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Abstract
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interactions among firms, mutual funds, and residual investors. Estimating the
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Introduction

The recent demand-based asset pricing literature (Koijen and Yogo, 2019) highlights

that investor demand for stocks is inelastic, suggesting that demand shocks can drive

substantial price fluctuations. Meanwhile, on the supply side of the equity market,

firms actively time the market when issuing and repurchasing equity, suggesting they

strategically respond to demand shocks (Bolton et al., 2013). When stock demand

and supply are considered jointly, two questions naturally emerge. First, regarding

identification on the demand side: how do endogenous supply variations affect the

estimation of demand elasticity? Second, regarding real effects on the supply side:

to what extent does inelastic demand, by allowing demand shocks to generate price

fluctuations that distort firms’ investment and financing decisions, lead to capital

misallocation? This paper addresses both questions by developing and estimating a

dynamic model of strategic firm-investor interactions.

Stock markets present a unique identification challenge where endogenous firm

responses to demand shocks introduce intrinsic omitted variable bias. Consider a

decomposition

d log P̃ = d log Λ + d logP, (1)

where a firm’s market value P̃ reflects both its fundamental value P (capacity to generate

future cash flows) and a price pressure factor Λ driven by temporary demand shocks.

When a positive demand shock raises a firm’s stock price through Λ, the firm may respond

by issuing equity to invest in capital or reduce debt, thereby enhancing the fundamental

value P . Consequently, observed price increases reflect both demand-driven price

pressure and fundamental improvement. When instrumenting observed price changes

d log P̃ with an exogenous demand shock, the estimated elasticity conflates the two effects

as d logP and d log Λ are not separately observable. Because Cov(d log Λ, d logP ) ̸= 0,

the elasticity with respect to Λ—which is crucial for counterfactual analyses—cannot

be recovered even with an exogenous instrument.

I directly model strategic firm-investor interactions in a dynamic setting, which

allows me to estimate the demand elasticity by separating the price pressure from

fundamental improvements and to evaluate the allocative efficiency implications of

inelastic demand. By matching impulse responses from mutual fund flow shocks, I

estimate an elasticity that is larger than in previous studies because this model attributes
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a smaller portion of price movements to price pressure. In counterfactual analyses,

I find more moderate effects of demand shocks on capital misallocation, driven by

two key mechanisms. First, the larger elasticity means smaller price pressures for

a given demand shock, reducing firms’ incentives to over-invest (under-invest) when

price pressures are high (low) and thereby implying more efficient capital allocation.

Moreover, as both firms and investors are incentivized to close the gap between market

value and fundamental value, marginal price effects diminish rapidly with the size of

demand shocks, mitigating price pressure, investment distortions, and misallocation.

Empirically, I estimate impulse response functions (IRFs) (Jordà, 2005) to mutual

fund flow shocks (Dou et al., 2022; Chaudhary et al., 2022) to provide evidence on

firms’ reactions to demand shocks and establish targets for the structural model. A

one-standard-deviation flow shock triggers an immediate 1.9% stock price increase with

only modest subsequent reversal. Firms respond by issuing equity (0.2% of total assets),

increasing cash reserves and capital investment, while reducing leverage, consistent with

fundamental value improvements. Heterogeneity analyses point to potential frictions

that generate market timing incentives: firms with higher mutual fund ownership,

higher Tobin’s Q, or greater financial constraints exhibit stronger responses to fund

flow shocks.

To understand the interactions between investors and firms when estimating demand

elasticity and conducting counterfactual exercises, I propose a dynamic model with three

types of market participants, firms, mutual funds, and residual investors, to estimate

the key parameters governing their interactions and to understand the mechanisms

driving the empirical findings. While impulse responses alone cannot disentangle all the

aforementioned forces, incorporating participants’ optimization problems introduces

additional relevant moments that help discipline the model and achieve identification.

The model features a segmented stock market where market clearing determines each

firm’s market value relative to its fundamental value, with the gap defined as price

pressure. Firms maximize their fundamental value through dynamic investment and

borrowing decisions (Hayashi, 1982; Zhang, 2005; Belo et al., 2019), with the option

to issue or repurchase equity at costs that depend on their market value. Mutual

funds adjust their portfolios to balance risks and returns but face frictions, such

as investment mandates or risk management requirements, that prevent them from

adjusting holdings freely, making them unable to perfectly absorb the fund flow shocks.
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Residual investors, collectively representing all other investors, act as fundamental

investors with a downward-sloping demand curve with respect to price pressure. Their

capacity constraints prevent them from perfectly absorbing mutual funds’ position

adjustments.

Using indirect inference, I estimate the demand elasticity of residual investors to

be 2.4. This is higher than a back-of-the-envelope calculation based on price impacts

in this setting, 1 underscoring the importance of a structural model. Intuitively, the

simple calculation attributes all price movements to price pressure, whereas the struc-

tural model distinguishes these from fundamental improvements. At the estimated

parameters, approximately 29% of the initial price response is driven by fundamental

improvements. There is considerable heterogeneity across firms in the return decompo-

sition. The fundamental improvement component is larger for smaller firms and firms

with higher mutual fund ownership that are more likely to have higher marginal returns

to investment.

The model naturally distinguishes between elasticity with respect to fundamental

value and elasticity with respect to price pressure, with the latter being significantly

larger. As argued in Koijen and Yogo (2019), the logit demand system captures that

firm market value and other characteristics predict future returns, leading investors

to reduce holdings in large firms, which offer lower expected returns due to lower

risk. This relationship holds in my model for fundamental value variations. However,

when comparing two firms with identical market values but different compositions of

value—one with higher fundamental value, the other with higher price pressure—mutual

funds reduce holdings more aggressively for the latter, anticipating larger corrections in

expected returns.

To demonstrate these distinctions, I estimate instrumental variable (IV) specifications

in the model-simulated economy. When instrumenting observed price changes with flow

shocks, the IV approach estimates a demand elasticity of around 1.6, closer to the price

impact calculation but significantly below the true elasticity of 2.4. This discrepancy

occurs because this specification incorrectly attributes all price changes to exogenous

demand shocks. In contrast, when instrumenting price pressure changes with flow

1Price impacts can be defined as changes in prices divided by changes in holdings following Gabaix
and Koijen (2022). The price impact here is 1.36 and the implied elasticity is 1/1.36=0.73. Based on
the calculation by Gabaix and Koijen (2022) using estimates from Lou (2010), in a similar setting, the
price impact is 1.2 and the implied elasticity is 0.8.
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shocks, the IV approach correctly recovers the demand elasticity of 2.4. To complete

the picture, using productivity shocks to instrument fundamental value changes, I

find mutual funds’ elasticity with respect to fundamental value is 0.6, consistent with

elasticity estimates surveyed in Gabaix and Koijen (2022).

Higher elasticity, combined with endogenously decreasing price impact of demand

shocks, leads to a more efficient market with more moderate capital misallocation.

Following Hsieh and Klenow (2009), Haltiwanger et al. (2018), and Baqaee and Farhi

(2017), I calculate aggregate total factor productivity (TFP) as an indicator of allocative

efficiency, where higher TFP reflects more efficient capital allocation. I also incorporate

heterogeneous firm exposure to aggregate productivity shocks following David et al.

(2022) and Choi et al. (2021). In a counterfactual scenario where fund flow shock

volatility is reduced by half, aggregate TFP increases by 0.068% relative to the baseline.

This improvement in allocative efficiency is comparable to the 0.050% TFP gain from

cutting capital adjustment costs in half, though substantially smaller than previous

estimates in the literature.

The moderate misallocation effects also reflect rapidly diminishing marginal price

effects with the size of demand shocks. When firms face positive price pressure, they

issue equity to improve fundamental values, thereby narrowing the gap between market

value and fundamental value. Furthermore, potential losses from holding overvalued

stocks become more pronounced as price pressure increases, prompting mutual funds to

adjust their portfolios more aggressively. Consequently, even with fixed elasticity for

residual investors with respect to price pressure, larger mutual fund flow shocks do not

translate proportionally into larger price pressures due to strategic responses from both

mutual funds and firms.

Related Literature

This paper contributes to several literatures. First, the recent demand-based asset

pricing literature highlights the inelastic demand in stock markets. Following the

estimation of low elasticity by Koijen and Yogo (2019), the literature has evolved

to study interactions among market participants, with Haddad et al. (2021) finding

weaker-than-expected strategic reactions among institutional investors. I contribute to

this literature by further incorporating firms’ supply-side responses to study the real

effects of inelastic demand.

The paper most closely related to this one is Choi et al. (2021), who combine
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a dynamic firm model with the logit demand system estimated in Koijen and Yogo

(2019), and find large economy-wide misallocation due to investor demand fluctuations.

My approach differs in two key aspects. First, instead of taking the logit demand as

given and abstracting away from participants’ interactions, I explicitly model investors’

optimization problems with equilibrium prices and estimate key parameters. This allows

me to distinguish between elasticity with respect to a risk factor (market value) and

elasticity with respect to mispricing, emphasizing the economic implications of the

latter. Second, rather than attributing all unobserved heterogeneity to demand shocks,

I Specifically focus on mutual fund flow shocks as the source of demand shifts, enabling

cleaner identification and more precise quantitative assessment.

Fuchs et al. (2023), Davis et al. (2022), and Haddad et al. (2025) point out different

theoretical and empirical challenges in identifying demand elasticities considering the

interaction across different assets within a portfolio. This paper complements their

work by tackling another dimension of interactions: the supply side.

Second, this paper connects to the literature on time-varying financing costs, which

has primarily focused on firm-side responses while taking the variations as given. For

example, Eisfeldt and Muir (2014) and Begenau and Salomao (2019) study aggregate

financing patterns, while Belo et al. (2019) examine the asset pricing implications. Waru-

sawitharana and Whited (2016) make a seminal contribution by using structural models

to uncover hard-to-observe misvaluations and their implications on equity issuance.

They emphasize misvaluation as a driver of financing cost variability. Empirically, Ma

(2019) document how nonfinancial corporations act as cross-market arbitrageurs in their

own securities. This paper contributes to this literature by incorporating the demand

side of equity (or the supply side of capital), allowing for a detailed examination of the

equilibrium forces at play.

Third, I extend empirical research on the price impacts of fund flows by introducing a

dynamic equilibrium framework to examine the dynamic responses. Coval and Stafford

(2007) and Lou (2010) both study the asset pricing implications of mutual fund flows.

Khan et al. (2012), Edmans et al. (2012) and Lou and Wang (2018) empirically document

the effects of flow-induced tradings on firm fundamentals. Chinco and Sammon (2024)

and Sammon and Shim (2024) identify passive funds and find that firms’ supply is key

in clearing passive demand. A related literature examine sentiment-based explanations,

some examples include Baker and Wurgler (2003), Frazzini and Lamont (2008), Polk
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and Sapienza (2009), and Chiu and Kini (2014). The mutual fund sector and their

incentives to hedge against flow shocks in this paper are a direct extension of Dou et al.

(2022).

Fourth, a recent literature featuring the combination of supply and demand in

segmented bond markets (Vayanos and Vila, 2021), while I focus on the equity side. Some

recent examples include Siani (2022) and Coppola (2025). The equity market features

a unique direct feedback loop: firm issuance decisions directly influence transaction

prices of new equity through their impact on fundamental value.

Finally, this paper contributes to the literature on how firm operations are influenced

by investor ownership. While previous studies primarily emphasize the effects of

ownership on governance, I examine the option value derived from opportunities to issue

or repurchase equity at favorable prices due to mutual fund ownership. For example,

Derrien et al. (2013) study the relationship between investor horizon and corporate

policies, and Aghion et al. (2013) study how institutional ownership affects innovation.

My analysis extends this literature by highlighting how mutual fund ownership can

drive firm decisions through price dynamics and capital market timing.

The remainder of the paper is organized as follows. Section 1 introduces data,

presents the empirical results, and conducts heterogeneity analyses to provide targets

and initial guidance for the model. Section 2 presents a simple two-period model to

illustrate the key mechanisms. Section 3 extends the model to a dynamic setting and

defines the equilibrium. Section 4 discusses the calibration and estimation results.

Section 5 analyzes the policy functions and key mechanisms. Section 6 conducts

counterfactual experiments. Finally, Section 7 concludes the paper.

1 Data and Empirical Findings

This section presents empirical findings that both motivate and serve as estimation

targets for the model. I document the impact of mutual fund flow shocks on stock

prices and equity issuance. The impulse response analysis reveals demand-side frictions

and highlights how firms endogenously respond to price movements, underscoring the

importance of incorporating firm actions in demand elasticity estimation.
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1.1 Data Sources

Mutual fund holdings data are from CRSP Survivor-Bias-Free US Mutual Fund Database.

I focus on mutual funds with domestic equity holdings (CRSP style code starting with

”ED” or ”M”). Since holdings data are only available at quarterly frequency in earlier

years and are more consistent at quarterly freqency in later years, I aggregate returns

and total net assets (TNA) to quarterly level. Following Elton et al. (2001), I require

the lagged TNA to be larger than $15 million. The final sample is from 2003Q1 to

2021Q4. There are on average 3966 distinct mutual fund portfolios in each quarter and

there is a growing number of mutual funds over time.

Firm characteristics are from CRSP/Compustat Merged Database. Section A.1

provides a detailed description of variable construction.

1.2 Mutual Fund Flow Shocks

Following Dou et al. (2022), for each mutual fund m in period t, flows are calculated by

Flowm,t =
TNAm,t − TNAm,t−1 × (1 +Rm,t)

TNAm,t−1

To extract flow shocks η̂m,t, for each T-quarter rolling window (here T = 16), I regress

flows on fund and portfolio characteristics Xm,t:

Flowm,t = Xm,tβτ + ηm,t for t = τ + 1, τ + 2, . . . , τ + T − 1,

η̂m,τ+T = Flowm,τ+T −Xm,τ+T β̂τ

The fund characteristics include lagged flow, fund excess return relative to the

market return, and the portfolio characteristics are value-weighted characteristics in the

Fama-French five-factor model (i.e. log market equity, book-to-market ratio, profitability,

investment, and market beta) (Fama and French, 1993). The portfolio characteristics

have significant predictive power and are time-varying as is shown in Figure A.1.

Then I calculate the idiosyncratic component of the flow shocks fm,t (with a slight

abuse of notation) by regressing η̂m,t on time and fund fixed effects to remove potential

common factors

η̂m,t = αm + δt + fm,t. (2)
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Let Si,m,t denote the the number of shares of firm i held by fund m, firm-level shock

fi,t is calculated by

fi,t =

∑
m Si,m,t−1fm,t∑

m Si,m,t−1

. (3)

After aggregating flow shocks to firm level, I standardize flow shocks for easier compari-

son.

1.3 Firm Responses

The mutual fund flow shocks are constructed using rolling window regressions with

one-step ahead predictions, yielding the final sample period from 2007Q1 to 2021Q4.

Following Eisfeldt and Muir (2014), Net Equity Issuance (NEI) is defined as Sale of

Common and Preferred Stock net of Repurchase of Common and Preferred Stock and

Dividends2.

Table 1 presents the summary statistics of the firm panel. Mutual funds hold 24.6%

of firm equity on average, with large variations across firms and time. Net equity

issuance is positive on average (0.94% of total assets) and exhibits large heterogeneity,

with firms engaging in substantial issuances and repurchases. As a validation check, I

construct an alternative equity measure using book equity changes (total assets net of

retained earnings and total liabilities), which exhibits patterns similar to the baseline

cash flow-based NEI measure.

Table 1 Here

I estimate the following local projection in the spirit of Jordà (2005)

∆yi,t+h = αi + δt + βhfi,t +Xi,t−1 + εm,t+h for h = 0, 1, . . . , 4, (4)

where control variablesXi,t−1 include ∆yi,t−1, fi,t−1, s
M
i,t−1 and lagged firm characteristics:

log market equity, log book-to-market ratio, cash scaled by asset, and investment. βh

can be interpreted as the h−quarter ahead impulse response from the mutual fund

flow shocks. The coefficients are plotted in Figure 1. The shaded area indicates 90%

pointwise confidence bands using standard errors clustered at firm level.

2Compustat item sstk - prstkc - dv
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Figure 1 Here

In panel A, a one-standard deviation flow shock leads to a 1.9% stock price increase.

This price impact suggests constraints on both mutual funds and other investors. When

an unconstrained mutual fund receives unexpected inflows, it does not need to scale

up its holdings, avoiding positive price pressure. Similarly, if other investors were

unconstrained, they should be able to absorb the excess demand from unexpected

mutual fund flow shocks. Instead of an immediate price correction, the price reversal in

subsequent quarters are much smaller than the initial impact.

Panel B plots the impulse response of mutual fund holdings. On impact, mutual

fund holding raises by 1.4%. Following Gabaix and Koijen (2022), the price impact,

defined as change in prices divided by change in quantities, is 1.36, which in turn

implies a pooled elasticity of 1/1.36=0.73. This number is broadly in line with the

elasticity calculated by Gabaix and Koijen (2022) using estimates from Lou (2010).

However, as is argued below in Section 3, this back-of-the-envelope calculation is a

weighted average of several parameters and lacks clear economic interpretation for

counterfactual analysis. In terms of dynamics, mutual funds gradually increase their

holdings over the subsequent two quarters rather than making a one-time adjustment.

This finding suggests that mutual funds aim to avoid price pressures and prefer a

gradual adjustment.3

Panels C and D demonstrate that firms do react to these price impacts by issuing eq-

uity. The size of NEI (a cash flow measure) is 0.2% of total assets, which is corroborated

by the growth of total assets (a balance sheet measure). This firm response highlights

the identification challenge. Even if the initial flow shocks are plausibly exogenous,

firms’ optimal financing responses generate endogenous changes in fundamental value.

Since equity issuance can fund investment or reduce leverage, thereby increasing future

cash flows or reducing risks, part of the persistent price increase may reflect improved

fundamentals rather than pure price pressure. This complicates the interpretation of

demand elasticities.

Table 2 presents the response on impact (h = 0 in equation (4)) on additional firm-

level variables. Columns (1) and (2) provide further validation for the baseline results

on equity issuance. In Column (1), book equity increases by about 0.1%. In Column (2),

3Note that this is not due to persistent fi,t since the AR(1) coefficient of fi,t estimated following
Han and Phillips (2010) is only 0.017. Also, fi,t−1 is always controlled for in the regressions.
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when focusing on Sale of Common Stock and apply the 2% market equity filter following

McKeon (2015), the estimate (0.16%) is slightly smaller than the baseline specification

(0.2%) since the share repurchases are excluded. As expected from equity issuance,

cash stock goes up in Column (3), while physical capital rises by 0.2% (Column (4)),

indicating investment in productive assets. Column (5) shows that leverage decreases

by 0.03 percentage points, reducing risks. Moreover, since the leverage decline is smaller

than the asset increase, firms are increasing debt financing, possibly with the help of

increased collateral capacity.

Table 2 Here

1.4 Heterogeneity Analysis

1.4.1 Positive and Negative Flow Shocks

While NEI is positive on average, Table 1 shows that there is a significant portion of

observations with negative NEI, reflecting net repurchases. Do firms respond to flow

shocks differently when faced with positive and negative price pressures? To test for

such asymmetry, I interact fi,t with two dummy variables, each indicating whether flow

shocks are positive or negative.

Table 3 shows the response on impact (h = 0 in equation (4)) for positive and

negative flow shocks. Column (2) shows that the price impacts are roughly sym-

metric. However, share repurchases following negative flow shocks are weaker than

share issuances following positive shocks. This is consistent with the fact that share

repurchases, as a form of payout, are generally smaller than share issuances. Despite

the asymmetry, the results demonstrate that firm managers actively respond to price

pressures in both directions, exploiting both temporary overvaluations through issuance

and undervaluations through repurchases.

Table 3 Here

1.4.2 Active and Passive Funds

Based on fund classification information from WRDS, I separately calculate flow shocks

for active and passive funds, with detailed construction and properties described in

Section A.1.1. On average, passive and active funds own 9% and 15% of firm equity,
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respectively. After removing time fixed effects, the correlation between the two shocks is

only 0.07. This low correlation provides supporting evidence for the exogeneity of flow

shocks, as it suggests that fund flows are not common reponses to firm fundamentals.

Figure 2 presents impulse response functions of firm returns to active and passive

mutual fund flow shocks (fT
i,t for T ∈ {Active,Passive}). Despite similar standard

deviations (0.362 versus 0.364), active and passive flow shocks generate different return

responses. Passive fund flow shocks lead to a 2.0% contemporaneous return jump,

nearly double the 1.1% response to active fund flow shocks. The subsequent reversals

follow a similar pattern: passive fund flow shocks lead to a -0.5% reversal compared to

a more moderate -0.25% reversal for active fund flow shocks.

Figure 2 Here

Passive funds typically operate under strict mandates, so unexpected AUM increases

mechanically translate into heightened demand for constituent stocks. However, active

funds should theoretically be able to avoid exerting positive price pressures on their

holdings. Two factors likely explain why active funds still generate significant price

pressures. First, active funds face portfolio constraints that limit their trading flexibility

such as dividend reinvestment requirements (Schmickler and Tremacoldi-Rossi, 2022),

benchmark tracking constraints (Kashyap et al., 2021), and client redemption pressures

(Edmans et al., 2012). The weaker return responses relative to passive funds likely

reflect these less stringent but still effective constraints. Second, as documented by

Chinco and Sammon (2024), some nominally active funds are in fact index-tracking.

Consequently, the impulse responses potentially reflect a mixture of truly active and

passive investment strategies.

1.4.3 Firm Characteristics

To examine whether the baseline effects vary across firm types and provide suggestive

evidence on mechanisms that are important for the model, I estimate the baseline

specification (4) across subsamples based on key firm characteristics. Within each

2-digit SIC industry, I split the sample at the median of three lagged variables: mutual

fund ownership, Tobin’s Q, the size-age (SA) index (Hadlock and Pierce, 2010). Table 4

reports the return and NEI responses on impact (h = 0).
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Table 4 Here

Panel A shows that firms with higher mutual fund ownership mechanically exhibit

stronger responses in both returns and NEI. In Panel B, firms with higher growth

potential (high Tobin’s Q) demonstrate stronger responses across both dimensions.

Return responses are twice as strong for the high-Q firms. Low-Q firms show minimal

reaction to price pressures through equity issuance, consistent with their reduced need

for external financing to fund expansion opportunities. While part of this pattern

refrelcts the ownership channel as high-Q firms attract more mutual fund investment

(28% versus 23%), this modest difference in ownership cannot fully account for the

observed differences.

Panel C presents the results for subsamples partitioned by financial constraints.

More financially constrained firms (high SA Index) have weaker return responses. This

partly reflects mutual funds’ tendency to avoid riskier, financially constrained firms,

which is evident as high-SA firms average only 20% mutual fund ownership compared

to 30% for their low-SA counterparts. Consistent with Panel A, the lower institutional

ownership naturally reduces these firms’ exposure to fund flow shocks. Despite the

weaker return responses, high-SA firms react more aggresively through equity issuance.

This apparant contradiction makes economic sense: when borrowing capacity is limited,

equity markets become a critical channel for capital accumulation, making these firms

particularly responsive to issuance opportunities (Frank and Sanati, 2021).

1.5 Additional Tests

Section A.2 presents several robustness checks. To address potential concerns about

unobserved industry-driven flows and cross-industry substitution (Chaudhary et al.,

2022), I include industry-by-time fixed effects and obtain qualitatively similar results.

I also examine the sensitivity of the baseline results to alternative NEI definitions.

First, excluding dividend payments from the baseline mesaure yields virtually identical

findings. This is expected given that dividends are less volatile than stock issuances

and repurchases. Second, I construct Gross Equity Issuance using the 2% market equity

cutoff by McKeon (2015) and find similar results. While this definition offers certain

advantages, I do not adopt this specification as the baseline because the cutoff cannot

be applied to equity repurchases and that other forms of stock issuance also represent
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costly equity financing4. Finally, I explore how firm size influences both the magnitude

of return and NEI responses, as well as the levels of issuance and repurchase activity.

Section A.3 report more properties of mutual fund flow shocks.

2 A Two-Period Model

To illustrate the mechanisms in a simple setting, I present a two-period model with

minimal ingredients and near closed-form solutions. There are three types of agents: a

firm making investment decisions, a mutual fund and a continuum of residual investors

trading the firm’s equity. Guided by empirical evidence, the model’s core mechanism

focuses on how exogenous fund flow shocks affect asset prices when financing constraints

limit residual investors’ arbitrage capacity. These price movements influence the firm’s

equity issuance costs, leading to changes in fundamental values that feed back into

investor demand.

The model delivers three important properties. First, the comparative statics

highlight the identification challenge: even with perfectly exogenous demand shocks,

endogenous firm responses bias estimates of demand elasticities. Second, efforts by both

investors and the firm to trade against price pressure attenuate price responses, limiting

the real effects of demand shocks. Finally, the notion of demand elasticity depends on

the source of price changes, as different sources have different implications for expected

returns.

2.1 Model Setup

There is a firm, a mutual fund, and a continuum of residual investors. The timeline

is as follows. In the first period, the firm first chooses investment, then the mutual

fund decides its portfolio allocation, and finally the residual investors trade to clear the

market. Absent frictions, residual investors would trade to ensure the firm is priced at

its fundamental value P . However, when the mutual fund experiences a demand shock,

the residual investors’ limited trading capacity prevents full price correction, causing

the market value P̃ to deviate from P . The ratio Λ = P̃ /P measures the price pressure

4For more discussions, see Huddart (1994), Fama and French (2005), Belo et al. (2019), and Sammon
and Shim (2024), among others.
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and determines the issuance cost for the firm and returns for the mutual fund. In the

second period, the firm produces output and distributes all profits.

The firm. The firm has initial capital K and therefore production Kα, where

α ∈ (0, 1). With full depreciation, investment I becomes next-period capital K ′ as in

(6). Net income E equals production minus investment, given by (7). When E < 0, the

firm issues equity to cover the shortfall, incurring cost Ψ in (8). The cost decreases in

price pressure Λ, as higher prices allow the firm to raise the same funds by issuing fewer

shares. The firm maximizes its value V in (5), the sum of current and discounted future

payouts. Payout in the first period equals net income minus any issuance cost. The

present value of future payout is the expected value of next-period production A′K ′α

discounted by the stochastic discount factor (SDF) M ′, where A′ is a productivity shock

with logA′ ∼ N(0, σ2
a).

max
I

V = E − 1{E<0}Ψ+ E[M ′A′K ′α] (5)

s.t. K ′ = I (6)

E = Kα − I (7)

Ψ =
ch
2

(
E

ΛK

)2

K (8)

This setup yields some convenient simplifications. The ex-dividend price

P = E[M ′A′Iα] = βIα (9)

depends only on β ≡ E[M ′A′], not on the SDF or productivity shock separately.

Combined with full profit distribution and no trading in the second period, this

simplifies the return calculation:

R =
V ′

P̃
=

A′Iα

ΛβIα
=

A′

βΛ
=⇒ logR = logA′ − log β − log Λ. (10)

Consequently, expected log return µ = E[logR] is independent of investment I, and the

log return variance σ2 = Var(logR) = σ2
a is independent of both investment I and price

pressure Λ.

The mutual fund. The mutual fund chooses its portfolio weight ϕ to maximize its

mean-variance preferences over log returns, as in (11), where γ is the risk aversion
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parameter and rf is the risk-free rate. The fund also faces a quadratic adjustment cost

with parameter cϕ, capturing benchmarking incentives tied to a target portfolio weight

ϕ̄.

max
ϕ

ϕ(µ− rf )−
γ

2
ϕ2σ2 − cϕ

2
(ϕ− ϕ̄)2 (11)

Let Ω denote the fund’s size, the share of the firm held by the fund is caculated as

sM
′
= ϕΩ/P̃ .

Residual investors. There is a continuum of one-period living residual investors

representing all other shareholders. These investors price firms using the exogenously

specified stochastic discount factor and trade accordingly, consistent with the firms’

inherited preferences. Absent financing costs, they would trade to ensure that each

firm’s market value equals its fundamental value. However, financing constraints limit

their arbitrage capacity. When mutual funds increase (decrease) their holdings, possibly

due to positive (negative) flow shocks, residual investors cannot adjust their positions

sufficiently, creating temporary overvaluation (undervaluation).

Residual investors begin with shares sR and choose new shares sR
′
. Recognizing

the firm’s fundamental value P and given the market price P̃ , they act as fundamental

investors aiming to trade toward fundamental value. Their limited trading capacity is

captured by a quadratic adjustment cost with parameter cr. They solve:

max
sR′

sR
′
(P − P̃ )− cr

2

(
sR

′ − sR
)2

P̃ (12)

Market Clearing. Market clearing requires that the total demand for shares equals

the total supply,

sM
′
+ sR

′
= 1. (13)

Equilibrium. An equilibrium consists of investment I∗, mutual fund portfolio weight

ϕ∗, residual investor shares sR
′∗, and market price pressure Λ∗, such that

1. Given optimal responses of the mutual fund and residual investors, the firm’s

investment I∗ solves its optimization problem (5)–(8).

2. Given firm investment I∗ and optimal responses of residual investors, the mutual

fund’s portfolio weight ϕ∗ maximizes its objective (11).

3. Given firm investment I∗ and fund portfolio weight ϕ∗, the residual investors’
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shares sR
′∗ solve their optimization problem (12).

4. Market clearing (13) holds.

2.2 Optimality Conditions

Following backward induction, I start with the optimality conditions of the residual

investors, then the mutual fund, and finally the firm.

Residual investors. The residual investor optimality condition is

sR
′
= sR +

P − P̃

crP̃
. (14)

Substituting into the market clearing condition (13) yields price pressure as a function

of the mutual fund’s portfolio adjustment:

P̃ =
1

1 + cr(sM − sM ′)
P ≡ ΛP. (15)

When cr → 0, residual investors have unlimited trading capacity. If the firm is overvalued

(P̃ > P ) residual investors short the firm to eliminate price pressure, driving P̃ toward

P . The same mechanism applies when the firm is undervalued.

When mutual fund ownership does not change, sM
′
= sM , no forces push prices

away from fundamental values. Even with positive financing costs, there is no price

pressure, P̃ = P . In contrast, a positive mutual fund flow shock (larger Ω) increases

mutual fund ownership to sM
′
> sM , as portfolio adjustment costs prevent mutual funds

from swiftly adjusting their portfolio weights. With finite trading capacity (cr > 0),

residual investors cannot fully trade away this price pressure, causing P̃ > P .

The mutual fund. Internalizing how its actions affect price pressure, the mutual

fund’s optimality condition is

ϕ =
µ− rf + cϕϕ̄

γσ2 + cϕ +
d log Λ
dϕ

. (16)

The first two terms in the numerator and the first term in the denominator represent the

standard risk-return trade-off. The third term in the numerator and the second term in

the denominator capture the effects of portfolio mandates. The mutual fund chooses a
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weighted average of the mean-variance optimal portfolio and the target portfolio ϕ̄.

The final term in the denominator reflects the strategic interaction with residual

investors. Since log Λ enters return via (10), and Λ depends on the mutual fund’s choice

via (15), the mutual fund internalizes this feedback. The derivative d log Λ/dϕ > 0

(proven in Section B.1) implies that increasing portfolio weight ϕ raises the firm’s

current valuation, which in turn reduces the marginal benefit of further increasing ϕ.

The firm. The firm’s optimality condition is

βαIα−1 = 1 + 1{E<0}
ch
K0

[
−E

Λ2
−

ΛdΛ
dI

Λ4
E2

]
, (17)

where the left-hand side is the standard marginal benefit of investment and the right-

hand side is the marginal cost. When E ≥ 0, the marginal cost is 1 as there is no capital

adjustment cost. When E < 0, the firm raises equity and incurs issuance costs. As

with the mutual fund, the final term reflects that the firm internalizes how investment

affects price pressure and issuance costs. The derivative dΛ/dI < 0 (proven in Section

B.1) because higher investment requires supplying more shares, which reduces price

pressure by absorbing some of the excess demand, and thereby raising issuance costs.

2.3 Model Properties

To make sure that equity issuance is relevant, I focus on parameter values such that the

firm issues equity in equilibrium. The comparative statics in Property 1 and Property 2

are derived under the regularity condition that higher-order feedback effects through
dΛ
dI
E2 are small relative to the first-order effects through E. All proofs and the regularity

conditions are in Section B.1.

Property 1 (Source of Bias). Both equilibrium price pressure Λ∗ and fundamental

value P ∗ increase in mutual fund size Ω.

Property 2 (Mitigating Forces). When fund size Ω increases, the mutual fund optimally

reduces its portfolio weight ϕ∗, and the firm optimally increases investment I∗, both

partially offsetting the increase in price pressure Λ∗. Formally,

dΛ∗

dΩ︸︷︷︸
>0

=
∂Λ∗

∂Ω︸︷︷︸
>0

+
∂Λ∗

∂ϕ∗︸︷︷︸
>0

· dϕ
∗

dΩ︸︷︷︸
<0

+
∂Λ∗

∂I∗︸︷︷︸
<0

· dI
∗

dΩ︸︷︷︸
>0

.
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Proof for Property 1 and Property 2 (Sketch). The equilibrium is a system of two un-

knowns (I, ϕ) and two equations: the firm optimality condition (17) and the mutual

fund optimality condition (16), with Λ given by (15). The comparative statics follow

from the implicit function theorem.

Property 1 illustrates the identification challenge. When price pressure rises due

to mutual fund inflows, equity issuance costs fall, encouraging higher investment and

improving fundamental value. Consequently, the observed price response reflects both

exogenous demand pressure and endogenous fundamental improvements.

Property 2 shows the strategic interactions that attenuate price responses. Higher

price pressure reduces expected returns for the mutual fund, leading it to reduce its

portfolio weight. At the same time, lower issuance costs incentivize the firm to invest

more. Both actions absorb part of the excess demand, thereby reducing price pressure.

This property also has important implications for understanding the real effects of

demand shocks. With inelastic demand for residual investors, issuance costs for the firm

and benchmarking constraints for the mutual fund allow deviations of market prices

from fundamental values for small shocks. However, as demand shocks grow larger,

the mitigating forces also become stronger, potentially limiting the magnitude of price

pressure and consequent real effects.

Property 3 (Context-Dependent Elasticities). For the residual investors, the elasticity

with respect to price pressure Λ is negative, while the elasticity with respect to funda-

mental value P is zero. For the mutual fund, the elasticity with respect to price pressure

Λ is negative, while the elasticity with respect to fundamental value P is positive.

Proof (Sketch). The elasticities for residual investors follow directly from their optimality

condition (14). For the mutual fund, the elasticity with respect to fundamental value P

follows from the optimality condition (16). The elasticity with respect to price pressure

Λ is derived by considering an exogenous change in log Λ.

Property 3 highlights that the notion of demand elasticity depends on the nature of

price changes. The distinction for residual investors is by construction, as they only

trade to correct deviations from fundamental value. However, the distinction naturally

arises for the mutual fund as well. When the mutual fund expects a sharp correction in

price pressure—a significant reduction in returns—it reduces its portfolio weight. In
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contrast, a rise in fundamental value does not necessarily reduce returns. In particular,

higher fundamental value driven by more supply of equity can absorb some of the

price pressure, increasing returns. In more general settings where fundamental value

changes for other reasons, which then have different implications for expected returns,

the elasticity with respect to fundamental value can be positive or negative5.

3 Dynamic Model

This section extends the two-period model to a dynamic setting. The main limitation of

the two-period model is that the firm side is highly simplified and cannot quantitatively

capture the firm’s investment, financing, and return dynamics. Therefore, it is difficult

to assess the quantitative importance of fundamental value changes versus price pressure

in driving empirical price responses, and the resulting implications for demand elasticity

and capital misallocation. The dynamic equilibrium framework provides an environment

to identify key parameters that would be difficult to estimate from reduced-form impulse

responses alone and to evaluate the quantitative importance of the mechanisms.

3.1 Firms

Firms maximize their fundamental value, defined as the infinite sum of discounted

payouts, through optimal investment and financing decisions. The costs of equity

issuance and buyback depend on the firm’s market valuation. When market value exceeds

fundamental value, firms face lower equity issuance costs; conversely, undervaluation

makes share buybacks less costly.

3.1.1 Technology

Firm i uses physical capital Ki,t to produce Yi,t:

Yi,t = AtXi,tK
α
i,t, (18)

5In the full model in Section 3 below, larger firms have lower expected returns due to lower risk,
implying a negative elasticity with respect to fundamental value.
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where At is the aggregate productivity and Xi,t is the idiosyncratic productivity. The

logarithm of aggregate productivity at = logAt follows an AR(1) process,

at+1 = (1− ρa)ā+ ρaat + ϵa,t+1, ϵa,t+1 ∼ N(0, σ2
a), (19)

where ρa, ā, and σa are the persistence, mean, and conditional volatility of the AR(1)

process.

Define xi,t = logXi,t as the logarithm of idiosyncratic productivity, which follows an

AR(1) process:

xi,t+1 = (1− ρx)x̄+ ρxxi,t + ϵx,i,t+1, (20)

where ρx and x̄ are the persistence and mean of the AR(1) process. ϵx,i,t+1 is an i.i.d.

normal shock that follows ϵx,i,t+1 ∼ N(0, σ2
x), where σx is the conditional volatility.

Capital accumulation follows

Ki,t+1 = (1− δ)Ki,t + Ii,t, (21)

where δ is the depretiation rate, Ii,t denotes investment, and eηi,t+1 is an i.i.d. capital

quality shock.

Convex investment adjustment costs Gi,t are given by

Gi,t =
ck
2

(
Ii,t
Ki,t

)2

Ki,t, (22)

where cost parameter ck determines the speed of adjustment.

3.1.2 Debt Financing

Each period, firms issue one-period debt Lt, which is to be repaid at t+ 1 at interest

rate rf . Following Hennessy and Whited (2005), collateral constraint is given by

Li,t+1 ≤ φKi,t+1, (23)

where φ ∈ (0, 1) denotes the borrowing capacity. When Lt < 0, the firm saves with

interest rate rs = rf − κ, where κ ∈ (0, rf ) denotes the wedge between borrowing and

saving rate. Finally, rl = rf1{Lt>0} + rs1{Lt≤0} denotes the applicable interest rate.
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3.1.3 Issuance, Repurchase, and Payout

With corporate taxes τ , the operating profit can be expressed as after-tax sales plus

depreciation tax shield, net of investment, investment adjustment costs, and changes in

debt financing:

Ei,t = (1− τ)Yi,t + τδKi,t + τrfLt1{Lt>0} − Ii,t −Gi,t + Li,t+1 − (1 + rl)Li,t. (24)

If total operating costs exceed total profits, Ei,t < 0, firms can raise external equity,

Hi,t = max{0,−Ei,t}, (25)

which incurs costs

Ψi,t = ch0
Ki,t

Λi,t

+
ch1
2

(
Hi,t

Λi,tKi,t

)2

Ki,t, (26)

where ch0 and ch1 are the fixed and variable issuance cost parameters and Λi,t is the

price pressure factor that fluctuates around 1 (an equilibrium outcome defined in

Section 3.4). When a firm is overvalued (Λi,t > 1), the issuance size Hi,t becomes

relatively smaller compared to the firm’s total market value, making issuance less

costly. I adopt a reduced-form specification to capture the empirical relationship in

Section 1.4.3, consistent with micro foundations in Baker and Wurgler (2002); Kim and

Weisbach (2008); Bolton et al. (2013).

If the operating profit is positive, Ei,t > 0, following Warusawitharana and Whited

(2016), the firm can pay out to shareholders by choosing any combination of dividend

Di,t and share repurchase Bi,t such that

Di,t +Bi,t ≤ Ei,t. (27)

Dividend is subject to dividend tax τD, and buyback Bi,t incurs costs

Φi,t =
cb
2

(
Λi,tBi,t

Ei,t

)2

Ei,t, (28)

where cb is the repurchase cost parameter. Similar to the argument about issuance

costs Ψ, when investor demand is weak and the firm is undervalued (Λi,t < 1), firms

are more incentivized to repurchase stocks at a lower price.
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Finally, the payout Oi,t is operating profit minus issuance costs when operating

profit is negative, or the combination of after-dividend tax dividend and repurchase net

of repurchase costs when operating profit is possitive:

Oi,t =

Ei,t −Ψi,t if Ei,t ≤ 0,

(1− τD)Di,t +Bi,t − Φi,t if Ei,t > 0.
(29)

Following Zhang (2005) I specify the stochastic discount factor (SDF) as

log(Mt+1) = log β − γt(at+1 − at) (30)

γt = γ0 + γ1(at − ā), (31)

where ā is the long-run mean of aggregate productivity. Constant β determines the

level of risk-free rate. Constants γ0 > 0, γ1 < 0 captures countercyclical price of risk.

Finally, the firm maximizes its continuation value

Vi,t = max
Ii,t,Ki,t+1

Oi,t + Et

[
Mt+1Vi,t+1

]
≡ Oi,t + Pi,t, (32)

subject to constraints (18) through (31).

3.2 Mutual Funds

There is one one-period living mutual fund for each firm, holding equity positions

and earning a fixed fee based on their AUM. Fund AUM is influenced by returns

from equity holdings and exogenous fund flow shocks. Idiosyncratic fund flow shocks

introduce cross-sectional heterogeneity in fund sizes, providing the variation needed

for identification. Position adjustment costs prevent funds from achieving the optimal

portfolio allocations.

A mutual fund i manages its inherited AUM Qi,t by allocating its portfolio weights

ϕt+1 in firm i and a risk-free asset to gain portfolio returns RM
i,t+1(ϕt+1) = Rf +

ϕi,t+1(Ri,t+1 −Rf ).

Let lower case letters denote the logarithm of their upper case counterparts, the
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size of the mutual fund evolves following

q̃i,t+1 = qi,t + rMi,t+1.

The mutual fund manager will then calculate the fixed fee based on q̃i,t+1.

Following the same setup as the SDF 6, up to a constant scaling factor (e.g. a fixed

2% management fee), the fund manager’s discounted payoff is then

β

1− γm
Et

[
Q̃1−γm

i,t+1

]
=

β

1− γm
Et

[
e(1−γm)q̃i,t+1

]
. (33)

For tractability, I assume that after the returns are realized and the fund managers

collect their fees, mutual fund clients will withdraw the returns from the funds and

rebalance their portfolios across mutual funds, so that the AUM for each mutual fund

available for investment is the sum of an aggregate component and an idiosyncratic

component:

qi,t+1 = q̄ + ωi,t+1, (34)

where q̄ is the average size of the mutual fund industry and ωi,t+1 is specific to mutual

fund i, denoting its deviation from average size.

The idiosyncratic size deviation ωi,t+1 follows an AR(1) process that captures the

persistence of each fund’s size

ωi,t+1 = (1− ρω)ω̄ + ρωωt + ϵω,i,t+1, (35)

where ω̄ and ρω are the long run mean and persistence of idiosyncratic fund size.

Idiosyncratic fund size shock ϵω,i,t+1 is drawn from an i.i.d. normal distribution with

conditional volatility σω.

The amount of proceeds invested to firm i is the portfolio weight for next period

ϕi,t+1 multiplied by fund size today Qi,t. Divide it by the total market value Vi,t, we get

the mutual fund ownership for next period:

sMi,t+1 =
Qi,tϕi,t+1

Vi,t
. (36)

6With a CRRA preference, the manager’s disconted utility is βQ̃1−γm

i,t+1 /(1− γm). Taking the first

order derivative with respect to Q̃i,t+1 gives us the marginal utility βQ̃−γm

i,t+1. The log marginal utility
is therefore log β − γmq̃i,t+1, consistent with (31).
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A standard Taylor approximation yields rMi,t+1 ≈ rf + ϕi,t+1(ri,t+1 − rf ) +
1
2
ϕi,t+1(1−

ϕi,t+1)σ
2
i,t, where σ

2
i,t = Vart(ri,t+1) is the conditional variance of returns. Given normally

distributed returns and dropping the constant terms, the fund manager’s discounted

payoff can be rewritten as

uM = ϕi,t+1(µi,t − rf ) +
1

2
ϕi,t+1(1− ϕi,t+1)σ

2
i,t +

1

2
(1− γm)ϕ

2
i,t+1σ

2
i,t, (37)

where µi,t = Et[ri,t+1] is the conditional expected return.

Fund managers face two portfolio adjustment constraints. First, managers avoid

deviating too far away from targeted positions ϕ̄ due to investment mandates, risk

management requirements, and index benchmarking. This constraint is captured by the

portfolio adjustment cost
cϕ
2
(ϕi,t+1 − ϕ̄)2, where cϕ controls the size of the cost. Second,

executing trades is costly, leading managers to spread trades over time (Kyle, 1985).

Since the model features one-period living funds, I capture this smoothing incentive by

an ownership adjustment cost cs
2
(sMi,t+1 − sMi,t)

2, where cs controls the cost of deviating

from previous period’s ownership.

Finally, the maximization problem can be written as

max
ϕi,t+1

uM(ϕi,t+1)−
cϕ
2
(ϕi,t+1 − ϕ̄)2 − cs

2
(sMi,t+1(ϕi,t+1)− sMi,t)

2 (38)

subject to constraints (34) through (37). Importantly, as is analyzed in detail in

Section 3.4, conditional returns and volatilities that affect payoff uM are all functions

of the choice variable ϕi,t+1.

3.3 Residual Investors

Each firm is paired with a continuum of one-period living residual investor representing

all other shareholders. Following Section 2, they solve

max
sRi,t+1

sRi,t+1(Pi,t − P̃i,t)−
cr
2

(
sRi,t+1 − sRi,t

)2
P̃i,t, (39)

where constant cr controls the financing cost magnitude.
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The first-order condition gives optimal share holding

sRi,t+1 = sRi,t +
Pi,t − P̃i,t

crP̃i,t

(40)

Rearranging (40),
sRi,t+1 − sRi,t

sRi,t
=

1

crsRi,t

Pi,t − P̃i,t

P̃i,t

. (41)

In other words, 1/(crs
R
i,t) is the elasticity with respect to price pressure for residual

investors.

3.4 Market Clearing and Price Pressure

By substituting sRi,t+1 and sMi,t+1 into the equity market clearing condition,

sRi,t+1 + sMi,t+1 = 1, (42)

we get

P̃i,t =
1

1 + cr
(
sMi,t − sMi,t+1

)Pi,t ≡ Λi,tPi,t, (43)

where Λi,t, fluctuating around 1, denotes the degree of price pressure.

3.5 Equilibrium

Let S denote the vector of state variables (At, Xi,t,Ωi,t, Li,t, Ki,t, s
R
i,t). With some abuse

of notation, the recursive equilibrium is defined as

1. a cum-dividend fundamental value function for firms V (S) (and hence ex-dividend

value P (S));

2. a set of policy functions for firms K ′(S), L′(S);

3. portfolio holding decisions for mutual funds ϕ′(K ′, L′, S);

4. price pressure function for firms Ξ(S);

such that in each period

1. Taking ϕ′(K ′, L′, S) as given, the firm chooses K ′(S) and L′(S) to maximize V (S)
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2. Observing K ′, L′, taking Ξ(S) and V (S) as given, mutual funds calculate expected

returns and variances and choose portfolio weights ϕ′(K ′, L′, S).

3. Given K ′, L′ and sM
′
, residual investors choose sR

′
.

4. Markets clear for each state. Realized price pressures are consistent with Ξ(S),

1

1 + cr

[
(1− sR)− Q̄Ωϕ′

(
K′(S),L′(S),S

)
Ξ(S)V (S)

] = Ξ(S) (44)

The timing of events within each period is as follows:

1. All shocks are realized and assets are reshuffled among newly established mutual

funds.

2. Firms make investment and financing decisions.

3. Mutual funds choose portfolio weights.

4. Residual investors determine their positions.

5. Transactions are executed, markets clear, and prices are realized.

Details of the computation algorithm are provided in Appendix C. Several key

features help make this system numerically tractable. First, the sequential nature means

early movers only need to form beliefs about late movers’ decisions rather than solving

the optimization for all potential strategy combinations. Second, firms’ investment

and borrowing decisions determine both next-period state variables and current-period

issuance and buyback decisions. This approach prevents the state space for investors,

whose decisions depend on the firm’s actions, from becoming unmanageable. Third,

given firm and mutual fund actions, residual investors’ optimal decisions have closed-

form solutions that, combined with market clearing, directly yield the price pressure

rule.

Mutual funds calculate the return of firm i by

Ri,t+1 =
P̃i,t+1 +Oi,t+1

P̃i,t

. (45)
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While at the optimum, it is still true that

Vi,t = Oi,t + Et[Mt,t+1Vi,t+1] =⇒ 1 = E

[
Mt,t+1

Vi,t+1

Vi,t −Oi,t

]
(46)

Et[Mt,t+1Ri,t+1] ̸= 1 due to the price pressure terms.

The equilibrium return differs from traditional dynamic firm models (e.g., Zhang,

2005), due to stock market segmentation, where each mutual fund and residual investor

can only invest in their assigned firm. This segmentation is similar to the preferred-

habitat literature on the term structure of interest rates (e.g., Vayanos and Vila, 2021).

While residual investors follow the market-wide SDF (31), their trading is constrained

by financing costs. Consequently, firm pricing reflects the baseline market-wide marginal

utility adjusted by a factor measuring residual investor’s marginal financing costs.

4 Calibration and Estimation

This section presents the calibration and estimation of model parameters by targeting

data moments. I also employ instrumental variable estimation within the model-

simulated economy to illustrate the source and magnitude of the bias from ignoring

endogenous firm actions.

To maintain consistency with the empirical analysis, the model is solved at a

quarterly frequency. I calculate the model-implied moments by simulating 10 samples

and reporting the cross-sample average. Each sample contains 3,000 firms simulated

over 1,000 quarters. To mitigate the effects of initial conditions, I discard the first

400 quarters and treat the remaining simulated data as drawn from the economy’s

stationary distribution.

4.1 Calibration

Table 5 reports the calibrated parameters in the baseline model. To avoid complicating

the estimation with an excess of parameters, I calibrate the parameters that do not

directly affect the demand and supply dynamics by first estimating them outside of

the dynamic model. If a direct estimation is not possible, the parameters are set by

matching some selected moments or using values reported in previous studies.
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Table 5 Here

Aggregate parameters. The long-run mean of mutual fund size q̄ is calibrated such

that the average mutual fund AUM is one-third of average firm market value. The

inverse of risk-free rate β is set to be 0.99 at quarterly frequency. The risk aversion

parameters γ0 and γ1 are set to match an average aggregate stock market return of 3%

per quarter and an annual Sharpe ratio of 0.35.

Mutual Funds. The persistence and volatility of idiosyncratic flow shocks are directly

estimated from data. On average, mutual funds own 20% of a firm. The firm’s

market value is three times the size of the fund. This implies that targeted position

ϕ̄ = s̄× (V̄/Q̄) = 0.2× 3 = 0.6. The risk aversion coefficient γM is set to 2.0, close to

the median value of 2.5 estimated by Koijen (2014), and also roughly consistent with

the targeted position ϕ̄7.

Firms. Following Zhang (2005) and Belo et al. (2019), the persistence ρx and the

volatility σx of productivity shocks are set to 0.973 and 0.16, respectively. The curvature

of the production function α, quarterly depreciation rate δ, corporate tax rate τ are

standard parameters, set at 0.65, 0.03, and 0.3, respectively. Following Warusawitharana

and Whited (2016), dividend tax rate τD is 0.15. The collateral constraint ϕ = 0.8 and

the quarterly saving-borrowing wedge κ = 0.005/4 follow Livdan et al. (2009); Belo et

al. (2019); Choi et al. (2021).

4.2 Estimation

I estimate the seven key parameters that directly affect supply and demand dynamics

using indirect inference.

On the firm side, the issuance cost parameters ch0 and ch1 and the repurchase cost

parameter cb directly determine both the average level of net equity issuance and the

reaction of equity issuance to cost changes caused by price pressure. The investment

adjustment cost parameter ck governs the intertemporal Euler equation and implicitly

determines both issuance and repurchase decisions.

7Absent the position adjustment costs and price impacts, the optimal position of a mutual fund
with CRRA utility is ϕ = (µ − rf )/(γσ

2), where µ − rf is the risk premium and σ2 is the variance
of returns. With an annual risk premium of 6% and a volatility of 20%, the optimal position is 0.75
when γ = 2.
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For mutual funds, the position adjustment cost parameter cs determines the size of

initial price responses: higher adjustment costs constrain mutual funds from significantly

raising their ownership, resulting in smaller price jumps as outlined by (43). This

parameter also helps generate the gradual adjustment dynamics in Panel B of Figure 1.

Without position adjustment costs, one-period living mutual funds do not take future

generations of mutual funds into consideration, leading to sharper position adjustments.

Different from the position adjustment cost cs, the portfolio deviation cost cϕ depends

on portfolio levels rather than past ownership. This parameter roughly works in the

opposite direction of position adjustment costs. In the limit where cϕ approaches infinity,

mutual fund portfolio ϕ stays constant, and all changes in sM are driven solely by the

fluctuation in their size.

Finally, for given changes in mutual fund holdings, the residual investor financing

cost cr directly controls the size of price pressure in (43). As derived in Section 3.3, the

inverse of cr represents the semielasticity with respect to price pressure.

I use ten target moments for the indirect inference estimation.

The first five moments capture the dynamic interaction between mutual funds,

residual investors, and firms. First, I target the IRF of returns at h = 0 and h = 18.

The initial response (h = 0) is directly related to the cost parameters. The return

response at h = 1 captures dynamic adjustments. Stronger return reversals occur when

initial reactions are primarily driven by price pressure or when mutual funds pay less

effort to smooth their position changes. I focus on the first two periods because the

model lacks mechanisms for significant long-term responses, and empirical evidence

suggests that longer-term responses are not significantly different from zero. Second, I

use the IRF of NEI at h = 0. High firm issuance and repurchase costs reduce firms’

responsiveness to price pressure. Third, I target the variance of changes in mutual

fund ownership share (∆sM), which governs the extent of active portfolio rebalancing

and determines the magnitude of return responses. Fourth, I target the variance of

returns. Given the volatility of productivity shocks and fund flow shocks, it reveals

market participants’ capacity to absorb shocks.

The next five moments discipline parameters related to firm technology and financing.

8In the model the IRF of returns is defined as the change in log market value ∆ logV for easier
comparison and decomposition in Section 4.4. Empirically the IRFs of ∆ logV and R are similar.

This is because ∆ logV = log
(
1 + Vt+1−Vt

Vt

)
≈ Vt+1−Vt

Vt
= (Rt+1 − 1)

(
1− Ot

Vt

)
, and that total payout

is usually small relative to the market value.
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To match the level of NEI, I calculate average NEI conditional on being non-negative,

and average NEI conditional on being non-positive.9. I also target the regression

coefficient of SALE/K on I/K. A large coefficient indicates investment dynamics

driven primarily by productivity shocks, while a small coefficient suggests a more

important role for fund flow shocks, which affect issuance costs. Finally, I target the

mean leverage L/K and the variance of investment rate. Both moments closely reflect

financing and investment costs.

Since this model is overidentified, I construct the weighting matrix for the objective

function using the influence function approach in Erickson and Whited (2002). Let x

denote the data, b denote the vector of parameters, g denote the difference between data

and simulated moments, and Ŵ denote the weighting matrix. The indirect inference

estimator of b is then defined as the solution to the minimization of

b̂ = argmin
b

g(x, b)′Ŵg(x, b).

Computational details are provided in Appendix C. Table 6 presents the estimation

results.

Table 6 Here

Panel A of Table 6 reports the estimated parameters. The key parameter of interest

is the financing cost for residual investors, cr. Since residual investors on average hold

80% of a firm’s shares, their elasticity with respect to price pressure can be naively

calculated as 1
cr s̄R

≈ 1.6, where s̄R is the average residual investor holding. However,

accounting for the full distribution of sR yields a higher average elasticity, as shown

in Section 4.4 below10. This is consistent with the empirical evidence provided by

Schmickler and Tremacoldi-Rossi (2022).

Panel B of Table 6 compares the moments calculated from the model with those

from the data. Despite overidentification, the model fits the data well overall. The

9Zero-NEI observations contribute to both averages. Since many observations are small but non-zero,
this approach captures NEI levels without imposing arbitrary thresholds for “active” versus “inactive”
NEI, which could introduce biases to the extensive margin of NEI. Since the firm side is overidentified,
other moments help indirectly identify relevant parameters.

10Formally, let f(s) denote the distribution of residual investor holdings, the average elasticity is
calculated as

∫
1

crs
f(s)ds. With a symmetric distribution, Jensen’s inequality implies that the average

elasticity is greater than 1
cr s̄R

.
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return reversal at h = 1 is stronger than in the data, which is expected given that

one-period-living investors generate more immediate and pronounced reactions. The

discrepancy is weaker in the longer horizon. For example, the cumulative return from

h = 1 to h = 3 is -0.81 in the data and -1.66 in the model. In Figure 3, the blue solid

line plots the model-implied return IRF.

Figure 3 Here

While the standard errors provide initial evidence on local identification, I further

investigate the sources of identification by computing the sensitivity matrix of b̂ to

ĝ(b) using −(G′WG)−1G′W , where G is the Jacobian, following Andrews et al. (2017).

As the raw sensitivity measures are not scale invariant, I standardize the sensitivity

matrix by scaling each element with the square root of the ratio of moment variance to

parameter variance to facilitate interpretation. Table 7 presents the local elasticities

of parameter estimates with respect to the targeted moments, calculated at estimated

parameters.

Table 7 Here

Most moments work as expected. For example, stronger return responses imply

lower demand elasticity. However, the many non-zero elements in the sensitivity matrix

highlight the interdependence of parameters, underscoring both the importance of a

structural model and the difficulty of fitting the moments. Several moments react

strongly to multiple parameters: the IRF of NEI, the size of issuance, and the variance

of returns all respond to changes across most parameters. Similarly, average leverage

not only helps identify firm financing parameters, but also strongly affects the residual

investor financing cost cr.

4.3 Return Response Decomposition

Following (43),

d log P̃ = d log Λ + d logP. (47)

The red dashed line in Figure 3 plots the IRF of log Λ. The price pressure response

(1.33%) is weaker than the return response (1.88%) at h = 0 due to improved funda-

mental value following NEI responses. At longer horizons the two lines closely track
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each other as firm actions no longer affect fundamental value, and return responses are

primarily driven by price pressure. The gap between the observable return response and

the unobservable price pressure response is the source of bias in the demand elasticity

estimate.

In Table 8, I decompose return responses into changes in price pressure and changes

in fundamental value. To explore the heterogeneity across firms, I first sort firms

into three equal-sized portfolios based on beginning-of-period capital levels. Within

each size portfolio, firms are further divided into two groups based on the median of

beginning-of-period mutual fund ownership.

Table 8 Here

In the full sample, 29% of the initial return response is driven improvements in

fundamental value, while the remaining 71% is attributed to price pressure. There is

substantial heterogeneity across firms. Consistent with the empirical findings in Table 4,

firms with high mutual fund ownership exhibit stronger return responses. Looking at

the components of the return responses, firms with high mutual fund ownership still

experience stronger price pressure responses, but the differences within each size category

are smaller. The differences in fundamental value responses are more pronounced. This

suggests that mutual funds select to hold firms with higher growth potential that benefit

more from reduced issuance costs.

Along the size dimension, small firms experience stronger return responses, again

mainly driven by fundamental value improvements. Small firms benefit most from

reduced issuance costs while actively expanding. In contrast, for the largest firms with

lower marginal returns to investment, rising price pressure only has limited effects

on their investment decisions. Price pressure may even increase repurchase costs,

potentially lowering fundamental value.

4.4 An Instrumental Variable Estimation

In this section, I estimate the demand elasticity for residual investors and mutual funds

using an instrumental variable approach using the model-simulated economy.

To estimate the demand elasticity for residual investors, I need a residual supply shock

that is orthogonal to the residual investor demand (40). In the model, fund flow shocks
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are demand shocks independent of residual investor demand by construction, seemingly

satisfying the traditional exclusion restriction. However, as shown in Section 4.3, this

approach still yields biased results in our context because we cannot disentangle changes

in firm value driven by price pressure Λ from those driven by fundamental value P ,

introducing inevitable omitted variable bias.

To illustrate this potential bias, I conduct instrumental variable estimation using

the model-simulated economy, as reported in Panel A of Table 9. I regress changes in

log ownership by residual investors against different measures of price changes, using

fund flows as instruments.

Table 9 Here

In columns 1 and 2, the independent variable is changes in log market value

d log P̃ . Without instrumenting, the estimate is positive, illustrating the traditional

omitted variable bias. When firm fundamentals change, mutual funds endogenously

rebalance their portfolios to achieve the optimal return-variance trade-off., so the

estimate represents a weighted average of optimization responses by firms, mutual funds,

and residual investors. In Column 2, using fund flow shocks as instruments yields a

demand elasticity estimate of approximately 1.7.

Columns 3 and 4 use changes in log price pressure d log Λ as the independent

variable, which is unobservable in actual data but can correctly remove the endogenous

fundamental value changes. Without instruments (column 3), the estimate is already

-0.9, reflecting that residual investors reduce holdings in response to positive price

pressure to mitigate value deviation. With proper instrumenting, Column 4 estimates

the true demand elasticity of 2.4, 40% higher than the estimate in Column 2.

The specification in columns 3-4 remain slightly misspecified. Following (40), the

correct specification should use deviations from fundamental value (Pi,t − P̃i,t)/P̃i,t

instead of changes in price pressure. Columns 5 and 6 present the estimates using this

specification. Both with or without instruments yield similar estimates. This is because

fundamental value P cancels out in the numerator and denominator, leaving only price

pressure Λ, which does not suffer from the omitted variable bias. The numbers are also

close to the estimates in column 4, indicating that the bias from using changes in price

pressure is small.
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I estimate demand elasticity for mutual funds in Panel B of Table 9. Following

Koijen and Yogo (2019), the demand curve is downward sloping with respect to firm

market value (rather than price pressure) because larger firms on average have lower

expected returns. The demand elasticity estimate thus shows how the size premium is

reflected in mutual funds’ portfolio choices, which is not directly related to the price

pressure. In this case, productivity shocks help firms grow but do not directly affect

mutual fund demand, satisfying the exclusion restriction.

Columns 1 to 3 provide the reduced form, first stage, and IV estimates using changes

in log market value. The first stage in Column 1 is biased upward. While mutual funds

do cut holdings when firms grow bigger, they also increase holdings due to positive

fund flow shocks, which rasies the market value through price pressure. With proper

instrumenting, the IV estimate in Column 3 is -0.6, close to elasticity estimates surveyed

in Gabaix and Koijen (2022). This estimate is still biased because when mutual funds

adjust their holdings following productivity shocks, they also create price pressure.

Columns 4 to 6 use changes in log fundamental value, which is unobservable in

actual data but can correctly remove the endogenous price pressure changes. Comparing

Columns 4 and 6, the bias in the first stage is now small because biases introduced

by price pressure are already removed. The elasticity estimate in Column 6 is smaller

in magnitude than the estimate in Column 3, suggesting that mutual funds are more

sensitive to price pressure increases than to fundamental value increases. This makes

sense because the reduction in expected returns from price pressure should be sharper

than that from fundamental value increases. Without additional instruments in the

model, we cannot separately identify their demand elasticity with respect to price

pressure as they are the ones introducing price pressure in the first place.
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5 Mechanism

5.1 Firm Optimality Conditions

Let q and µ be the Lagrange multipliers for the capital accumulation (21) and borrowing

constraint (23). The first-order conditions with respect to I,K ′, and L′ are

−∂O

∂I
= q (48)

q = E

{
M ′
[
∂V ′

∂K ′

]}
+ µφ+

∂O

∂Ξ

∂Ξ

∂ϕ′
∂ϕ′

∂K ′ (49)

µ− E

{
M ′
[
∂V ′

∂L′

]}
=

∂O

∂E

∂E

∂L′ +
∂O

∂Ξ

∂Ξ

∂ϕ′
∂ϕ′

∂L′ . (50)

The left-hand side of (48) represents the marginal cost of investment: investing

more reduces current payout. The first two terms on the right-hand side are standard

marginal benefits of capital accumulation. More capital increases future production

capacity and relaxes the borrowing constraint. The last term reflects the novel firm-

investor interaction: firms recognize that their investment decisions affect mutual fund

trading through ∂ϕ′

∂K′ , which in turn influences their cost of capital and payout ∂O
∂Ξ

∂Ξ
∂ϕ′ .

Similarly, the left-hand side of (50) represents the marginal cost of borrowing:

potentially binding borrowing constraints and future debt repayment. The marginal

benefit on the right-hand side includes higher current cash flows, and the effect of

borrowing on mutual fund trading and thus payout costs through ∂ϕ′

∂L′ .

5.2 Policy Functions

In this section, I examine the numerical policy functions to understand the mechanisms

driving the quantitative performance of the model.

To understand how mutual fund flow shocks increase fundamental value, Figure 4

plots policy functions over fund size for two sample firms. As the mutual fund’s size

increases (positive flow shock), it reduces its portfolio weight ϕ′ to prevent excessive

market value increases that would lower future returns. However, mutual fund ownership

sM
′
still rises due to the adjustment costs, increasing price pressure Λ.

Figure 4 Here

35



The top panel shows a smaller firm with ample savings. With higher marginal

returns to investment and lower equity financing costs from elevated market values, the

firm increases both NEI and investment while drawing down cash reserves. Fundamental

value rises as productive capital is added for future growth.

The bottom panel shows a larger firm with limited savings. While the mutual fund

behaves similarly, the firm is not seeking expansion (I/K < 0). Instead, it exploits

lower equity issuance costs to raise capital and accumulate savings. Fundamental value

rises through increased savings.

Figure 5 plots policy functions over mutual fund ownership for two sample firms. In

both panels, without position adjustment costs, optimal mutual fund ownership sM
′

would be independent from current ownership (appearing as a flatline). With position

adjustment costs, however, mutual funds avoiding deviating too far from their current

ownership sM . As a result, the ownership policy lies between the flat line and the

45-degree line, creating “mean reversion” where next-period ownership is lower when

current ownership is high, and vice versa. This pattern implies that price pressure

decreases as current mutual fund ownership rises.

Figure 5 Here

The firm responses differ by type. For the smaller, expanding firm (top panel),

higher ownership makes capital more expensive, causing reduced issuance and greater

reliance on borrowing, which decreases fundamental value. Conversely, the larger firm

seeking to reduce capital benefits from lower price pressure through lower repurchase

costs, allowing cheaper share buybacks that increase fundamental value. Also, since

lower valuation could benefit repurchasing firms, the average effects of fund ownership

(and fund shocks) on fundamental value, and also the implications of demand elasticity

estimation, vary significantly across firm groups, as is shown in Table 8.

Finally, Figure 6 illustrates the equilibrium price formation process for a firm seeking

to increase investment. Following backward induction11, the top panel shows equilibrium

expected returns and volatility as functions of mutual fund portfolio weights, given

optimal firm decisions. When mutual funds increase weights, current price pressure

rises, reducing the expected returns. For this firm, conditional volatility also decreases,

creating a trade-off between lower returns and lower volatility for mutual funds. However,

11The last step where residual investors form their portfolios follows (40).
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since the volatility variation is relatively muted, the trade-off between returns and

adjustment costs in (38) likely dominates.

Figure 6 Here

Moving backward in the analysis, firm decisions directly affect conditional expected

returns and volatility by changing both current and future fundamental values. These

changes influence mutual funds trade-offs, which affect price pressure, and feed back

into expected returns and volatility. The middle panel shows how returns and volatility

depend on firm investment decisions, taking mutual fund portfolio responses as given.

The dashed black line indicates current capital level, while the dotted red line shows

equilibrium optimal capital for next period. Compared to mutual funds, firm actions

have smaller impact on expected returns but larger impact on volatility.

Considering both steps, the bottom panel plots equilibrium price pressure and

mutual fund portfolio weights as functions of firm investment decisions. As shown in

(43), price pressure closely tracks mutual fund holdings. However, higher price pressure

does not automatically translate into lower expected returns. For example, to the left of

the peak of returns in the middle panel, increasing capital generates both higher returns

and higher price pressure. Higher investment is associated with higher price pressure

and cheaper issuance, suggesting the firm invests more than it would if issuance costs

were not affected by market valuation. The importance of fundamental value variations

is also evident in that, at equilibrium, the firm is 4.3% overvalued yet expected returns

remain around 0.7% rather than approximately -4.3%.

6 Counterfactuals

This section presents counterfactual analyses to evaluate how demand shocks affect firm

fundamentals and capital allocation. I examine three scenarios: (1) reduced volatility in

mutual fund flows, (2) higher residual investor demand elasticity, and (3) lower capital

adjustment costs.

6.1 MPK and Capital Misallocation

Following Hsieh and Klenow (2009), Haltiwanger et al. (2018), and Baqaee and Farhi

(2017) I measure capital misallocation using aggregate TFP, calculated as TFPagg =
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Yagg/K
α
agg, where Yagg and Kagg denote aggregate output and capital, respectively.

Higher aggregate measured TFP indicates more efficient capital allocation across firms.

In this exercise, I specify the firm-level production function as Yi,t = Abi
t Xi,tK

α
i,t,

following David et al. (2022) and Choi et al. (2021), where bi ∼ N(1, 0.2) captures

heterogeneous firm exposure to aggregate productivity shocks. Table 10 presents the

percentage changes of aggregate TFP in counterfactual specifications from the baseline.

Table 10 Here

With less friction, firms over-invest (under-invest) less heavily experiencing high

(low) price pressures from mutual fund flow shocks. As a result, aggregate TFP

improves. In a counterfactual where mutual fund flow shock volatility reduces from

0.21 to 0.09, aggregate TFP increases by 0.068%. When the semi-elasticity of residual

investors increases from 1/0.8 to 1/0.7, residual investors respond more actively to

price changes, and lower price variation results in a 0.060% TFP gain. Reducing

investment adjustment costs from 0.50 to 0.25 yields a 0.050% TFP gain. These

results suggest that the productivity gains from mitigating financial market frictions

are economically meaningful and comparable in magnitude to those from reducing real

investment frictions.

Since one key source of capital misallocation in this model is the NEI responses that

promote over- and under-investment, one might conjecture that stronger NEI responses

to flow shocks would lead to larger investment dispersion and thus higher capital

misallocation. However, this conjecture overlooks two important factors. First, stronger

responses can arise from either more financing frictions or fewer real frictions. With

the same flow shock volatility, when investment adjustment costs decrease, firms adjust

capital more flexibly toward desired levels. This makes NEI responses more pronounced

but actually reduces misallocation. Second, the relationship between response strength

and misallocation is nonlinear. In the first counterfactual in Table 10, shock volatility

falls by more than half (from 0.21 to 0.09), yet the IRF of NEI/K per standard

deviation of shocks declines less (by 49%). This implies that the per-unit response

actually increases by 19% ((−0.49 + 1)× 0.21
0.09

− 1 = 19%). Despite stronger per-unit

responses, overall misallocation decreases because these amplified responses apply only

to smaller shocks, where mutual funds and firms have weaker incentives to counteract

the resulting price pressures, limiting the magnitude of the distortions.
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6.2 Discussion

In a similar setting, Choi et al. (2021) conduct a similar counterfactual analysis and

find much stronger capital misallocation gains when reducing the magnitude of non-

fundamental flows volatility by half.

Three mechanical differences that drive this discrepancy. First, the elasticity es-

timate is higher when accounting for endogenous firm reactions. Higher elasticities

implies smaller price impacts. Second, Choi et al. (2021) attribute all investor demand

not explained by a linear Fama and French (1993) five-factor system as non-fundamental

excess noisy demand. This paper allows more flexibility on the way mutual funds form

their portfolios without restricting the demand structure focusing only on plausibly

exogenous flow shocks. Third, firms in Choi et al. (2021) are assumed to have more

dispersed exposure to aggregate productivity shocks, and are therefore ex-ante more

heterogeneous in their MPK. While this paper does not impose such ex-ante hetero-

geneity, the dispersion in returns, investment rates, changes in mutual fund holdings,

and even standard deviation of the level of mutual fund holdings (non-targeted, 22% in

model versus 17% in data) closely match the data.

More importantly, as shown in Section 5, strategic interactions in this model cause

marginal price effects to diminish rapidly with the size of demand shocks.

First, the model distinguishes between elasticity with respect to fundamental value

and elasticity with respect to price pressure, with the latter being significantly larger, as

shown in Table 9. Following Koijen and Yogo (2019), the logit demand system captures

that firm market value and other characteristics predict future returns, leading investors

to reduce holdings in large firms due to their lower expected returns from lower risk.

This relationship holds in my model for fundamental value variations. However, when

comparing firms with identical market values but different compositions—one with

higher fundamental value, the other with higher price pressure—mutual funds reduce

holdings more aggressively for the latter, anticipating larger corrections in expected

returns.

Second, when firms face positive price pressure, they issue equity to improve

fundamental values, narrowing the gap between market value and fundamental value.

Consequently, even with a fixed elasticity for residual investors with respect to price

pressure, larger mutual fund flow shocks do not translate proportionally into larger
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price fluctuations due to strategic responses from both mutual funds and firms.

Figure 7 illustrates this mechanism by plotting the initial impulse responses of

market value, price pressure, and NEI under different mutual fund flow shock sizes.

Panel A shows the IRFs to a one-standard-deviation shock for varying shock sizes. As

the volatility of shocks increases, market value responses (blue solid line) also increase,

but the marginal increase diminishes very fast. When volatility increases from 0.09 to

0.15, the market value response increases by 54% (0.98% to 1.52%); when volatility

increases from 0.15 to 0.21, the market value response only increases by 24% (1.52% to

1.87%). Increasing NEI responses (green dotted line on the right axis) exhibit a similar

pattern, suggesting that market value response increases are driven by fundamental

value responses due to larger equity issuances. Therefore, the equilibrium price pressure

response (red dashed line) increases more mildly, and even decreases slightly when

the shock volatility increases beyond 0.24. Panel B shows the corresponding per-unit

responses normalized to the baseline shock size (σωi = 0.21). Consistent with Panel A,

the price pressure response (red dashed line) decreases rapidly as mutual funds and

firms counteract larger shocks more aggressively.

Figure 7 Here

7 Conclusion

This paper examines the impact of temporary stock price fluctuations on capital

allocation among firms by estimating a dynamic structural model using variations from

mutual fund flow shocks. Empirically, using cross-sectional idiosyncratic fund flow

shocks, I document that these shocks cause an initial jump in stock price with limited

reversal, accompanied by a positive response in net equity issuance and a gradual

increase in mutual fund ownership. I then propose a dynamic structural model that

captures interactions among firms, mutual funds, and residual investors. In the model,

trading and financing frictions constrain mutual funds and residual investors. Thus,

when mutual funds adjust positions in response to flow shocks, residual investors cannot

perfectly absorb these changes, and market clearing implies deviations between market

and fundamental values. For firms, higher misvaluation lowers issuance costs, while

lower misvaluation reduces repurchase costs. Consequently, shifts in market values feed

back into firm operations, further affecting fundamental values.
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Using indirect inference that targets the impulse responses, I estimate a high

elasticity with respect to misvaluation for residual investors. The results suggest that

return responses can be decomposed into fundamental improvements and misvaluation

changes. Counterfactual analyses show that high-ownership firms benefit from mutual

funds’ hedging motives and a larger inelastic mutual fund sector by expanding their

capital, while low-ownership firms tend to contract.

This paper focuses on the dynamics following mutual fund flow shocks, estimating a

context-specific elasticity that underscores the distinctive role of prices in stock markets.

Specifically, it suggests that demand elasticities may vary depending on the drivers

of price changes. Future research could follow a similar equilibrium framework to

further clarify these elasticities. Additionally, this paper illustrates how equilibrium

prices can feedback into the real economy, influencing capital allocation. While the

current analysis centers on mutual funds, future research could examine diverse investor

types by incorporating broader data on investor holdings. Finally, this paper models

individual firms in isolated markets for tractability, but exploring aggregate quantities

and prices could reveal meaningful macroeconomic implications.
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Figures

Figure 1: Firm Responses
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Figure 1 presents impulse response functions of returns, mutual fund holdings, net equity issuance,

and investment. The blue solid line plots coefficients βh from estimating the local projection following

Jordà (2005): ∆yi,t+h = αi + δt + βhfi,t +Xi,t−1 + εm,t+h for h = 0, 1, . . . , 4. The shaded area

indicates 90% pointwise confidence bands using standard errors clustered at firm level. control

variables Xi,t−1 include ∆yi,t−1, fi,t−1, s
M
i,t−1 and lagged firm characteristics (log market equity, log

book-to-market ratio, cash scaled by asset, and investment). The sample is from 2007Q1 to 2021Q4.
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Figure 2: Firm Return Responses to Active and Passive Fund Flow Shocks
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Figure 2 presents impulse response functions of firm returns to active and passive mutual fund flow

shocks (fT
i,t for T ∈ {Active,Passive}). The blue solid line plots coefficients βh from estimating the

local projection following Jordà (2005): ∆yi,t+h = αi + δt + βhf
T
i,t +Xi,t−1 + εm,t+h for

h = 0, 1, . . . , 4. The shaded area indicates 90% pointwise confidence bands using standard errors

clustered at firm level. control variables Xi,t−1 include ∆yi,t−1, fi,t−1, s
M
i,t−1 and lagged firm

characteristics (log market equity, log book-to-market ratio, cash scaled by asset, and investment).

The sample is from 2007Q1 to 2021Q4.
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Figure 3: Simulated Return Responses
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Figure 3 presents return impulse responses simulated in the model. The blue solid line shows the first

difference of log market value, while the red dashed line shows the first difference of log price pressure.

The responses are averages across 10 simulated panels, where each panel contains 3,000 firms over

1,000 quarters, with the first 400 quarters discarded.
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Figure 4: Policy Function Over Fund Size
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Figure 4 shows how fund flows affect firm policies by plotting policy functions against idiosyncratic

fund size from the baseline model at two states. The top (bottom) panel presents a firm using equity

issuance to raise investment (accumulate savings). The seven columns are fundamental value V , price

pressure Λ, next-period mutual fund ownership sM
′
, next-period mutual fund portfolio weight ϕ′,

investment rate I/K, net equity issuance scaled by capital NEI/K, and next-period leverage L′. The

black dashed line in sM
′
shows current mutual fund ownership sM .
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Figure 5: Policy Function Over Mutual Fund Ownership
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Figure 5 shows how mutual fund ownership affects firm fundamental value by plotting the policy

functions against mutual fund ownership from the baseline model at two states. The top (bottom)

panel presents a firm issuing (repurchasing) equity. The seven columns are fundamental value V , price

pressure Λ, next-period mutual fund ownership sM
′
, next-period mutual fund portfolio weight ϕ′,

investment rate I/K, net equity issuance scaled by capital NEI/K, and next-period leverage L′. The

black dashed line in sM
′
shows current mutual fund ownership sM .
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Figure 6: Equilibrium Price Formation
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Figure 6 illustrates the equilibrium price formation process for a firm seeking to increase investment.

The top panel plots equilibrium expected returns and volatility as functions of mutual fund portfolio

weights, given optimal firm decisions. The middle panel plots equilibrium expected return and

volatility as functions of the firm’s investment decisions, taking optimal mutual fund responses as

given. The bottom panel plots equilibrium price pressure and mutual fund holding rules as functions

of the firm investment decisions. The dotted red line indicates the mutual fund’s optimal portfolio

weight in the top panels, and the firm’s equilibrium optimal capital for the next period in the middle

and bottom panels. The dashed black line indicates the firm’s current level of capital.
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Figure 7: Responses Under Different Shock Sizes

(a) IRF to One-Standard-Deviation Shocks
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(b) Per-Unit IRF Normalized to Baseline
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Figure 7 illustrates the initial impulse responses of market value, price pressure, and NEI under

different mutual fund flow shock sizes. Panel A presents the IRFs to one-standard-deviation shocks of

different sizes. Panel B presents the per-unit IRFs normalized to those under the baseline shock size.

For each σωi, the plotted value is IRF(σωi)
IRF(0.21)

0.21
σωi

. The blue solid line shows the market value response,

the red dashed line shows the price pressure response, and the green dotted line shows the net equity

issuance response (on the right axis in Panel A). The responses are averages across 10 simulated panels,

where each panel contains 3,000 firms over 1,000 quarters, with the first 400 quarters discarded.
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Tables

Table 1: Summary Statistics

count mean sd min max

fi,t 172,584 0.00 1.00 -2.97 3.04
Ri,t (%) 172,584 2.51 25.28 -66.42 89.99
NEIi,t/Ki,t−1 (%) 172,584 0.94 8.45 -9.35 62.89
sMi,t (%) 172,568 24.57 16.71 0.07 60.32
dKi,t (%, AT) 172,584 1.57 11.22 -28.45 58.70
dKi,t (%, PPENT) 169,147 2.20 12.61 -29.64 72.31
dBEi,t (%) 171,054 1.92 13.58 -57.85 81.17

Table 1 presents the summary statistics of the merged panel. fi,t is holding-weighted and standardized

idiosyncratic mutual fund flow shocks. Ri,t is quarterly stock return from CRSP. NEIi,t is Sale of

Common and Preferred Stock net of Repurchase of Common and Preferred Stock and Dividends. In

robustness checks, I alternatively define this variable without subtracting dividends or apply a 2%

market equity filter following McKeon (2015). In the baseline, to be consistent with the model, Ki,t−1

is lagged total assets. sMi,t is mutual fund holding defined as total number of shares held by mutual

funds divided by total number of shares outstanding. Investment dKi,t is the DHS growth rate (Davis

et al., 1996) of total asset. Book equity is Total Assets net of Retained Earnings and Total Liabilities.

dBEi,t is the DHS growth rate of book equity. The sample is from 2007Q1 to 2021Q4.
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Table 2: Other Firm Fundamental Responses

dBEi,t (%) GEIi,t/Ki,t−1 (%) dCashi,t (%) dKi,t (%, PPENT) ∆Leveragei,t (%)

(1) (2) (3) (4) (5)

fi,t 0.132∗∗∗ 0.157∗∗∗ 0.450∗∗∗ 0.209∗∗∗ -0.034∗∗∗

(3.15) (4.70) (2.88) (4.26) (-2.60)

Observations 157092 158593 158270 155387 156590
R-Squared 0.064 0.263 0.120 0.208 0.078
Time Yes Yes Yes Yes Yes
Firm Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes
Clustered By Firm Firm Firm Firm Firm

Table 2 presents regression coefficients from ∆yi,t = αi + δt + βfi,t +Xi,t−1 + εm,t. Dependent

variables include the DHS growth rate of book equity, cash, physical capital, and leverage. Gross

equity issuance is defined as Sale of Common and Preferred Stock when it is larger than 2% of lagged

market equity following McKeon (2015), and zero otherwise. Control variables Xi,t−1 include ∆yi,t−1,

fi,t−1, s
M
i,t−1 and lagged firm characteristics (log market equity, log book-to-market ratio, cash scaled

by asset, and investment). Standard errors are clustered at firm level. The sample is from 2007Q1 to

2021Q4.
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Table 3: Initial Return and Issuance Response, Positive and Negative Shocks

Ri,t (%) NEIi,t/Ki,t−1 (%)

(1) (2) (3) (4)

fi,t× 1{f ≥ 0} 2.111∗∗∗ 1.949∗∗∗ 0.219∗∗∗ 0.221∗∗∗

(13.03) (11.82) (3.67) (3.68)
fi,t× 1{f < 0} 1.442∗∗∗ 1.821∗∗∗ 0.108∗∗ 0.149∗∗∗

(10.53) (12.54) (2.13) (2.91)

Observations 216248 158605 216248 158605
R-Squared 0.249 0.307 0.249 0.298
Time Yes Yes Yes Yes
Firm Yes Yes Yes Yes
Controls No Yes No Yes
Clustered By Firm Firm Firm Firm

Table 3 presents regression coefficients from ∆yi,t = αi + δt + βfi,t +Xi,t−1 + εm,t. 1{f ≥ 0}
(1{f ≥ 0}) is a dummy variable that equals one when the flow shock is greater than or eqaul to

(smaller than) 0. Control variables Xi,t−1 include ∆yi,t−1, fi,t−1, s
M
i,t−1 and lagged firm characteristics

(log market equity, log book-to-market ratio, cash scaled by asset, and investment). Standard errors

are clustered at firm level. The sample is from 2007Q1 to 2021Q4.
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Table 4: Initial Return and Issuance Response, Subsamples

(1) (2) (3) (4)
Ri,t (%) NEIi,t/Ki,t−1 (%) Ri,t (%) NEIi,t/Ki,t−1 (%)

Panel A: By Mutual Fund Ownership

High sMi,t−1 Low sMi,t−1

fi,t 3.389∗∗∗ 0.212∗∗∗ 1.244∗∗∗ 0.144∗∗∗

(21.58) (4.41) (10.09) (3.24)

Observations 79561 79561 70994 70994
R-Squared 0.374 0.266 0.291 0.341
Mean sM 0.377 0.377 0.115 0.115

Panel B: By Q

High Q Low Q

fi,t 2.242∗∗∗ 0.338∗∗∗ 1.316∗∗∗ 0.001
(15.42) (5.06) (9.64) (0.04)

Observations 75031 75031 70126 70126
R-Squared 0.312 0.359 0.373 0.305
Mean sM 0.277 0.277 0.232 0.232

Panel C: By SA Index

High SA Index Low SA Index

fi,t 1.274∗∗∗ 0.191∗∗∗ 2.753∗∗∗ 0.127∗∗∗

(9.90) (3.88) (18.68) (3.92)

Observations 73252 73252 82408 82408
R-Squared 0.308 0.336 0.347 0.276
Mean sM 0.199 0.199 0.304 0.304

Time Yes Yes Yes Yes
Firm Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Clustered By Firm Firm Firm Firm

Table 4 presents regression coefficients from ∆yi,t = αi + δt + βfi,t +Xi,t−1 + εm,t. I sort firms by

lagged mutual fund ownership, Tobin’s Q, or SA Index (Hadlock and Pierce, 2010) into two equal-sized

groups within each 2-digit SIC industry. Control variables Xi,t−1 include ∆yi,t−1, fi,t−1, s
M
i,t−1 and

lagged firm characteristics (log market equity, log book-to-market ratio, cash scaled by asset, and

investment). Standard errors are clustered at firm level. The sample is from 2007Q1 to 2021Q4.
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Table 5: Calibrated Parameters

Panel A: Aggregate

Long-run mean of fund size exp(q̄) 0.38
Persistence of aggregate productivity shocks ρa 0.95
Volatility of aggregate productivity shocks σa 0.006
Inverse of risk-free rate β 0.99
Risk aversion, constant component γ0 36
Risk aversion, time-varying component γ1 -2000

Panel B: Mutual Funds

Persistence of idiosyncratic flow shocks ρω 0.98
Volatility of idiosyncratic flow shocks σω 0.21
Risk aversion γM 2.0
Targeted portfolio position ϕ̄ 0.60

Panel C: Firm

Persistence of idiosyncratic productivity shock ρx 0.973

Volatility of idiosyncratic productivity shock σx 0.16
Long-run mean of idiosyncratic productivity shock x̄ -3.08
Decreasing returns to scale α 0.65
Depreciation rate δ 0.03
Corporate tax rate τ 0.3
Dividend tax rate τD 0.15
Collateral constraint φ 0.8
Saving-borrowing rate wedge κ 0.005/4

Table 5 presents the calibrated parameters for the baseline model.
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Table 6: Identified Parameters

Panel A: Parameter Estimates

Parameter Symbol Value

Capital adjustment costs ck 0.507
(0.005)

Fixed issuance costs (×100) ch0 0.285
(0.046)

Variable issuance costs ch1 0.956
(0.040)

Variable buyback costs cb 0.902
(0.011)

Mutual funds position adjustment costs cs 0.904
(0.425)

Mutual funds target deviation costs cϕ 1.576
(0.161)

Residual investor position adjustment costs cr 0.795
(0.041)

Panel B: Targeted Moments

Moment Data Model

Return IRF, h = 0 (%) 1.81 1.87
Return IRF, h = 1 (%) 0.11 -1.21
NEI IRF, h = 0 (%) 0.27 0.13
Var(∆sM) (×104) 11.55 16.46
E[NEIt/Kt−1|NEIt ≥ 0] (%) 3.57 4.71
E[NEIt/Kt−1|NEIt ≤ 0] (%) -0.82 -1.14
β(SALE/K, I/K) 0.15 0.16
E[L/K] 0.23 0.27
Var(R) (×104) 569.58 326.63
Var(I/K) (×104) 54.52 41.84

Table 6 presents estimated parameters and compares the moments from the simulated economy with

data. Standard errors are in parentheses. The moments are calculated as the average across 10

simulated panels. Each simulated panel is composed of 3,000 firms over 1,000 quarters. The first 400

quarters are discarded. Data moments are from 2007Q1 to 2021Q4.
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Table 7: Sensitivity of Parameters With Respect to Moments

ck ch0 ch1 cb cs cϕ cr

Return IRF, h = 0 0.007 -0.186 0.190 0.141 -0.004 0.061 0.581
Return IRF, h = 1 -0.112 -0.066 -0.036 0.042 0.462 0.415 -0.065
NEI IRF, h = 0 -0.067 0.349 -0.348 -0.322 -0.181 -0.185 -0.079
Var(∆sM) -0.001 0.001 0.001 -0.003 -0.037 0.009 -0.123
E[NEIt/Kt−1|NEIt ≥ 0] -0.014 0.833 -0.797 -0.721 -0.574 -0.603 -0.510
E[NEIt/Kt−1|NEIt ≤ 0] 0.006 -0.010 -0.020 0.420 0.003 0.003 0.004
β(SALE/K, I/K) 0.127 -0.014 0.033 0.014 -0.003 -0.001 -0.003
E[L/K] 0.010 0.195 -0.078 -0.222 -0.138 -0.143 -0.130
Var(R) 0.143 -0.125 0.279 0.190 -0.558 -0.559 -0.514
Var(I/K) -0.925 0.032 -0.171 -0.038 0.050 0.038 0.067

Table 7 presents local elasticity of parameters (columns) with respect to moments (rows) at the

estimated parameter values. The matrix is calculated following Andrews et al. (2017). Each element is

scaled by the square root of the ratio of the moment variance to the parameter variance. Elasticities

are calculated using central finite difference with a step size equal to 0.01 of the estimated parameter

value. The moments are calculated as the average across 10 simulated panels. Each simulated panel is

composed of 3,000 firms over 1,000 quarters. The first 400 quarters are discarded.
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Table 8: Decomposition of Return Impulse Responses

Full Sample
Small Medium Large

Low High Low High Low High

Return 1.88 1.62 2.44 1.46 2.38 1.23 2.19
Price Pressure 1.33 1.39 1.36 1.31 1.40 1.17 1.38
Share (%) 71 86 56 90 59 96 63

Fundamental Value 0.55 0.23 1.08 0.15 0.98 0.05 0.81
Share (%) 29 14 44 10 41 4 37

Table 8 presents the decomposition of return impulse responses estimated from the baseline model.

The moments are calculated as the average across 10 simulated panels. Each simulated panel is

composed of 3,000 firms over 1,000 quarters. The first 400 quarters are discarded. Each sample is

sorted into three equal-sized portfolios based on beginning-of-period capital levels. Within each size

portfolio, firms are further divided into two groups based on the median of beginning-of-period mutual

fund ownership.
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Table 9: Instrumental Variable Estimation

Panel A: Residual Investor Elasticity

d log sR

(1) (2) (3) (4) (5) (6)

d log P̃ 0.098 -1.671
(0.001) (0.006)

d log Λ -0.916 -2.359
(0.003) (0.005)

(Pi,t − P̃i,t)/P̃i,t -2.670 -2.270
(0.005) (0.004)

Estimator OLS IV OLS IV OLS IV

Panel B: Mutual Fund Elasticity

d log sM d log P̃ d log sM d log sM d logP d log sM

(1) (2) (3) (4) (5) (6)

d log P̃ -0.298 -0.598
(0.003) (0.003)

d logX 0.350 0.388
(0.000) (0.000)

d logP -0.514 -0.540
(0.002) (0.002)

Estimator OLS OLS IV OLS OLS IV

Table 9 presents instrumental variable estimations for the demand elasticity in simulated samples.

Standard errors are clustered at firm level. The coefficients from the simulated sample are calculated

as the average across 10 simulated panels. Each simulated panel is composed of 3,000 firms over 1,000

quarters. The first 400 quarters are discarded. Standard errors are in parentheses.
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Table 10: Capital Misallocation: Percentage Change from Baseline

Agg TFP Mean NEI/K IRF NEI/K

σωi = 0.09 0.068 -2.000 -49.109
cr = 0.70 0.060 0.449 -7.639
ck = 0.25 0.050 22.713 2.926

Table 10 presents the percentage changes of some moments from the baseline model. The moments are

calculated as the average across 10 simulated panels. Each simulated panel is composed of 3,000 firms

over 1,000 quarters. The first 400 quarters are discarded.
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A Empirical Appendix

A.1 Variable Definition

Variables from CRSP/Compustat Merged Database

I retrieve monthly returns ret from CRSP, adjust for delisting returns following Bali et al.

(2017), and subtract the risk-free rate. I then aggregate the excess returns to quarterly level.

Number of shares outstanding is the last observation of shrout for each quarter. Market

capitalization is calculated as the absolute value of the product of shrout and altprc.

In the baseline results, following the convention in literature, NEI is defined as sstk

- prstkcy - dvy. For robustness, I alternatively define NEI as sstk - prstkcy to exclude

effects of dividends.

I include some other firm outcome variables. dBE is the DHS growth rate of at - re

- lt. GEI/K is sstk divided by lagged at when sstk is larger than 2% of the market

capitalization. dCash is the DHS growth rate of che. dK(PPENT ) is the DHS growth rate

of ppent. ∆Leverage is the first difference of leverage, which is defined as dltt + dlc scaled

by at. Tobin’s Q is defined as (market capitalization + at - textttceq) / at.

I include portfolio-level characteristics to predict mutual fund flows. Profitability is

defined as (sale - cogs - xsga - xint)/Book Equity, where Book Equity is seq + ceq +

pstk + at - lt + txditc - pstk. Log book-to-market ratio is the logarithm of Book Equity

divided by market capitalization. Log market size is the logarithm of market capitalization.

Log asset growth is the log difference of at. Market beta is calculated from rolling window

regressions estimated using monthly return data. For each firm, I regress excess returns on

excess market returns. The window size is 60 months and the firm must have at least 48

quarters of observations. Risk-free rate and market return is from Kenneth French’s Data

Library.

CRSP Survivor-Bias-Free US Mutual Fund Database

Mutual fund excess return is calculated at monthly level by subtracting market return from

mret and then aggregated to quarterly level. Mutual fund size is mtna. I use percent tna

as weights to aggregate firm characteristics to portfolio level. I use lagged nbr shares as

weights to aggregate mutual fund flow shocks to firm level. In rare cases where the last

observation of nbr shares is missing, I use information up to two quarters to fill the missing

values. Mutual fund ownership sM is the sum of nbr shares across mutual funds divided by

shrout from CRSP.

Figure A.1 plots the coefficients estimated from the rolling window regressions. Consistent
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with the literature, lagged flows and excess returns have significant predictive power. However,

the coefficients are time-varying. The coefficients on portfolio characteristics are also significant

and time varying.

Figure A.1: Coefficients of Rolling Window Regressions
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Figure A.1 presents coefficients estimated from regressing fund flows on lagged flow, fund excess returns, and

lagged portfolio characteristics, including log market equity, book-to-market ratio, profitability, investment,

and market beta. Each regression is performed on a panel with 16 quarters. All regressors are winsorized at

1% level.

A.1.1 Active and Passive Funds

In CRSP mutual fund database, the variable index fund flag identifies if a fund is an

index fund. If a fund is a pure index fund (index fund flag==D), an index-based fund

(index fund flag==B), or an index fund enhanced (index fund flag==E), I classify it as

passive. Further, following Appel et al. (2016), I classify a fund as passively managed if

its name includes a string that identifies it as an index fund. The strings include “Index”,

“Idx”, “Indx”, “Ind ”, “Russell”, “S & P”, “S and P”, “S&P”, “SandP”, “SP”, “DOW”,

“Dow”, “DJ”, “MSCI”, “Bloomberg”, “KBW”, “NASDAQ”, “NYSE”, “STOXX”, “FTSE”,

“Wilshire”, “Morningstar”, “100”, “400”, “500”, “600”, “900”, “1000”, “1500”, “2000”,

“5000”.

65



A.2 Robustness

A.2.1 Industry-by-Time Fixed Effects

Although firm characteristics are controlled for when constructing fund flow shocks and

estimating the baseline specification (4), concerns about the endogeneity of flow shocks

may remain. In particular, if investors correctly anticipate superior performance in certain

industries, their buying activity could reflect expected fundamentals rather than an exogenous

shock. To mitigate this concern, I replace time fixed effects with industry-by-time fixed

effects, where industries are defined by 2-digit SIC codes. This approach ensures that impulse

responses are identified by comparing firms within the same industry, helping to isolate

variation unrelated to broader industry trends.

Figure A.2 presents impulse response functions of returns, mutual fund holdings, net

equity issuance, and investment. The results remain qualitatively similar to the baseline

findings.

A.2.2 Alternative Definition of NEI

Figure A.3 presents the impulse response from estimating (4). The dependent variable is

defined as sstk - prstkcy. The result is very similar to the baseline results in Figure 1. It is

to be expected since the variation of dividend in the short term is small.

A.2.3 Size

Since higher mutual fund ownership firms experience larger price fluctuations, they should be

better positioned to exploit these opportunities to issue and buyback at advantageous prices.

Therefore, I compare the issuance and buyback decisions for firms with high and low mutual

fund ownership conditional on size.

Because now we are interested in the level instead of only the variation in NEI. For this

analysis, I exclude dividend which is not affected by price fluctuations and therefore define

NEI as Sale of Stock net of Share Repurchase. I first sort firms by lagged asset into ten

equal-sized portfolios. Within each size portfolio, I further split the firms into the high-

and low-ownership group by median mutual fund holdings. I then calculate the mean of

non-negative NEI (issuance) and non-positive NEI (buyback) for each group, weighted by

lagged asset. These measures combine the extensive margin and the intensive margin. The

overlap between the two measures consists of observations with NEI (excluding dividends)
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Figure A.2: Firm Responses
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Figure A.2 presents impulse response functions of returns, mutual fund holdings, net equity issuance, and

investment. The blue solid line plots coefficients βh from estimating the local projection following Jordà

(2005): ∆yi,t+h = αi + δj,t + βhfi,t +Xi,t−1 + εm,t+h for h = 0, 1, . . . , 4. δj,t is industry-by-time fixed effects.

The shaded area indicates 90% pointwise confidence bands using standard errors clustered at firm level.

control variables Xi,t−1 include ∆yi,t−1, fi,t−1, s
M
i,t−1 and lagged firm characteristics (log market equity, log

book-to-market ratio, cash scaled by asset, and investment). The sample is from 2007Q1 to 2021Q4.

equal to zero 12. This approach is designed to avoid an excessive number of parameters in

the model and to maintain consistency between the calculation of moments in the simulated

data and the real data. I discuss this choice in detail in Section 4.

Figure A.4 presents average stock issuance and buyback by mutual fund holding and

firm size. Consistent with the previous analysis, equity issuance decreases monotonically

with firm size, while share buybacks are higher in the middle of the size distribution. Most

importantly, in almost all size deciles, firms with higher mutual fund ownership both issue

and buy back more stock. Combined with the previously observed heterogeneity in impulse

12In the dataset, about 20% observations have NEI (excluding dividends) equal to zero.
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Figure A.3: Firm NEI (Excl. Dividends) Response
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Figure A.3 presents impulse response functions of net equity issuance (excluding dividends), The blue solid

line plots coefficients βh from estimating the local projection following Jordà (2005):

∆yi,t+h = αi + δt + βhfi,t +Xi,t−1 + εm,t+h for h = 0, 1, . . . , 4. The shaded area indicates 90% pointwise

confidence bands using standard errors clustered at firm level. control variables Xi,t−1 include ∆yi,t−1,

fi,t−1, s
M
i,t−1 and lagged firm characteristics (log market equity, log book-to-market ratio, cash scaled by

asset, and investment). The sample is from 2007Q1 to 2021Q4.

Table A.1: Initial Return and Issuance Response, Subsamples

Large Small

Ri,t (%) NEIi,t/Ki,t−1 (%) Ri,t (%) NEIi,t/Ki,t−1 (%)

fi,t 3.502∗∗∗ 0.115∗∗∗ 0.985∗∗∗ 0.164∗∗∗

(23.00) (4.15) (7.93) (3.46)

Observations 80668 80668 74383 74383
R-Squared 0.382 0.251 0.280 0.338
Mean sM 0.327 0.327 0.171 0.171
Time Yes Yes Yes Yes
Firm Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Clustered By Firm Firm Firm Firm

Table A.1 presents regression coefficients from ∆yi,t = αi + δt + βfi,t +Xi,t−1 + εm,t. I sort firms by lagged

total assets into two equal-sized groups within each 2-digit SIC industry. Control variables Xi,t−1 include

∆yi,t−1, fi,t−1, s
M
i,t−1 and lagged firm characteristics (log market equity, log book-to-market ratio, cash

scaled by asset, and investment). Standard errors are clustered at firm level. The sample is from 2007Q1 to

2021Q4.

responses, these results suggest that mutual fund ownership is correlated with more active

issuance and buyback in the stock market.
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Figure A.4: Issuance and Repurchase by Mutual Fund Holding and Size
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Figure A.4 shows the average share issuance and buyback by mutual fund ownership and firm size. Issuance

is calculated as the mean of non-negative net issuance, and buyback is calculated as the mean of non-positive

net buyback. Both measures are scaled and then weighted by lagged assets. Firms are first sorted into ten

equal-sized size groups by lagged asset. Within each size decile, firms are then sorted into high and low

mutual fund ownership groups by median mutual fund ownership. The dark blue bar to the left is issuance

and the light green bar to the right is buyback.

A.3 Fund Flow Shocks

A.3.1 Fund Portfolio Responses

As an additional check to the results presented in Figure 1, I check whether mutual funds

scale up their positions on firms they are currently holding. To that end, let ϕi,m,t denote the

portfolio weight of mutual fund m in firm i, and Im,t denote the set of firms held by mutual

fund m, I calculate the value-weighted increase in their current portfolio ∆ logSm,t by

∆ logSm,t =
∑

i∈Im,t∩Im,t−1

ϕi,m,t−1(logSi,m,t − logSi,m,t−1) (A.1)

I estimate the following local projection regression:

∆ logSm,t+h = αm + δt + βhfm,t +Xi,t−1 + εm,t+h for h = 0, 1, . . . , 4, (A.2)

where αm and δt are mutual fund and time fixed effects, and control variables Xi,t−1 include

lagged portfolio weight change and flow shocks. βh can be interpreted as the h−quarter

ahead impulse response from the mutual fund flow shocks. The coefficients are plotted in

69



Figure A.5. A one percent unexpected increase in size leads funds to increase holdings in

their current portfolio by 0.5 percent on impact. Consistent with the results on ∆sM at firm

level, mutual funds keep gradually raising positions on firms they currently own until several

quarters after the shock.

Figure A.5: Portfolio Increases
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Figure A.5 presents impulse responses βh estimated from

∆ logSm,t+h = αm + δt + βhfm,t +Xi,t−1 + εm,t+h for h = 0, 1, . . . , 4

where the dependent variable is value-weighted increase in mutual fund’s current portfolio. αm and δt are

mutual fund and time fixed effects, and control variables Xi,t−1 include lagged portfolio weight change and

flow shocks. βh can be interpreted as the h−quarter ahead impulse response from the mutual fund flow

shocks. The sample is from 2007Q1 to 2021Q4.

A.3.2 Aggregate Flow Shocks

Figure A.6 plots the detrended aggregate flow shock δt together with aggregate profitability

shock. The correlation between aggregate flow shock and aggregate profitability shock is

0.44. Intuitively, when fund clients are wealthier, they tend to delegate more money to

mutual funds. However, aggregate profitability shock is not the sole driver of the flow shock

fluctuations. For example, Dou et al. (2022) documents that heightened uncertainty drives

aggregate outflow. 13

13I do not explicitly model the delegation problem in this paper. Dou et al. (2022) provides a more
comprehensive view on the drivers of aggregate flows.
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Figure A.6: Aggregate Fund Flow Shocks and Aggregate Profitability Shocks
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Figure A.6 presents the relationship between aggregate fund flow shock and aggregate profitability shock.

Aggregate fund flow shocks are detrended time fixed effects δt in equation (2). To get aggregate profitability

shocks, I first detrend profit per unit of real gross value added of nonfinancial corporate business from FRED,

and estimate an AR(1) model extract the residuals. The correlation between the two shocks is 0.44, but

profitability shocks are not the only driver of fund flow shocks.

B Model Appendix

B.1 Two-Period Model

B.1.1 d log Λ/dϕ > 0

Plugging in the fund position sM
′
to (15), we get

Λ =
1 + crQϕ

βiIα

1 + crsM0
d log Λ

dϕ
=

crQ

βiIα(1 + crsM0 )Λ

=
crQ

βiIα + crQϕ
> 0
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B.1.2 dΛ/dI < 0

Define D = γσ2 + cϕ. Let G(ϕ, I) denote the first order condition of the mutual fund’s

problem (16), by the implicit function theorem,

dϕ

dI
= −∂G/∂I

∂G/∂ϕ
=

αcrΩϕ(2β
iIα + crΩϕ)

I (D(βiIα + crΩϕ)2 + crΩ(2βiIα + crΩϕ))
.

Using the definition of Λ in (15),

dΛ

dI
=

∂Λ

∂I
+

∂Λ

∂ϕ

dϕ

dI

= Λ
−αcrΩϕD(βiIα + crΩϕ)

I (D(βiIα + crΩϕ)2 + crΩ(2βiIα + crΩϕ))
< 0

B.1.3 Proof of Model Properties

Proof of Property 2. Let C = E logA− log β − rf + cϕϕ̄, Λ
ϕ
I denote the derivative of Λ with

respect to I along the optimality path of ϕ, and λϕ
I = Λϕ

I /Λ. Using the two derivatives above,

the two first order equations can be written as

F (ϕ, I; Ω) = βiαIα−1 − 1 + ch
(Kα

0 − I) + (Kα
0 − I)2λϕ

I (ϕ, I,Ω)

K0Λ(ϕ, I,Ω)2
= 0

G(ϕ, I; Ω) = Dϕ+
crΩϕ

βiIα + crΩϕ
− C + log

(
1 +

crΩϕ

βiIα

)
− log(1 + crs

M
0 ) = 0

where

Λ(ϕ, I; Ω) =
1 + crΩϕ

βiIα

1 + crsM0

λϕ
I (ϕ, I; Ω) =

−αcrΩϕD(βiIα + crΩϕ)

I (D(βiIα + crΩϕ)2 + crΩ(2βiIα + crΩϕ))
.

Using the implicit function theorem,

dI

dΩ
= −FΩGϕ − FϕGΩ

FIGϕ − FϕGI

,

dϕ

dΩ
= −FIGΩ − FΩGI

FIGϕ − FϕGI

,
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It is straightforward to show that

FIGϕ − FϕGI =
βiα(α− 1)Iα−2M

(P +B)2
− ch

K0Ξ2

M

(P +B)2
+

αBDch
K0Ξ2I(P +B)

(
4E +

C1

I(P +B)M2
E2

)
FΩGI − FIGΩ =

chBD

K0Ξ2(P +B)2Ω

(
−2(P +B)E +

α

IM2
C2E

2
)

FIGΩ − FΩGI =
crϕ(2P +B)βiα(α− 1)Iα−2

(P +B)2

+
ch

K0Ξ2(P +B)

(
−crϕ(2P +B)

(P +B)
+

2crαϕDB

IM
E +

αDB2(2P +B)

I2MΩ
E2

)
where B = crΩϕ, M = D(P + B)2 + crQ(2P + B). When the terms associated with E2

(and therefore λϕ
I , as the two terms only appear together in F (ϕ, I; Ω)) are small enough,

FIGϕ − FϕGI < 0, FΩGI − FIGΩ < 0, FIGΩ − FΩGI < 0. Therefore, dI/dΩ > 0 and

dϕ/dΩ < 0.

Proof of Property 1. First, note that

dP ∗

dΩ
=

∂P ∗

∂I

dI

dΩ
> 0

Second, from the definition of Λ∗,

dΛ∗

dΩ
=

∂Λ∗

∂Ω
+

∂Λ∗

∂I

dI

dΩ
+

∂Λ∗

∂ϕ

dϕ

dΩ

Plugging in the derivatives derived above and rearranging terms, this derivative can be

written as

βiα(1− α)Iα−2Dϕ+
chDϕ

K0Ξ2
− 2αBDchϕ

K0Ξ2I(P +B)

(
1− crQ

M

)
E > 0

as all three terms are positive.

Proof of Property 3. The elasticities dsR
′
/dP , dsR

′
/dΛ directly follow from the first order

condition of residual investors’ problem (14).

To derive the mutual fund’s elasticities with respect to fundamental value and price

pressure, we need to modify the system slightly so that there is an extra source of exogenous

variation that shifts price pressure Λ but not from mutual fund flows. Consider a revised
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system that is summarized as

Dϕ+
d log Λ

dϕ
ϕ = C − log Λ

Λ = Θ
1 + crQϕ

βiIα

1 + crsM0
,

where Θ is an exogenous variable that shifts price pressure.

Note that d log Λ/dϕ is the same as before. The counterpart of mutual fund optimality

G(·) can be rewritten as

Dϕ+
crQ

P + crQϕ
ϕ = C − log Θ− log

(
1 +

crQϕ

P

)
+ log(1 + crs

M
0 )

Using the implicit function theorem, we get

dϕ

d log Θ
= − 1

D + crQ
P+crQϕ

+ crQP
(P+crQϕ)2

< 0

dϕ

d logP
=

crQϕ(2P + crQϕ)

(P + crQϕ)2
(
D + crQ

P+crQϕ
+ crQP

(P+crQϕ)2

) > 0

B.2 Mutual Fund Utility

β

1− γt
Et

[
e(1−γt)q̃i,t+1

]
=

β

1− γt
Et

[
e(1−γt)(qi,t+rMi,t+1)

]
=

βQ1−γt
t

1− γt
Et

[
e(1−γt)(rMi,t+1)

]
=

βQ1−γt
t

1− γt
Et

[
exp

(
(1− γt)(rf + ϕi,t+1(ri,t+1 − rf ) +

1

2
ϕi,t+1(1− ϕi,t+1)σ

2
i,t)

)]
=

βQ1−γt
t R1−γt

f 1

1− γt
Et

[
exp

(
(1− γt)

(
ϕi,t+1(ri,t+1 − rf ) +

1

2
ϕi,t+1(1− ϕi,t+1)σ

2
i,t

))]
=

βQ1−γt
t R1−γt

f

1− γt
exp

[
(1− γt)

(
ϕi,t+1(µi,t − rf ) +

1

2
ϕi,t+1(1− ϕi,t+1)σ

2
i,t +

1

2
(1− γt)ϕ

2
i,t+1σ

2
i,t

)]
≡

βQ1−γt
t R1−γt

f

1− γt
exp

[
(1− γt)u

M
]
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Therefore,

uM =
1

1− γt
log Et

[
R1−γ

]
− rf

Alternatively, if we assume q̃i,t+1 = q̄ + rMi,t+1 + ωi,t+1, there will be an extra hedging motive

to avoid firms that will be strongly affected by flow shocks.

B.3 Hedging Motives and Biased Holdings

Following Dou et al. (2022) and motivated by Figure A.6, to incorporate the aggregate

component of fund flow shocks, suppose that the size of mutual fund i evolves following

q̃i,t+1 = qi,t + rMi,t+1 + ϵq,t+1,

where ϵq,t+1 is the aggregate fund flow shock.

Using the same reshuffling assumption, the AUM available for investment is now time

varying. Replace q̄ with qt+1 in (34),

qi,t+1 = qt+1 + ωi,t+1, (A.3)

where qt+1 is the average size of the mutual fund industry.

The aggregate average mutual fund size qt+1 and the aggregate profitability at+1 follow a

VAR(1) process:[
qt+1

at+1

]
=

[
(1− ρq)q̄

(1− ρa)ā

]
+

[
ρq 0

0 ρa

][
qt

at

]
+

[
ϵq,t+1

ϵa,t+1

]
,

[
ϵq,t+1

ϵa,t+1

]
∼ N

(
0,

[
σ2
q ρq,aσqσa

ρq,aσqσa σ2
a

])
,

(A.4)

where q̄ is the long-run mean of the log size of the mutual fund sector, ρq and ρa are the

persistence parameters, and shocks ϵq,t+1 and ϵa,t+1 are jointly normal. σq and σa are their

respective conditional volatility. ρq,a is the correlation between the two shocks. Motivated by

Figure A.6, ρq,a > 0 captures the occurrence of large inflow shocks during good times in a

reduced-form manner.

Using the same Taylor approximation, tha manager’s discounted payoff can be written as

uM ≈ 1

1− γt
Et

[
exp

(
(1− γt)

(
ϕi,t+1(ri,t+1 − rf ) +

1

2
ϕi,t+1(1− ϕi,t+1)σ

2
i,t + ϵq,t+1

))]
=ϕi,t+1(µi,t − rf ) +

1

2
ϕi,t+1(1− ϕi,t+1)σ

2
i,t +

1

2
(1− γt)

(
ϕ2
i,t+1σ

2
i,t + 2ϕi,t+1Ci,t

)
,

(A.5)
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where Ci,t = Covt[ri,t+1, ϵq,t+1] is the conditional covariance between the return of firm i

and aggregate flow shock ϵq,t+1. The covariance term exists because positive aggregate

profitability shocks drive up both firm production and returns, and these shocks typically

coincide with positive mutual fund flow shocks (ρq,a > 0), Since 1− γt < 0, higher covariance

between returns and aggregate flow shocks reduces the fund manager’s payoff. Therefore,

fund managers are incentivized to underweight (overweight) firms that are more (less) cyclical

to hedge against aggregate flow shocks.

Since ϵq and ϵa are jointly normal, we can write ϵq = E[ϵq|ϵa] + εqa = ρq,aσqσa

σ2
a

ϵa + εqa,

where Cov(ϵa, εqa) = 0. Therefore, Ci = Cov (E[ϵq|ϵa], ri) + Cov(εqa, ri) = C̃i + Cov(εqa, ri).

To capture the hedging incentive without materially changing the model structure, I use

C̃i,t = Covt

[
ri,t+1,

ρq,aσq

σa
ϵa,t+1

]
to proxy for Ci,t. Since positive aggregate flow shocks likely

raise stock prices, Cov(εqa, ri) > 0, the proxy underestimates the hedging motives. To gauge

the size of the error term, the variance of the residual is V(εqa) = σ2
q(1 − ρ2q,a). Using the

Cauchy-Schwarz inequality, |Cov(εqa, ri)| ≤
√

V(εqa)V(ri) = σrσq

√
1− ρ2qa.

B.4 Extension on Ownership Dynamics

It is natural to extend the model to include the changes in ownership and discuss its implication

for misvaluation.

Given the issuance Hi,t at market value P̃i,t, current stockholders only hold (P̃i,t−Hi,t)/P̃i,t

fraction of the firm. In other words, current stock holdings are shrunk to

sM,post
i,t =

P̃i,t −Hi,t

P̃i,t

sMi,t and sR,post
i,t =

P̃i,t −Hi,t

P̃i,t

sRi,t (A.6)

And the portion of new issuance equals Hi,t/P̃i,t. Therefore, the new share holdings for

residual investors should be written as

sRi,t+1 = sRi,t
P̃i,t −Hi,t

P̃i,t

+
Vi,t − P̃i,t

crP̃i,t

(A.7)

Note that we already calculated the targeted ownership share for investors, so we can

calculate the change in their positions and calculate how costly it is to get them to purchase

the new issuance, since newly issued shares are entirely purchased by the mutual funds and

residual investors.

To get a simple analytical solution that is qualitatively similar, assume mutual fund

adjustments are not affected by this effect. We can then calculate the incremental holding
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for residual investors:

sRi,t+1 − sRi,t =

(
1− P̃i,t −Hi,t

P̃i,t

)
sRi,t −

Vi,t − P̃i,t

crP̃i,t

=
Hi,t

P̃i,t

sRi,t −
Vi,t − P̃i,t

crP̃i,t

(A.8)

The more you issue, the less residual investors want to increase their holdings. So it is

easier to get mutual funds to buy the new issuance.

In real life, it could be easier to get mutual funds to pay for the new issuance because

they are bulk long-term investors whose postitions are relatively stable. Negotiating with

the hedge funds and retailer investors (what residual investors really represent in this model)

could be harder.

When we consider how shares are diluted, residual investor shares will shrink following

(A.7). Now that we have an additional term hj,t = Hj,t/Pj,t (and h̃j,t = Hj,t/P̃j,t), it becomes

P̃j,t =
1

1 + ch

(
sMj,t − sj,t+1 + h̃j,tsHj,t

)Pj,t (A.9)

=
1− chs

H
j,thj,t

1 + ch
(
sMj,t − sMj,t+1

)Pj,t (A.10)

Under normal parameterization, when Hj,t goes up, market value goes down. Note that this

intuition is not entirely complete because of sMj,t+1(P̃j,t) and h̃j,t(P̃j,t) are both functions of P̃ .

B.5 First order conditions

The firm problem is

Vi,t = max
Ii,t,Ki,t+1,Li,t+1

Oi,t + Et

[
Mt,t+1Vi,t+1

]
,
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where

Oi,t =

Ei,t −Ψi,t ≡ O+(Ei,t, Ki,t,Λi,t(ϕi,t+1(Ki,t+1, Li,t+1))) if Ei,t ≤ 0,

(1− τD)(Ei,t −Bi,t) +Bi,t − Φi,t ≡ O−(Ei,t,Λi,t(ϕi,t+1(Ki,t+1, Li,t+1))) if Ei,t > 0.

Ei,t = (1− τ)Abi
t Xi,tK

α
i,t + τδKi,t + τrfLi,t1{Li,t>0} − Ii,t −Gi,t + Li,t+1 − (1 + rl)Li,t

Ki,t+1 = (1− δ)Ki,t + Ii,t

Gi,t =
ck
2

(
Ii,t
Ki,t

)2

Ki,t

Ψi,t = ch0
Ki,t

Λi,t

+
ch1
2

(
Hi,t

Λi,tKi,t

)2

Ki,t

Φi,t =
cb
2

(
Λi,tBi,t

Ei,t

)2

Ei,t

Li,t+1 ≤ φKi,t+1.

First, when Ei,t > 0, Bi,t =
τD
cbΛ2Ei,t and Oi,t ≡ O+

i,t =
(
1− τD + 1

2

τ2D
cbΛ2

)
Ei,t. Let qt and λt

denote the Lagrangian multipliers associated with (21) and (23). The first-order conditions

with respect to It, Kt+1, and Lt+1 are

−∂O

∂I
= q (A.11)

q = E

{
M ′
[
∂V ′

∂K ′

]}
+ λφ+

∂O

∂Λ

∂Λ

∂ϕ′
∂ϕ′

∂K ′ (A.12)

λ− E

{
M ′
[
∂V ′

∂L′

]}
=

∂O

∂E

∂E

∂L′ +
∂O

∂Λ

∂Λ

∂ϕ′
∂ϕ′

∂L′ (A.13)
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C Computation Appendix

C.1 Algorithm to Solve the Model

1. Guess portfolio holding rule ϕ′0(K ′, L′, S), value function V 0(S), and investment decision

K ′0(S).

2. Market clearing implies sR
′
(ϕ′0(K ′, L′, S), K ′, L′, S) = sR

′0(K ′, L′, S) and therefore we

have Ξ(sR
′0(K ′, L′, S), K ′, L′, S) = Ξ0(K ′, L′, S). We also have the Ξ0(K ′0(S), L′0(S), S) =

Ξ0(S).

3. Use Ξ0(K ′, L′, S), run the Value Function Iteration routine. Get V 1(S) and policy

functions K ′1(S).

4. Given Ξ0(S) (for tomorrow’s value) and V 0(S), calculate ϕ′1(K ′, S).

5. Compare distances |ϕ1(K ′, S)− ϕ0(K ′, S)| and |V 1(S)− V 0(S)|. Update ϕ0(K ′, S) and

V 0(S). If larger than tolerance, go back to step 2.

C.2 Algorithm for the Indirect Inference Estimation

C.2.1 Constructing Model Moments and the Weight Matrix

I first regress firm returns, NEI, mutual fund portfolio holding, mutual fund positions, and

changes in mutual fund positions on time and firm fixed effects and extract the residual to

demean all relevant variables by firm and time. I calculate two dummies indicating non-

negative and non-positive NEI (excluding dividends), and use the non-demeaned NEI data

to calculate the conditional means. After calculating one-period forward of returns, I drop

observations with any missing variable. This results in a panel of N = 156, 080 observations.

To keep the consistency between data and the model, I calculate the impulse response

functions without added firm controls. As shown in Table 6, the regression coefficients are

qualitatively similar to the baseline specification reported in Figure 1.

I follow Erickson and Whited (2002) to calculate the influence functions and covary the

influence functions to calculate the weight matrix.

C.2.2 Estimation

Let xn be a vector of data of dimension J , where J is the number of relevant variables. Let b be

the vector of structural parameters to be estimated. Let yn,k(b) be the J-dimensional simulated
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data vector from simulation k = 1, . . . , K. Let x = {x1, . . . , xN} and yk(b) = {y1,k, . . . , yN,k}
denote the data panel and the k-th simulated panel. I estimate b by matchign a set of

simulated moments, denoted as h(yk(b)), with the corresponding set of actual data moments,

denoted as h(x). Define

g(x, b) = h(x)− 1

K

K∑
k=1

h(yk(b)). (A.14)

The indirect inference estimator of b is then defined as the solution to the minimization of

b̂ = argmin
b

g(x, b)′Ŵg(x, b), (A.15)

where Ŵ is the weight matrix calculated from the influence functions.
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