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ABSTRACT

This paper develops a preferred-habitat theory of the yield curve and the repo market that regards
bonds as both investment assets and collateral. Habitat preferences for specific bonds introduce
price differences between bonds with identical cash flows and generate special repo rates, namely
collateralized borrowing rates significantly below the riskless rate. Special repo rates reduce
arbitrageurs’ short-selling activity, thus influencing their portfolio duration, the market price of
interest rate risk, and the entire yield curve, over and above the valuation of specific bonds. This
effect is consistent with the empirical evidence. Monetary policy recommendations are derived
and illustrated by calibration.
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1 Introduction

Financial economists have long described the yields to maturity of riskless bonds as driven by the
current interest rates in the money market and by a premium attached to the risk that such rates might
change in the future. Traditionally, this characterization has emphasized the role of bonds as investment
assets with varying maturities, priced in accordance with the exogenous dynamics of a unique money
market interest rate. Following this approach, most theories of the yield curve have placed relatively
less emphasis on the role of bonds as collateral in the market for repurchase agreements (repo), an
important segment of the money market where interest rates reflect the quality of the collateral.'
The dual function of bonds—as investment assets as well as collateral—is key to interpreting
several recent market episodes. One example is the European Central Bank (ECB)’s Asset Purchase
Programme (APP), which exerted downward pressure on the yield curve. In this process, the
ECB accumulated substantial holdings of specific Eurozone Treasury bonds, driving collateralized
borrowing rates in the repo market to record lows. Thus, the APP had a considerable impact both on the
yield curve and in the repo market.” The interconnection of these markets raises an important question:
How does the yield curve interact with the repo market, where bonds serve as collateral for loans?
This paper presents a theory that integrates the yield curve and the repo market in which bonds
serve both as investment assets and as collateral in repo agreements. Our theory operates under two
main assumptions. First, demand forces generate price differences among bonds with identical cash
flows by inducing a spread between the repo rates of generic and specific securities, known as repo
specialness (Duffie, 1996). Second, through their influence on the market price of interest rate risk,
demand forces affect the transmission of shocks across the yield curve (Vayanos and Vila, 2021). The
resulting equilibrium provides a comprehensive characterization of bonds in terms of their yields and
repo rates, both of which are determined endogenously by the workings of demand and supply forces.
The contribution of this paper is to show that repo specialness sheds light on the entire yield curve,
above and beyond the valuation of specific bonds. We begin by reporting motivating evidence that
aggregate repo specialness is positively associated with the yield spread between long- and short-term
bonds. We then present a theory which accounts for the effects of repo specialness on the market price
of interest rate risk. Our theory is consistent with the observation that bonds acquire special collateral
value in the repo market when they are subject to short-selling pressure by arbitrageurs. Short-selling
exposes arbitrageurs to interest rate risk, and their required compensation for risk shapes the yield curve.
Thus, a broader message of the paper is that yield curve movements cannot always be understood solely
in terms of the stance of monetary policy and the exogenous dynamics of a unique money market

rate, but that the collateral specialness of bonds in the repo market is also a contributing element.

IThe repo contract is a secured loan that consists of the spot sale of a bond combined with a forward agreement to
repurchase the bond on a future day. The average daily volume of repo transactions outstanding globally, according to the
Bank for International Settlements, is about $12 trillion, which hovers around 10% of the world’s gross domestic product.

2See Arrata et al. (2020) and Corradin and Maddaloni (2020).



Our theory considers the valuation of riskless zero coupon bonds in capital and money markets.
Interest rate risk is driven by the exogenous dynamics of the secured overnight financing rate.
There are two groups of agents, preferred-habitat investors and risk-averse arbitrageurs. Preferred-
habitat investors exhibit a downward-sloping demand for bonds with particular tenor and specific
characteristics. An example of these habitat preferences is given by asset purchase programs, which
are directed toward eligible bonds of various tenors, while excluding ineligible bonds of the same tenor.
Another example of these habitat preferences is given by fixed-income funds targeting bonds with
particular tenor and specific characteristics, such as index inclusion, green labels, or compliance with
Islamic finance principles. The habitat preferences for specific characteristics introduce the possibility
of differences in the yields to maturity and collateral values among bonds with identical cash flows.?

Arbitrageurs transmit the demand of preferred-habitat investors for specific bonds to the repo
market and across the entire yield curve, by engaging in two investment strategies. First, they invest
in convergence trade strategies that profit from the price difference between bonds with identical
cash flows. Arbitrageurs’ convergence trades ensure consistency between the price of a bond and
its collateral value in the repo market. Second, arbitrageurs engage in risky carry trade strategies that
profit from the misalignment between bonds’ yields to maturity and the expected series of short-term
interest rates in the repo market. Arbitrageurs’ carry trades discipline the equilibrium relationship
between the price of bonds of different tenors by determining the market price of interest rate risk.
In implementing these investment strategies, arbitrageurs pay attention to repo rates. This is because
arbitrageurs borrow bonds in the repo market and sell them outright to establish short positions, and
vice versa to establish long positions. Notably, in clearing the bond market of the demand from
preferred-habitat investors, arbitrageurs consistently assume short positions; consequently, arbitrageurs
become exposed to risk by short-selling bonds. As arbitrageurs acquire greater exposure to risk, bonds
face intensified short-selling pressure and a correspondingly stronger demand as collateral in the repo
market. Simultaneously, the market price of interest rate risk in the bond market adjusts to compensate
arbitrageurs for their greater risk exposure. Arbitrageurs thus forge a strong connection between the
demand for collateral in the repo market and the pricing of risk across the entire yield curve.

In the capital market, arbitrageurs are crucial for the valuation of bonds. In the money market,
arbitrageurs present a price-inelastic demand for collateral, as they require it to cover short positions.
The degree to which preferred-habitat investors supply bonds as collateral in the repo market is thus
crucial for equilibrium determination in both the bond and the repo markets. In the limiting case of
preferred-habitat investors making their portfolio holdings entirely available in the repo market, the
differences in the price and collateral repo rate between bonds with equivalent cash flows vanish and
our theory converges to the framework of Vayanos and Vila (2021). In its general form, our theory
contributes to endogenizing the money market and to address important market features, such as the

presence of bonds with special collateral value (Duffie, 1996) and of price differences between bonds

3Cornell and Shapiro (1989) were among the first to document price differentials between bonds with identical cash flows.
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with identical cash flows (Krishnamurthy, 2002). Adopting a preferred-habitat perspective uniquely
positions our paper to evaluate the impact of repo specialness on the portfolio holdings of arbitrageurs
and thus on the valuation of bonds across the yield curve. The main theoretical prediction of our paper
is that the aggregate specialness of bonds in the repo market is positively associated with the term
spread (the yield spread between long- and short-term bonds) across the entire yield curve, consistent
with the evidence we document.

A unified theory of the yield curve and the repo market offers a powerful lens for conducting
counterfactual analyses of quantitative monetary policy interventions. Existing theories of the
transmission of monetary policy to the yield curve generally overlook its effect in the repo market;
this omission is particularly consequential for central banks’ asset purchases, which induce repo
specialness in the targeted bonds (Corradin and Maddaloni, 2020). Our theory shows that, by inducing
repo specialness, asset purchases generate a stronger impact on targeted securities and a more limited
transmission to the broader yield curve. This prediction is consistent with the evidence in Lucca and
Wright (2024), who document that in Australia, narrow asset purchases known as Yield Curve Control
(YCC) affected only the class of bonds targeted by the central bank, generating local supply effects
(i.e., price responses that are concentrated in the specific securities subject to demand shocks) without
a global supply effect (i.e., changes in the pricing of a broad range of maturities along the yield curve).

Policymakers may draw on our model to control the strength of the local and global supply effects
of their asset purchases, which are shaped by the degree of repo specialness. In equilibrium, repo
specialness arises when bond purchases are withheld from the repo market. Policymakers aiming to
generate global supply effects on the entire yield curve should supply their bonds on the repo market,
to enable arbitrageurs to transmit the effect of asset purchases across the yield curve. Policymakers
may also want asset purchases to selectively influence the price of specific bonds; for example, green
bonds. Asset purchase of green bonds affect the price of these bonds relative to comparable ones only
if their effects are strongly localized. To achieve this effect, policymakers can withhold the purchased
bonds from the repo market, thereby enhancing their scarcity and allowing them to acquire special
collateral value and trade at a premium relative to other bonds. This paper thus recommends that
monetary policy be implemented in a coordinated manner across the bond and repo markets, as these
are markets for the same securities.

The findings of this paper tie in well with the literature on the effects of demand forces on the yield
curve (D’ Amico and King, 2013; Greenwood and Vayanos, 2014). The canonical framework for
this literature is found in Vayanos and Vila (2021), and provides the analytical structure to harmonize
observed empirical findings with the received preferred-habitat theory (Culbertson, 1957; Modigliani
and Sutch, 1966). Recent literature has integrated the preferred-habitat theory with macroeconomics
(Ray et al., 2024; Jansen et al., 2024), the foreign exchange market (Greenwood et al., 2023; Gourin-
chas et al., 2025), the credit market (Costain et al., 2025), the interest rate swaps market (Hanson et al.,
2024), and the mortgage-backed securities market (Malkhozov et al., 2016). In this paper, we do not



extend the preferred-habitat theory to a new asset class, but rather to a different function of bonds: their
role as collateral in the repo market. In a related inquiry, He et al. (2022) examine market dislocations
in US Treasury bonds driven by flight-to-safety and flight-to-liquidity during crises such as the
COVID-19 pandemic. In their model, intermediation frictions such as dealers’ regulatory balance
sheet constraints induce a spread between the overnight-index swap (OIS) rate and the General Col-
lateral (GC) repo rate. Our paper differs in many respects, as it abstracts from intermediaries’” balance
sheet constraints and centers around the Special Collateral (SC) segment of the repo market, which is
entirely absent from their paper. The SC segment of the repo market is an extremely important source
of collateral for short sellers and warrants separate attention, as it exhibits a multiplicity of special repo
rates that vary at the tenor and instrument level, generate price differentials among bonds with identical
cash flows (Krishnamurthy, 2002), and respond endogenously to demand forces (D’ Amico et al.,
2018). SC repo transactions represent 87% of the repo market daily volume in the Euro Area (Arrata
et al., 2020), and comprise the bulk of the bilateral US repo market, which accounts for 60% of the
total daily repo volume in the US (Copeland et al., 2014). A key contribution of our paper is to uncover
a novel asset pricing mechanism: through their impact on the arbitrageurs’ portfolio, SC repo rates are
positively associated with term spreads at all maturities and affect the transmission of monetary policy.

Methodologically, our point of departure from the preferred-habitat literature is to concentrate on
habitat preferences for special bonds within maturity buckets, rather than for bonds with specific
maturities.* Habitat preferences for special bonds can be motivated by investment mandates and
liquidity considerations (Pasquariello and Vega, 2009). These habitat preferences induce differentials
between otherwise equivalent securities and connect our analysis to Vayanos and Weill (2008), who
consider a steady-state economy with search frictions and two assets paying identical cash flows. We
abstract from search frictions and complement their stationary equilibrium from a dynamic perspective,
which has the advantage of allowing for yield curve considerations.

In a foundational paper, Duffie (1996) shows that bond prices and the interest rate on the loans
they collateralize are connected by an arbitrage restriction and demonstrates that the collateral value
of bonds increases as arbitrageurs intensify their demand for collateral to sell a bond short. Other
contributions in this area include Jordan and Jordan (1997), Buraschi and Menini (2002), Fisher
(2002), Copeland et al. (2014), Martin et al. (2014), Mancini et al. (2016), and Roh (2022). D’ Amico
and Pancost (2022) estimate an affine econometric model of the yield curve that jointly accounts for
the prices of Treasury securities and the corresponding repo rates. Their evidence from US markets
highlights repo specialness as a risk factor that can explain asset pricing inconsistencies between
bonds having similar cash flows. Our paper differs from theirs in two key aspects. First, we show

that, in European markets, repo specialness not only explains price inconsistencies between bonds

“Naturally, bonds differ on many dimensions other than maturity. For example, Chen et al. (2022) study clientele effects
on bond prices and repo rates in the context of Islamic bonds, and D’ Amico et al. (2022) focus on Green premia, the
yield differences between maturity-matched conventional and Green bonds.



with similar cash flows but also the relative pricing of bonds having different cash flows and maturity
profiles, emphasizing its role as an explanatory variable for term spreads along the entire yield
curve. Second, we rationalize this evidence through a structural model that derives the pricing of risk
from first principles, rather than specifying the stochastic discount factor exogenously, allowing for a
comprehensive examination of the equilibrium effects of special repo rates. Our theory, which we view
as our main contribution, shows that special repo rates reduce arbitrageurs’ short-selling activity, thus
influencing their portfolio duration, the market price of interest rate risk, and the entire yield curve, over
and above the valuation of specific bonds. To our knowledge, our paper is the first to present a dynamic
equilibrium asset pricing theory formalizing the broader effect of special repo rates on the pricing
of risk in the bond market and considering its implications for the transmission of monetary policy.
The remainder of the paper is organized as follows. Section 2 presents the motivating evidence.
Section 3 develops a theory of the yield curve that integrates the bond and repo markets. Section 4
discusses its implications for monetary policy. Section 5 provides a calibration of the model to market

data. Section 6 offers concluding remarks. All proofs are available in the Appendix.

2 Motivating Evidence

How does the yield curve interact with the repo market, where bonds serve as collateral for loans?
In this section, we explore this question from an empirical perspective. For consistency with our
theoretical framework, the empirical examination requires a large preferred-habitat investor operating
in a market where repo specialness is both quantitatively significant and persistent. Accordingly, we
analyze data from the German Treasury bond market during the ECB’s APP period. The recognized
status of German bonds (Bunds) as safe assets renders them some of the most valuable collateral in
global markets (see, e.g., Mancini et al., 2016). Moreover, in Europe, bonds are issued “on tap,” and
repo specialness often persists throughout a bond’s lifetime. Against this institutional background,
the ECB’s APP period provides a natural empirical counterpart to our preferred-habitat model of the
yield curve and the repo market.

Our sample comprises the universe of Bunds between October 2014, the commencement of the
APP, and July 2023, when the ECB ceased reinvesting redemptions from its APP portfolio.” Bond-
level variables are obtained at the daily frequency from LSEG. From the universe of Bunds, we
exclude inflation-linked securities and those for which fewer than 100 observations are available.
We further restrict the sample to bonds with a duration between 0.1 and 30 years to ensure data
quality. Bond yields to maturity data incorporate accrued interest and exhibit no discontinuities when
coupons are paid. For each bond, we also obtain the daily volume-weighted average overnight repo

rate by using tick-by-tick data recorded by BrokerTec, the largest electronic repo platform for German

>Source: https://www.ecb.europa.eu/mopo/implement/app/html/index.en.html.
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Treasury bonds. Bond data are then matched with repo rate data at the ISIN level.

In our granular dataset, the main variables of interest are bond yields to maturity and repo rates, both
of which are winsorized at the 1* and 99" percentiles to reduce the influence of outliers and quarter-end
spikes. From an institutional perspective, repo contracts can be classified into two categories. For GC
repo contracts, the primary purpose is to secure funding, and a range of bonds can be used interchange-
ably as collateral. For SC repo contracts, the lender seeks a specific bond, often to cover a short position.
Competition for special bonds drives down the interest rate cash borrowers must pay, allowing owners
of these bonds to borrow at more favorable terms, and enjoy a “repo specialness’” remuneration that
varies with the relative demand and supply for that particular bond. Empirically, we measure the repo

specialness of the 7™ bond on day ¢, Repo Specialness .,, as the difference between the German GC

it
repo rate index, GC Interest Rate,, and the bond-specific volume-weighted repo rate, Interest Rate ;.

Repo Specialness;, = GC Interest Rate; —Interest Rate;. (1)

For each trading day, we compute a measure of aggregate specialness as the average across bonds

of the product of bond duration and repo specialness,

1
Aggregate Specialness, = N E DjRepo Specialness ;;, 2
t .
J

where D;; denotes the modified duration of bond j at time ¢, and N, the number of valid securities
at time 7. As we will discuss in Section 3.10, the construction of this measure is guided by our theory.

For illustration, consider the Bund with ISIN DE0001135440. On October 1, 2014, the first day of
our sample, this Bund has a modified duration of 6.15 years. As of this date, its total amount issued
is €6 billion, its yield to maturity is 0.34%, and its annualized overnight repo rate is —0.20%. On the
same day, the GC repo rate for German Bunds is —0.06%, implying a repo specialness of 0.14% for
this particular Bund. For that day, the contribution of this bond to the aggregate specialness measure is
6.15-0.14%=0.86%, while the value of the aggregate specialness measure across all bonds is 0.23%.

Following standard practices, we construct aggregate measures of yields and repo rates across
duration buckets to capture the systematic relationship between bond maturity and market rates. The
first bucket comprises bonds with durations between 0.75 and 1.25 years and serves as the benchmark
for the 1-year segment of the curve. We construct six additional duration buckets, covering maturities
from 2 to 30 years. For each bucket, we compute the yield spread relative to the 1-year segment of
the curve, Term Spread;, defined as the difference between the average yield in the T-year bucket
and the average yield in the 1-year bucket. We conduct this procedure using both daily and weekly
data. The final dataset comprises 180 unique bond ISINs and 94,142 observations spanning 1,956
unique trading days over 452 unique weeks.

Summary statistics are reported in Table I. The panel is unbalanced, as some bonds trade throughout



the full sample period, while others do not. The average bond duration is 7.2 years, with a standard
deviation of 5.8 years, reflecting substantial cross-sectional dispersion across bonds that remains
relatively stable over time.® Repo specialness is quantitatively significant, with a mean of 10 basis
points and a standard deviation of 12 basis points. The aggregate specialness measure, which weights
bond-level specialness by duration, has an average value of 61 basis points and a standard deviation
of 49 basis points, reflecting a stronger contribution of long-duration bonds’ repo specialness.

We examine this panel dataset to analyze the relationship between term spreads and aggregate repo
specialness among bonds within different duration buckets. Figure 1 displays the time series of these
variables alongside the GC interest rate. The figure suggests a strong positive correlation between
the aggregate repo specialness and the term spread, statistically and economically significant across
all buckets, peaking at 0.40 for the [7,10) duration bucket even in unsmoothed data. As we discuss
in Section 3.11, this feature of the data align with our theory. To formalize the statistical analysis,
we follow the approach of Greenwood and Vayanos (2014) and estimate the following time series

regression model, separately by duration bucket:
Term Spread; = 5y + 31 Aggregate Specialness,+¢; . 3)

Table II presents the results from estimating this specification using weekly data. The data reveal
a strong pattern of positive correlation between aggregate repo specialness and the term spread
across all duration buckets, with the effect being generally more pronounced for higher duration
buckets. Quantitatively, a one-standard deviation increase in aggregate specialness is associated with
a 0.363-0.49% = 0.18% increase of the term spread for the [7,10) duration bucket, which is about one
third of its unconditional average of 0.59%. This striking pattern cannot be attributed to variation in
the average duration of outstanding bonds, which remains nearly constant in the time series of our
sample. This finding is not easy to reconcile with existing equilibrium financial or macroeconomic
theories of the yield curve that abstract from the repo market.”

To ensure robustness, we repeat the estimation in Panels B and C of Table Il, separately by subsam-
ples of bonds with high and low specialness. Specifically, bonds are classified as general if their repo
specialness is below the cross-sectional median for that week, and as special if above.® The regression
estimates remain strongly robust across these subsamples. Table III repeats the estimation at the daily
frequency, with nearly identical estimates further confirming the robustness of the results. Unreported
results confirm that the findings are robust to the duration buckets grouping and the specialness

classification, and are not driven by any particular time period. Furthermore, this relationship is not

8The cross-sectional average duration of bonds remains stable over time, with a time-series standard deviation of only 0.34.
7Standard yield curve theories emphasizes the importance of macroeconomic factors, interest rate expectations, and
market segmentation (Gilirkaynak and Wright, 2012), and, more recently, demand and supply in the bond market
(Greenwood and Vayanos, 2014); to our knowledge, none highlights the role of collateral specialness in the repo market.
8A statistical classification is necessary, as a bond may trade as both GC and SC within the same day in tick-by-tick data.
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FIGURE 1: Term spreads correlate with aggregate repo specialness. This figure illustrates the term spreads
of Bunds across several duration buckets (left y-axis), the aggregate repo specialness measure (left y-axis),
and the German general collateral interest rate (right y-axis). Both y-axes are expressed in percentage points per
annum. This figure is based on German Treasury weekly data from LSEG covering the period from October
2014 to July 2023.

a mechanical consequence of weighting bonds by their duration in constructing the aggregate special-
ness measure, since the measure explains term spreads across the entire maturity spectrum, not only
at the long end of the curve. Overall, the data show a remarkably robust positive correlation between

the aggregate repo specialness measure and term spreads across every segment of the yield curve.’

This finding is consistent with Hu et al. (2013), who document empirically that price differences between bonds with
equivalent cash flows help explaining term spreads. While our main contribution is theoretical, our empirical approach



We are not aware of any other paper that provides evidence that, above and beyond the effect of
a bond’s repo specialness on its own yield (see, e.g., Duffie, 1996), the aggregate repo specialness
is systematically associated with term spreads across the entire yield curve. In terms of the underlying
economic mechanism, term spreads reflect both expectations of future short rates and a risk premium.
However, it remains implausible that the collateral value of bonds in repo agreements with overnight
maturity contains information regarding future short rates. Moreover, as visible in Figure 1, variation in
aggregate specialness does not predict changes in GC interest rates. Thereby, the novel empirical reg-
ularity we document strongly suggests that aggregate conditions in the repo market correlate with the
risk premium of bonds in the capital market. Below, we develop a unified theory of the yield curve and

the repo market to interpret this finding and to construct counterfactual scenarios for policy analysis.

3 The Model

The model is formulated in continuous time, denoted by ¢, and extends over an infinite horizon. It
considers the valuation of riskless zero coupon bonds in a setting with two markets, the bond and

the repo market, and two agents, preferred-habitat investors and arbitrageurs.

3.1 Bonds

Riskless zero-coupon Treasury bonds are indexed by their tenor, 7, and by their status, 7. Bond status is
either general, if 2= g, or special, if : = s. General and special bonds of the same tenor have equivalent
cash flows, but their prices can differ because of the demand effects of preferred-habitat investors

detailed below. The bond price is denoted by F};. The continuously compounded yield to maturity is

1
Yir=— ;logP;. )

The short rate, 7, is the limit of the yield to maturity when 7 goes to zero. We take r; as exogenous,

and assume it follows a Vasicek process whose parameters have the usual interpretation.'”
dry =k, (T—ry)dt+o,.dvy. )

3.2  Repos

Repos are contracts where bonds are used as collateral to obtain overnight financing compensated at

arepo rate.!! The repo rate of a bond with status 7 and maturity 7 is denoted by r7,. The repo market

emphasizes that the repo market can be directly used to explain term spreads along the entire yield curve.
10The choice of a Gaussian innovations is standard. For a discussion of non-Gaussian models, see Berardi et al. (2021).
""'We focus on overnight repo transactions, which attract by far the dominant proportion of volume, as the modeling of term
repos would require the introduction of an additional index. As is standard in this literature, we abstract from collateral re-
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is segmented and offers two distinct opportunities for investing cash, depending on whether the bond

pledged by the counterparty as collateral is classified as general or special:
1. Receive a general bond (i =g) by entering an agreement that earns the GC repo rate, 7, =7.
2. Receive a special bond (:=s), which is in elastic supply, and earn the SC repo rate, 77, <r;.

Accordingly, the exogenous short-rate process in Equation (5) should be interpreted as describing
the GC repo rate dynamics—for instance, the SOFR. By contrast, SC rates vary endogenously across
tenors and over time, and are to be determined in equilibrium. While the GC secures a higher interest
rate, GC contracts are not used for short-selling, as the cheapest-to-deliver option resides with the
counterparty borrowing the cash. Thereby, arbitrageurs might want to borrow the SC bonds needed
to meet any pending short-selling commitments, even at the cost of foregoing returns on their cash.
As we will show in Section 3.9, the spread between GC and SC repo rates does not generate any
arbitrage opportunities.

What makes special repo rates challenging to model by using exogenous short rate dynamics?
The defining feature of special repo rates is their exposure to demand forces (Duffie, 1996). From
a theoretical perspective on the yield curve, there is simply no room for demand pressure to directly
impact the exogenously specified short rate process in Equation (5). Instead, in our proposed theory, the

demand forces that affect bond prices contribute to the endogenous determination of special repo rates.

3.3 Preferred-Habitat Investors

Preferred-habitat investors such as central banks exhibit habitat preferences, which we allow to be
a function of tenor, for bonds with specific characteristics. We define as special those bonds that are
targeted by preferred-habitat investors, and index them through 7 = s; for instance, securities eligible
for QE may be considered special. Conversely, we refer to bonds of all maturities for which the excess
demand is permanently zero as general, and index them through their status 2 = g; one example is bonds
that are not targeted by asset purchases. The demand of preferred-habitat investors is expressed net of
the size of the issue supplied by the government, which is normalized to zero, without loss of generality.

Building on Vayanos and Vila (2021), we define the excess demand Z, for bond 7 with tenor 7 by

—n.logP} —0, 1=3s,
Zr— N-l0g 17 )
0 1=g.

The demand slope, 7)., and intercept, 6., are constant over time but can depend on maturity, an

assumption that could be relaxed without affecting the economic mechanisms at work. Under normal

hypothecation and repo haircuts. Collateral rehypothecation does not affect the mechanisms at work, so long as collateral
reuse is partial, as is well understood empirically. An extension that incorporates repo haircuts is available upon request.

10



market conditions, Equation (6) describes the preferences of private investors for specific securities
within maturity segments.'”> These habitat preferences are consistent with the empirical evidence that
Treasury convenience premia exhibit discontinuities at specific annual maturities induced by clientele
effects unrelated to fundamentals (Fleckenstein and Longstaff, 2024). In the context of QE, this

formulation captures the purchases by central banks of targeted bonds relative to non-targeted bonds.

3.4 Arbitrageurs

Arbitrageurs such as hedge funds rely on repo financing to engage in trades that smooth out price differ-
ences which would otherwise arise in a segmented market equilibrium. Arbitrageurs establish a long
(short) position by buying (selling) the bond outright in the spot market and finance (cover) that pur-

t.!3 For exam-

chase (sale) by using the bond as collateral to enter an overnight (reverse) repo agreemen
ple, arbitrageurs would short-sell a bond that is overpriced as a result of the demand of preferred-habitat
investors. To this end, arbitrageurs would lend their cash in a repo contract collateralized by that bond,
and simultaneously sell the bond outright. At each point in time, arbitrageurs must either close the out-
right position or roll over the short-term repo contract. Arbitrageurs set their bond positions, denoted by

X, to maximize a mean-variance objective over instantaneous changes in their wealth, denoted by ;.

(1A

E[dW,] V,[dW]]

. 7
on a2 a ™
Here, + is a risk aversion parameter. Below, we characterize the arbitrageurs’ budget constraint.
o0 dPT e ¢] d PT
dI/Vt:rtW}dt—i—/ X;t( Pft —rt) d7'+/ XsTt( PTSt —7’;) dr. ®)
J 0 gt , 0 st ,

General bonds Special bonds

As captured by the first term in d¢, arbitrageurs’ wealth earns at the instantaneous remuneration rate 7,
offered by the GC rate, which is above the SC rates. The first integral on the right side of the equation
is the marked-to-market value of the portfolio of general bonds net of their financing cost, the GC
rate ;. The second integral is the marked-to-market value of the portfolio of special bonds net of their
financing costs, each represented by the respective SC repo rate 77,.

Equation (8) is not the standard law of motion of wealth, which arises under the restriction of a
unique short rate, 77, =, V (¢,7). Conceptually, this formulation differs from the textbook portfolio
allocation problem where the short rate represents the opportunity cost of the risky assets. Here, the
holdings of arbitrageurs are established by resorting to the repo market for collateralized lending.

Unlike an opportunity cost interpretation, short-term interest rates thus represent the cost of the collat-

12As an example, private investors such as bond mutual funds often express demand for Green and Islamic bonds.
3For a detailed discussion of the repo market’s role in facilitating arbitrage, see Fisher (2002).
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eralized loan which repos the bond to finance the position, in the spirit of Tuckman and Vila (1992).

3.5 Bond Market Clearing

The bond market clearing condition is
T4 X7 =0, ©

We observe that two dimensions of market clearing must hold at all times: bond demand and supply
must coincide for each bond status, and for each bond tenor. On the one hand, because market clearing
operates across bond status, the demand for general bonds (z = ¢g) does not exceed their supply,
arbitrageurs are active in equilibrium only in the market for special bonds (i = s). Of course, nothing
prevents arbitrageurs from trading general bonds as well, so that in equilibrium these securities would
be as profitable as special bonds from their perspective. On the other hand, because market clearing
operates across bond tenor, arbitrageurs stand ready to meet the excess demand of preferred-habitat
investors by short-selling 7-maturity special bonds and accepting the rollover risk associated with
SC reverse repo agreements.'* Thus, as we show in Section 3.8, higher activity from preferred-habitat
investors increases repo specialness by reducing a bond’s outstanding float and symmetrically raising

arbitrageurs’ demand for collateral in the repo market to short-sell the bond."

3.6  General Bonds, Special Bonds

Two bond issues of the same tenor may differ in their exposure to demand pressure. In Treasury
markets, bonds on special are regularly observed to be overpriced relative to bonds with identical
cash flows. To highlight this distinction in our model, let us conjecture that the price process is
exponentially affine in the short rate and in the demand of preferred-habitat investors.

—logP; =A.r+B. X, +C- (10)

This conjecture, which will be formally verified in Section 3.11, is best interpreted in light of the bond
market clearing condition, whereby X, =n,log P; 40, and X, = 0. Equation (10) allows bonds
with identical cash flows to trade at different prices as a result of differing demand pressures, adding
bond status as an incremental dimension to the models of the yield curve. This representation is our
characterization of bond market segmentation. On the one hand, the exposure to the general interest
rate, ¢, 1s common to maturity-matched general and special bonds. On the other hand, demand forces

selectively exert a local price pressure on the bonds targeted by preferred-habitat investors. Importantly,

4As in Vayanos and Vila (2021), arbitrageurs may hedge duration risk by trading bonds of different maturities; in our
setup, they could even engage in sophisticated convergence trades that go long a general bond and short a special bond
of the same maturity. In both cases, market clearing prevents arbitrageurs from eliminating their aggregate risk exposure.

10ur approach is consistent with Banerjee and Graveline (2013), who decompose the premium of special Treasury
bonds into higher prices encountered by long investors and increased borrowing costs for short sellers.
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as we will show in Section 3.11, demand forces also exert a global influence on the equilibrium price
of risk and play a central role in determining the pricing coefficients, A,, B, and C..

For convenience, we define B;; = B 1,—y, where 1;—, =1 if = s and 0 otherwise. We then write

—logP} =a;:1¢+bi- 0, +cir. (11)
Here, we have used Equations (6) and (9), and defined a;, = ; +;:—TBi s bir =1 ji%, ,and ¢ = Hfﬁ.

Equation (11) results from substituting preferred-habitat investors’ demand function, which itself de-
pends on bond price, into the conjectured price process. The coefficients (a;,b;,,c;;) are deterministic

functions of bond status and maturity, and given i, they are in a one-to-one mapping with (A, B, ,C.).

3.7 The Optimization Problem of Arbitrageurs

To solve the arbitrageurs’ problem, we begin by deriving the dynamics of bond prices through

substitution of Equations (5) and (9) into Equation (11).'¢
dP;,
b =yl dt—ago.dvy, (12)
Pi

1
Mzt — arrrt +a'2'r/{r( ) +3 9 az’ra-r +b7,70 +bz7'0 +Cz7'

The notation a;, represents the partial derivative of a;, with respect to time, ¢. In the expression above,
(7, 18 the expected return from a bond. The volatility of bond returns is driven by innovations in the
short rate, dv;, with exposure that varies across maturities. We observe that Equation (12) describes
the returns of both general and special bonds, as the coefficients a;,,b;,, and ¢;; depend on bond

status. Substituting Equation (12) into the arbitrageurs’ wealth dynamics in Equation (8), we obtain

(e.9]

dW,= |:Wt7"t+/ X, (:ugt 7"t) + X5 (:ust st)dT] dt— [/ agrXg ‘HLSTXsth} ordvy .
0 0

Replacing the above expression into Equation (7),
2

I{I)l(a}ii I/Vtrt—i—/ X;t(u;t—rt) +X§t(u§t—rgt)d7'—% {03/ ag: X}, —|—aSTXsTth} .
it 0

The first-order condition (FOC) with respect to the position in the bond with tenor 7 and status ¢ is

iy =T = —ir Ay, (13)

16To improve readability, only the equations to which there is a subsequent reference are numbered.
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where -
)\t:—’yaf/ agTXth—i—aSTXsTth. (14)
0

Equation (13) expresses the arbitrageurs’ optimal trade-off between risk and return for each bond. The
left-hand side is the instantaneous expected return on a bond, 1.7, net of the borrowing rate secured by
that bond, 7,. The right-hand side is the bond exposure to risk, measured by its sensitivity to the risk
factor scaled by the market price of that risk. The risk factor is the instantaneous interest rate, 7;, and
the sensitivity of a bond to the interest rate is the coefficient a;,, which captures the bond duration.
The market price of interest rate risk, ), is expressed in Equation (14), and reflects the arbitrageurs’
risk aversion multiplied by the exposure of their portfolio returns to interest rate risk.

The FOC closely resembles the familiar no-arbitrage condition underlying yield curve models, with
an important distinction: the riskless rate, 7, is replaced by the cross-section of general and special
repo rates, r7,. In standard models, the characterization of the yield curve by the absence of arbitrage
is usually based on the restriction 7], =1, V7, which cannot address any differences in the collateral
quality of bonds. In contrast, our framework explicitly accounts for the function of bonds as collateral,
and recognizes that arbitrageurs’ optimality conditions apply to both general and special bonds. At all

times, arbitrageurs require the FOC to hold uniformly across both maturities, 7, and collateral status, 1.
Remark 1. Arbitrageurs integrate the collateral specialness of bonds into their portfolio choice.

In the repo market, interest rates vary at the bond level. This observation calls for a refinement of
the classical principle whereby one should observe a constant (Sharpe) ratio between expected return
of assets in excess of the risk-free rate and their standard deviation. Thus, we must adjust the Sharpe
ratio for the bond-specific risk-free rate by replacing r; with r7,. This consideration is natural, once
we recognize that special bonds generate an implicit stream of cash flows in the repo market.!” This
refinement follows directly from the arbitrageurs’ FOC, from which we also deduce the following

result, a useful ingredient for later analysis.

Lemma 1. Bond yields satisfy the following decomposition.

T 1 i T—U 1 i 1 T 0-7%
yit:;Et {/0 ri’Hudu} —;]Et [/0 aijTu)\tJrudu} — {/0 aiTugdu]

v TV gl
Expected short rates Risk premium Convexity adjustment

Proof. See Appendix A
Lemma 1 is a standard decomposition of bond yields into three terms (Greenwood et al., 2024),
formulated in the context of our model. The first term represents expected short rates, which in our

model vary with bond tenor and status; the second is a risk premium, capturing bond duration and

17This refinement could extend to equity assets, with securities lending rebate rates assuming the role of special repo rates.
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expected price of the risk factor; and the third is a convexity adjustment, proportional to the squared
bond duration and the volatility of the risk factor.

The equilibrium in the bond market is a set of bond prices such that the market clears and the
arbitrageurs maximize their objective function given the demand of the preferred-habitat investors.
It can be obtained by replacing the bond market clearing condition (Equation (9)) into the market
price of risk (Equation (14)), to then derive the equilibrium bond pricing coefficients and verify the
conjecture in Equation (10). We defer a detailed discussion of the market price of risk to Section 3.10,
and present the analytical expression for bond prices in Section 3.11. For clarity of exposition, we

first characterize the equilibrium in the repo market and its key implications for bond valuation.

3.8 Equilibrium in the Repo Market
3.8.1 Collateral Demand

The demand for bonds in the repo market depends on whether the collateral is classified as GC or SC.
GC bonds are not in high demand, as investors have no need to borrow them to cover short-selling
positions. By contrast, arbitrageurs present a demand for SC bonds in the repo market; indeed,
arbitrageurs short-sell the specific bonds that are targeted by the demand of preferred-habitat investors
in the bond market by borrowing them in the repo market. Consequently, arbitrageurs have an out-
standing obligation to deliver SC bonds in the repo market, and they present a demand for SC bonds
that is inelastic to their repo specialness. These considerations motivate the following specification

for the demand for bonds as collateral in the repo market, denoted by D7,.
D, =-X]. (15)

In the above equation, the demand for collateral in the repo market depends on whether the bond is
sought by arbitrageurs to meet short-selling commitments, —X/; by bond market clearing, the portfo-
lio of the arbitrageurs is the opposite of the excess demand of preferred-habitat investors in the capital
market, — X, = Z,. In the capital market, preferred-habitat investors exhibit zero demand for general
bonds (Z;, =0) and a positive excess demand for special bonds (Zg, = —n,log F; —0.). Accordingly,

in the repo market arbitrageurs exhibit no demand for GC bonds and a positive demand for SC bonds.

3.8.2 Collateral Supply and Securities Lending

The supply of bonds in the repo market depends on whether the collateral is classified as GC or SC,
as well as on the bond’s repo specialness, [7,, which is defined as the difference between GC and SC

rates of bonds with a given tenor, and endogenously determined by market forces. Namely,
l,=ri—r1). (16)
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The supply of GC bonds in the repo market is perfectly elastic with respect to repo specialness,
as these bonds are substitutable; any positive repo specialness would elicit an unbounded supply
response. The supply of SC bonds in the repo market is imperfectly elastic to repo specialness, as
these bonds represent a scarce resource; accordingly, an increase in repo specialness induces only a
finite supply response. Hence, the holders of SC bonds are entitled to receive a greater compensation
to supply additional units of the special security (Duffie, 1996).!8
The affine term structure specification that we adopt in this paper implies an affine relationship
between the supply of bonds in the repo market and their repo specialness; we denote by &; the inverse
of the elasticity of supply to repo specialness.”” GC bonds have perfectly elastic supply (£, = 0),
whereas SC bonds exhibit imperfectly elastic supply (£, >0). Crucially, preferred-habitat investors
may affect the supply of collateral by lending their asset purchases in the repo market; we denote the
quantity of their securities lending by 7, < Z7,. The supply of bonds as collateral in the repo market,
denoted by S}, is given by
R=QutE (17)

Thus, the supply of collateral in the repo market, S7,, depends on repo specialness, [, and on the
inverse of the supply elasticity, & '; moreover, it depends on the securities lending of preferred-habitat
investors, (J7,. Attention thus turns to the role of preferred-habitat investors, who may or may not sup-
ply their bonds in the repo market. For instance, central banks may or may not make their QE portfolio
of bonds available for borrowing against cash through a Securities Lending Facility (SLF). We denote
by ¢7, the securities lending activity of preferred-habitat investors, defined as the proportion of bonds
lent relative to their holdings. Specifically, ¢7, =Q7;/Z7,. To avoid division by zero, we set ¢7, =0.
As we will demonstrate in Section 3.11, the securities lending activity of preferred-habitat investors ¢,

is the single parameter in our model that causes it to differ from a traditional preferred-habitat model.

3.8.3  Equilibrium and Repo Specialness

The equilibrium in the repo market is characterized by a set of repo rates such that the market
clears given the demand of collateral by arbitrageurs (Equation (15)) and the supply of collateral by
preferred-habitat investors (Equation (17)). The intersection of collateral demand and supply clears

the market and characterizes the equilibrium repo specialness, which is given by

liy=Zi(1=¢3,)Ei. (18)

18The amount of bonds outstanding is fixed by the size of the issue, and buy-and-hold investors such as pension funds and
insurance companies (Maddaloni and Roh, 2021; Ballensiefen et al., 2023; Coen et al., 2024), as well as central banks
during quantitative easing operations (Arrata et al., 2020), typically exhibit limited participation in the repo market.

19This framework could be generalized; for instance, a quadratic term structure model would give rise to a quadratic
collateral supply curve.
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Accordingly, the repo specialness of GC bonds is always equal to zero; namely, I7, =0. By contrast,
the repo specialness of SC bonds is weakly positive; namely, (7, > 0.
In the market for SC bonds, the level of repo specialness that results from the asset purchases

of preferred-habitat investors, 27,

7., 1s determined by their securities lending in the repo market, ()7,.

Appendix Figure IA.I illustrates the equilibrium in the SC segment of the repo market as a function of
preferred-habitat investors’ participation in securities lending. In the absence of securities lending by
preferred-habitat investors (¢7, =0), their asset purchases induce a scarcity of bonds in the repo market
and gives rise to a proportional repo specialness (I7, =& Z7,), consistent with the empirical findings
of Arrata et al. (2020) and other studies documenting that QE generates repo specialness. By contrast,
in the presence of securities lending by preferred-habitat investors, their securities portfolio becomes
available in the repo market, inducing a rightward shift of the collateral supply curve. In the limiting
case, as preferred-habitat investors lend their entire securities portfolio (¢, = 1), repo specialness is
fully eliminated ({7, =0). Our equilibrium characterization of the repo market thus provides a tractable
framework to analyze the effects of new monetary policy tools that operate through the repo market,
such as the SLE.

3.9 Relative Bond Prices and Repo Rates

Below, we discuss the equilibrium relationship between bond prices and repo rates, which is given by

P;tj =exp (—ATrt — BzTX;—g — CT> :]E;< |:eXp (—/ r:t—fiLdu> :| . (19)
0

In the first equality of Equation (19), we use the affine representation of the bond price. In the second
equality, we denote by [E} the expectations taken under the risk-neutral measure, and equate the bond
price to the risk-adjusted expected present discounted value of its appropriate interest rates (Duffie
and Kan, 1996).2! Accordingly, the notional principal at maturity is priced using the appropriate series
of short rates: GC rates for general bonds, and SC rates for special bonds.

Next, consider the relative price and repo rate of general and special bonds with identical cash
flows. As arbitrageurs can establish convergence trades, any discrepancies between the price of
two bonds with identical cash flows that are not justified by repo financing costs would give rise to
arbitrage opportunities (Duffie, 1996). In the absence of such opportunities, any price differences
between bonds with identical cash flows induced by the demand of preferred-habitat investors must be

mirrored in repo specialness, which captures arbitrageurs’ collateral demand in the money market.”?

20The first statement follows from Z ot = Qg =E; =0; the second from Z7, > 7, and &5 >0.

2IThe coefficients A, B;,, and C; project the current value of the risk factors on the risk-adjusted rational expectations
forecast of their future conditional realizations, incorporating their level and persistence into market quotes.

22In line with this reasoning, D’ Amico et al. (2018) employ data on the volume of reverse repo contracts as an empirical

measure of excess demand in the bond market.
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Lemma 2. In equilibrium, the price ratio of special to general bonds with equivalent cash flows is

P T T -1
P_STt =exp (BSTZSTt) =E; [exp (— / r;t_fudu> ] E; {exp <— / Tt+udu) ] .
gt 1 A 0 N 0 )

Collateral Value

v v
SC Repo Rates GC Repo Rates

Proof. See Appendix B.

In equilibrium, the relative price of special and general bonds with equivalent cash flows (on the
left-hand side of the first equality) is equal to the ratio of the cost of replicating the two positions
through a series of overnight repo contracts, in expected risk-adjusted terms (on the right-hand side
of the second equality). Given that r] =7],+(7,, an increase in repo specialness, [7, raises the price
difference between general and special bonds with equivalent cash flows. Due to the affine structure,

B, represents the linear projection of current demand pressure, 27,

144

onto the entire stream of repo
specialness attached to the specific bond. Lemma 2 thus establishes that the targeted demand pressure
of habitat investors induces a price premium between bonds with equivalent cash flows. The log-price

premium of special bonds, B, 2],

st?

which we refer to as the collateral value of special bonds in the
capital market, is the risk-adjusted present value of the entire stream of repo specialness attached to
the specific bond conditional on the current level of demand for that bond.

Lemma 2 is consistent with Buraschi and Menini (2002), Cherian et al. (2004), and D’ Amico and
Pancost (2022), who also suggest that repo specialness must be included in the pricing of special
bonds across every maturity. However, in this paper, repo specialness is endogenously determined
by the interaction of arbitrageurs and preferred-habitat investors such as central banks; moreover, as

we show below, it affects the market price of interest rate risk.

3.10 The Market Price of Risk

In this section, we explicitly solve for the market price of risk in our model. Imposing the market clear-

ing condition (Equation (9)) into the expression for the market price of risk (Equation (14)), we obtain
/\t :’YU?/ Qsr [TIT (ATTt+BSTX;t+CT) _97'] dr. (20)
0

The market price of risk reflects arbitrageurs’ risk aversion and the interest rate risk of their portfolio.
By market clearing, the arbitrageurs’ portfolio depends on the demand of preferred-habitat investors.
Suppose that the demand from preferred-habitat investors rises. To accommodate their demand,
arbitrageurs short-sell more bonds and carry their trades by investing the proceeds at the series of short
rates. Greater carry trade activity heightens the arbitrageurs’ exposure to interest rate risk, inducing
them to require a higher compensation for risk. The required compensation is an increase in the market

price of risk, which raises the price of long-term bonds and makes short-selling at these higher prices
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more attractive to arbitrageurs. This adjustment leads to a decline in the yield to maturity on long-term
bonds, resulting into a flattening of the yield curve. Thus, as is standard in the preferred-habitat
literature, the market price of risk and the yield on long-term bonds are negatively related.

A distinct feature of our theory is that, by market clearing, arbitrageurs solely hold special bonds. As
a consequence, the market price of risk reflects the interest rate risk of the returns of the arbitrageurs’
portfolio of special bonds. Importantly, however, the market price of interest rate risk affects the pricing
of both general and special bonds, governing the transmission of the demand of preferred-habitat

investors from special bonds to the yield curve of general bonds not directly targeted by their demand.
Remark 2. Both general and special bonds are exposed to the same market price of interest rate risk.

In preparation for our next key result, it is useful to recall that in our theory bonds serve two roles.
First, as investment opportunities that generate cash flows in the bond market. Second, as means of
collateral that generate cash flows in the repo market. (The collateral value of special bonds, B, Z7,,
was derived in Lemma 2). To appreciate the relative contribution of these two components to the
market price of risk, replace the bond market clearing condition (X}, + Z], = 0) into Equation (20),

and rearrange terms as follows.

) )
T 2 2 T
A =0 / Qgr [777 (ATrt +CT) — HT} dr—~o; / ANy Bsr Z7,dT. (21)
0 0
~~ > ~~ >
Investment-value duration Collateral-value duration

Equation (21) decomposes the market price of risk into two terms. The first term is the interest rate
sensitivity of the present value of the cash flows generated by the arbitrageurs’ portfolio in the bond
market, which we label “investment-value duration.” The second term is the interest rate sensitivity
of the present value of the cash flows generated by the arbitrageurs’ portfolio in the repo market,
which we label “collateral-value duration.” It can be observed that the collateral-value duration of
the arbitrageurs’ portfolio returns reflects an aggregate measure of the collateral specialness of bonds
across tenors weighted by bond duration.

In the preferred-habitat theory, the market price of risk is endogenously related to the duration of
the arbitrageurs’ portfolio returns (Vayanos and Vila, 2021). The literature has thus far emphasized
this insight in the context of bonds as investment assets that carry an investment-value duration. The
distinct function of bonds as collateral assets highlights an important channel in the arbitrageurs’
exposure to risk that has not been documented before: the collateral-value duration of their portfolio.
Intuitively, the collateral-value duration of the arbitrageurs’ portfolio captures the interest rate sen-
sitivity of the arbitrageurs’ repo financing costs incurred over the lifetime of their carry trades. This
new channel forges a strong connection between the collateral specialness of bonds and the pricing

of risk across the yield curve.?

ZEmpirical support for this prediction comes from Fontaine and Garcia (2012), who employ price difference between
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By formalizing this insight, Equation (21) provides the theoretical foundation for Equation (2),
which constructs the empirical measure Aggregate Specialness, by weighting each bond’s specialness
by its duration. Duration weights, denoted by a,, in the model, capture the sensitivity of each

arbitrageurs’ bond collateral-value to interest rate risk, and thus its effect on the market price of risk.

Remark 3. The market price of interest rate risk reflects both bonds’ investment-value duration and

their collateral-value duration.

Assessing the impact of shocks on the pricing of risk thus requires joint consideration of the bond
and repo markets. For example, an increase in the demand of preferred-habitat investors simultane-
ously generates two effects: (i) In the bond market, arbitrageurs take on greater carry trade positions.
With greater carry trade activity, the market price of risk rises, and the yield curve flattens. As shown
in Equation (21) this effect is induced by the investment-value duration of the arbitrageurs’ portfolio.
(i1) In the repo market, arbitrageurs’ short-selling pressure endogenously increases the collateral
specialness of bonds, raising short-selling costs. With greater short-selling costs, the arbitrageurs’
carry trade activity diminishes, the market price of risk falls, and the yield curve steepens. As shown
in Equation (21), this effect is induced by the collateral-value duration of the arbitrageurs’ portfolio.
Quantitatively, for realistic parameter values, the investment-value duration effect in (i) dominates,
implying that an increase in preferred-habitat demand raises the market price of risk and flattens the
yield curve overall. However, the effect in (i) dampens the transmission of preferred-habitat demand
to the market price of risk and thus to the yields of long-term bonds.

In a nutshell, endogenous short-selling costs transmit part of the demand from preferred-habitat
investors for bonds to higher special collateral values in the repo market, in turn influencing the
arbitrageurs’ portfolio choice and the global pricing of risk in the yield curve. This leads to important

implications for the conduct of monetary policy, which we discuss in Section 4.1.

3.11 Combined Equilibrium in the Bond and in the Repo Market

In this section, we derive analytically the equilibrium bond prices and repo rates. We first examine
a benchmark equilibrium in the absence of repo specialness, which obtains when preferred-habitat
investors lend their entire securities portfolio in the repo market at the GC rate (¢7, = 1). Equation

(18) implies that no repo specialness emerges under this equilibrium.
Proposition 1. Equilibrium with Securities Lending (¢, =1).

1_6714:7—

T 0_2 T
k—k T 2
Qi = ——, bi»=0, Cir=K,T / a;-dr— 7/ a; dr.
0 0
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pair of bonds with equivalent cash flows but different age characteristics to construct a funding liquidity factor for
the cross section of bond returns.

20



The coefficients a;,,b;;, and c;,, together with bond status i, uniquely determine A,,B,, and C.,
verifying the conjecture for the bond price process in Equation (10). The scalars (k*,7), which are

the counterparts of (k,,F) under the risk-neutral measure, are defined by

(e o] o0
* 2 2 k—k — 2
K, =K, +0, / nra..dr, KT =K, T+0, / Qsr [GT —777087} dr.
0 0

The short rate, r, is unique and there is no repo specialness, [, = 0. The market price of risk,
¢ =702 fOOOaST [nT (ATTt—FC'T) —OT] dr, solely reflects the investment-value duration of arbitrageurs’
portfolio.

Proof. See Appendix C.

This equilibrium reduces to Vayanos and Vila (2021), where the money market is exogenous and
the short-term interest rate is unique. However, despite its foundational nature, this equilibrium cannot
account for the pervasive specialness observed in repo markets or the price dispersion among bonds
with identical cash flows. Moreover, this equilibrium is silent on the sensitivity of special repo rates
and bond specialness to the demand of preferred-habitat investors, a relationship that is strongly
supported by empirical evidence (D’ Amico et al., 2018; Arrata et al., 2020; Corradin and Maddaloni,
2020). Finally, this equilibrium cannot explain the relationship of aggregate repo specialness and the
pricing of different maturity segments along the yield curve, which we have documented in Section 2.

To address these features of the data, we consider a more comprehensive equilibrium, which obtains
when preferred-habitat investors do not lend their securities portfolio in the repo market (¢7, =0).

Equation (18) implies the endogenous emergence of repo specialness in this equilibrium.

Proposition 2. Equilibrium absent Securities Lending (¢7, =0).

1— —KET 81 1— . 1— ,ngdT T 2 T
Qjr = 6—7 bir = ( J )(— ¢ ) y Cir = I{:F*/ aiudu - &/ a?udu
K 0, 0 2 Jo

The coefficients a;,,b;;, and c;,, together with bond status i, uniquely determine A, B,, and C,,
verifying the conjecture for the bond price process in Equation (10). The deterministic functions of

bond tenor 0, and g, are defined in the Appendix. The scalars (k*,;7*) are defined by

o0 o0
2 2 - - 2
K=k +1:E+0: / n-a;,dr, KT =K, T+~0- / Qgr [QT (O —|—CST)} dr.
0 0
There exists a cross-section of repo market rates, 1], =r,—l7,, whose repo specialness is given by
I,=E27}.

The market price of risk, \y = 'yaf fooo Qgr [777 (A.ﬂ”t + B, X+ C’T) — 97} dr, incorporates both the

investment-value and collateral-value duration of the portfolio of arbitrageurs.
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Proof. See Appendix D.

Proposition 2 highlights two levels at which the collateral function of bonds affects the equilibrium:
(1) Locally, the collateral value of bonds induces price differences among bonds with equivalent
cash flows, and influences their repo specialness, [;; (ii) Globally, the collateral-value duration of
the arbitrageurs’ portfolio returns influences the market price of risk and thereby the risk-neutral
parameters governing the interest rate process, (k%,7), and affects the entire yield curve, over and
above the valuation of specific bonds.

This characterization is our more general result, and presents several important elements of novelty.
The proposition jointly describes two yield curves: one for general bonds (2= g), and one for special
bonds (¢ = s), capturing price differences between bonds with identical cash flows through the b;
coefficients. These coefficients are parametrized by the elasticity of collateral supply,>* and equal
to zero for general bonds, which are inelastically supplied in the repo market, and positive for special
bonds, which are elastically supplied in the repo market.”> Consistent with the absence of arbitrage
opportunities, special bonds command a price premium over general bonds that reflects their current
and expected special collateral value in the repo market. It merits attention that special repo rates are
explicitly linked to the demand of preferred-habitat investors. Indeed, rather than restricting the repo
rates of all securities to a common exogenous short rate, this equilibrium generates endogenous repo
specialness, given by [],.

Even more interestingly, within this equilibrium, the collateral-value duration of the arbitrageurs’
portfolio returns influences the market price of risk, \;, along the lines discussed in Section 3.10. The
market price of risk, in turn, fully determines the difference between the parameter governing interest
rate dynamics under the physical probability measure, (x,.,7), and under the risk-neutral probability
measure, (x,7*). Hence, through its effect on the market price of risk, the collateral-value duration of
the arbitrageurs’ portfolio returns exerts global effects on the pricing coefficients of both special and
general bonds and, thus, their entire yield curves. This result stands in contrast to earlier contributions,
in which repo specialness is reflected solely in the yield to maturity of each individual security.

Proposition 2 nests the more traditional Proposition 1 as a special case which obtains by setting

.= 1, a restriction corresponding to the standard preferred-habitat model where bonds serve only

as investment opportunities, the secured financing rate is exogenous, and the collateral is general.?

Corollary 1. In the equilibrium of Proposition 2, an increase in aggregate specialness, defined as
the duration-weighted average of repo specialness across maturities, raises term spreads across the

entire yield curve. Let Term Spread;, =y}, —r], and Aggregate Specialness, = foooaiTl;dT. Then, for

24To build intuition, consider that in discrete time the recursion for the a;; coefficients would begin from an initial value
of one, as one-period general bonds held to maturity yield r;. Analogously, in discrete time the recursion for the b;;
coefficients would begin from an initial value of &;, as one-period special bonds deliver an incremental cash flow of & Z7,.

SFormally, £, =0=>b,, =0 V7, whereas £ >0=>bs, >0 V7.

26Beyond the cases ¢7, = 1 (Proposition 1) and ¢7, =0 (Proposition 2), the equilibrium could be derived for any ¢7, €[0,1].
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some increasing function f,
Term Spread;, = f(Aggregate Specialness,). (22)

Proof. See Appendix E.

Corollary 1 provides theoretical guidance for interpreting the empirical findings in Section 2, where
we document empirically that term spreads present a robust positive association with the duration-
weighted aggregate repo specialness. The intuition for this result is that the aggregate specialness
of bonds has a positive relationship with the collateral-value duration of the arbitrageurs’ portfolio
returns and thus a negative relationship with the market price of risk (Equation 21). A decline in
the market price of risk, holding expected short rates constant, raises the yield on bonds with long
durations relative to bonds with short duration, thereby increasing term spreads (as illustrated by the
risk premium component of bond yields in Lemma (1)). Essentially, repo specialness discourages
the arbitrageurs’ carry trade activity, reducing their required compensation for risk and steepening
the yield curve. Theory and empirical evidence thus concur that aggregate repo specialness conveys
information about the market price of interest rate risk and term spreads across the entire yield curve.

In our theory, repo specialness is completely silent about the arbitrageurs’ portfolio investment-value
duration, but conveys direct information about its collateral-value duration. Comparing Propositions
1 and 2 reveals that the absence of repo specialness may result either from the absence of preferred-
habitat investors or from their decision to lend their bond inventories through the repo market. However,
the presence of repo specialness in market data unambiguously reflects heightened costs of short-
selling, which reduce the carry trade activity of arbitrageurs, lessens the magnitude of their exposure to
interest rate risk, reduces the market price of risk, steepens the yield curve, and raises term spreads. This
insight is substantiated by the empirical evidence we uncover in European markets, which emphasizes

the importance of repo specialness in explaining term spreads across all segments of the yield curve.

4 Monetary Policy, Bond Yields, and Repo Rates

The theory we advance offers detailed insights regarding the transmission of quantitative monetary

policy interventions, both to the yield curve and in the repo market, as we discuss below.

4.1 Quantitative Easing and Securities Lending

The purchase of bonds by the central bank through QE raises the demand for long-term bonds. In
our model, we formalize this by defining a function of maturities, Q E'i;y = {—A0, }§°, that collects
the increase in the demand intercepts of preferred-habitat investors for special bonds at each maturity.

(Recall that 6, is the negative of the intercept of the preferred-habitat demand). A shift in the demand
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intercept at a specific maturity is denoted by (QF.. A QE intervention corresponds to a positive shift
in the function QE,, corresponding to asset purchases for at least one maturity. This quantitative
monetary policy intervention, while leaving the short rate unchanged, affects both the yield curve and
the repo market. First, consider the impact of QE on the yield curve. Within the preferred-habitat
framework, QE operates by lowering the risk-adjusted long-run mean of the interest rate, 7, relative
to its counterpart under the physical measure, 7. This mechanism is consistent with the interpretation

of policymakers. As pointed out by Philip Lane, Member of the ECB’s Executive Board,

“In purchasing long-dated assets, a central bank takes duration risk off private hands,

which translates into lower term premia and long-term interest rates.”

Philip Lane, New York, October 11, 2022.

In our theory, QE entails a threefold effect on bond yields. First, it absorbs duration risk from
the market, by rendering the risk exposure of arbitrageurs more negative, which leads to a global
supply effect that compresses long-term interest rates (of both special and general bonds and across
the entire yield curve). Second, it also leads to a scarcity of bonds in the repo market, which raises
repo specialness, as is now well understood empirically, and brings about a local supply effect by
impacting the yields of special bonds directly targeted by QE, which decline by more than the yields
of general bonds. There is, however, a third equilibrium effect: the higher price of special bonds leads
preferred-habitat investors to endogenously reduce their bond holdings, given that their demand is
downward sloping in bond prices. This reduction is met in equilibrium by a portfolio rebalancing
from the arbitrageurs, who scale back their carry trade positions, thus dampening the initial reduction
in long-term interest rates. The implication is that, ceteris paribus, the stronger is the localized effect
on the specialness of targeted bonds, the weaker is the global supply effect of asset purchases on risk
premia and long-term interest rates.

Importantly, the effects of QE on bond yields can be modulated by central bank policy in the
repo market. When central banks establish the SLF to lend on the repo market the bonds purchased
via QE, they prevent the increase in repo specialness induced by the scarcity of bonds, facilitating
the arbitrageurs’ global transmission of asset purchases to long-term interest rates. Our theory thus
offers a new and actionable perspective, whereby the global effects of QE on long-term general bond
yields depend not only on the scale of asset purchases, but also on how the central bank manages the
acquired portfolio in the repo market. Specifically, whether the central bank makes the purchased
securities available for lending influences the transmission of QE to the yields of long-term bonds,

as shown analytically in the next result.?’

Lemma 3. The SLF and the transmission of QE. The effect of QF on the yield of long-term general
bonds is stronger if asset purchases are paired with the SLF. Formally, let Ay;t(QE{T} ,OT,) denote

2"We consider the absolute value of the yield variation induced by QE, because a QE intervention induces a decline
in the yields of long-term bonds and we are interested in the magnitude of this effect.
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the variation in the yield of long-term general bonds induced by QE¢.. Then,

9 o0 9 o0
T T ’-)/0-1” 70_1” T T
|Aygt(QE{T}>¢st:1)} = - /asTQETdTZ - /GsT(l—UTbsv)QErdT: ‘Aygt(QE{T}’Qbst:O)"
Effect of OE with SLF (9T, =1) 0 0 Effect of QE without SLF ( #%:=0)

Proof. See Appendix F.

Lemma 3 compares the impact of a given quantity of asset purchases on bond yields under two
alternative scenarios: when the central bank lends out its securities portfolio and when it does not.
When the central bank lends out its securities portfolio, the equilibrium corresponds to that without
repo specialness in Proposition 1. In this equilibrium, QE is entirely absorbed as an increase in
arbitrageurs’ risk exposure, with each targeted bond contributing a decline in long-term interest rates
of %yafasr In contrast, when the central bank does not lend its securities portfolio in the repo
market, the equilibrium corresponds to that in Proposition 2 where QE endogenously generates repo
specialness. In this equilibrium, the effect of QE is only partly reflected in the arbitrageurs’ risk
exposure, as repo specialness induces a collateral premium and reduces the downward-sloping demand
of preferred-habitat investors by a factor of 7,bs., thereby dampening the transmission of QE to
long-term interest rates of general bonds. In Section 5.4.3, we will illustrate this result by calibration.

Differently from other theories of the yield curve, our model also accounts for the impact of QE
on the repo market. In the absence of securities lending, a shift in the demand of preferred-habitat
investors such as QE increases the repo specialness of the targeted bonds (see Equation (18)). This
effect is consistent with the evidence reported by Arrata et al. (2020) and Corradin and Maddaloni
(2020), who demonstrate that ECB asset purchases induce scarcity in targeted bonds, leading to a
significant increase in their repo specialness. To illustrate this effect, Online Appendix Figure IA.II
documents that the volume-weighted average repo specialness rises with the proportion of bonds
held by the ECB under its QE program (top panel). The proportion of bonds held by the ECB is
also associated with a rise in the noise measure of Hu et al. (2013) capturing yield curve fitting errors
(bottom panel), exposing price differences among bonds with identical cash flows.

According to our theory, the central bank can mitigate the repo specialness arising from QE by
introducing the SLF, thereby shifting the equilibrium from that described in Proposition 2 to the one
in Proposition 1. More precisely, our theory predicts that the extension of a SLF under which bonds
are lent at the GC rate reduces repo specialness, thereby narrowing local price differentials between
bonds with equivalent cash flows and generating a global flattening of the yield curve. To integrate
theory and data, it is useful to consider that on December 15, 2016, the ECB introduced a SLF that
enabled investors to borrow its securities portfolio against cash. This event is marked by the dashed
vertical line in the Internet Appendix Figure IA.Il. Consistent with the model’s implications, both
repo specialness and yield curve fitting errors stabilized following the SLF’s introduction, though they

remained positive. This is partly explained by the ECB’s choice to lend its securities at a rate 30 basis
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points below the GC rate, rather than at the GC rate itself.

Internet Appendix Figure IA.III further corroborates the model’s implications by plotting the bond-
by-bond yield of each German Bund in our sample against its maturity around December 15, 2016.
Each panel in the figure corresponds to a trading day around the SLF’s implementation, allowing for a
visual inspection of changes in the yield curve. While the short end of the yield curve remains anchored
at -0.9%, the yield on long-term bonds gradually declines from approximately 1.2% four days before
the event to around 1% four days after. Correspondingly, the term spread between the two ends of the
curve declines from approximately 2.1% to 1.9%, a reduction of about 10%. This movement reflects

a flattening of the yield curve around the SLF’s implementation, consistent with our model.?®

4.2 Local Supply Effects

A merit of our theory is its ability to generate pronounced yield curve local supply effects, consisting
of relative price anomalies between bonds with similar cash flows (D’ Amico and King, 2013). Our
theory points out that such relative price anomalies are not inconsistent with the absence of arbitrage,
provided they reflect a price premium attached to bonds with special collateral value in the repo market.
This insight is consequential for asset purchases, which generate specialness in the targeted bonds,
endogenously lowering their repo rate and yield to maturity. If one were to estimate the yield curve
without distinguishing between general and special bonds, this collateral specialness would manifest
as an anomalously low yield for that maturity segment, relative to neighboring maturity segments
not subject to specialness. Asset purchases in our model with endogenous repo specialness can thus
generate far more pronounced local supply effects than those implied by standard preferred-habitat
models of the yield curve. This approach makes the model particularly well suited to analyze YCC,
where the central bank targets specific segments of the bond market and local supply effects are
especially important (see Lucca and Wright, 2024, Figure 5). Section 5.4.1 illustrates by calibration
local supply effects under YCC.

4.3  The Trade-off between Local and Global Supply Effects

Another merit of our theory is to uncover a novel trade-off between local supply effects of quantitative
policy interventions and global supply effects on risk premia that impact the entire yield curve. Given

a fixed amount of asset purchases, two scenarios (or a combination thereof) may unfold:

1. The asset purchase portfolio is withheld by the central bank. In this case, asset purchases induce
a specialness of targeted bonds in the repo market, lowering their specific yields and generating

local supply effects. As shown by Lemma 3, global supply effects become less pronounced.

28Fleming et al. (2010), D’ Amico and Pancost (2022), and Pelizzon et al. (2025) present empirical evidence on the impact
of the SLF on bonds’ collateral value. Unlike our paper, none of these studies considers the effect of SLF on term spreads.
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2. The asset purchase portfolio is lent by the central bank in the repo market. In this case, asset
purchases do not induce specialness of the targeted bonds in the repo market, weakening local

supply effects. As shown by Lemma 3, global supply effects become more pronounced.

An extreme case of scenario 1) is the YCC, which induces local supply effects without affecting
the slope of the yield curve. In the extreme theoretical case where the central bank targets a single
maturity, the intervention induces a Dirac mass at that maturity without affecting the market price
of risk, which reflects the integral of asset purchases across maturities. Scenario 2) corresponds to
broad-based QE in combination with the SLE which does not induce repo specialness. In the extreme
case where the central bank lends its entire securities portfolio in the repo market without requiring
any specialness, the equilibrium converges to Proposition 1, and the global effects of asset purchases
through the market price of risk are maximized.

These considerations highlight a simple trade-off. Ceteris paribus, an increase in the demand for
a bond is either reflected in a lower yield of the specific bond or distributed across the entire yield
curve through a change in the market price of risk that is common across assets, resulting into a flatter
yield curve. As discussed in the introduction, policymakers may draw on this trade-off to control the
strength of the local and global supply effects of their quantitative policy interventions. For example,
policymakers can withhold their asset purchases of green bonds from the repo market to allow bonds
targeted by Green QE to trade at a premium relative to other bonds.

The same trade-off is at work with quantitative tightening (QT), which, in our theory, corresponds
to a downward shift in the intercept of the demand curve of preferred-habitat investors.”” In some
cases, policymakers utilize QT to reduce the size of the portfolio of the central bank, without aiming
to influence the slope of the yield curve. In this case, our findings suggests that the central bank
should not supply its securities portfolio as collateral on the repo market. Alternatively, policymakers
may want to utilize QT to influence the slope of the yield curve. Central banks with this objective
should supply their remaining portfolio of asset purchases as collateral on the repo market to facilitate
the activity of arbitrageurs. Generally speaking, our theory recommends that monetary policy be

implemented in a coordinated manner across the bond and repo markets.

5 Calibration

The aim of our calibration exercise is to evaluate the model’s capacity to accurately represent market
data and to assess the quantitative impact of counterfactual scenarios induced by quantitative monetary

policy interventions affecting bond and repo markets.

2In the preferred-habitat framework, QT is typically interpreted as a symmetric reversal of QE. Kaminska et al. (2025)
depart from this assumption and consider the state-dependent transmission of balance sheet monetary policies.
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5.1 Measurement

The structural estimation of our model involves the combined fitting of the general and special yield
curves in the bond market. These curves are not directly available, as data providers typically offer
interpolated yield curves without distinguishing between bonds based on their specialness. Thus, we
must analyze the market at the disaggregated level of individual bond yields.

To interpolate the yield curve, we employ a spline method that represents yields as a linear combi-
nation of piecewise polynomial functions, producing a smooth yield curve. To prevent overfitting, the
optimal degree of smoothness is determined by maximum likelihood estimation. Illustrative examples
of the interpolation procedure are presented in Appendix Figure IA.IV. We apply this method to
obtain general and special yield curves from the granular bond-level dataset described in Section 2.
Bonds with repo specialness above the weekly median are classified as special, and the remainder
as general. The yields of each group are interpolated separately over annual maturities from 1 to 30
years, repeating the procedure for each day-group with more than 40 observations.

We then average the resulting daily fitted yield curves over the full sample period. Figure 2 presents
the average yield curves for general bonds (i = ¢) and special bonds (7 = s). We observe that the average
yields of the interpolated curves are consistent, maturity by maturity, with the summary statistics of the
bucketed data in Panel B of Table I. However, relative to the bucketed data, the bond-level interpolated
data in Figure 2 enable a clear distinction between general and special bond yields after controlling
for maturity. The yield curve interpolated from general bonds (black solid line) lies entirely above

the curve interpolated from special bonds (blue solid line), clearly indicating the role of specialness.
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FIGURE 2: Yield Curve Measurement. This figure presents the yield curves of general and special bonds.

The curves are constructed as the average of daily yield curves interpolated using German Treasury bond-level
data from LSEG covering the period from October 2014 to July 2023.
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5.2 Quantitative Model

Figure 2 reveals two salient features of the data. First, we observe that the average spread over time
between the general and the special yield curves is approximately constant across maturities. A
possible explanation for this empirical regularity is that German Treasury bonds are regularly retapped,
and their specialness often persists for the entire life of the bond. Consequently, on average, a 10-year
bond yield exhibits a similar degree of specialness as a 9-year bond yield, after adjusting for maturity.
This observation suggests that in our sample the demand of preferred-habitat investors for special
bonds is constant across maturities. Hence, we assume that the intercept and slope of their demand
function are constant across maturities and given by the scalars ¢ and 7. This specification provides a
reasonable benchmark, given that in our model habitat preferences are directed toward specific bonds
among those with equivalent cash flows.*

Second, we observe that the interpolated yield curves feature two inflection points, which cannot be
adequately captured by a one-factor affine model. Therefore, following the approach of Costain et al.
(2025), we enhance our preferred-habitat model for quantitative realism. Specifically, we now allow for

a multivariate representation, modeling the short rate as a linear combination of independent factors:
r=00+0] R, (23)

Here, d, is a scalar, d; a vector of weights, and R; a vector of latent factors with dynamics given by
dRy=K,(R—R;)dt+XdV; . (24)

We consider two factors, defining the 2x 1 vectors Ry, R, and V," and the 2 x 2 matrices K, and X as

el 5 | r_ |V
Rt: 7R:_ ) ‘/t: 7KT: 722

Toy To Vg 0 Ko 0 o9 .
We conjecture that there exist coefficients <7, = [, ,.%%,|", 4., and €. such that bond prices satisfy
—logP} =" Ri+%, X}, +%6,. (25)

The solution of our earlier one-factor model generalizes to this multifactor model, as detailed in
Internet Appendix B. We emphasize that all our results extend to this generalization, which we use

in our calibration henceforth.

3Stochastic demand factors could be included; however, Figure 2 suggests their relevance in our sample would be
limited. Additionally, the demand slope could be specified as a piecewise-constant function on a finite partition of
tenors; namely, 7 =1, for 7 € [7,,7+1). We found limited evidence in favor of such refinement in our sample.
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5.3  Parameter Estimation

The baseline calibration corresponds to the equilibrium where preferred-habitat investors do not lend
their bond holdings in the repo market (¢7, =0). The quantitative version of the model is characterized
by two risk factors and twelve key parameters: the interest rate parameters, 0g,01,51,,52,,71,72,01r,02r;
the risk-aversion coefficient of arbitrageurs, v; the slope and intercept parameters of the demand
of preferred-habitat investors, 7 and #; and the elasticity of the supply of bonds as collateral in the
repo market, &. The latent factors determining the short rate, R, are unobservable; without loss of
generality, we set dy as the average GC rate in our sample, equal to —0.36% per annum, and assume 0,
equal to a 2 x 1 vector of ones, which implies r, = dg+11;+72. We collect the remaining parameters
into a 1 x 10 vector, ©, which we estimate via a two-step Generalized Method of Moments (GMM)

procedure with optimal weighting matrix. Specifically, we minimize the statistic
J(©)=m(0)TQ 'm(0), (26)

where m(0) is the 1 x 7 vector of moment conditions residuals and €2 is the n x n sample covariance
matrix of the moment conditions. The moment conditions are specified as the differences between
model-implied and observed average yields at annual maturities from 1 to 30 years, separately for
both general and special bonds; thus, n = 60. To ensure robustness, we initialize the optimization
from multiple starting values and employ various optimization methods.

At the estimated parameters ©), the Root Mean Squared Error equals 4/ %m(é)Tm(@) =0.00026.
This value is below the median Bund bid-ask spread of 0.0003 reported by De Roure et al. (2025),
indicating that our model does a remarkably good job in simultaneously fitting both the general yield
curve and the special yield curve. The model fit of the data is illustrated in Figure 3.

The parameter estimates are presented in Table IV. The estimated speeds of mean reversion reflect
a high persistence of the short-rate processes; namely, 1, =0.0510 (half-life of shocks 13.59 years)
and ko, =0.0487 (half-life of shocks 14.23 years). Consistently, the daily autocorrelation coefficient
of one-year yields is 0.9998, confirming that short rates exhibit near unit-root behavior in the data.
As both factors are initialized at zero, the initial value of the short rate is 6o = —0.0036. The long-run
means of the factors, estimated at 7, = 0.0688 and 7, = 0.0694, generate a gradual increase in the
conditional expectation of the short rate, reproducing the upward slope of the yield curve. The diffusion
parameters are estimated at 1, =0.0127 and 09, =0.0151. Thus, 7 acts as a relatively stable process,
whereas 75 is somewhat more volatile; their interaction helps to generate two inflection points in the
yield curve, consistent with Figure 2. These estimates are generally comparable with those reported
in Costain et al. (2025), who also calibrate a preferred-habitat model to German Treasury yields.

Turning to the demand of preferred-habitat investors, we estimate the intercept parameter at
6 =—0.0152, corresponding to a positive excess demand for special bonds, and the slope at =0.0213.

These parameters quantify the strength and sensitivity of preferred-habitat demand, implying that the
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FIGURE 3: Model Fit. This figure compares the yields implied by the quantitative model against the yield
curves of general and special bonds constructed using German Treasury bond-level data from LSEG covering
the period from October 2014 to July 2023.

demand for special bonds exceeds their supply by 1.5% of the issue and is relatively price inelastic.
These values match the observed spread between general and special bond yields after controlling
for maturity.’! The arbitrageur risk-aversion coefficient is estimated at = 1.7825, between the value
of 0.0108 reported by Costain et al. (2025) and the range from 6.78 to 33.9 reported by Vayanos
and Vila (2021), and well above the risk-neutral benchmark y=0. The elasticity of supply of special
collateral in the repo market is estimated at £ = 0.0511; namely, a 1% increase in the demand of
preferred-habitat investors for a specific security reduces its repo rate by 5.11 basis points. Consistent
with this estimate, Corradin and Maddaloni (2020) document that a 1% shock to the demand for a
bond in the repo market is associated with a decline of its repo rate of 5 basis points. This value is
well above the benchmark case £ =0, which would describe a perfectly elastic supply of special
bonds in the repo market, returning the model to the standard environment of Proposition 1 in which
specialness premia vanish and bonds with identical cash flows are priced identically.

Figure 4 presents our baseline model calibration. For convenience, the top panel of the figure
reproduces the model-implied yield curves of general bonds (black solid line) and special bonds (blue
solid line) from Figure 3. The yields of general bonds can be replicated through rolling over GC repo
contracts, and the yields of special bonds through rolling over SC repo contracts (Lemma 2). Thus, the

yield curves of general and special bonds must be considered in combination with the instantaneous in-

3The demand of preferred-habitat investors is estimated in reduced form from yield data, with parameter values summariz-
ing the empirical relation between bond specialness and excess demand, without describing the proportion of bonds held
by the central bank. For perspective, under the ECB’s asset purchase programmes the Bundesbank held around 24% of the
outstanding volume of Bunds in 2018 and 36% in 2022. Source: Bundesbank July 2018 and May 2024 Monthly Reports.
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FIGURE 4: Baseline Calibration. The top panel of the figure shows the calibrated yield curves of general
and special bonds, and the bottom panel shows the calibrated repo market interest rates of general and special
bonds of different maturities. Black solid lines represent general bonds and blue solid lines represent special
bonds. This figure is based on a calibration of the model to German Treasury bond-level data from LSEG
covering the period from October 2014 to July 2023.

terest rates associated with these bonds. Accordingly, the bottom panel of Figure 4 presents the GC rate
(black solid line), which is constant across maturity, and the SC rates (blue solid line), which decline
with maturity. The SC rates are implied by replacing the parameter estimates into the equilibrium ex-
pression for repo specialness, [7,, in Proposition 2. The median repo specialness implied by the model,
equal to 0.09% per annum, is comparable to its sample average of 0.10%; moreover, long-term bonds
feature moderately lower repo rates than short-term bonds, as in Table I. It is reassuring that the model
reproduces these features of the data, which were not explicitly targeted in the estimation. Overall, the

quantitative model calibration convincingly replicates the market observed bond yields and repo rates.

5.4 Monetary Policy Interventions

Given the capacity of the calibrated model to accurately represent the data, we can employ it to per-
form counterfactual analyses. Below, we examine the transmission of two unconventional monetary
policy tools: (1) asset purchases targeting the yields of specific bonds at specific maturities (YCC)
and (i1) broad-based asset purchases across the entire yield curve (QE). To highlight the role of the
repo market, we also consider the effect of combining the two aforementioned bond market monetary
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policy tools with a third policy tool: (ii1) securities lending facility in the repo market (SLF).

5.4.1 Yield Curve Control

The YCC is a monetary policy tool consisting of bond market asset purchases targeting the yields of
specific bonds at specific maturities. It has been used by central banks around the world, including the
United States in 1942, Japan in 2016, and Australia in 2020. To illustrate this policy tool in the context
of our model, Figure 5 presents a counterfactual scenario where the demand of preferred-habitat
investors for the 10-year special bond has an intercept, ¢,y = 2- 6, double in magnitude than that
for other maturities, whose intercepts remain at the baseline value. This targeted demand pressure
captures the structural intervention of central banks to control yields at specific maturities. As can
be seen from the top panel of Figure 5, this intervention induces a decline in the yield of the targeted
security. Relative to the baseline calibration where !° =0.33%, this scenario results into y!° =0.25%,
i.e., about a 24% decline in the 10-year yield of the targeted security. In other words, targeted demand
induces a localized kink in the yield curve of special bonds, without any other meaningful effects on
the yield curve. This pattern closely mirrors the experience with YCC in Australia, where the central
bank bought approximately 61% of the outstanding volume of a specific target bond, dislocating its
yield from other financial market instruments while leaving the rest of the curve largely unchanged
(Lucca and Wright (2024), Figure 5).

The bottom panel of Figure 5 illustrates the impact of YCC in the repo market. Relative to the base-
line calibration, where special repo rates are constant in the cross-section, the 10-year tenor SC that is
more aggressively targeted by the intervention becomes highly special; namely, 1% = —0.53%, relative
to a baseline value of 0.46%. Thus, the model is capable of generating spikes in the repo specialness
of bonds at specific maturities and capturing a positively skewed distribution of repo specialness
whose mean lies above the median. Importantly, special repo rates respond endogenously to demand
forces. In the model, YCC generates strong demand pressure that raises a bond’s price and lowers its
yield—thus, as arbitrageurs increase their short-selling activity to meet the central bank’s willingness
to target a specific bond, that security goes on special in the repo market. As a result, YCC gives rise to
strong local supply effects on the yield curve of special bonds and the corresponding special repo rates.

Beyond YCC interventions, kinks in the yield curve similar to the one illustrated in this calibration
are a pervasive feature of market data.*> The ability of our framework to generate this non-monotonic
pattern highlights an important advantage vis-a-vis equilibrium models of the yield curve and even

econometric interpolation techniques in the spirit of Nelson and Siegel (1987).

32Demand targeted to specific bonds may also reflect portfolio constraints on investors, institutional features of derivatives
markets, Treasury auction reopenings, or short squeezes (Nyborg and Strebulaev, 2003).
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FIGURE 5: Yield Curve Control. This figure presents a counterfactual analysis of asset purchases targeted to
specific bonds, conducted relative to the baseline calibration illustrated in Figure 4. The top panel of the figure
shows the calibrated yield curves of general and special bonds, and the bottom panel shows the calibrated repo
market interest rates of general and special bonds of different maturities. Black solid lines represent general
bonds and blue solid lines represent special bonds. This figure is based on a calibration of the model to German
Treasury bond-level data from LSEG covering the period from October 2014 to July 2023.

5.4.2 Quantitative Easing

Broad-based QE is a monetary policy tool consisting of bond market asset purchases distributed across
maturities along the entire yield curve. To illustrate this policy tool in the context of our model, Figure
6 presents a scenario where the demand of preferred-habitat investors’ intercept is homogeneously
shocked across the entire yield curve at the new value 0 =1.15-0. This broad demand pressure
captures a structural intervention of central banks corresponding to a 15% increment in the excess
demand for bonds, equally pronounced across every maturity. For clarity of exposition, in this scenario
we have muted differences in excess demand across maturities and the resulting local supply effects.

The top panel of Figure 6 shows the yield curve of general bonds in the baseline scenario (black
solid line) and in the QE scenario (black dotted line), alongside the yield curve of special bonds in
the baseline scenario (blue solid line) and in the QE scenario (blue dotted line). As can be observed,
broad-based QE induces a global flattening of the yield curve for both general and special bonds,
reducing 10-year yields by about 0.10% in annualized terms. Special bond yields are somewhat more

responsive to QE than general bond yields, but this differential reaction is far less pronounced than



in the YCC scenario. Indeed, unlike YCC, QE exerts a broad impact on the entire yield curve of both
general and special bonds. That is, the effects of purchases of special bonds (i = s) extend to the
yield curve of general bonds that are not directly targeted (i = g), as QE influences the market price
of interest rate risk, common to both general and special bonds. Along the yield curves, QE exerts its
strongest impact on long-term bond yields, which are more sensitive to changes in the market price of
interest rate risk, inducing a reduction in yields peaking at about —0.20% per annum for 30-year bonds.

The bottom panel of of Figure 6 shows the level of GC repo rates (black solid line) alongside the
level of SC repo rates in the baseline scenario (blue solid line) and in the QE scenario (blue dotted
line). Naturally, QE does not exert any effect on the GC rate, which follows the exogenous process
specified in Equation (5). However, QE does induce a decline in SC repo rates of about 1 basis point,
comparable to the magnitude reported by D’ Amico et al. (2018); moreover, consistent with their
empirical evidence, repo rates of short-term securities are relatively more responsive to QE. This
counterfactual highlights that, in our model, QE impacts both the bond market and the repo market,

as documented by a growing body of empirical evidence.

1.0

0.8

0.6

0.4+

0.2+

Yield (%)

0 5 10 15 20 25 30

—— General bond yg - Baseline —— Special bond y{- Baseline
------- General bond yj - QE ==+ Special bond y - QE

|
e
N
<

|
<
S
(=}

el R RS e e e S S T S e

=}

|
S O ¢

wn
by

Repo Rate (%)
|
B

Maturity (Years)

—— GCratery —— SCrater - Baseline -—- SCrater; - QE

FIGURE 6: Quantitative Easing. This figure presents a counterfactual analysis of quantitative easing imple-
mented uniformly across maturities, conducted relative to the baseline calibration illustrated in Figure 4. The top
panel of the figure shows the calibrated yield curves of general and special bonds, and the bottom panel shows
the calibrated repo market interest rates of general and special bonds of different maturities. Black solid lines
represent general bonds and blue solid lines represent special bonds. This figure is based on a calibration of the
model to German Treasury bond-level data from LSEG covering the period from October 2014 to July 2023.

Furthermore, a qualitative implication of our model is that policymakers can fine-tune the time
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profile of their asset purchases to be impactful for the yield of long-term bonds while minimizing
distortions on the repo market. Specifically, policymakers can conduct a given quantity of asset
purchases and minimize specialness in the repo market by implementing it over time in a series of
interventions. On the one hand, forward-looking bond prices respond to the expected path of asset
purchases; on the other hand, special repo rates reflect the demand and supply of collateral in the repo
market at each point in time. This suggests that, compared with a one-time intervention, policymakers
can implement QE in a manner that smooths distortions in the repo market over time. This is generally
consonant with the practice of the major central banks, including the ECB, the Bank of Japan, and
the Fed, over the past decade.®> We are not aware of other models of the yield curve that are able

to rationalize this aspect of the implementation of QE.

5.4.3 Securities Lending Facility

The SLF is a monetary policy tool through which the central bank temporarily lends securities from
its portfolio in the repo market to reduce repo specialness. To illustrate this policy tool within our
model, we examine counterfactual scenarios in which bonds purchased through either YCC or QE
interventions are subsequently lent on the repo market via the SLE. For simplicity, we model the
SLF as a shift from the equilibrium without securities lending (¢7, = 0) to that with full securities
lending (¢7, =1). As shown analytically, the SLF returns the equilibrium of Proposition 2 to that of
Proposition 1, eliminating the presence of specialness in the repo market.

Fist, we consider the effects of YCC in combination with the SLE By eliminating repo specialness,
the SLF also removes price differences between bonds with identical cash flows, which are absent
in Proposition 1. In effect, the SLF offsets the local supply effects induced by YCC. Since the YCC
scenario does not generate any global supply effects, a counterfactual analysis of the SLF relative to
the YCC intervention in Figure 5 simply restores the model to the baseline calibration shown in Figure
4. Second, we consider the effects of QE in combination with the SLF. As we next show, combining
QE with the SLF amplifies the effect on long-term yields relative to QE alone (Lemma 3). For clarity
of exposition, we illustrate this effect with reference to the yield curve of general bonds—namely,
the risk-free rates of general interest.

Figure 7 plots the calibrated yield curve of general bonds under three alternative scenarios. First,
the “Baseline” scenario reproduces the yields on general bonds in the baseline calibration in Figure 4,
where § =—0.0152. Second, the “QE without SLF” scenario reproduces the yields of general bonds
in the counterfactual scenario in Figure 6, where the central bank expands its securities portfolio
to 6 =1.15-6, while withholding its securities portfolio from the repo market (¢7, = 0). Third, the

“QE with SLF” scenario plots the yields of general bonds when the central bank conducts the same

33From the FAQ on the Public Sector Purchase Program available on the ECB website: “The need to preserve smooth
market functioning calls for the necessary amount of purchases at yields below the Deposit Facility Rate [special bonds]
to be distributed over time, rather than abruptly changing the sectors of the yield curve where asset purchases take place.”
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FIGURE 7: Quantitative Easing and the Securities Lending Facility. This figure presents the calibrated yield
curve of general bonds under three alternative scenarios. The first scenario (black solid line) is the baseline
calibration, illustrated in Figure 4. The second scenario (blue solid line) is the QE intervention conducted
in the absence of securities lending, illustrated in Figure 6. The third scenario (green solid line) is the QE
intervention conducted in the absence of securities lending. Note: as this figure reports yield curves for general
bonds, the corresponding repo rates coincide with the GC rate across all maturities and scenarios. This figure
is based on a calibration of the model to German Treasury bond-level data from LSEG covering the period
from October 2014 to July 2023.

QE intervention, but in combination with the SLE. In this third scenario, the central bank again
sets = 1.15-6. Moreover, the central bank sets ¢7, = 1, posting its entire securities portfolio as
collateral on the repo market without requiring any special repo rate for lending its securities. This
third scenario corresponds to the equilibrium in Proposition 1, as the SLF eliminates repo specialness
and the resulting price differences between bonds with equivalent cash flows.

Since Figure 7 reports yield curves for general bonds under alternative scenarios, the corresponding
repo rates coincide with the GC rate across all maturities in all three scenarios, making it unnecessary
to plot them separately, unlike the previous figures that included yield curves for special bonds. For
reference, the special repo rates in the “Baseline” scenario are shown in the bottom panel of Figure
4; in the “QE without SLF” scenario, they are reported in the bottom panel of Figure 6; and in the
“QE with SLF” scenario, special repo rates coincide with the GC rate.

A comparison between the three scenarios in Figure 7 highlights that, given the quantity of asset
purchases, QE combined with the SLF exerts a stronger effect on the yield curve of general bonds
than QE alone. Specifically, introducing the SLF in combination with QE induces a further 2.5 basis
points decline in the yield of 10-year bonds relative to the “QE without SLF” scenario. Thus, as

was derived analytically in Lemma 3, the SLF maximizes the impact of QE on long-term yields.
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The flattening of the Bund yield curve around the introduction of the SLF, documented in Internet
Appendix Figure IA.III, provides direct empirical support for this result.

As an important insight, this counterfactual analysis highlights that dysfunctional repo markets
impair the transmission of QE to the yield of long-term bonds. The key mechanism at work is that repo
specialness acts as an important friction, curbing the scale of carry trades by arbitrageurs. Substantial
levels of repo specialness induce arbitrageurs to hold more conservative portfolios, reducing their
exposure to interest rates and their required compensation for bearing interest rate risk in the form
of a flatter yield curve. Thus, our analysis suggests that the SLF reinforces the transmission of QE to
long-term rates. This statement may seem counterintuitive: after all, QE involves an exchange of cash
for bonds with the private sector, while the SLF involves an exchange of bonds for cash with the private
sector—therefore, one might think that the SLF acts in the opposite direction of QE. However, the two
policy tools play a distinct role: QE shifts the duration risk of the purchased bonds between the private
sector and the central bank, while the SLF maintains collateral availability in repo markets, facilitating
the activity of arbitrage. As our analysis underscores, the yields of long-term bonds are shaped by
both the exposure of investors to bond duration risk and the availability of collateral in the repo market.

Thus, QE in the bond market is more effective when combined with the SLF in the repo market.

6 Conclusion

Standard models used in macroeconomics and finance generally explain the yield curve by consid-
ering agents’ decisions to invest in bonds with different maturities. This approach regards bonds as
investment opportunities but abstracts from their important role as collateral.

This paper develops a dynamic equilibrium model in which bonds serve both as investment op-
portunities and as collateral. The model considers two markets, the bond and the repo markets, and
two types of agents, investors with preferences for specific bonds and risk-averse arbitrageurs. This
heterogeneity gives rise to price differences between bonds with identical cash flows that affect the
collateral specialness of bonds in the repo market. This effect arises when preferred-habitat investors
purchase bonds, but refrain from offering them on the repo market. Repo specialness raises the cost of
carry trades for arbitrageurs and influences their portfolio duration and, therefore, the market price of
interest rate risk and the transmission of shocks across the yield curve. The equilibrium predicts and
accounts for the positive association between aggregate repo specialness and term spreads in the data.

The paper offers important and actionable recommendations for the conduct of monetary policy.
To maximize the transmission of monetary policy to the yield curve, policymakers should modulate
the quantity of bonds available as collateral in the repo market. Policymakers aiming to generate
global supply effects on the entire yield curve should supply their bonds on the repo market, and
enable arbitrageurs to transmit the effect of asset purchases across the yield curve. Policymakers

willing to influence the price of specific bonds, such as green bonds, can withhold the purchased
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bonds from the repo market, thereby allowing them to acquire special collateral value and trade at a
premium relative to other bonds. This paper thus recommends that monetary policy be implemented
in a coordinated manner across the bond and repo markets. Future research could incorporate our

model into a macroeconomic setup in which interest rates interact with real economic activity.

A Proof of Lemma 1
From Arbitrageurs” FOC in Equation (13),

T T T T— 1 T— T
Mg =T =TYj — (7' - dt)Et [%Hzf:] + évt [yz‘t—ﬁ—céi] —T =iz Ay (A.1)

Iterating forward this condition yields

T 1 T T—U 1 T T—U T—U 1 ! 2 03
Yie= ;]Et [ /0 Ti,t+udu:| +;]Et [ /0 Mi,t+u_ri,t+udu:| . [ /0 %T—ugdu} :

v v v
Expected short rates Risk premium Convexity adjustment

Substituting again pf, —r7, = —a;; A\; completes the proof. Q.ED.

B Proof of Lemma 2

By substituting Equation (10) into the affine representation in Equation (19), we obtain the price of

general and special bonds, since X, =0 for general bonds whose status is i =g:

T ek [ o= [ reudu] _ —Arre—Cr
PL=E; [e 0 } =e )

P; :]E;k |:€_ JT;;‘fudu] _e—ATrt—BTX;rt—C-,—‘
s

The result follows by taking the price ratio of the general bond FJ, to the special bond P, and by
observing that the bond market clearing condition requires Z;, + X, =0. Q.E.D.

C Proof of Proposition 1

Arbitrageurs’ optimality condition in the bond market is

i =T Zaiwaf/ Agr X a5 XGdT. (C2)
0
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Substituting the values of 1, and r,, we derive the following relationship.

. 1 - - °°

Qi+ iRy (1 —T) + 5“?703 A bir0r bl A-Cir —1T = Y07 / Agr X g a5 XGdT.
0

From the repo market equilibrium with securities lending, we have [}, =0, so that r}, =7;. From the

bond market equilibrium, we have X, =0 and X, =—7; = 0, —n, (aTTt +b.0,.+ CT) . Therefore,

1 . . o0
ai’rrt +air Ky (’rt _F) + §a1270-3 +bi70’r + biTeT + éir —Tr= aiT’}/O—g/ Qr [97 —Nr (CLSTTt +b5797' +Cs7')] dr.
0

The above equation must hold for all values of r;. By matching the coefficients in r;, we derive the

following first-order linear ordinary differential equation (ODE).
Qir+airk,—1= —aiT*yaf / nfadeT. (C3)
0
Moreover, the terms that are independent of the risk factors must add up to zero, implying

1 . . o0
éi’?’ =Q;r ’ir?_ EQ?T 03 - biTgT - biT 97' +a7j7"70-3/ Agr [07 —Nr (bS’Te’T +CST)] dT-
0
Since at maturity a bond repays the principal notional, we have Ay = By = Cy =0, which implies
that the initial conditions for the ODEs are a;y = b,y = ¢;o =0. We follow Vayanos and Vila (2021)
and proceed in two steps. First, we take the integrals as given and solve the above equations as
linear ODEs. Second, we require that the solution is consistent with the value of the integrals. This

procedure results into

1_6715;7'

*
H;T‘

Air

T 0.2 T
) biT = 07 Cir = K:F*/ a’i,udu_ _T/ a?udu”
0 2 o
where the scalars (x,7*) are defined by
Ky =Ky "‘703 / n7a§7d7—7 C4H
0
/1:7* = qu—f—’)/as/ Qsr [(97- _777'657'] dr. (CS)
0

Finally, it can be observed that the coefficients (a;,,b;,,c;, ), together with bond status 4, uniquely
determine the coefficients (A,,B;,C;), verifying the conjecture that the price is an affine function
of r, and X7,. Q.E.D.
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D Proof of Proposition 2
Arbitrageurs’ optimality condition in the bond market is
iy —T oy :aiTyaf / agTXth—i—aSTXsTth. (D.6)
0

Substituting the values of 1}, and r7,, we derive the following relationship.

1 . . o0
Qi+ i Ky (1 —T) 4 Ea?Taf +-bir 07 bl A-Cip — 1+ = a0 / gr X gy a5 X5dT.
0

From the repo market equilibrium without the securities lending, we have [}, =&, Z7,. From the bond

market equilibrium, we have X7, =0 and X3, =—Z7; = 0, —n, (aTTt +b,0, —l—CT) . Therefore,

1 . .
diTTt + Qir Ry (Tt _T) + 56%27—0-3 +bi797- + biTgT + éiT —Trt— gz [07' —Nr (aiTTt +bi7—0T +Ci7)}

= ainyO-?/ Qr [07' —Nr (CLSTTt + bSTeT + CST):| dr. (D7)
0

Equation (D.7) must hold for all values of ;. By matching the coefficients in the risk factors, we
derive the following ODE.

Qir+air (Iir —H7T&-) —1=—a,0o? / n.a’ dr. (D.8)
0
Moreover, the terms that are independent of the risk factors must add up to zero, implying

1 . .
éi‘r = az"r'%ri_ iai—o—z - bifer - biTeT +gz (97' —1r (b’LT + ci‘r))

+ airVUz/ QAsr [07' —Nr (bSTe’T +Csr )} dr. (Dg)
0

We further require that the optimality holds for both general and special bonds. It can be observed
that Lemma 2 implies b, =0 V7. Thereby, we separate Equation (D.9) into two ODEs,

ber+b5 0, =E(1—n,c,0;) (D.10)
1 o0
Cir = Qir Ky T — 5“?703 +a;,y0? / Qgr [GT —1;(bs- 0> —I—CST)} dr, (D.11)
0
where we have defined 0, =6 (1+1,&,)/0,. We thus have a system of three linear first-order ODEs.
Since at maturity a bond repays the principal notional, we have Ay = By = =0, which implies that

the initial conditions for the ODEs are a;y = b;y = c;o =0. We again proceed in two steps. First, we

take the integrals as given and solve the above equations as linear ODEs. Second, we require that
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the solution is consistent with the value of the integrals. This procedure results into

et &g (1—e ST e [adu- (a2 4
air_—*v T — ) Cir = R,.T" g AU — - aiv“ U,
K 0, 0 2 Jo

where the scalars (x,7) are defined by

Kf =k +0,.E+707 / nea’ dr, (D.12)
0

KT = K, F4yo2 / Ggr [HT — 1 (b0 +CST>] dr. (D.13)
0
Here, the deterministic function g, is defined by

g, =e SO / G [0rdr g
6,
Finally, it can be observed that the coefficients (a;.,b;,,c; ), together with bond status 4, uniquely
determine the coefficients (A,,B,,C.), verifying the conjecture that the price is an affine function
of r, and X/,. Q.ED.

E Proof of Corollary 1

In the equilibrium absent securities lending (Proposition 2), repo specialness equals [T, = Z7,&;. By def-
inition, general bonds carry no repo specialness. As a consequence, we rewrite the duration-weighted
average specialness in the repo market as Aggregate Specialness, = fOOOaSTSS Zldr. Thus, aggregate
repo specialness is positively related to the duration-weighted collateral value premium of special
bonds, fOOOCLST By, ZT,dr, given that By, is an increasing function of &. Moreover, it can be observed
that the aggregate duration-weighted collateral value premium of special bonds is positively related
to the collateral-value duration of the arbitrageurs’ portfolio and inversely related to the market price

of risk, according to Equation (21) reproduced for convenience below.

) )
T 2 2 T
A =~0? / asr [ (Arry+Cr) =0, | dr—v0? / UsrNr Bor Z7,dT. (E.14)
0 0
-~ 7 ~~ >
Investment-value duration Collateral-value duration

Thereby, the market price of risk is a decreasing function of aggregate repo specialness, namely,

A: = h(Aggregate Specialness,) for some decreasing function h. We next consider the relationship
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between the market price of risk and bond yields. Given Lemma 1,

T 1 " T—5§ 1 ! 1 ! 2 0—7% T
Term Spreadit:;IEt ; Tl isds —;Et ; Wir—sAt+sdS - ; ai,7_37d3 it

v v Vv
Expected short rates Risk premium Convexity adjustment

a lower market price of risk, ), raises the term spread across the entire yield curve in proportion to the
duration of the bonds considered, a;,, which is increasing with maturity. Thus, the market price of risk
is negatively related to term spreads. Then, term spreads are positively related to aggregate specialness,

so that for some increasing function f, Term Spread], = f(Aggregate Specialness, ). Q.E.D.

F Proof of Lemma 3

The analytical expression for the yield of general bonds is

1
Ygi= - (ag ri+cgr)

1/1= —RAT T/1— —KiT 2,7 1— —RAT 2
:_<€_Tt+,£:7*/ (6_)657_&/ (6—> dT). (E15)
T K 0 Ky 2 Jo Ky

Equation (F.15) shows the relationship between the yield of general bonds and «;: and 7*, the counter-
parts of x, and 7 under the risk-neutral measure. From Proposition 2, we observe that the risk-adjusted
speed of mean reversion, ., is influenced by the preferred-habitat demand elasticity, c,, the elasticity
of collateral supply &;, the arbitrageurs’ risk aversion, -, and the volatility of the interest rate, o,., but
not by the demand intercept, ¢.. Given that x; does not depend on 6, neither does the coefficient
a;r. QE is an exogenous shock to demand, () E;}, that does not affect the short rate, 7. Thus, QE
solely affects the yields of general bonds via its effect on 7, the risk-adjusted long-run mean of the
interest rate, which impacts the coefficient ¢;r = K77 [ a; udu— %3 [, a,,du only through the product

r;r*. Next, examine «,7". In Proposition 1,

KT = /<;T7_ﬂ—|—fyaf / Qgr [97 —nTcST] dr.
0

In Proposition 2,
KJ:F* = HTF—F'YUE/ Asr [(97_ _77T<b8797+657>] dr.
0

Given these considerations, the statement follows by comparing the effects of QE on general bond

yields across the equilibria characterized in Propositions 1 and 2. Analytically, the purchase of a bond at
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each maturity induces an effect ygt i 88 . This effect differs across the two equilibria; specifically,

oy (e, =1)| 1 1
Pl Oa=1)| 1 a0 > Lyota, (1=nb)=
T T

&U;t( o= O)
00 ’

06, (F16)

The former obtains under Proposition 1 and the latter under Proposition 2. The variation induced
by QE; in the yield of general bonds, Ay, equals the integral across maturities of the pointwise

variation in the yield induced by asset purchases at each maturity.

. . * Oyg(9%)
Aygt(QE{T}a¢st>:/ - g@ d QE.dr.
0 T

Integrating Equation (F.16) across maturities,

(e 9] o0

. . "o, "o}
lAygt(QE{T} agbst = 1)l: - a‘STQE’I’dT Z - a‘S’T‘ 1 777' sT QE dr= ‘Aygt QE{T} 7¢st ) |
Effect of QE with SLF (9T, =1) 0 0 Effect of QE without SLF (¢7,=0)

The inequality follows because, in the absence of the SLF (¢7, = 0), s, is positive, reflecting
the price premium associated with special bonds in the equilibrium with endogenous specialness.
Q.ED.
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TABLE I: Summary Statistics

The table reports summary statistics for the sample, which consists of the universe of German bonds from October 2014
to July 2023, as recorded by LSEG. The sample is composed of 1,956 unique days and 452 unique weeks. Repo rates
are from Brokertec. The yield to maturity and the interest rate variables are expressed in percentage points per annum.

PANEL A: DAILY DATA

Observations Mean Median StdDev  Skewness Min Max

Duration (years) 94,142 7.245 5.595 5.836 1.424  0.750  30.000
Amount issued (€ billions) 94,142 4910 5.000 1.060 -0534 0511 8.000
Yield to maturity 94,142 -0.028  -0.239 0.742 1460 -0.882  2.499
GC repo rate 94,142 0360  -0.494 0.518 4599 -0.850  2.830
Bond-level repo rate 94,142 -0464  -0.571 0.534 409 -1250 2717
Repo specialness 94,142 0.105 0.073 0.124 1.749 -0210 0.647
Aggregate specialness 94,142  0.610 0.521 0.494 1.092 -1372  3.747

PANEL B: DAILY DATA BY DURATION BUCKET

Yield to maturity Repo rate

Duration Bucket Observations Mean Median StdDev Mean Median Std Dev

[0.75, 1.25] 1,956 -0452  -0.653 0.616 -0433  -0.554 0.510
[2,4) 1,956 -0.387  -0.569 0.620 -0455  -0.567 0.511
[4,7) 1,956 -0.185  -0.289 0.608 -0.469  -0.580 0.517
[7, 10) 1,956 0.135 0.159 0.613 -0507 -0.604 0.530
[10, 15) 1,956 0.480 0.542 0.643 -0450  -0.583 0.521
[15,20) 1,956 0.673 0.782 0.648 -0.482  -0.595 0.540
>20 1,956 0.782 0.899 0.621 -0476  -0.590 0.532

PANEL C: WEEKLY DATA BY DURATION BUCKET

Yield to maturity Repo rate

Duration Bucket Observations Mean Median StdDev Mean Median Std Dev

[0.75, 1.25] 452 -0.283  -0.645 0.880 -0.312  -0.554 0.766
[2,4) 452 -0.210  -0.538 0874 -0341  -0.568 0.768
[4,7) 452 -0.022  -0.268 0.828 -0.348  -0.580 0.774
[7, 10) 452 0.268 0.196 0.776 0382  -0.603 0.788
[10, 15) 452 0.593 0.588 0.767 -0324  -0.581 0.777
[15,20) 452 0.764 0.834 0.737 -0351  -0.592 0.798
>20 452 0.860 0.939 0.694 -0.348  -0.586 0.788
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TABLE II: BOND TERM SPREADS AND AGGREGATE REPO SPECIALNESS (WEEKLY DATA)

The table reports estimates from the time series regression in Equation (3), relating bond term spreads across several
duration buckets to the general collateral interest rate and the aggregate repo specialness times bond duration. Regressions
are estimated separately by subsample. For each week, bonds are classified as general if their repo specialness is below
the cross-sectional median, and as special if above. The relevant subsamples are then aggregated into duration buckets.
This table is based on German Treasury bond-level data from LSEG covering the period from October 2014 to July 2023.
Robust standard errors are reported in parentheses. One, two, and three asterisks denote statistical significance at the 0.10,
0.05, and 0.01 levels, respectively.

PANEL A: ALL BONDS

Term Spread;
[2,4) [4,7) [7,10)  [10,15)  [15,20) >20
Aggregate Specialness;, 0.165***  0.294** 0.396"** 0.404** 0.365"* 0.366"**

(SE) 0.021) (0.033) (0.047) (0.057) (0.069) (0.076)
Constant 0032 0074 03007 0.620°* 0.816™* 0.911**
(SE) 0.012) (0.021) (0.031) (0.039) (0.046) (0.049)
Observations 452 452 452 452 452 452
R? 0.20 0.22 0.17 0.11 0.07 0.06

PANEL B: GENERAL BONDS

Term Spread;

2,4) [4,7) [7,10)  [10,15)  [15,20) >20
Aggregate Specialness; 0.101**  0.227*** 0363 0.314** 0.265"*  0.233**
(SE) (0.019) (0.031) (0.046) (0.052) (0.062) (0.078)
Constant 0.009  0.134* 0.387** 0.724** 0.909** 1.012**
(SE) (0.012) (0.019) (0.029) (0.033) (0.039) (0.044)
Observations 444 446 446 436 416 408
R? 0.11 0.16 0.16 0.09 0.05 0.03

PANEL C: SPECIAL BONDS

Term Spread]
2,4) [4,7) [7,10)  [10,15)  [15,20) >20
Aggregate Specialness;  0.135*  0.232** 0272 0.289"* 0.297** 0.195**

(SE) 0.020) (0.031) (0.044) (0.048) (0.068) (0.065)
Constant 0015 0.096"* 0334 0.655"* 0.929** 0.991***
(SE) 0.012) (0.021) (0.031) (0.035) (0.049) (0.046)
Observations 405 405 405 380 353 396
R? 0.17 0.18 0.11 0.10 0.09 0.03
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TABLE III: BOND TERM SPREADS AND AGGREGATE REPO SPECIALNESS (DAILY DATA)

The table reports estimates from the time series regression in Equation (3), relating bond term spreads across several
duration buckets to the general collateral interest rate and the aggregate repo specialness times bond duration. Regressions
are estimated separately by subsample. For each day, bonds are classified as general if their repo specialness is below the
cross-sectional median, and as special if above. The relevant subsamples are then aggregated into duration buckets. This
table is based on German Treasury bond-level data from LSEG covering the period from October 2014 to July 2023.
Robust standard errors are reported in parentheses. One, two, and three asterisks denote statistical significance at the 0.10,

0.05, and 0.01 levels, respectively.

PANEL A: ALL BONDS

Term Spread;

[2,4) [4,7) [7,10)  [10,15)  [15,20) >20
Aggregate Specialness; 0.106™*  0.211*** 0308 0.323** 0.312"** 0.326™*
(SE) (0.008) (0.015) (0.023) (0.027) (0.030) (0.032)
Constant 0.000  0.138** 0.398** 0.734** 0.933** 1.034"*
(SE) (0.005) (0.010) (0.015) (0.018) (0.021) (0.021)
Observations 1956 1956 1956 1956 1956 1956
R? 0.15 0.18 0.16 0.11 0.08 0.08

PANEL B: GENERAL BONDS

Term Spread;

2,4) [47)  [7,10)  [10,15) [1520)  >20
Aggregate Specialness; 0.098°* 0205 0354 0.288"* 0221"** 0.166***
(SE) 0.008) (0.015) (0.026) (0.028) (0.032) (0.039)
Constant 0.006  0.139%* 0407+ 0.778** 1.029%* 1.106"*
(SE) 0.005) (0.010) (0.017) (0.019) (0.022) (0.024)
Observations 1915 1937 1922 1672 1587 1396
R? 0.17 0.17 0.18 0.09 0.04 0.02

PANEL C: SPECIAL BONDS

Term Spread;
2,4) [4,7) [7,10)  [10,15)  [15,20) >20
Aggregate Specialness;  0.092**  0.166™*  0.187** 0.240"* 0.292*** 0.215"*

(SE) 0.010) (0.016) (0.021) (0.030) (0.035) (0.035)
Constant 0.006  0.138"* 0394 0.673** 0935 1.006"*
(SE) 0.005) (0.009) (0.013) (0.018) (0.023) (0.021)
Observations 1431 1437 1437 1275 1288 1296
R? 0.11 0.13 0.07 0.08 0.08 0.04
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TABLE IV: Calibration

The table reports the model parameter annualized estimates from the two-step GMM procedure with an optimal weighting
matrix for the quantitative model described in Section 5.2. The model is calibrated using German Treasury bond-level
data from LSEG covering the period from October 2014 to July 2023.

Parameter Interpretation Value
do Constant component of 7 -0.0037
Kir Mean reversion of 71 0.0510
1 Long-run mean of 7, 0.0688
O1r Diffusion of 714 0.0127
Ko Mean reversion of ro; 0.0487
To Long-run mean of 7o, 0.0694
O Diffusion of 7o 0.0151
Es Special collateral supply slope 0.0511
n Preferred-habitat demand slope 0.0213
0 Preferred-habitat demand intercept  -0.0152
vy Arbitrageur risk aversion 1.7825
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Internet Appendix
“Monetary Policy, the Yield Curve, and the Repo Market”
Ruggero Jappelli, Loriana Pelizzon, and Marti G. Subrahmanyam.

Internet Appendix A: Additional Figures

A Demand Supply(¢5 ; = 0) Supply (¢5, = 1)
2
=
B [
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T >
st (uantity of Special Collateral

FIGURE IA.I: Demand and supply of special collateral. The figure illustrates the functioning of the market
for repurchase agreements collateralized by special bonds. The horizontal axis shows the quantity of collateral,
and the vertical axis shows repo specialness. The demand curve is price-inelastic because of the commitment
of short sellers to deliver the specific issue. The supply, by contrast, is elastic, as holders of special collateral
bonds require greater compensation to pledge additional units of the security on the repo market. The figure
depicts how increasing securities lending by preferred-habitat investors, as ¢7, ranges from O (no lending)
to 1 (full lending), induces a rightward shift of the supply of collateral.
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FIGURE IA.II: Asset Purchases, Repo Specialness, and Yield Curve Fitting Errors. The top panel shows
the proportion of bonds held by the ECB (left y-axis) and the volume-weighted average repo specialness of
German treasury bonds (right y-axis). The bottom panel shows the proportion of bonds held by the ECB (left
y-axis) and the Hu et al. (2013) German treasury yield curve fitting errors (right y-axis). The dashed vertical
line corresponds to the implementation of the cash-collateralized SLE. The data are from Pelizzon et al. (2025).
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FIGURE IA.III: Securities Lending Facility and the Yield Curve. The figure plots the yields of the entire
universe of German Treasury bonds covered in our sample against their durations. The plots are shown separately
for each trading day surrounding the introduction of the Securities Lending Facility (SLF) on December 15, 2016.
The solid horizontal line indicates a yield level of 1 percent per annum. Bond-level data are sourced from LSEG.
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FIGURE TA.IV: Examples of Interpolated Yield Curves and Market Observed Bond Yields. The figure
plots the yields of German Treasury bonds against their durations for four dates chosen to illustrate different
market conditions. In each panel, the black dots represent the observed yields for each bond, while the solid line
is the yield curve estimated using the spline methodology described in Section 5. The horizontal axis represents
the bond’s duration and the vertical axis represents its yield. Bond-level data are sourced from LSEG.
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Internet Appendix B: Quantitative Model
Here, we characterize the equilibrium when the short rate is a linear combination of independent factors,
¢ =080+0] Ry. IA.1)

We want to show that there exist deterministic functions of bond tenor 7. = [MT,%T]T, %, and €. such
that bond prices satisfy

T
—log P, =4, Ri+ % X;,+%C-. (IA2)

. . T ,SZ{T JZ{T T — %.T S — ((6)7
Asin Equatlon (] 1), we define Qir — [aliT,CLQZ‘T] = [m,m] , BiT = m, and Cir — T, B

By replacing Equation (9) into Equation (25), we then rearrange the guess in Equation (IA.2) as follows.
—logP} =a; Ri+6:-0,+cir. (IA.3)

With this notation in place, we replace Equations (23) and (24) into Equation (25) and apply Ito’s lemma,
obtaining the dynamics of bond prices.
dby
1

=l dt—a, XdV/, (IA.4)
u’it = a,L'TRt +aiTKr (Rt R) + 2 aiTzza“— +617—07- +5’L’7'9’7' +L’L7' .

By symmetry of the covariance matrix, ¥ ' = X. It can be observed that the model retains the same structural
form as in the one-factor case. Replacing the bond price dynamics into the problem of the arbitrageurs yields

(e 9] o0 T (e o]
&%Wtrt—i—/ Xt (p;t—rt) + X7 (nh—ry)dr— % [/ XthagT—i—X;aSTdT] ¥y [/ Xgagr+Xgasrdr|.
it 0 0 0

Arbitrageurs’ FOC in the bond market is given by the following expression.**

(e.e]
W — T ="a; 28 [ / Xpagr+X ;taSTdr] . (IA.5)
0

Substituting the values of W7, and 77, =&, R;—I7, and imposing the bond market clearing condition, we derive
the following relationship describing the equilibrium in the bond market.

_ 1 . .
Gy Byt Ky (Ry = R)+ 5.7 58010 +binr 461707+ =0 Ry
(o.9]
=7a, L% / X}agr+XGaerdr
0
T > T
= vawEZ/ [HT —nr (aSTRt 4640 —|—cs.r)] agrdr. (I1A.6)
0
Consider the equilibrium in the repo market. When preferred-habitat investors lend their entire bond portfolio

in the repo market, our model reverts to the benchmark preferred-habitat theory. Thereby, we consider the
equilibrium in the absence of securities lending. From Equation (18), repo specialness is given by

15, =&Z} =&n (aj, Ry+6i70,+cir) 0] (A7)

3*Equation (IA.5) is the counterpart in our model of Lemma 2 in Vayanos and Vila (2021).
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We next replace Equation (IA.7) into Equation (IA.6) to obtain the combined bond and repo market equilibrium:
. -y, 1 ; -
a; Ri+a; K. (Ri—R)+ ia;zza” +6i70r+6;70-+Cir — 07 Re+Ei[nr (@ Rie+-6i7 07 +cir ) — 6]
(o0}
=~a, L% / [0 =07 (g, Re+65:07+c5r) | asrdr. (IA.8)
0

In the quantitative model, the intercept of preferred-habitat investors’ demand is constant over maturities;
thereby, 7, =7. We require Equation (IA.8) to hold for all values of the risk factors, R;. By matching the
coefficients in the risk factors, we derive the following nonhomogeneous linear matrix ODE.

d'irr +Mai7 — 51 =0. (IA9)

Here, M is the 2 x 2 matrix given by
oo
MEK:—!—I&’I?—F’}// naSTa;erTEE.
0

1 is the 2 x 2 identity matrix. Equation (IA.9) is the counterpart of Equation (36) in Vayanos and Vila (2021).
Next, by matching the coefficients that are independent of the risk factors in Equation (IA.8), we obtain the
following fist-order linear ODE.

1 : . )
—K,R+ *@Z-TTEEGZ‘T +6i707 46707 +Cir +&; [77 ([’i‘reT +C’L'T) - 97']
oo
=va;, X% / [0 =1 (65707 +cor) | asrdr. (IA.10)
0

Finally, we require that the optimality holds for both general and special bonds. Hence, we separate Equation
(IA.10) into two ODEs,

byr+6570- =E(1—ne,077) IA.11)

. - 1 > .
ir=ag K, R— ia;EZaiT+7a;ZE / [0 =1 (8507 +csr) | asrdr. (IA.12)
0

Equation IA.12 is the counterpart of Equation (D.10), and Equation IA.12 is the counterpart of Equation (38)
in Vayanos and Vila (2021). Following their approach, we first regard the integrals as constants, and solve
Equations (IA.9), (IA.11), and (IA.12) as linear ODEs with constant coefficients. We then require the solution
to be consistent with the value of the integrals. Since at maturity a bond repays the principal notional, .2 = [0,0]
and %y =6 =0, which implies that the initial conditions for the ODEs are a;o=[0,0] and 6,y =c;o=0.
Next, we solve the initial value problems outlined. Suppose that the matrix M has two distinct eigenvalues,
vy and v», which represent the bivariate extension of the scalar - in the one-factor model. Let D be a diagonal
matrix with such eigenvalues on the main diagonal, and P be a matrix of eigenvector, so that M = P~'DP.
Multiplication of Equation (IA.9) from the left by P and integration with initial condition a ;o =[0,0] yields

P3| (IA.13)

Since K, I, and X are diagonal matrices, the matrix M is diagonal as well. Thereby, P = I, which implies

(IA.14)

)

1_6—1117' 1_€—V2T T
Aijr = .
141 12]
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In the quantitative model, the intercept of preferred-habitat investors’ demand is constant over maturities, which
implies 0 =6, =0. Hence, the solution to Equation (D.10) with initial condition 6, =0 is given by

.
bir=E; / (1—nci™Hdu. (IA.15)
0
The solution to Equation (IA.12) with initial condition ¢; =0 is given by

T 1 T
Cir = {/ a;du} X—/ a;ZEaiudu, (IA.16)
0 2 Jo

where x is the 2 x 1 vector given by
o (o9}
X=K,R+73% / [0—n(8s70+csr) |asrdr. (IA.17)
0
Equations (IA.16) and (IA.17) are the counterparts of Equations (41) and (42) in Vayanos and Vila (2021).
Moreover, x represents the bivariate extension of the product «7* in the one-factor model. Finally, it can be

observed that the coefficients (a;,6;r,c;ir), together with bond status 7, uniquely determine the coefficients
(<7, B~ 6> ), verifying the conjecture that the price is an affine function of R; and X. Q.E.D.
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