

Non-neutral Technological Change in Chinese Manufacturing

Ziyao Wang, PhD Candidate in Economics, Northeastern University

Abstract

This article identifies firm-level factor-augmenting productivity for capital, labor, and materials using Chinese manufacturing data from 1998 to 2008, a period of state-owned enterprise reform. We develop a novel method to estimate the parameters of a CES production function and recover the three types of factor-augmenting productivity. Results suggest technological change is strongly biased: labor-augmenting productivity grew 12% annually, capital-augmenting 5%, and material-augmenting 1.4%. Factor-augmenting productivity growth varies by sector and ownership. Productivity growth was driven primarily by incumbents, whereas entrants improved capital efficiency and exiters enhanced labor efficiency. We explain factor cost-share shifts through productivity gaps and relative input prices.

Why Non-neutral? Why Chinese Manufacturing?

Year	No. of Firms	Revenue	Capital	Labor	Materials	
1998	75,949	43.732	28.001	333	32.529	
2008	215,402	120.521	27.661	211	79.706	

Why care about non-neutral technological change?

- Capital and Labor Share drop at firm level
- Hicks-neutral productivity cannot explain the observed input share shifts

Why choose Chinese manufacturing?

- Input/output shifts in firms: Revenue \times 3; Employment \downarrow 1/3; Materials \times 2.
- Late-1990s SOE reforms ⇒ ideal laboratory for biased technological change

Which inputs drive economic growth?

How biased is technological change across input factors?

Why the capital share drop significantly? What roles do entry and exit play?

This paper introduces a novel method to estimate firm-level CES production functions with factor-augmenting productivity for Capital, Labor, and Material.

What Does This Paper Contribute?

Methodologically,

- Novel method: Cost Minimization and Dynamic Panel Method
- Robust to any product market structure ⇒ Relax assumptions
 Economically,
- New evidence on how entry&exit contribute on biased technological change
- Explains the factor-share drop: driven by biased technology and relative input price

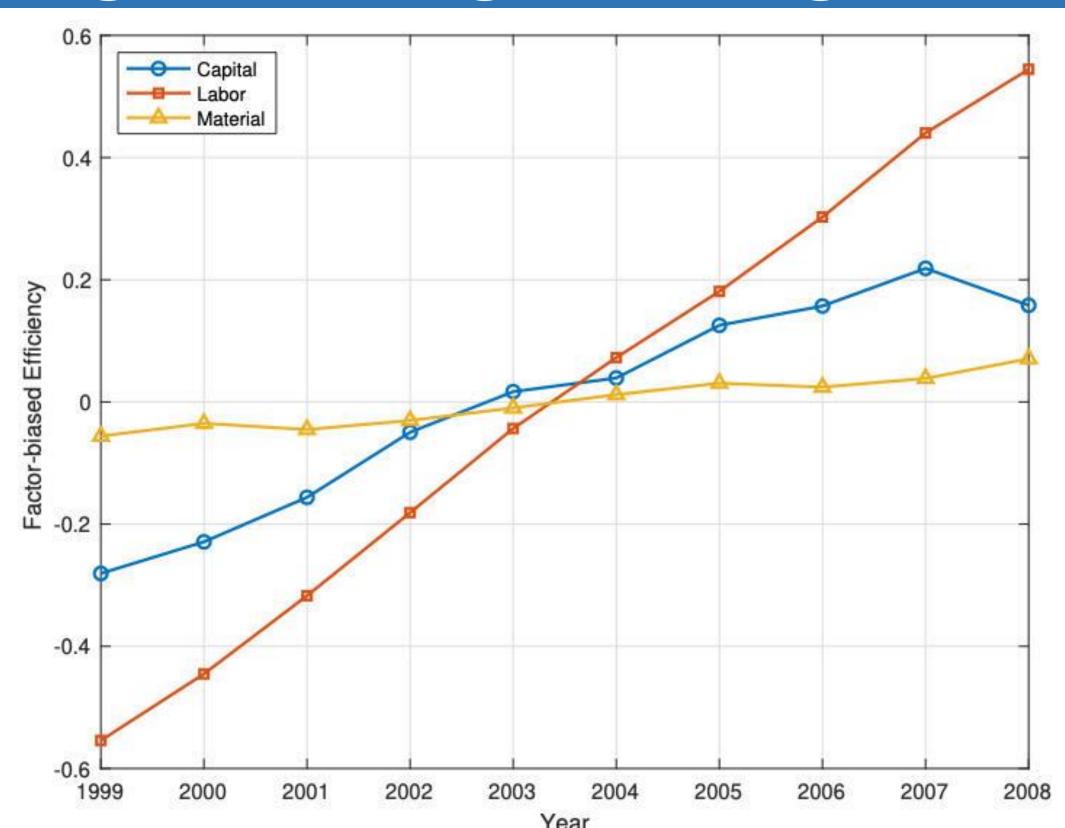
Model: CES Production Function

$$Q_{jt} = \left\{ \left[\exp\left(\omega_{jt}^{K}\right) K_{jt} \right]^{-\frac{1-\sigma}{\sigma}} + \left[\exp\left(\omega_{jt}^{L}\right) L_{jt} \right]^{-\frac{1-\sigma}{\sigma}} + \left[\exp\left(\omega_{jt}^{M}\right) M_{jt} \right]^{-\frac{1-\sigma}{\sigma}} \right\}^{-\frac{\sigma}{1-\sigma}\nu}.$$

• ω_{it}^X : firm-specific factor-augmenting productivities

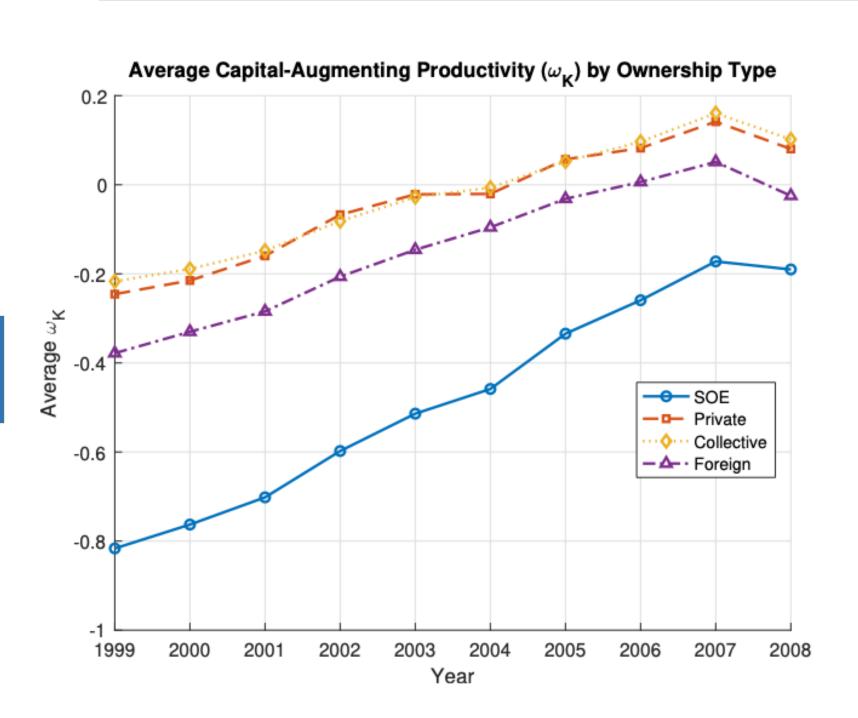
Identification: Dynamic Panel GMM

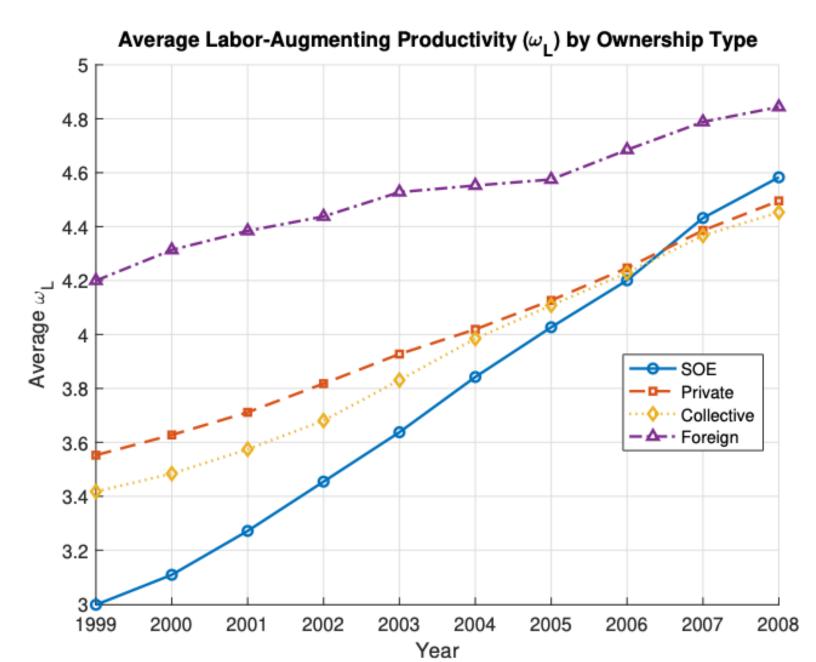
- 1. Cost-Minimization FOCs give the cost share forms of the CES
- 2. AR(1) Productivity Process + Pseudo Difference
- 3. Estimate the system equation by **GMM** using the following moments


$$\begin{cases} y_{jt} = \rho^{K} y_{jt-1} + \nu(k_{jt} - \rho^{K} k_{jt-1}) + \nu \frac{\sigma}{1 - \sigma} (s_{jt}^{K} - \rho^{K} s_{jt-1}^{K}) + \nu \gamma_{t}^{K} + \widetilde{\xi}_{jt}^{K} \\ y_{jt} = \rho^{L} y_{jt-1} + \nu(l_{jt} - \rho^{L} l_{jt-1}) + \nu \frac{\sigma}{1 - \sigma} (s_{jt}^{L} - \rho^{L} s_{jt-1}^{L}) + \nu \gamma_{t}^{L} + \widetilde{\xi}_{jt}^{L} \\ y_{jt} = \rho^{M} y_{jt-1} + \nu(m_{jt} - \rho^{M} m_{jt-1}) + \nu \frac{\sigma}{1 - \sigma} (s_{jt}^{M} - \rho^{M} s_{jt-1}^{M}) + \nu \gamma_{t}^{M} + \widetilde{\xi}_{jt}^{M} \end{cases}$$

$\begin{cases} E[(s_{jt-1}^L)'\widetilde{\xi}_{jt}^L] = 0 \\ E[(s_{jt-1}^M)'\widetilde{\xi}_{jt}^M] = 0 \\ E[(k_{jt-1})'\widetilde{\xi}_{jt}^K] = 0 \end{cases}$ $E[(l_{jt-1})'\widetilde{\xi}_{jt}^L] = 0$ $E[(m_{jt-1})'\widetilde{\xi}_{jt}^M] = 0$

Contact


Ziyao Wang
PhD Job Market Candidate
Northeastern University
Email: wang.ziyao1@northeastern.edu
Website: https://ziyaowangecon.github.io/
Phone: 857-200-8061


Finding: Technological Change is Biased

Annual growth rate: Labor (12.2%), Capital (4.9%), and Materials (1.4%)

During Reform: SOEs are Catching Up!

Entry ft Capital ω; Exit ft Labor ω

	DECOMPOSITION							
	Change in Aggregate	Survivors						
	$\frac{\text{Productivity}}{\Delta\phi}$	Total $\Delta\phi^S$	•	Covariance $N^S\Delta \mathrm{Cov}(\cdot)$	Entrants $\mu_{t2}^E(\phi_{t2}^E-\phi_{t2}^S)$	Exiters $\mu_{t1}^X(\phi_{t1}^S-\phi_{t1}^X)$		
Capital	0.429	0.305	0.294	0.011	0.116	0.006		
Labor	1.083	0.954	0.943	0.010	-0.099	0.228		
Material	0.128	0.127	0.131	-0.001	-0.024	0.020		

How to Explain Capital Share Drop?

GROWTH OF	DECOMPOSITION						
Capital Share	$\omega^K - \omega^L$	$p^L - p^K$	$\omega^K - \omega^M$	$p^M - p^K$	Realloc.	Resid.	
-0.052	0.059	-0.084	-0.020	-0.024	0.006	0.012	

Conclusions

- Biased technological change in Chinese manufacturing: Labor (12.2%), capital (4.9%), and materials (1.4%)
- Entrants ↑ Capital Efficiency; Exiters ↑ Labor Efficiency
- Factor share shift: driven by both biased tech change & relative price
- SOEs are narrowing the gap with private firms

References

- 1. Blundell, R. and Bond, S. (2000). GMM Estimation With Persistent Panel Data: An Application to Production Functions. Econometric Reviews
- 2. Chen, Y., Igami, M., Sawada, M., and Xiao, M. (2021). Privatization and Productivity in China. The RAND Journal of Economics.

 3. Doraszelski, I.L. and Jaumandreu, J. (2018). Measuring the Bias of Technological Change, Journal of Political Economy.
- 3. Doraszelski, U. and Jaumandreu, J. (2018). Measuring the Bias of Technological Change. Journal of Political Economy.
 4. Demirer, M. (2025). Production Function Estimation With Factor-Augmenting Technology: An Application to Markups. Working paper, MIT.
- 5. Jaumandreu, J. (2024). Robust Production Function Estimation When There Is Market Power. Working paper, Boston University.
 6. Raval, D. R. (2019). The Micro Elasticity of Substitution and Non-Neutral Technology. The RAND Journal of Economics.
- Raval, D. R. (2019). The Micro Elasticity of Substitution and Non-Neutral Technology. The RAND Journal of Economics.
 Zhang, H. (2019). Non-Neutral Technology, Firm Heterogeneity, and Labor Demand. Journal of Development Economics.