) (2)

treat*post 0.04 0.05 −0.03 −0.01
(0.05) (0.07) (0.08) (0.11)

treat*post*ownership −0.27 0.74
(1.91) (2.36)

ownership 1.84 2.37
(1.60) (1.75)

post*ownership −1.79 −2.10
(1.62) (1.69)

Num. obs. 1532 1462 1400 1321
R2 0.92 0.92 0.91 0.91
Adj. R2 0.90 0.90 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 14: This table shows the results of the average CA100+ impact (first column) and
CA100+ impact moderated by shift-share ownership (second column) on carbon intensities,
comparing CA100 (left panel) and Plus companies (right panel) to Non-CA100+ companies.
Standard errors are clustered at the firm-level. t-Statistics are in parentheses.
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Figure 16: Event study on carbon intensity. This figure shows the dynamic treatment
effects of CA100+ on sector-specific carbon intensities of CA100 and Plus companies rela-
tive to Non-CA100+ companies. Pre-treatment estimates are shown in red, post-treatment
estimates in blue. Confidence intervals are set at 95%.
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IA1 List of CA100 and Plus companies

Airbus Exxon Mobil Philips
American Electric Power Fiat Chrysler Phillips 66
Anglo American Ford Posco
Anhui Conch Cement Formosa Petrochemical Procter & Gamble
AP Moller - Maersk Gas Natural PTT
Arcelor Mittal Gazprom Raytheon Technologies
BASF General Electrics Reliance Industries
Bayer General Motors Repsol
Berkshire Hathaway Glencore Rio Tinto
BHP Hitachi Rolls-Royce
Boeing Holcim Rosneft Oil
BP Hon Hai Precision Industry SAIC Motor
Canadian Natural Resources Honda Sasol
Caterpillar Imperial Oil Shell
Centrica International Paper Siemens
Chevron KEPCO Sinopec
China Shenhua Energy Lockheed Martin SK Innovation
CNOOC Lukoil Southern Company
Coal India LyondellBasell Industries Suncor Energy
ConocoPhillips Marathon Petroleum Suzuki
Cummins Martin Marietta Materials Teck Resources
Daikin Industries Naturgy Energy Tesoro
Dow Nestle ThyssenKrupp
Duke Energy Nippon Steel Toray Industries
Dupont Nissan TotalEnergies
E.ON Nornickel Toyota
Ecopetrol NTPC Trane Technologies
EDF Oil & Natural Gas United Technologies
Enel OMV Vale
Eneos PACCAR Valero Energy
Engie Panasonic Vedanta
Eni Pepsico Volkswagen
Equinor Petrobras Volvo
Exelon

Table 15: This table shows the list of CA100 companies.
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ADBRI Delta Air Lines Renault
AES Devon Energy RWE
AGL Energy Dominion Energy Santos
Air France KLM Enbridge Severstal
Air Liquide Eskom South 32
American Airlines FirstEnergy SSAB
ANTAM Fortum SSE
Bluescope Steel Groupe PSA St Gobain
BMW Heidelberg Cement Suzano
Boral Iberdrola TC Energy
Bumi Kinder Morgan Unilever
Bunge National Grid United Continental
Cemex NextEra Energy United Tractors
CEZ NRG Energy Vistra Energy
China Steel Occidental Petroleum Walmart
Coca-Cola Origin Energy WEC Energy Group
Colgate-Palmolive PGE Weyerhaeuser
CRH Power Assets Woodside Petroleum
Daimler PPL Woolworths
Dangote Cement Qantas XCEL Energy
Danone

Table 16: This table shows the list of Plus companies.
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IA2 TPI methodology, process and data

TPI Carbon Performance (CP) assessments are exclusively disclosure-based. Therefore, the

length of a company’s emission pathway depends on two main factors. First is the availability

of historical emissions and production data. While some companies have complete carbon

emission pathways with historical carbon intensities ranging from 2014 to 2022, others have

shorter pathways or even no pathway at all. Figure 17 shows the past carbon intensities of

a company with limited disclosure.

Figure 17: Exemplary TPI pathway for Oil and Natural Gas.This figure shows an
exemplary TPI CP pathway for Oil and Natural Gas from research cycle 2022. The solid
green line represents the company’s historical carbon intensity pathway. The blue areas
represent benchmarks for different decarbonisation scenarios.

Second, the forward-looking part of the pathway until 2050 is calculated based on compa-

nies’ carbon emission reduction targets. Figures 18 and 19 illustrate how the forward-looking

emission pathway of the same company, Eni, changed between research cycles (RCs) 2020

and 2021. For example, in the TPI RC 2020, Eni had set a target to reduce its carbon

intensity to 29.46 gCO2e/MJ by 2050. In the TPI research cycle 2021, Eni had set a target

to reach a carbon intensity of 0 gCO2e/MJ by 2050. The reduction of 29.46 gCO2e/MJ for
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Eni’s targeted 2050 carbon intensity between RCs 2020 and 2021 reflects the strengthened

ambition of the company’s new carbon emission reduction target. The carbon intensities be-

tween the year of the current intensities and the year for which a carbon emission reduction

target was set are linearly interpolated. Similarly, in the rare cases where there are gaps

between years of calculated historical intensities, the missing values are linearly interpolated.

Figure 18: Exemplary TPI pathway for Eni RC 2020. This figure shows an exem-
plary TPI CP pathway for Eni from research cycle 2020. The solid grey line represents the
company’s historical carbon intensity pathway. The green dots represent targets set by the
company. The dotted green line represents interpolated forward-looking carbon intensities.
The solid red line represents the sector average. The blue areas represent benchmarks for
different decarbonisation scenarios.
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Figure 19: Exemplary TPI pathway for Eni RC 2021. This figure shows an exem-
plary TPI CP pathway for Eni from research cycle 2021. The solid grey line represents the
company’s historical carbon intensity pathway. The green dots represent targets set by the
company. The dotted green line represents interpolated forward-looking carbon intensities.
The solid red line represents the sector average. The blue areas represent benchmarks for
different decarbonisation scenarios.

Data reliability in CP assessments is ensured through the TPI quality assurance process.

Initially, a TPI analyst prepares the CP assessment, which is subsequently reviewed by

another analyst. The assessments are then sent to the respective companies for feedback.

Following a comprehensive analysis of the feedback and an additional internal review, the

assessments are published on the TPI tool.

TPI’s sector rules match the CA100+ sector definitions and rely on various Global In-

dustry Classification Standard and Industry Classification Benchmark filter settings and

additional manual company research. The goal of TPI’s sector allocation is to ensure that

companies from the same sector face similar challenges in the low-carbon transition.

Five CA100+ sectors, namely chemicals, consumer goods, oil and gas distribution, other

industrials and services, are not yet covered by TPI’s assessments. Moreover, the carbon

intensities in the aluminium and diversified mining sectors are calculated starting only from

2016. Hence, the analysis of CA100+’s impact on companies’ emission pathways is con-
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ducted for the nine remaining sectors: airlines, automotives, cement, coal, electricity, paper,

shipping, steel and oil and gas. Table 17 shows the sample of companies with complete

historical carbon intensity pathways from 2014 to 2022.

Sector CA100 Plus Non-CA100+ Total
Electricity 10 18 38 66
Automotives 9 4 16 29
Oil and gas 22 5 13 40
Cement 1 4 9 14
Steel 4 3 13 20
Airlines NA 5 16 21
Coal Mining 2 NA 16 18
Paper 1 1 10 12
Shipping 1 NA 5 6
Total 50 40 136 226

Table 17: This table shows the sample size for companies with complete TPI carbon intensity
pathways for CA100, Plus and Non-CA100+ companies by sector.
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IA3 Methodological note on constructing new primary

CP data

The goal of the new primary data collection is to replicate forward-looking emissions inten-

sity pathways for companies prior to their initial assessment by TPI. However, since TPI was

launched in 2017, the sectoral methodologies have undergone several revisions to enhance

their robustness. Additionally, several companies experienced changes due to mergers, acqui-

sitions and other factors affecting how TPI assessed them. This note outlines the potential

impacts of such changes and explains which further adjustments were necessary to ensure the

final database remains usable for this paper’s analysis. These adjustments, affecting both

existing CP assessments and new ”historical” assessments, were discussed with and reviewed

by the TPI team.

Aside from the notes below, the “historical” CP assessments follow the same method-

ologies and process as standard TPI assessments to ensure data quality. Initial drafts were

prepared by a TPI analyst and reviewed by myself between May 2023 and May 2024. While

this study utilises pre-feedback data, the “historical” assessments will be sent to companies

for feedback in the future.

Removals from the sample

I removed all companies that TPI stopped assessing during the research period from

the sample. This decision primarily impacted Russian companies, as TPI and CA100+

discontinued assessments of Russian companies during RC 2022.

Extending the length of emission intensity pathways

During the early TPI RCs from 2017 to 2019, companies’ forward-looking emission in-

tensity pathways were calculated until 2030. However, in RC 2020, the assessments in all

sectors were expanded to cover projections until 2050. Consequently, the early TPI CP

assessments from RCs 2017 to 2019 do not allow for an evaluation of companies’ carbon

emission reduction targets beyond 2030. To enable this long term analysis, I prolonged the

assessments for companies that had established targets reaching beyond 2030 in the early

RCs, employing the following methodology:

1. I identified companies with 2030 targets in RCs 2017 to 2020.
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2. I verified TPI internal assessments to confirm if these companies had set targets ex-

tending beyond 2030.

3. I adopted the targeted intensities beyond 2030 if already calculated in early TPI as-

sessments. Otherwise, I calculated the targets myself in adherence to the TPI sectoral

methodologies.

4. I conducted all new “historical” assessments with emission intensity pathways extend-

ing until 2050.

Completing carbon intensity pathways from previous research cycles

In some cases, companies began reporting historical carbon intensities after their initial

assessments by TPI. For example, a company may have been assessed in research cycle 2017

as having “No or unsuitable disclosure”, but then published sufficient information to calculate

an emission intensity pathway from 2014 to 2019 in RC 2020. In such cases, I complete the

pathways for RCs 2017-2019 with the new carbon intensities that became available in RC

2020. I also complete historical carbon intensities with newly found information where

available.

In cases where methodological changes by the company or TPI resulted in significant

shifts in companies’ pathways (see some sector-specific explanations below), I adjust the

previously reported intensities to align with the new methodologies, assuming that the con-

version ratio remained constant over time. For example, if a company reported intensities

using an old methodology for 2015 and 2016 but changed its methodology in 2017, providing

newly calculated historical intensities only for 2016, I assume that the 2016 conversion factor

can also be applied to 2015. I apply the same approach if emissions intensities are available

from either company disclosures or TPI calculations for all years, but available for both only

for some years. Lastly, for firms with non-calendar fiscal years (e.g., July to June instead of

January to December), I align the corresponding TPI calendar years, where possible, with

the timing of CA100+’s engagement with Plus companies, which began in June 2018.

Automotive sector

The TPI automotive methodology uses gCO2/km as the emission intensity metric. Ini-

tially, this intensity was based on the New European Driving Cycle (NEDC) test cycle.
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However, with the gradual phasing out of the NEDC test cycle in the European Union and

other regions, TPI transitioned to the Worldwide harmonized Light vehicles (WLTP) test

cycle in a methodology update during RC 2022. The adoption of WLTP resulted in an up-

ward adjustment of emission intensities for nearly all automotive companies, except for pure

electric vehicle manufacturers. Since this transition affected both CA100+ and Non-CA100+

companies equally and at the same, it does not introduce bias into the analysis.

Additionally, Fiat Chrysler and Groupe PSA, two CA100+ companies, merged to form

Stellantis in January 2021. TPI last assessed Fiat and PSA as separate entities in RC 2021,

after which it began assessing only Stellantis. To preserve a larger sample size, I include

assessments for both Fiat Chrysler and Groupe PSA in my analysis. After RC 2021, I

applied Stellantis’ carbon emission reduction targets to both Fiat Chrysler and Groupe PSA

for consistency.

Airlines sector

TPI’s methodology for airlines underwent significant changes between RC 2018 and 2019.

The emission intensity metric shifted from gCO2/Revenue-passenger-kilometer (RPK) to

gCO2/Revenue-tonne-kilometers (RTK) to include cargo in the assessments. Airlines as-

sessed in RC 2018, the inaugural year of TPI’s airline assessments, initially had their assess-

ments in gCO2/RPK and subsequently in gCO2/RTK.

The change in the emission intensity metric caused substantial jumps the pathways of

individual companies, such as from approximately 120 gCO2/RPK to 650 gCO2/RTK. To

mitigate the impact of this methodological change, I converted the gCO2/RPK pathways

into gCO2/RTK pathways using TPI’s conversion factor of 150 kilograms per passenger. In

research cycle 2020, TPI updated the conversion factor for RPK to RTK from 150kg per

person to 95kg per person. Therefore, I converted all assessments from RCs prior to 2020

again using the updated conversion factor. Starting from RC 2021, the airline assessments

are used as available in the TPI database.

Shipping sector

Where avaible, I applied a company-specific conversion ratio of the Energy Efficiency

Operational Indicator (EEOI) to TPI carbon intensity (tank-to-wheel CO2 emissions in

grams per tonne-kilometre of transported cargo) to estimate missing carbon intensity values

for 2014 and 2015.
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Cement sector

TPI assessments use intensities reported in tCO2/t cementitious products to enable ac-

curate comparisons with the TPI decarbonisation benchmarks. This metric was introduced

by the Cement Sustainability Initiative, the precursor of the Global Cement and Concrete

Association, in 2011. Before TPI was established, a significantly higher number of companies

reported their carbon footprints in tCO2/t cement. Since this study does not rely on com-

parisons with TPI decarbonisation benchmarks, and given the minor differences between the

two metrics (approximately 1% globally), I also use reported tCO2/t cement for historical

assessments.

Oil and Gas sector

TPI assessments in the oil and gas sector include Scope 1, 2 and 3 (category 11) emissions.

While Scope 3 (category 11) emissions are calculated by TPI based on a company’s sold

products, Scope 1 and 2 emissions are sourced from company disclosures. If a company does

not report its Scope 1 and 2 emissions, TPI does not publish historical carbon intensities.

For companies where Scope 3 (category 11) emissions can be calculated and Scope 1 and 2

emissions were disclosed for most but not all years, I apply the company-specific Scope 1&2

relative to Scope 3 emission intensity ratio to obtain carbon intensities for the missing years.
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IA4 CDP responses

CDP questionnaires allow companies to disclose relevant information which will then be

made public on the CDP website. Since 2018, the CDP climate questionnaire is aligned with

the TCFD recommendations. Yet, even previous versions required companies to broadly

disclose information on the four TCFD categories. Therefore, I employ a binary metric

indicating whether companies report to CDP as an indirect measure of their disclosures’

alignment with TCFD guidelines in the pre- and post-treatment periods.

A more granular analysis was tested to assess whether companies respond to specific

questions that address the four TCFD themes in the CDP questionnaires. However, it

appears that companies that decide to participate in the CDP process largely address most

or all questions. While the quality of the responses may vary, measuring companies’ decision

to disclose information on a question level does not add much value compared to a binary

assessment of whether companies submit their CDP questionnaire or not.

As for the ClimateBERT-TCFD analysis, I use the TPI companies as my baseline uni-

verse. Since the CDP datasets prior to 2018 do not include companies that were contacted

by CDP but chose not to respond, I manually collected the data on which TPI companies

decided to opt-out from the CDP website for the period 2016 to 2022 in October 2023.10

Since CDP questionnaires usually reflect the disclosures of the previous year, this period

effectively spans from 2015 to 2021.

After excluding companies that were not contacted by CDP in each year, I retain a

sample of 70 CA100, 44 Plus and 248 Non-CA100+ companies. Figure 20 shows that treated

companies were considerably more responsive to CDP before and after the launch of CA100+.

Moreover, it appears that CDP reporting increased in the Non-CA100+ group but decreased

slightly among the CA100 and remained largely stable among the Plus companies.

10CDP’s outreach to companies was considerably less extensive prior to 2016.
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CA100 Plus

treat*post −0.03 −0.00
(0.03) (0.04)

Num. obs. 638 584
R2 0.90 0.90
Adj. R2 0.79 0.79
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 18: This table shows the results of the binned DiD analysis on CDP responses, com-
paring the CA100 (first column) and Plus (second column) companies to Non-CA100+ com-
panies. Standard errors are clustered at the firm-level. t-Statistics are in parentheses.

Figure 20: Average CDP disclosure rate. This figure shows the share of CA100, Plus
and Non-CA100+ companies responding to CDP in the pre- (light green) and post-treatment
(dark green) periods.
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IA5 Climate Change Performance Index data

The CCPI data were sourced from CCPI annual reports available for download on the

Climate Change Performance Index (2023) website. The CCPI rating aggregates scores

from four main categories: greenhouse gas emissions (40%), renewable energy deployment

(20%), energy use efficiency (20%), and climate policy (20%). Within these categories, the

CCPI assesses 14 indicators in total. The final score ranges from 0 to 100%.

The CCPI covers approximately sixty countries, with slight variations in coverage by

year. To address minor data gaps for countries where included companies are headquartered

but lack CCPI ratings, the following assumptions were made:

1. Values from China were used for Hong Kong.

2. For Singapore, data is available until 2016, and its index evolution post-2016 is assumed

to match Malaysia’s.

3. The United Arab Emirates have no data before 2023; its index is assumed to evolve

similarly to Saudi Arabia’s.

4. Qatar’s indices are assumed to mirror the UAE’s.

5. Nigeria’s evolution until 2023 mirrors South Africa’s.

6. Chile mirrors Brazil’s index evolution until 2019.

7. Colombia mirrors Brazil’s index evolution until 2021.

8. The EU’s evolution is assumed to be the average of all European countries in the

sample until 2017.

Table 19 shows the final CCPI data used for the robustness checks.
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Country 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Australia 41.53 35.57 36.56 40.66 25.03 31.27 30.75 28.82 30.06 36.26 45.72
Austria 57.19 55.39 50.69 52.00 49.49 48.78 44.74 48.09 52.35 51.56 58.17
Belgium 64.65 61.89 68.73 62.08 49.60 50.63 45.73 45.11 45.90 48.38 55.00
Brazil 55.53 48.51 51.90 52.46 57.86 59.29 55.82 53.26 54.86 48.39 61.74
Canada 40.39 38.81 38.74 43.06 33.98 34.26 31.01 24.82 26.03 26.47 31.55
Chile 62.55 54.65 58.46 59.10 65.18 66.79 62.88 64.05 69.51 69.54 68.74
China 52.41 51.77 48.60 47.49 45.84 49.60 48.16 48.18 52.20 38.80 45.56
Colombia 58.58 51.17 54.75 55.34 61.03 62.54 58.88 56.18 57.87 54.50 58.68
Czechia 53.93 57.99 57.03 58.52 45.13 49.72 42.93 38.98 42.15 44.16 45.41
Denmark 75.23 77.76 71.19 61.87 59.49 61.96 71.14 69.42 76.67 79.61 75.59
EU 65.21 65.05 63.90 62.25 56.89 60.65 55.82 57.29 59.21 59.96 64.71
Finland 56.57 56.76 58.27 56.28 66.55 62.61 63.25 62.63 62.41 61.24 61.11
France 65.90 64.11 65.97 66.17 59.80 59.30 57.90 53.72 61.01 52.97 57.12
Germany 61.90 59.60 58.39 56.58 56.58 55.18 55.78 56.39 63.53 61.11 65.77
Hong Kong 52.41 51.77 48.60 47.49 45.84 49.60 48.16 48.18 52.20 38.80 45.56
India 57.16 56.97 58.19 59.08 60.02 62.93 66.02 63.98 69.20 67.35 70.25
Indonesia 56.24 59.57 58.21 58.86 48.94 48.68 44.65 53.59 57.17 54.59 57.20
Ireland 65.01 65.15 62.65 59.02 38.74 40.84 44.04 45.47 47.86 48.47 51.42
Italy 62.90 61.75 62.98 60.72 59.65 58.69 53.92 53.05 55.39 52.90 50.60
Japan 47.21 45.07 37.23 35.93 35.76 40.63 39.03 42.49 48.53 40.85 42.08
Malaysia 47.06 46.84 53.49 50.96 32.61 38.08 34.21 27.76 33.74 33.51 38.57
Mexico 61.5 61.3 57.04 57.02 54.77 56.82 47.01 48.76 56.05 51.77 55.81
Netherlands 56.99 53.27 54.84 57.1 49.49 54.11 50.89 50.96 60.44 62.24 69.98
New Zealand 53.49 52.56 52.41 50.48 49.57 44.61 45.67 51.3 54.03 50.55 57.66
Nigeria 69.70 70.46 69.34 72.44 52.38 62.23 58.90 59.49 65.94 58.93 63.88
Norway 59.32 57.88 54.65 52.9 67.99 62.8 61.14 65.45 73.29 64.47 67.48
Poland 52.69 54.36 56.09 53.68 46.53 47.59 39.98 38.94 40.63 37.94 44.4
Portugal 68.38 67.26 59.52 62.47 59.16 60.54 54.1 56.8 61.11 61.55 67.39
Saudi Arabia 25.17 24.19 21.08 25.45 11.2 8.82 22.03 22.46 24.25 22.41 19.33
Singapore 50.32 47.27 42.81 43.97 28.14 32.85 29.52 23.95 29.11 28.91 33.28
South Africa 54.04 54.63 53.76 56.17 40.61 48.25 45.67 46.13 51.13 45.69 49.53
South Korea 46.66 44.15 37.64 38.11 25.01 28.53 26.75 29.76 26.74 24.91 29.98
Spain 60.37 57.34 52.63 56.14 48.19 48.97 46.03 45.02 54.35 58.59 63.37
Sweden 68.1 71.44 69.91 66.15 74.32 76.28 75.77 74.42 74.22 73.28 69.39
Switzerland 66.17 65.05 62.09 61.66 61.2 65.42 60.61 60.85 61.7 58.61 61.94
Taiwan 46.81 45.03 45.45 44.76 29.43 28.8 23.33 27.11 30.7 28.35 36.94
Thailand 54.51 50.61 48.16 51.91 49.07 48.71 46.76 53.18 55.01 47.23 61.38
Turkey 46.47 46.95 47.25 45.54 41.02 40.22 40.76 43.47 50.53 43.32 43.82
UAE 31.97 30.72 26.77 32.32 14.22 11.20 27.98 28.53 30.79 28.46 24.55
UK 69.66 70.79 70.13 66.1 66.79 65.92 69.8 69.66 73.09 63.07 62.336
USA 52.93 52.33 54.91 51.04 25.86 18.82 18.6 19.75 37.39 38.53 42.79

Table 19: This table shows the CCPI scores by country from 2013 to 2023.
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IA6 Robustness checks regarding varying regulatory

environments

Climate
CA100 Plus

treat*post 0.36 0.03
(0.46) (0.40)

CCPI 0.04∗∗∗ 0.04∗∗∗

(0.01) (0.01)

Num. obs. 3348 3069
R2 0.75 0.77
Adj. R2 0.72 0.74
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 20: This table shows the results of the DiD analysis, including CCPI scores, assessing
the impact of CA100+ on climate-related reporting. The analysis is conducted separately
for CA100 companies (first column) and Plus companies (second column), relative to Non-
CA100+ companies. Standard errors are clustered at the firm level. t-Statistics are in
parentheses.
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Climate
CA100 Plus

treat*post −0.20 0.10
(0.52) (0.47)

Num. obs. 1098 1053
R2 0.75 0.77
Adj. R2 0.72 0.74
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 21: This table shows the results of the DiD analysis assessing the impact of CA100+
on climate-related reporting within North America. The analysis is conducted separately
for CA100 companies (first column) and Plus companies (second column), relative to Non-
CA100+ companies. Standard errors are clustered at the firm level. t-Statistics are in
parentheses.

CA100
Governance Strategy Risk Metrics

treat*post 0.05 0.01 0.11∗∗ 0.19
(0.05) (0.30) (0.05) (0.12)

CCPI 0.00∗∗∗ 0.03∗∗∗ 0.00∗∗∗ 0.01∗∗∗

(0.00) (0.01) (0.00) (0.00)

Num. obs. 3348 3348 3348 3348
R2 0.66 0.74 0.62 0.71
Adj. R2 0.62 0.71 0.57 0.67
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 22: This table shows the results of the DiD analysis, including CCPI scores, assessing
the impact of CA100+ on TCFD-related reporting: governance (first column), strategy
(second column), risk (third column) and metrics and targets (fourth column). The analysis
is conducted for CA100 companies relative to Non-CA100+ companies. Standard errors are
clustered at the firm level. t-Statistics are in parentheses.
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Plus
Governance Strategy Risk Metrics

treat*post 0.04 −0.17 0.01 0.16
(0.06) (0.26) (0.05) (0.12)

CCPI 0.00∗∗ 0.03∗∗∗ 0.00∗∗∗ 0.01∗∗∗

(0.00) (0.01) (0.00) (0.00)

Num. obs. 3069 3069 3069 3069
R2 0.66 0.77 0.62 0.70
Adj. R2 0.61 0.74 0.57 0.66
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 23: This table shows the results of the DiD analysis, including CCPI scores, assessing
the impact of CA100+ on TCFD-related reporting: governance (first column), strategy
(second column), risk (third column) and metrics and targets (fourth column). The analysis
is conducted for Plus companies relative to Non-CA100+ companies. Standard errors are
clustered at the firm level. t-Statistics are in parentheses.

CA100
Governance Strategy Risk Metrics

treat*post −0.01 −0.31 0.05 0.08
(0.04) (0.31) (0.03) (0.18)

Num. obs. 1098 1098 1098 1098
R2 0.34 0.75 0.66 0.68
Adj. R2 0.25 0.72 0.61 0.63
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 24: This table shows the results of the DiD analysis assessing the impact of CA100+ on
TCFD-related reporting: governance (first column), strategy (second column), risk (third
column) and metrics and targets (fourth column). The analysis is conducted for CA100
companies relative to Non-CA100+ companies within North America. Standard errors are
clustered at the firm level. t-Statistics are in parentheses.
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Plus
Governance Strategy Risk Metrics

treat*post 0.05 −0.07 −0.02 0.14
(0.05) (0.29) (0.05) (0.22)

Num. obs. 1053 1053 1053 1053
R2 0.34 0.79 0.67 0.61
Adj. R2 0.25 0.76 0.63 0.56
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 25: This table shows the results of the DiD analysis assessing the impact of CA100+
on TCFD-related reporting: governance (first column), strategy (second column), risk (third
column) and metrics and targets (fourth column). The analysis is conducted for Plus compa-
nies relative to Non-CA100+ companies within North America. Standard errors are clustered
at the firm level. t-Statistics are in parentheses.

Carbon intensities
CA100 Plus

treat*post 0.04 −0.02
(0.05) (0.08)

CCPI 0.00 0.00
(0.00) (0.00)

Num. obs. 1532 1400
R2 0.92 0.91
Adj. R2 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 26: This table shows the results of the DiD analysis, including CCPI scores, assessing
the impact of CA100+ on carbon intensities. The analysis is conducted separately for CA100
companies (first column) and Plus companies (second column), relative to Non-CA100+
companies. Standard errors are clustered at the firm level. t-Statistics are in parentheses.
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Carbon intensities
CA100 Plus

treat*post 0.08 0.02
(0.09) (0.16)

Num. obs. 411 368
R2 0.93 0.91
Adj. R2 0.92 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 27: This table shows the results of the DiD analysis assessing the impact of CA100+ on
carbon intensities within North America. The analysis is conducted separately for CA100
companies (first column) and Plus companies (second column), relative to Non-CA100+
companies. Standard errors are clustered at the firm level. t-Statistics are in parentheses.
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IA7 Robustness checks regarding varying sectoral dy-

namics

Climate
CA100 Plus

treat*post 1.04 −1.34
(2.18) (1.08)

Num. obs. 531 594
R2 0.64 0.66
Adj. R2 0.59 0.61
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 28: This table shows the results of the DiD analysis assessing the impact of CA100+ on
climate-related reporting within the electricity sector. The analysis is conducted separately
for CA100 companies (first column) and Plus companies (second column), relative to Non-
CA100+ companies. Standard errors are clustered at the firm level. t-Statistics are in
parentheses.

CA100
Governance Strategy Risk Metrics

treat*post 0.06 0.48 0.34 0.17
(0.18) (1.55) (0.27) (0.44)

Num. obs. 531 531 531 531
R2 0.66 0.59 0.65 0.66
Adj. R2 0.61 0.53 0.60 0.61
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 29: This table shows the results of the DiD analysis assessing the impact of CA100+ on
TCFD-related reporting: governance (first column), strategy (second column), risk (third
column) and metrics and targets (fourth column). The analysis is conducted for CA100
companies relative to Non-CA100+ companies within the electricity sector. Standard errors
are clustered at the firm level. t-Statistics are in parentheses.
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Plus
Governance Strategy Risk Metrics

treat*post 0.07 −1.06 −0.05 −0.29
(0.15) (0.68) (0.11) (0.32)

Num. obs. 594 594 594 594
R2 0.64 0.63 0.67 0.65
Adj. R2 0.59 0.58 0.62 0.60
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 30: This table shows the results of the DiD analysis assessing the impact of CA100+
on TCFD-related reporting: governance (first column), strategy (second column), risk (third
column) and metrics and targets (fourth column). The analysis is conducted for Plus com-
panies relative to Non-CA100+ companies within the electricity sector. Standard errors are
clustered at the firm level. t-Statistics are in parentheses.

Carbon intensities
CA100 Plus

treat*post -0.04 0.13
(0.11) (0.12)

Num. obs. 429 503
R2 0.93 0.94
Adj. R2 0.92 0.93
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 31: This table shows the results of the DiD analysis assessing the impact of CA100+
on carbon intensities within the electricity sector. The analysis is conducted separately
for CA100 companies (first column) and Plus companies (second column), relative to Non-
CA100+ companies. Standard errors are clustered at the firm level. t-Statistics are in
parentheses.
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