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1 Introduction

How do central bank decisions affect the economy? Empirical answers to this question
require well-identified monetary policy shocks. In recent years, clean identification using
high-frequency data (Kuttner, [2001; |Girkaynak et al. 2005)) or narrative methods (Romer
and Romer, 2004) have yielded an array of high quality empirical monetary policy shocks
(EMPS).

But what are these EMPS? The premise of this paper is that these approaches correctly
capture the nature of the shock — i.e. an exogenous perturbation to interest rate policy —
but they may vary in their information about policy timing. That is, EMPS do not exactly
represent the textbook monetary policy shock, which is typically implemented immediately
and without warning (i.e. a monetary policy surprise). Instead, each EMPS embodies a
different combination of both policy surprises and news about future policies (i.e. forward
guidance shocks)ﬂ

Taking this idea seriously poses a challenge when trying to confront theory with data. If
models imply that shocks with news at different horizons should have different effects, but
EMPS are some combination of shocks at different horizons, then how should we interpret
estimated responses to EMPS? Does the response to a given EMPS tell us something about
the macroeconomic effects of policy? Or just how news and surprise are combined in that
particular empirical shock? Without a way to put some discipline on how a given EMPS

combines shocks at different horizons, it is impossible to say.

Our first contribution is to resolve these questions by developing a method to estimate
the term structure of monetary policy news. This term structure decomposes an EMPS,
revealing how it depends on policy surprises and news shocks for every future horizon.
Our method to estimate the term structure has several stages. In the end, the estimator
has a single closed-form expression, but it is helpful to describe it in distinct steps. First,
we use plausibly exogenous macroeconomic shocks as instrumental variables in order to

identify the monetary policy rule, following insights from |[Barnichon and Mesters (2020)E|

!This conundrum is well-known. Their creators often emphasize that EMPS are not pure monetary
surprises; for example |Gertler and Karadi (2015) describe their shock as “a linear combination of exogenous
shocks to the current and expected future path of future rates.” [Swanson| (2021) describes the challenge
thus: “identifying the effects of forward guidance and [large scale asset purchases] is difficult, because many
of the FOMC’s announcements provide information about both types of policies simultaneously”.

2This is a crucial step if there is a non-trivial news component to monetary policy. Many studies use
lagged macroeconomic aggregates as instrumental variables to estimate the policy rule, following [Clarida et
al.| (2000). These are valid instruments if monetary policy residuals are unanticipated, but may not be valid
instruments if the policy residual is not a true surprise. The central insight of Barnichon and Mesters| (2020)
is that externally-identified exogenous macroeconomic shocks can be used to identify structural equations
when the shocks are orthogonal to the relevant residual; |[Caldara and Kamps| (2017)) use this approach to
estimate a fiscal rule. |Carvalho and Nechio| (2014) argue that instruments may not be needed at all, and



Next, the monetary policy residual is calculated from the estimated rule, and then stripped
of correlation with lagged residuals to find the monetary policy innovations. Finally, the
innovations are regressed on lags of the EMPS to identify the term structure. It is possible
to implement these steps as a single estimator with a simple closed-form expression; we
prove that it consistently estimates the term structure.

Our second contribution is to estimate the term structure of sixteen well-known EMPS.
We find that no EMPS is exactly a textbook monetary policy surprise. Even those with
the shortest term structures include some information several months ahead. For example,
narrative-based EMPS such as that of |Aruoba and Drechsel| (2024) come closest to a policy
surprise, yet they still contain significant information at horizons up to six months. In
contrast, EMPS intending to capture forward guidance do so effectively; they have nearly
zero news about very short-run policy. But there remains heterogeneity depending on the
identification strategy: the Swanson|(2024) forward guidance shock is concentrated on policy
six months to a year in the future; news in the |Jarocinski (2024) forward guidance shock
is more evenly spread across two to 24 months; and the Bu et al. (2021)) shock is almost
entirely about horizons beyond one year. But if no empirical shock corresponds exactly to
the objects in theoretical models, how can we compare the empirical and theoretical effects
of monetary policy shocks? Our third contribution provides an answer.

Third, we develop a method to construct synthetic monetary policy shocks with any
desired term structure from a linear combination of extant EMPS. This permits the con-
struction of synthetic shocks that closely approximates a true policy surprise, news about
a particular horizon, or any other pattern of forward guidance.We apply this method by
estimating the effects of a synthetic surprise constructed from a linear combination of five
recent EMPS and find that, as is usually expected, an interest rate surprise raises rates and
causes a contraction in real activity. However prices have near zero response. In contrast,
longer-run forward guidance shocks feature a small output contraction but a relatively large
deflationary effect. We thus conclude that the observed deflationary effects of many of the
component EMPS are mainly due to the contributions of long-run forward guidance. De-
composing EMPS into their term structures in this way reveals otherwise hidden features
of the underlying mechanisms.

Our construction of synthetic MPS has connections to the Lucas critique-robust policy
counterfactual method developed by McKay and Wolf (2023)). McKay and Wolf use a linear
combination of EMPS to construct counterfactual IRFs to non-monetary shocks. In con-
trast, we use a linear combination of EMPS to construct a monetary shock with a synthetic

term structure of policy news. And the connection goes further, because our method is

OLS estimates are reasonably accurate; as a robustness check, we use OLS to estimate the policy rule as
well. While OLS may be preferable to IV using traditional lagged macro variables (Carvalho et al., [2021),
we find IV using structural shocks to be more robust.



valuable for implementing a prescribed counterfactual policy in practice. Fundamentally,
the McKay-Wolf method solves for how observed EMPS should contemporaneously respond
to macroeconomic shocks to maximize some welfare criterion. But how would a central bank
actually implement such a response? The bank has to be able to create EMPS at will, but
this is not feasible without knowing what the EMPS are. The bank needs to know: How do
the EMPS depend on interest rate actions today versus in the future? Our method answers
this question

Aside from the central contributions of our paper, we make two additional technical ad-
vances. First, we demonstrate the benefits of contemporaneous IV estimation for monetary
policy rules. Our policy rule coefficients are surprisingly robust across specifications, and
roughly match standard theoretical values (e.g. the inflation coefficient is ¢, ~ 1.5). OLS
is known to have only a small bias for estimating these rules (Carvalho et al., 2021)), but is
much more sensitive to the regression specification, compared to the IV approach. Second,
while deriving a penalized version of our estimator for finding smooth term structures, we
utilize the Barnichon and Brownlees| (2019) “smooth local projections”. The estimator is
originally written non-linearly. Instead, we show how to rewrite the smooth local projection

as a special case of ridge regression.

We contribute to the literature working to separately estimate the effects of forward guid-
ance (news) versus policy surprises. |Giirkaynak et al.| (2005) decomposes high-frequency
MPS into a target factor that moves the current rate, and a path factor that only moves
expected future rates. Other papers such as Altavilla et al. (2019), Swanson| (2021), and
Jarocinski| (2024) decompose high-frequency shocks into additional factors, which have dif-
ferent macroeconomic effects. We show in Section [4] that the shocks resulting from these
decompositions are characterized by different news term structures. Campbell et al.| (2012])
estimate a simple Taylor rule, and use forecasts to decompose the residual into components
revealed when the rate is set versus in prior quarters. [Hansen and McMahon| (2016|) use
textual analysis to identify components of Fed announcements corresponding to current
policy, views about the economy, and forward guidance. Many further papers apply these
types of strategies to other settingsﬁ

The remainder of the paper is organized as follows. Section [2| contains a motivating
example to demonstrate why knowing the term structure of an EMPS is necessary to draw
conclusions. Already-motivated readers can skip to Section [3] which describes our method
in detail. In Section [4 we apply it to estimate the term structures for many EMPS. Section

describes and applies the process for constructing synthetic MPS. We present robustness

3This challenge and resolution also apply to the real-time optimal policy estimates derived by [Barnichon
and Mesters) (2023).
“Fawley and Neely| (2014) document the history of the identification of monetary policy shocks.



checks in Section [6l Section [1 concludes.

2 A Motivating Example

Our motivation is most clearly demonstrated with a concrete example. In this section, we
show that for almost all models there is some term structure which can rationalize any
given EMPS. Consequently, without some empirical discipline on the term structure of an
EMPS, we cannot use them to evaluate theory.

The textbook New Keynesian model is given by

New Keynesian Phillips curve: m = BE[mi41] + Kyt
Euler equation: it = B[y (yes1 — ye) + Teg1]
Taylor rule: it = Gyt + Gas + 14

where 7 is inflation, w; is the output gap, and 4; is the nominal interest rate. 14 is exogenous
and white noise. However, we introduce news to this model, similar to how [McKay and

Wolf (2023) do so: 14 is partially anticipated, given by
v =1+ Vi—1+ Va2 + ...

where the component v, ;, is learned at time ¢ — h. The v, ; components are i.i.d. over
time and independent of one another. v ; represents a news shock at time ¢ about monetary
policy h periods into the future.

Figure compares the price level IRFs from the New Keynesian model to that of a
well-known high-frequency EMPS, that of |Gertler and Karadi| (2015). The shock causes
a gradual deflation over 18 months. In contrast, the standard New Keynesian monetary
policy surprise v (dashed red line) causes an immediate deflation, then prices rapidly
stabilize.

But a surprise is not the only kind of monetary policy shock. A news shock vy, has
a different effect on prices for every horizon h: an anticipated future tightening causes a
smooth deflation. Panel [Th] demonstrates this by plotting the deflationary effects of news
at several semi-annual horizons. Each looks different from a surprise shock, and different
from one another. Indeed, they are linearly independent.

The IRF of the Gertler-Karadi shock is perfectly consistent with the New Keynesian
model for some term structure. In other words, there is some linear combination of surprise
and news that exactly replicates the empirical IRF. Panel demonstrates, by approxi-
mating the Gertler-Karadi IRF as linear combinations of the first n news horizons. As n

increases, the IRF is approximated more accurately. When 24 shocks are used, the Gertler-
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Figure 1: CPI Responses to Monetary Shocks

The EMPS IRF is directly from [Gertler and Karadi| (2015)). TRFs to surprise and news shocks are calculated
from a standard calibration (Gali, |2008) of the textbook New Keynesian model. The MPS Approximation
IRFs use the first n news shocks to find the linear combination that most closely matches (in terms of
least squares) the EMPS IRF. The Rationalizing Term Structure plots the weights on the news shocks that
exactly recover the Gertler-Karadi IRF.




Karadi IRF is reproduced perfectly. Panel [Id] plots the weights on each news shock in
the perfect approximation: this linear combination generates an MPS that would exactly
rationalize the Gertler-Karadi IRF in the textbook New Keynesian model| Moreover, if
appropriately rescaled, this is the term structure of monetary policy news, which we define
formally in the next section[f]

The lessons from this example are not limited to the Gertler-Karadi EMPS or the
basic New Keynesian model. If the term structure of an EMPS is a free variable, we
could have argued that any other model (with linearly independent news shock IRFs) was
consistent with this EMPS for some term structure. Similarly, we could have found a term
structure to rationalize any other EMPS as consistent with the New Keynesian model. The
essential point is that without some discipline on the term structure of monetary policy

news, anything goes.

3 Methodology

This section describes the methodology used to estimate the term structure of monetary
policy news. We outline the monetary policy framework, the estimation strategy, and the

theoretical properties of the estimator.

3.1 Monetary Policy Framework

We model monetary policy as being determined by a Taylor-type rule:

Yt = T+ 1y (1)

where g, is the policy instrument (typically a short-term rate), r; is the exogenous monetary
policy residual, x; is a row vector of n, endogenous inputs to the policy rule, and ¢ is a
vector of coefficients.

We allow the residual 7; to be autocorrelated. Its data-generating process is

L
Tt = Z PreTt—e + Ut (2)
(=1

An autocorrelated residual is one way to model interest rate smoothing. Alternatively,

SOf course, one could use responses of additional variables to try to distinguish between models. But
with enough news horizons, the problem returns. One can fully explain the H-period IRF for N variables
with monetary shocks up to NVH periods ahead.

5Tt is not smooth of course, as all news shocks have smooth IRFs in the NK model, so jagged linear
weights are required to recover the jagged Gertler-Karadi IRF. This also prompts the question: How close
can a smooth term structure come to matching the empirical IRF? Is there a tradeoff between smoothness
of the term structure and matching the IRF? We return to these questions in Section

7



one might forego the use of equation by including sufficient lags of interest rates and
observables in the z; vector. But splitting them out maintains the familiarity and parsimony
of a Taylor-type rule in equation , while allowing for autocorrelated residuals. Because
there are multiple observationally equivalent ways to model equations and , we focus
on the monetary policy innovation 1, instead of a particular residual r;.

The monetary policy innovation 14 is white noise, but not necessarily unforecastable.

We write the residual 14 as a sum of news shocks at H, horizons:
v =1t +VvVit—1+ Vo2t ... +VH,t+—H, (3)

Vo Tepresents the surprise at time ¢, while v, ;_j represents the news component known
at time t — h. This captures the idea that there may be information today about how
policymakers intend to depart from their usual behavior in future. The news shocks are
independent Gaussians, distributed vy ~ N (O,U%)ﬂ Note that the assumption that the
vp,t—n, are independent structural shocks does not rule out correlated information at different
horizons. For example, when the Fed signals tighter policy at one horizon, it will typically
also signal tighter policy at other horizons. In our framework, such a signal is a linear
combination of news shocks at different horizons.

We model an EMPS as containing some information about news shocks at multiple
horizons. There may be many types of EMPS, indexed by j € J. Each EMPS wz contains

information about potentially many future residuals, as well as Gaussian error &:

Hy
wp =Y Bvne +€ 4)
h=0
where & is orthogonal to the monetary policy innovation v, for all h. & could be measure-
ment error, but it could also represent other factors captured in the EMPS which do not
affect the policy residual, such as a central bank information effect. Equation represents
the data-generating process for an EMPS.

We define the term structure of EMPS j as the effect of the EMPS wz on expectations

of the monetary policy innovation v; over many horizons:

[y ]

J
dwy

o

Given the linear DGP in equation , the term structure can also be written as a linear

"We assume Gaussianity so that we can write linear projections as expectations. This assumption is not
necessary for our results; without it, the regression implementation would be unchanged.



relationship between EMPS wg and vy:

Hy,

vy = Z’yiwg_h + ul (5)
h=0

where u] is an orthogonal residual. The 5}2 coefficients from equation and 'ny coefficients

are related by
; Var(vpy)
-] ‘7 )
Mh=Ph (6)
b Y ar(w))
Equation encodes the term structure, but cannot be directly estimated since the
EMPS w{ are data, but the monetary policy innovations 14 are not. The next section

describes how to estimate the term structure using instrumental variables.

3.2 Estimation Strategy

Estimating the fyi coeflicients from equation faces several challenges: 14 is unobserved, it
is unknown how it relates to the monetary policy residual r;, and 74 itself is not orthogonal
to the endogenous variables z; |

To resolve these challenges, our estimation takes a 4-stage approach. An important as-
sumption in our method is the availability of a battery of other well-identified non-monetary
macro shocks, z;. We discuss these further in Sections 77 and but for now we take their

existence as given. The steps are:

1. Instrument for the endogenous variables x; in the policy rule, using exogenous macroe-

conomic shocks z; that are orthogonal to both u; and the monetary policy shocks wf .

2. Use the instrumented variables to estimate the policy rule coefficients $ from equation
. This is standard 2SLS estimation.

3. Calculate the implied residuals 7; using the estimated policy coefficients é:

=y — 24 (7)

then whiten to find the estimated 7y innovations. In this step, we can project the

residual 7; onto its own lags:

L
Ty = Z Tt—000 + V4 (8)
/=1

8For example, this endogeneity is why the immediate response of the yield curve is not enough to infer the
term structure of monetary policy news. In general, a shock at any single horizon can affect the entire yield
curve, both at shorter and longer horizons: immediate policy shocks will affect future interest rates through
internal propagation, while forward guidance shocks affect short-run interest rates due to anticipation effects.



4. Use the estimated 74 innovations to estimate the term structure 7}]; of EMPS j from

equation ([5)).

3.3 The Estimator

The 4-stage approach for estimating the 'y,{ coefficients is convenient because it is linear,
and there is a closed form expression for the estimator. Proposition [I] gives the expression
using the following notation. Let r;_1 = (yt_l — xt_lé R T xt_L$> denote the row

vector of lagged estimated Taylor residuals. This allows us to write the whitening regression

as

Tt =Ti_10 + 14 (9)
Similarly, we stack lags of EMPS in the vector w; = (wg wg_l wg_ Hw> which allows
us to write the fourth regression as

Dy = Wyy + wy (10)

where we have suppressed the j superscript for readability.

To cleanly derive the estimator, we define X, Z, and W as matrices of the endogenous
variables z;, instruments z;, and EMPS wy, respectively. Each row corresponds to a time ¢
observation. y and w are vectors of policy observations and equation residuals, respec-
tively. The vector of estimated residuals is R= y—X (;5, and the matrix R is constructed
by

R=Y-X (I, ©0)

where y;_1 = <yt_1 yt,L> and x;_1 = <~’Ct—1 :z:t,L> are row vectors of lagged
observables, while Y and X denote the corresponding matrices of observations. Define the
orthogonalization matrices My = I — R(R'R)™'R’ and My = I — X(X'PzX)"'X'Py,

where Pz = Z(Z'Z)~'Z' denotes the matrix projecting onto the instruments.
Proposition 1 The j-stage estimator ¥ is given by
y = (W'W) "W Mg Mvy

Proof: Appendix [A]

The 4 coefficient vector can be estimated by four independent OLS regressions or in
one step, following Proposition |1, Then the ﬂfl coefficients can be calculated from the yi
coefficients using equation (@ The closed form expression is also useful because it allows

for easy derivation of the estimation properties of our method.

10



Why do we need to estimate the Taylor rule by IV, instead of simply estimating how the
EMPS affect future policy rates? The challenge we face is that all monetary policy shocks
— be they surprise rate hikes or forward guidance — affect future policy rates through the
endogenous term x;y,¢ in equation . The IV steps are necessary to isolate how EMPS
affect the policy residual alone, distinct from the endogenous propagation channels. An
ancillary benefit of our method is that we get clean estimates of the Taylor rule coefficients,
the gg These are given by:

¢ = (X'P;X) "' X'Pyy (11)

The intuition is that by using a battery of non-monetary shocks we can identify the sys-
tematic part of the policy rule by isolating variation in x; independent of monetary policy.

What must be true for this estimation strategy to work? First, we need to correctly
specify the policy rule. The rule represents the systematic, average way that policy decisions
depend on the state of the economy, while the residual represents a transient deviation by
monetary policymakers. Whether or not the rule is perfectly specified, our method needs
to accurately isolate the innovations to these residuals. Thus, evaluating the variables
we include in equation and the lag length in equation will constitute important
robustness checks. Second, we require valid instruments to use in the IV step, which we
discuss next. Our Monte Carlo simulation exercise, presented in detail in Appendix [E] also
touches on this issue, since it presents a specific case where the estimation strategy works
even with weak instruments. The Monte Carlo simulation offers something of an end-run
around many potential critiques of our approach. That this approach recovers the correct
term structure of monetary shocks in the most common contemporary monetary model, is
at least strongly suggestive that it should also work in practice.

We prove that if the macroeconomic shocks are valid instruments, then the 4-stage es-
timation approach is unbiased. The key conditions are that the instruments are orthogonal
to all terms on the right-hand side of equation : the wz EMPS and the u; residuals.
The first condition is easy to satisfied: z; can always be orthogonalized with respect to
the observed EMPS. The second condition is theoretical: the macroeconomic shocks must
not contain any information about the monetary policy residual. This is the typical exclu-

sion restriction, and requires whichever shocks used as instruments to have been carefully
identified.

Proposition 2 If E[zu,] = 0, then the 4-stage estimator is consistent:
plim (y) =

Proof: Appendix [A]

11



3.4 Generalization with Smoothing

The final stage of the 4-stage estimator is effectively a local projection (Jorday [2005)) because
the EMPS in equation are orthogonal. Local projections have many appealing prop-
erties, including that they are unbiased, which allowed us to prove that the entire 4-stage
estimator is unbiased (Proposition . However, local projection estimates have large er-
rors. |Li et al.| (2024) show that penalized local projections perform very well; allowing for a
small amount of bias can substantially shrink the estimator variance. When considering the
bias-variance trade-off, one’s objective would have to place almost no weight on minimizing
variance in order to prefer unpenalized local projections.

Therefore, we generalize our 4-stage estimator to allow for a penalty to reduce estimator
variance. Specifically, in the 4th stage, we estimate a “smooth local projection” (Barnichon
and Brownlees, 2019), which approximates an IRF with a set of smooth basis functions.
Besides its popularity, this is an appealing method because it can be represented as a ridge
regression. This means that we can write the generalized 4-stage estimator in closed form.

Appendix [B] describes how to estimate the canonical smooth local projections as a
standard ridge regression. In this appendix, Proposition [8| defines the appropriate penalty
matrix Pp. The penalty parameter A controls the degree of smoothing, and is selected by
cross-validation. Proposition |3| gives the generalized smoothed 4-stage estimator. We call
it “generalized”, because it nests the original 4-stage estimator (Proposition (1) when the

penalty is set to A = 0.

Proposition 3 The smoothed 4-stage estimator 4y for penalty parameter A is given by
(W'W + APp) ™ W' Mg My

Proof: Appendix
We use the smoothed 4-stage estimator throughout the following empirical work.

4 Estimated Term Structures

In this section, we estimate the term structures of popular EMPS using our proposed
methodology. We first describe the data used for the estimation, including the different
EMPS series and the macroeconomic instruments. Then we present the estimation results,
providing a summary statistic to represent the relative importance of news for each EMPS
and discuss the implications of our findings. Finally, we report a summary of the findings
of a much more extensive validation exercise using simulated data from a standard New

Keynesian model, reported in detail in Appendix

12



4.1 Data

Our method requires two types of data: monetary policy shocks from the literature, and
other macroeconomic instruments and series used to estimate the policy rule.

4.1.1 Monetary Policy Shock Data

We estimate the term structure of monetary policy news for a variety of well-known EMPS.

They are summarized in Table

Shock Source Method Notes Range

Gertler and Karadi|(2015) HFI 30 min. window around FOMC decisions 1990:M1-2007:M12
Jarocinski and Karadi|(2020) HFI Pure monetary shock purged of Fed information 1990:M1-2016:M12
Bundick and Smith|(2020) HFI 2 shocks to term structure uncertainty 1994:M2-2019:M06
Miranda-Agrippino and Ricco|(2021) HFI Orthogonalized w.r.t. Greenbook forecasts 1991:M1-2009:M12
Bu et al.|(2021) HFI Alternative without intraday data 1994:M2-2024:M12
Bauer and Swanson|(2023) HFT Orthogonalized w.r.t. financial data 1988:M2-2023:M12
Swanson| (2024) HFI Decomposed into 3 types of EMPS 1988:M2-2023:M12
Jarocinski| (2024) HFT Decomposed into 4 types of EMPS 1990:M2-2024:M09
Romer and Romer|(2004) Narrative Orthogonalized w.r.t. Greenbook forecasts 1983:M1-2007:M12
Aruoba and Drechsel|(2024) Narrative Natural language processing of Fed docs 1982:M10-2008:M10

Table 1: Monetary Policy Shocks

Many shock series rely on intraday data for identification, constructing instruments
based on high-frequency changes in asset prices around FOMC announcements as a measure
of monetary policy surprises. A classic example, (Gertler and Karadi (2015]) use 3-month-
ahead federal funds futures rates. This horizon covers multiple FOMC meetings, and is
interpreted as capturing both current rate decisions and forward guidance. [Bauer and
Swanson| (2023) refines standard high-frequency methods by including additional policy
events (e.g. speeches and press conferences) to the usual FOMC announcements to add
observations, while also orthogonalizing with respect to high-frequency data to ensure that
the EMPS series is unforecastable. Swanson| (2024) applies these refinements to the Swanson
(2021) methodology, which uses multiple asset prices to construct three distinct EMPS
(the “target rate”, “forward guidance” and “large-scale asset purchases” (LSAP)) that
correspond roughly to effects at short, medium, and long-term yields.

One concern with high-frequency EMPS is that it includes a “Fed information effect”
(Romer and Romer, 2000; Nakamura and Steinsson, 2018|) where the central bank reveals
private information about the state of the economy, which is independent of its policy
residuals. We include two EMPS series that attempt to isolate the information effects from
true policy shocks. |Jarocinski and Karadi| (2020]) measure high-frequency changes in interest

rates and stock prices, and use sign-restrictions to isolate information from policy shocks,

13



assuming that information moves rates and stock prices in the same direction, while policy
has opposite effects. Miranda-Agrippino and Ricco| (2021)) identify a pure policy shock by
orthogonalizing the EMPS with respect to internal Fed forecasts.

We also use two shocks identified with narrative methods. The classiclRomer and Romer
(2004) shock (updated by Wieland and Yang (2020)) identifies policy actions motivated
by the Fed’s policy stance, rather than reactions to contemporaneous economic data, by
orthogonalizing with respect to internal forecasts. In a modern refinement, [Aruoba and
Drechsel (2024) incorporate substantially more information, via natural language processing
of internal Fed documents. Then they orthogonalize interest rate changes with respect to

both forecasts and the text-based time series.

4.1.2 Data for Estimating the Monetary Policy Rule

In our baseline method, we specify the monetary policy rule (1)) with the Effective Federal
Funds rate as the policy variable, and with unemployment and PCE inflation on the right-
hand side.

Shock Source Method Notes Range

Fiscal Shocks

Romer and Romer|(2016) Narrative Social Security expansions 1951:M1-1991:M12
Fieldhouse et al.|(2018) Narrative Government housing purchases 1952:M11-2014:M12
Phillot|(2025) HFI Futures yields around Treasury announcements 1998:M10-2020:M01
il Shocks

Kanzig| (2021) HFI Oil supply news 1975:M1-2023:M6
Baumeister and Hamilton|(2019) SVAR Oil supply, consumption/inventory demand 1975:M2-2024:M3

Other Shocks
Kim et al.|(2025) External ~ ACIT severe weather shocks 1964:M4-2019:M5
Adams and Barrett|(2024) SVAR Shocks to inflation expectations 1979:M1-2024:M5

Table 2: Structural Shock Instruments

To address endogeneity concerns in estimating the Taylor rule, we employ instrumental
variables (IVs) drawn from the literature. Over the last decade, the collection of well-
identified macroeconomic shocks has expanded substantially. However, our options are
limited because we require monthly series. Still, we were able to collect six monthly instru-
ments that represent a variety of shocks. They are summarized in Table [2]

Our first group of instruments is related to government spending and debt. We uti-
lize the narrative measure of transfer payment shocks constructed by Romer and Romer
(2016)). This measure uses historical accounts of Social Security benefits to identify changes

in transfer payments that are not a systematic response to macroeconomic conditions. To
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capture government spending shocks, we use the Fieldhouse et al| (2018) narrative instru-
ment constructed from significant regulatory events impacting federal housing agency mort-
gage holdings. This series captures the ex ante impact of policy changes on the capacity of
agencies to purchase mortgages. It focuses on non-cyclically motivated policy interventions
by the federal government, excluding changes resulting from the agencies’ regular response
to market developments. These non-cyclically motivated policy shifts provide a source of
exogenous variation in credit supply within the mortgage market. Lastly, we use the US
debt supply shocks identified by [Phillot| (2025)) using high frequency asset price data around
Treasury auction announcements.

Our next group of instruments captures exogenous variations in the oil market. First,
we use oil supply news shocks identified through high-frequency changes in oil futures prices
around OPEC production announcements (Kanzig) 2021). Second, we employ structural oil
shocks identified from a structural VAR by Baumeister and Hamilton| (2019). This approach
distinguishes contemporaneous shocks to oil supply and shocks to oil demand, and, unlike
other methods, does not require that there is no short-run response of oil supply to the
price.

We take severe weather shocks from the Actuaries Climate Index, a meteorological time
series for severe weather. We take this series as exogenous, and use as shocks the statistical
innovations calculated by Kim et al.| (2025).

Finally, we use the Adams and Barrett| (2024) inflation expectation shocks. This series
is derived from a structural VAR that identifies exogenous shocks to inflation forecasts. To
do so, the approach identifies the dimension of the VAR statistical innovation that causes
survey forecasts to deviate from the rational expectation. In models where belief distortions
are exogenous and stochastic, this method identifies the exogenous shock. The instruments’

coverage is not balanced, so we treat shocks as zero whenever data are unavailableﬂ

4.2 Estimation Results

In this section, we present the estimated term structures of each EMPS both numerically
and graphically.

4.2.1 Estimated Taylor Rules

This section describes the first 2 stages of our 4-stage estimator: estimating the Taylor Rule.
We find that the use of structural shocks as IVs produces remarkably robust estimates for

the inflation coefficient, especially compared to OLS approaches. Our estimated values are

90ur baseline approach estimates the Taylor rule using data from 1975:M1 - 2020:M2, excluding the
ZLB period, so the zeros choice mainly affects the narrative government spending shocks in recent years. In
Appendix@] we show that dropping these shocks entirely does not substantially change our estimates.
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largely consistent with typical calibrations in theoretical models, with an inflation coefficient
of roughly 1.5 across multiple specifications.

The results of the Taylor rule estimation are shown in Table In most cases we
specify the FFR to depend on currently monthly inflation and real activity, as well as
lags of the Taylor rule residual. In the baseline specification (first column), we use two
variables in x;: inflation, for which our preferred measure is the 12-month growth rate in the
PCE index; and activity, for which we use detrended private non-farm employment. These
correspond directly to the two legs of the Fed’s mandate: employment and price stability. We
estimate the term structure up to two years after the shock, so H,, = 24. When whitening
the monetary policy residuals, we orthogonalize with respect to six lags, setting L = GH
Because instruments can have persistent effects, we include six lags of the IVs. Table 3] also
includes many alternative measures of real activity. As expected, the estimated coefficient
on real activity is affected by whether we use Christiano-Fitzgerald filtered real GDPB GDP
growth, an alternative detrending method, industrial production, or unemployment affects.
However, the inflation coefficients are largely unchanged, and generally satisfy the Taylor
principle, that ¢, > 1. We also include some specifications where we introduce additional
variables. Including the excess bond premium has little effect. In contrast, the introduction
of inflation expectations (as measured either by the Michigan Survey or the Cleveland Fed)
is the only specification we have found that substantially changes the size of the inflation
coefficient. This is not surprising, as expectations in the data are highly correlated with
current inflation, and if the Fed responds to both similarly, rules with different coefficients
might be almost observationally equivalent.

We also consider alternative inflation measures. These results are reported in Table [4
All 12-month inflation measures tend to satisfy the Taylor principle. When we use 1-month
measures, we find smaller coefficients. And using core PCE, which the Federal Reserve
considers a better indicator than headline PCE of medium-term inflationary pressures,
even the one-month measure conforms to the Taylor principle.

In Appendix [C] we report several more variations. First, we allow for alternative lag
lengths. Second, we drop various I'Vs from our estimation to ensure that no single category
in Table [2] is driving our results. And third, our baseline Taylor rule is estimated using
data beginning in January 1975 and omits the zero-lower-bound (ZLB) and Covid periods,
but we consider alternative choices. Our Taylor estimates appear robust to all of these
checks, except for the inclusion of the ZLB period, which is unsurprising since policy rates
are pinned to zero during this period, and thus invariant to macroeconomic conditions.

These regular results from the structural IV estimation contrast sharply with OLS es-

10%We vary these choices in the robustness checks found in Section
1We use monthly GDP estimated from a Kalman Smoother which matches the quarterly NIPA data and
monthly consumption series (Barrett, [2025)).
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timates. OLS estimates from the literature vary considerably, and our findings are no
different. We ran several OLS specifications, and the coefficient estimates are highly sensi-
tive to specification choice. As an example, we also report in Appendix [C| OLS results with
small differences in the lag structure, and found estimates that are highly dissimilar from
each other, let alone our IV results. In contrast, our IV method produces results which are

stable across multiple specifications and consistent with theory.

4.2.2 Estimated Term Structures

Figure [2| plots the estimated term structure of monetary policy news for each EMPS. The
further a term structure curve deviates from zero, the more information the EMPS has about
monetary policy at that horizon. The figure immediately reveals heterogeneity across the
shocks. Some have spikes at low horizons, others have most of their weight in the middle,
and most — but not all — decay to zero at long horizons.

It is striking that all shocks have a non-trivial term structure at horizons longer than
h = 0. In other words, even the best identified shocks typically include information about
both monetary surprises and forward guidance. For shocks derived from high-frequency
methods, this might arise either because Fed announcements genuinely do include correlated
information, or because the high-frequency variables used to inform the magnitude of the
shock are inherently forward-looking.

When interpreting the term structures in Figure [2] it is helpful to have a summary
statistic which represents the relative importance of news for a given EMPS. To do so, we
use the Rz statistic, which captures how much of the information in an EMPS is due to

news at horizon k.

Proposition 4 The share R% of variation in monetary policy innovation v; that is explained
by an EMPS at horizon k is

Var(ulw) ) ()?

=y
Var(’/t‘{wi—h heo) h:o(’Yi)Z

R}

Proof: Appendix [A]
Table [5] reports several of these statistics for each monetary policy shock, calculated

using the smoothed 4-stage estimatorB The first column is RZ,, which—since monetary

12We set the smoothing parameter to A = 30. This was chosen by initially minimizing the rolling out-
of-sample errors for each EMPS separately. That is, for each of a large set of values of A we estimate 4
repeatedly on a series of extending subsets of the data, each beginning at the (same) sample start date but
incrementing the end month by one for each element of the series. For each data subset (the minimum
subset length is 10 years) we compute the out-of-sample errors on equation for the first 12 months
after the end date. We then choose the value of A which minimizes the average error across the extending
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Figure 2: Estimated Term Structures

Figure shows the estimated 'be coefficients, i.e. the impact of each identified monetary policy shock h periods
later on the monetary policy innovation Dyyp.

policy announcements can happen on any day during a month—we interpret as the share of
the EMPS that is due to an “immediate” change in the monetary policy innovation. Table ]
illustrates several of our key findings. The most obvious is that the shocks which explicitly
ailm to to identify surprises have a large share of their term structure variation at short
horizons. Specifically, the EMPS that are most driven by the immediate horizons are the
Swanson| (2024) and |Jarocinski (2024)) FFR shocks (both of which are “target level” shocks,
identified by methods which split separate shocks to the future path of policy), and the
|Aruoba and Drechsel (2024) and Romer and Romer] (2004) narrative shocks. It is intuitive
that the FFR shocks should appear here near the bottom of the table: these shocks are

constructed by considering how many asset prices respond to Fed events, and isolating the

only component that affects short term rates. However, no shock perfectly isolates true

windows. This approach is analogous to cross-validation, in that is minimizes the out-of-sample errors, but
it preserves the time series structure of the data. But because this results in terms structures which depend
differently on smoothing across the different EMPS. And so for comparability we set a common value for
A in our baseline results, which is close to the average of the EMPS-specific optimal values. We consider
alternate values of A in the robustness checks found in Section@
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policy surprises. Even these well-constructed shocks which explicitly target interest rate
surprises have much information at longer horizons. In some cases, this information dies

out after around six months. But in other cases, the tail of the term structure is longer.

Shock R(%:l R%:ﬁ R?:m R%3:24
Swanson FG 0.00 0.11 0.58 0.31
Bu-Rogers-Wu 0.01 0.02 0.17 0.80
Jarocinski Info 0.02 0.12 0.55 0.32
Jarocinski FG 0.06 0.32 0.49 0.13
Swanson LSAP 0.18 0.40 0.30 0.12
Bundick-Herriford-Smith Level 0.23 0.24 0.12 0.41
Jarocinski-Karadi MPS 0.24 0.18 0.23 0.34
Bauer-Swanson 0.27 0.29 0.25 0.19
Bundick-Herriford-Smith Slope 0.31 0.32 0.25 0.12
Jarocinski LSAP 0.32 0.56 0.04 0.09
Gertler-Karadi 0.39 0.16 0.11 0.34
Miranda-Agrippino-Ricco 0.39 0.34 0.10 0.16
Jarocinski FFR 0.45 0.25 0.03 0.26
Swanson FFR 0.49 0.29 0.01 0.21
Aruoba-Drechsel 0.51 0.38 0.01 0.10
Romer-Romer MPS 0.60 0.26 0.05 0.09

Table 5: Decomposition of Term Structure by Horizon

Table reports the R? measures in Proposition [4] summed over monthly horizons denoted in subscripts. For
example, RZ¢ is the total variation in the Taylor residual attributable to 2- to 6-month news in a given
identified monetary policy shock. Shocks are ordered by RZ.;.

To summarize the forward guidance content of the EMPS, we calculate three compo-
nents. The second column of Table reports the sum of Ri for 2 < k < 6. This is short-run
news, which is realized in the remaining half year after the immediate horizons. Column 3
reports medium-run news, which sums the R statistic for next half year (months 7 — 12),
and the final column reports long-run news, which occurs over the following year.

Reassuringly, two of the shocks that are the most driven by forward guidance are the
aptly-named Forward Guidance shocks estimated by Swanson and Jarociriski. These shocks
contain almost no information about policy surprises in the short-run. This of course does
not have to be true; the shocks are constructed to have no information about policy surprises
at very high frequencies, but could have a large R(Q):1 statistic by containing extremely short-
run news in the immediate or following month. But they do not. In Swanson’s case, the
news is concentrated in the medium-run, while for Jarocinski the news is more spread
out over the two-year window. Joining these low-surprise examples is the Bu-Rogers-Wu

shock, which is rare in that it is constructed to capture a high-frequency identification
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strategy without using proprietary high-frequency data. Their method produces a shock
that overwhelmingly contains news about long-run policy; no other shock has more than

50% of its term structure appear more than a year in the future.

4.3 Validation

To check our method, we also run a Monte Carlo exercise, testing our method on simulated
data in small and large samples. Appendix [E] reports the results in detail, but the key find-
ings are 1) that our method delivers unbiased estimates of both the Taylor rule coefficients
and the term structure of EMPSs in small samples, and 2) that the confidence intervals for
the Taylor rule are accurate even with weak instruments for macroeconomic shocks. We
also compare our results to applying OLS to the simulated data and show that the latter
perform poorly in small samples. Although biases in Taylor rule estimation are economi-
cally small, confidence intervals are spuriously tight. The mapping from Taylor coefficients
to the term structure is sensitive to this, leading to highly unreliable inference when using
OLS estimates.

Our findings complement those of |Carvalho et al. (2021)), who find that the bias in
OLS is small enough to be economically meaningless and, in small samples, preferable to
traditionally-used GMM using lagged endogenous variables as instruments. One way to
interpret these results is to think of the different methods as picking different points on
the trade-off between bias and maximizing informative variation. Lagged variable GMM
following Clarida et al.| (2000) reduces endogeneity bias (under certain assumptions) but
throws away informative contemporaneous covariation of interest rates and macro variables.
OLS exploits this variation but at the price of biased Taylor rule coefficients. |Carvalho et
al.| (2021) show that this price is one typically worth paying in applied work. Our method
gives the best of both worlds. It exploits contemporaneous variation in the endogenous
variables, but by isolating only the variation due to non-monetary shocks it corrects for
endogeneity bias. As a result, it delivers unbiased estimates of both the term structure and
the Taylor rule coefficients, as well as accurate inference, even in small samples and, for the

term structure at least, even with weak instruments.

5 Synthetic Monetary Policy Shocks

This section explains how to construct a synthetic monetary policy shock with a desired

term structures, and then does so for several examples, including a synthetic surprise.
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5.1 Method

The EMPS that we consider have a variety of news term structures. Calculating these term
structures is innately useful, because it allows us to interpret the shocks in standard DSGE
models. However, we can also use the results from multiple EMPS to construct synthetic
shocks with a new term structure. This allows us to study the effects of MPS of particular
interest that are not directly estimated in the data.

Let 47 denote the vector of normalized term structure coefficients for EMPS j, estimated
from Proposition [1, where the EMPS has been normalized so that Var(w!) = 1.

Proposition 5 For a linear combination of EMPS w§ = A\qw§ + \yw?, the resulting term
structure of monetary policy news ¢ is proportional to the linear combination of term
structures:

7 o AaT® + X T

Proof: Appendix [A]

Proposition [5] is useful because it allows us to construct a synthetic MPS with a desired
term structure by finding the appropriate linear combination of existing EMPS. This is a
valuable property because it allows us to study specific types of monetary policy shocks
that are relevant to theoretical models but not directly estimated in the data. For example,
one might be interested in studying the effects of a true monetary surprise, as in Figure
But we learned in Section that the EMPS all feature news at multiple horizons.
To estimate the effects of a surprise, we need to construct a synthetic MPS with a term

/
structure 7° = < 1 0 0 .. ) . Or, if we wanted to study a pure 1-period-ahead news

!/
shock, we would construct a synthetic MPS with term structure 4! = ( 01 0 .. ) .
Indeed, the term structure of any h-period-ahead news shock is simply the corresponding

basis vector. Proposition [6] states when this is feasible.

Proposition 6 EMPS with normalized term structures in the set J = {77} can be used to

construct any synthetic MPS s with term structure

7* € span ({¥}je7)
This property follows directly from Proposition [5, An immediate corollary is:

Corollary 1 If J contains Hy, + 1 EMPS with linearly independent term structures, then

a synthetic MPS can be constructed with any term structure of horizon length up to Hy,.

In practice, the number of linearly independent EMPS may be less than the IRF horizon

H,, + 1. In this case, the span of the term structures is a lower-dimensional vector space.
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The synthetic MPS can be constructed with any term structure in that space. If the term
structure of interest (e.g. 4°) is not in this space, it must be approximated. The following

Proposition explains how to do so.

Proposition 7 Let I' 7 denote the matriz of normalized term structures for the linearly
independent set J of observed EMPS, and let 7 denote the term structure of interest. The
term structure of the synthetic MPS 7° that is closest to ' (in the Buclidean norm) is given
by

7' =Tg(TTy) Ty

Proof: Appendix [A]

In the next section, we study the impulse responses to some synthetic shocks defined
by specific term structures. This is just one application. Many others are possible. For
example, synthetic news shocks could be useful in applying the method of McKay and Wolf]
(2023) to generate counterfactual policy responses robust to the Lucas critique. Another
possibility is to create synthetic shocks which match the term structure of a target EMPS.
This would allow the construction of a comparable shock series over periods where the
target series is unavailable, e.g. approximately extending to more recent data. Moreover,
the broader principle is not limited just to monetary shocks. In general, one could apply
our methods to other sources of macro fluctuations with partially anticipated components,

such as fiscal or technological shocks.

5.2 Synthetic Surprise and News

To estimate synthetic MPS, we take a step to improve parsimony. Many of the EMPS are
estimated in a similar way, and have relatively colinear term structures; Figure |3 presents
their absolute correlations. Therefore, we selected a subset of five EMPS that are relatively
dissimilar, as measured by the average Euclidean distance to the other vectors 7. The
EMPS we use for the synthetic exercise are: Aruoba-Drechsel, Miranda-Agrippino and
Ricco, and the Swanson FFR, FG, and LSAP shocks. These shocks are also orthogonalized
in some way to be purged of information effects, which makes the results simpler to interpret.
In Appendix [D] we repeat this exercise, constructed from alternative subsets.

Using the five empirical shocks, we construct three synthetic MPS: an immediate inter-
est rate tightening, short-term forward guidance, and long-term forward guidance. Each
synthetic MPS is targeted to be an equally-weighted collection of news shocks at similar
horizons. Since so many shocks come from high-frequency methods and because the rele-
vant policy announcements can range from the first to the last day of the month, we define

the immediate shock as news about the current month and 1 month ahead. The short-term
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Figure 3: Term Structure Correlations

Figure shows absolute cross-correlations of the estimated term structures of candidate EMPS, ordered from
least to most dissimilar top to bottom.

forward guidance shock contains news in the 2-6-month-ahead window and the long-term
forward guidance shock contains news about the remaining year and a half.

Figure [] plots the term structures for these synthetic MPS. The dotted lines are the
target term structures, i.e. vector 4° in the notation of Proposition |ﬂ Because we use
only five empirical shocks, we cannot match these targets exactly. But five shocks gets us
surprisingly close: the solid lines in Figure [4] are the actual term structures of our synthetic
MPS, which approximately match the targets. A solid line corresponds to the vector 4°
in Proposition EIEl In Appendix Dl we use additional shocks to get closer to the target
structures; doing so does not substantially change the estimated IRFs.

We estimate the effects of the synthetic MPS on the macroeconomy using a proxy
VAR. Specifically, we estimate a standard VAR similar to|Gertler and Karadi (2015), which

includes 1-year Treasury yields, log CPI, log industrial production, and the excess bond

13Note that the target term structures combine news over multiple horizons; this contrasts to the single
horizon examples described in Section We found that the empirical MPS are much worse at accurately
approximating single-horizon news (i.e. standard basis vectors) than the multiple-horizon targets that we
adopted.
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Figure 4: Target and Matched Synthetic MPS Term Structures

¢ and 7' respectively.

Figure shows target and matched term structures for synthetic policy shocks, ¥
premium (EBP). We pick these variables so that our VAR is a close as possible to the
“standard” framework in the literature. One cost of this is that we cannot include the exact
variables that are used in our Taylor rule estimation. We then construct the responses to
synthetic shocks by projecting each synthetic shock onto the reduced form residuals. This
gives us the appropriate weighting on the reduced form shocks consistent with a synthetic
term structure shock. An advantage of this approach is that we can apply the same method
to the EMPS shock series, projecting them onto a common reduced-form VAR. This allows
us to compare the impact of the shocks alone, holding the VAR autocovariances, and hence
the dynamics of macroeconomic propagation, fixed.

Figure [5| presents the estimated IRFs to the immediate, short-term, and long-term
synthetic MPS. The immediate shock is a clear monetary policy tightening: interest rates
rise immediately and cause a contraction. There is perhaps a deflationary effect, but the
price level response is not statistically different from zero. These effects are consistent
with the two most important components of the synthetic surprise: the Swanson FFR and
Aruoba-Drechsel shocks are the closest EMPS to true policy surprises, and both cause large

declines in real activity and near-zero price effects.
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Figure 5: Impulse Responses to Synthetic Shocks

Figure shows impulse responses from a VAR to synthetic monetary policy shocks, whose term structures
of monetary policy news appear in Figure [d] The first column shows responses to the immediate shock,
which has news on impact and in the first following month. The second column shows responses to the
short-run news shock, which has news about months 2 — 6. The third column shows responses to the long-
run news shock, which has news about months 7 — 24. The shaded region indicates the 90% confidence
interval conditional on the impact values; the dotted lines indicate the 90 % confidence intervals accounting
for impact uncertainty. The VAR lag length is 11 and is chosen by AIC.

The short-run news shock has no effect on rates, and is expansionary in the initial year.
Indeed, the expansionary effect is what allows rates to remain unchanged when the monetary
policy residual increases. Real activity rises on impact, then falls. When the news shock
manifests and policy residuals increase, real activity is declining, so the endogenous policy
response is to loosen, offsetting the exogenous tightening. And altogether, the short run
shock has no effect on prices at any horizon. In contrast, the long-run news shock is the only
deflationary one, matching the textbook New Keynesian prediction. Counterintuitively it
decreases rates in the short run, but this is also qualitatively consistent with the textbook
model: the long-run forward guidance shock is persistently contractionary, so short-term
monetary policy responds endogenously through the Taylor rule.

These results reveal that empirical MPS contain heterogeneous effects from news at

different horizons, but this heterogeneity is unobserved without breaking apart the term
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Figure 6: Impulse Responses to Empirical MPS

Figure shows impulse responses from a VAR to each of the underlying empirical MPS. Each column shows
the response to a different shock. The shaded region indicates the 90% confidence interval conditional on
the impact values; the dotted lines indicate the 90 % confidence intervals accounting for impact uncertainty.
The VAR lag length is 11 and is chosen by AIC.

structure into its components. To illustrate this finding, Figure [6] plots the IRFs for each
component EMPS, as estimated by the same standard VAR. The empirical MPS are rela-
tively homogeneous: they all predict higher rates, reduced real activity (except for the FG
and LSAP shocks which do not move the FFR), and zero or modest deflation. So how can
the synthetic shock IRFs look so different from the component IRFs? The key is that even
though the component IRF's look relatively similar they are linearly independent, so they
span a wide variety of potential outcomes. Thus different linear combinations of EMPS can
produce IRFs that are strikingly different from those plotted in Figure [ .

We learn that the relatively homogeneous empirical MPS are mixing heterogeneous
effects of different news horizons. The standard rate increases are driven by immediate and
short-run news. The standard deflation is driven almost entirely by long-run news. And the
rapid contractions are not a property of forward guidance, but instead due to immediate
news. How are we able to uncover these lessons? Because even though they are qualitatively

similar, quantitative variation in the EMPS impulse responses are associated with variation
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in their term structures of monetary policy news.

Some of these results are consistent with the standard New Keynesian model, while some
are puzzling. For example, it is standard that a surprise policy tightening is contractive,
and it is typical that future monetary policy contractions can cause rates to decline in
anticipation. However, the short-run expansionary effect of a short-run news shock is hard
to explain with the textbook model, given that this shock also raises rates. Historically this
type of “output puzzle” has been hypothesized to be caused by central bank information
effects, i.e. the Fed’s actions reveal its private information about the economy. However,
the EMPS that we employ are all orthogonalized to some degree, and yet still feature an
output puzzle from the short-run synthetic shock. Moreover, when we repeat our exercise
using alternative smaller and larger sets of component shocks (Appendix @, the results
still resemble our baseline.

More substantially, it is hard to reconcile the sharp contraction of the immediate policy
shock with a New Keynesian explanation when there is effectively zero effect on prices. This
tension is well known (Ramey}, 2016, but many shocks from the recent generation either
suffered from the historical “price puzzles” (as in |Aruoba and Drechsel| (2024)) or caused
at most a small price decline (as in [Miranda-Agrippino and Ricco (2021)). Our analysis
does not resolve this tension, but it does offer a richer characterization of it. Surprises do
not cause large deflation; rather, the largest deflationary effects of EMPS are driven by the

long-run forward guidance components.

6 Robustness

In this section, we describe how our results depend on several assumptions made in our
approach.

First, we adopted many alternative approaches for our IV estimation of the Taylor rule.
We discuss these in depth in Section and include further robustness checks in Ap-
pendix [C] We found relatively robust estimates of the Taylor rule, particularly the inflation
coefficient. But how sensitive are our term structure estimates to these assumptions?

To answer this question (and others that follow) we re-estimated our main term structure
summary under several alternative specifications. Figure [7] reports how the estimated term
structure for each EMPS depends on our the variables included in the Taylor Rule, z;. Each
panel is associated with a single EMPS, and each row in the panel is a different specification.
Within each row, the bars add up to one, and each bar represents the share of the term
structure that is due to news at each horizon: impact, short, medium, and long. These
are the same statistics as are reported in Table This figure shows that the estimated

term structures are relatively consistent across specifications. For EMPS whose news is

29



concentrated at low horizons in our baseline estimation, this also tends to be true for other
specifications. For example, the Aruoba-Drechsel shock is mostly short-horizon news for
all specifications, so too are the Romer & Romer narrative shocks, as well as the Swanson
and Jarocinski HFI Fed Funds shocks. In contrast, the Bu-Rogers-Wu shock is mostly long
horizon news for all specifications, as are the Swanson and the Jarocinski Forward Guidance
shock.

In Figure [8] we repeat this exercise, varying the sample and estimation methods. One
obvious concern about our results is that the smoothing process we apply to the term struc-
ture is driving our finding that EMPS typically have long-term effects. After all, smoothing
dampens high-frequency fluctuations and so could downplay the impact of the EMPS at
short horizons, risking a spurious finding that EMPS effects are at longer horizons than
they actually are. Figure|[8shows that this is not the case. There, we report results for two
versions, titled “low smoothing” and “no smoothing”, which respectively set the smoothing
parameter to A = 10 (approximately the lowest value across the baseline estimates for the
different EMPS) and A = 0. For even small values, the smoothing parameter does not
meaningfully change our results, although when smoothing is eliminated entirely, several
shocks lose most of their immediate news content. So, if anything, term structure smooth-
ing is reallocating effects from longer horizons to shorter, thus making EMPS seem more
surprise-like, not less. Changes in the instrument lags have little effect on our results, but
changes in sample period do. In particular, including periods where the Federal Reserve
was constrained by the zero lower bound on interest rates yields quite different results. This
is likely less a product of a true change in the term structure of monetary policy shocks,
and rather a product of the Taylor rule breaking down in this period — when the ZLB binds,

the Fed no longer responds to marginal changes in inflation or output.

7 Conclusions

In this paper, we address two important questions about the identification of monetary
policy shocks.

The first is: how should we compare different estimated monetary policy shocks? The
framework we develop in this paper is based on the idea that identified monetary policy
shocks identify a common type of exogenous disturbance, but vary in its anticipated timing.
By applying this method to identify the differences in sixteen well-known monetary shock
series, we decompose each into its surprise and news components, the latter at multiple
horizons. We find that most of these shocks have large news components. However, shocks
explicitly designed to capture surprises generally have shorter term structures and those

aimed at forward guidance shocks longer.
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Figure 7: Term Structure Variance Decomposition: Robustness to Taylor Rule Variables.

Figure shows the how the variance decomposition changes for different versions of the estimated term struc-
ture. “Baseline” corresponds to the numbers in Table Different versions (labeled on the vertical axis)
correspond to the alternate Taylor rule estimation methods with the same names as in Tables |3[ to Iﬂ

Second, how can we map between empirical shocks and theory? By projecting fixed
h-period ahead impulses onto imperfectly correlated empirical shocks, we can construct the
responses to news shocks at multiple horizons as a linear combination of estimated impulse
responses. In doing so, we are able to characterize the empirical responses of shocks which
comport with theory. We show that positive monetary surprises are contractionary and
deflationary, but that news at longer horizons increases output, employment, and prices.
At very long horizons the effect of monetary policy news is negligible.

These results suggest several directions for future research. Most obviously, they provide
a framework for evaluating future monetary policy shocks, allowing them to be compared
to those already in the literature. Our synthetic shock approach also offers opportunities
for many further potential applications. And our specific findings give some guidance on
how empirical identification of MPS might most valuably proceed. In particular, our results
show that there is still much to be done to systematically capture monetary policy surprises

distinct from news about the future. Beyond this, our findings on the measured effect of
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Figure shows the how the variance decomposition changes for different versions of the estimated term struc-
ture. “Baseline” corresponds to the numbers in Table Different versions (labeled on the x axis) correspond
to the alternate Taylor rule estimation methods with the same names as in TablesEl tom

news shocks at multiple horizons set an empirical benchmark for future models to reflect.

32



References

Adams, Jonathan J. and Philip Barrett, “Shocks to Inflation Expectations,” Review
of Economic Dynamics, October 2024, 54, 101234.

Altavilla, Carlo, Luca Brugnolini, Refet S. Giirkaynak, Roberto Motto, and
Giuseppe Ragusa, “Measuring euro area monetary policy,” Journal of Monetary Eco-
nomics, December 2019, 108, 162—-179.

Aruoba, S. Boragan and Thomas Drechsel, “Identifying Monetary Policy Shocks: A
Natural Language Approach,” May 2024.

Barnichon, Regis and Christian Brownlees, “Impulse Response Estimation by Smooth
Local Projections,” The Review of Economics and Statistics, July 2019, 101 (3), 522-530.

_ and Geert Mesters, “Identifying Modern Macro Equations with Old Shocks*,” The
Quarterly Journal of Economics, November 2020, 135 (4), 2255-2298.

Barnichon, Régis and Geert Mesters, “A Sufficient Statistics Approach for Macro
Policy,” American Economic Review, November 2023, 113 (11), 2809-2845.

Barrett, Philip, “Estimated Monthly National Accounts for the United States,” IMF
Working Papers, July 2025, 2025 (134), 1. Publisher: International Monetary Fund
(IMF).

Bauer, Michael D. and Eric T. Swanson, “A Reassessment of Monetary Policy Sur-
prises and High-Frequency Identification,” NBER Macroeconomics Annual, May 2023,
37, 87-155. Publisher: The University of Chicago Press.

Baumeister, Christiane and James D. Hamilton, “Structural Interpretation of Vector
Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and
Demand Shocks,” American Economic Review, May 2019, 109 (5), 1873-1910.

Bu, Chunya, John Rogers, and Wenbin Wu, “A unified measure of Fed monetary
policy shocks,” Journal of Monetary Economics, March 2021, 118, 331-349.

Bundick, Brent and A. Lee Smith, “The Dynamic Effects of Forward Guidance
Shocks,” The Review of Economics and Statistics, December 2020, 102 (5), 946-965.

Caldara, Dario and Christophe Kamps, “The Analytics of SVARs: A Unified Frame-
work to Measure Fiscal Multipliers,” The Review of Economic Studies, July 2017, 84 (3),
1015-1040.

33



Campbell, Jeffrey R., Charles L. Evans, Jonas D. M. Fisher, Alejandro Justini-
ano, Charles W. Calomiris, and Michael Woodford, “Macroeconomic Effects of
Federal Reserve Forward Guidance [with Comments and Discussion],” Brookings Papers

on Economic Activity, 2012, pp. 1-80. Publisher: Brookings Institution Press.

Carvalho, Carlos and Fernanda Nechio, “Do people understand monetary policy?,”
Journal of Monetary Economics, September 2014, 66, 108-123.

_, _, and Tiago Tristao, “Taylor rule estimation by OLS,” Journal of Monetary Eco-
nomics, November 2021, 124, 140-154.

Clarida, Richard, Jordi Gali, and Mark Gertler, “Monetary Policy Rules and Macroe-
conomic Stability: Evidence and Some Theory,” The Quarterly Journal of Economics,
February 2000, 115 (1), 147-180.

Fawley, Brett W and Christopher Neely, “The evolution of Federal Reserve policy
and the impact of monetary policy surprises on asset prices,” Federal Reserve Bank of
St. Louis Review, 2014, 96 (1), 73-109.

Fieldhouse, Andrew J, Karel Mertens, and Morten O Ravn, “The Macroeconomic
Effects of Government Asset Purchases: Evidence from Postwar U.S. Housing Credit
Policy*,” The Quarterly Journal of Economics, August 2018, 133 (3), 1503—1560.

Gali, Jordi, Monetary policy, inflation, and the business cycle: an introduction to the new

Keynesian framework and its applications, Princeton University Press, 2008.

Gertler, Mark and Peter Karadi, “Monetary Policy Surprises, Credit Costs, and Eco-
nomic Activity,” American Economic Journal: Macroeconomics, January 2015, 7 (1),
44-76.

Giirkaynak, Refet S., Brian Sack, and Eric Swanson, “The Sensitivity of Long-
Term Interest Rates to Economic News: Evidence and Implications for Macroeconomic
Models,” American Economic Review, March 2005, 95 (1), 425-436.

Hansen, Stephen and Michael McMahon, “Shocking language: Understanding the
macroeconomic effects of central bank communication,” Journal of International Eco-
nomics, March 2016, 99, S114-S133.

Jarocinski, Marek, “Estimating the Fed’s unconventional policy shocks,” Journal of Mon-
etary Economics, May 2024, 144, 103548.

_ and Peter Karadi, “Deconstructing Monetary Policy Surprises—The Role of Informa-

tion Shocks,” American Economic Journal: Macroeconomics, April 2020, 12 (2), 1-43.

34



Jorda, Oscar, “Estimation and Inference of Impulse Responses by Local Projections,”
American Economic Review, March 2005, 95 (1), 161-182.

Kim, Hee Soo, Christian Matthes, and Toan Phan, “Severe Weather and the Macroe-

conomy,” American Economic Journal: Macroeconomics, April 2025, 17 (2), 315-341.

Kuttner, Kenneth N, “Monetary policy surprises and interest rates: Evidence from the
Fed funds futures market,” Journal of Monetary Economics, June 2001, 47 (3), 523-544.

Kanzig, Diego R., “The Macroeconomic Effects of Oil Supply News: Evidence from
OPEC Announcements,” American Economic Review, April 2021, 111 (4), 1092-1125.

Li, Dake, Mikkel Plagborg-Mgller, and Christian K. Wolf, “Local projections
vs. VARs: Lessons from thousands of DGPs,” Journal of Econometrics, March 2024,
p. 105722.

McKay, Alisdair and Christian K Wolf, “What can time-series regressions tell us
about policy counterfactuals?,” Econometrica, 2023, 91 (5), 1695-1725.

Miranda-Agrippino, Silvia and Giovanni Ricco, “The Transmission of Monetary Pol-

icy Shocks,” American Economic Journal: Macroeconomics, July 2021, 13 (3), 74-107.

Nakamura, Emi and Jén Steinsson, “High-Frequency Identification of Monetary Non-
Neutrality: The Information Effect,” The Quarterly Journal of Economics, August 2018,
133 (3), 1283-1330.

Phillot, Maxime, “US Treasury Auctions: A High-Frequency Identification of Supply
Shocks,” American Economic Journal: Macroeconomics, January 2025, 17 (1), 245-273.

Ramey, V. A., “Chapter 2 - Macroeconomic Shocks and Their Propagation,” in John B.
Taylor and Harald Uhlig, eds., Handbook of Macroeconomics, Vol. 2, Elsevier, January
2016, pp. 71-162.

Romer, Christina D. and David H. Romer, “Federal Reserve Information and the
Behavior of Interest Rates,” American Economic Review, June 2000, 90 (3), 429-457.

_ and _ , “A New Measure of Monetary Shocks: Derivation and Implications,” American
Economic Review, September 2004, 94 (4), 1055-1084.

_ and _ , “Transfer Payments and the Macroeconomy: The Effects of Social Security
Benefit Increases, 1952-1991,” American Economic Journal: Macroeconomics, October
2016, 8 (4), 1-42.

35



Swanson, Eric T., “Measuring the effects of federal reserve forward guidance and asset

purchases on financial markets,” Journal of Monetary Economics, March 2021, 118, 32—
53.

_, “The Macroeconomic Effects of the Federal Reserve’s Conventional and Unconventional

Monetary Policies,” IMF Economic Review, September 2024, 72 (3), 1152-1184.

Wieland, Johannes F. and Mu-Jeung Yang, “Financial Dampening,” Journal of
Money, Credit and Banking, 2020, 52 (1), 79-113.

36



A Proofs

Proposition
First, the 2SLS estimator for the Taylor rule is

¢ = (X'PzX)"1X'Pgy
The OLS estimator for the third stage regression (9) is
o= (RR)'R'R

where R = Yy — X(;AS. ry = (yt_1 - g;t_1<;3 e Yt—1 — art_LqAﬁ) is a row vector of lagged

residuals, so the matrix R is constructed by

Therefore ¥ is given by
r=R—-—Rp

=(y-X¢)-R(R'R)"'R'(y— X¢) = MgMivy

using = Mg = — R(R'R)"'R’ and My =1 — X(X'PzX) "' X'Py.
The OLS estimator for the fourth stage regression is

4= (WW) "W = (WW) "W Mz My

[ ]
Proof of Proposition

Write the estimator as
i = (W'W) ™' W/ Mg (y — X6) = (W'W) "Wy (R+ X(6 - 9))

= (W’W)_IW/ (MRR + (MR — MR)R + MRX(gb - CZA)))

where Mg = I — R(R'R)"!'R/, i.e. the corresponding matrix with the true lags of Taylor
residuals. R = R + v implies MrR = v because v is orthogonal to lagged residuals R.
Then v = W+~ + u implies

§= 7+ (WW) W (0t (Mg~ Mp)R + Mg X(6—9) -

The final three terms in equation are zero in the limit. By definition E[w;u;] = 0 so
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plim((W'W)~*W'y) = 0. By definition E[rtyt] = 0 so plim(Mpy) = Mgr. By assumption

E[zir:] = 0 so plim(¢) = ¢. Therefore equation (12 implies
plim (y) =

]
Proof of Proposition By equation , the EMPS w§ can be written as

wé = Agw? + Myw?

Hoya H,,
= Xa D> Bivhs + Al + X Y Blvns + Moy
h=0 h=0
Hye
=Y Bivne+&
h=0

where ff, = \of3f + )\bﬁz, Hye = max{Hya, H,} and £ = \&F + &0 is orthogonal to Ut

for all h. By equation @, the term structure coefficients are given by

V
’7}(; = < aﬁh + )\bﬂh) a:,((lz)l:))

A T‘iari ; o ‘1;@7“2 t;

When Var(w$) and Var(w?) are normalized to 1, the vector form of this equation is

1
=AY+ N
" i Var(wy) * A Var(wy)
o AV + )‘bijb

|

Proof of Proposition [7l  The synthetic MPS ¥° must be in the span of the observed
EMPS term structures, i.e. the columns of I' 7. The vector in this span minimizing ||| —7||2
is the projection of 4% onto the span of the columns of I' 7. This is given by the familiar

expression
= FJ(Fij‘J) F’ ¥
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Proof of Proposition @. By equation , the 4 variance conditional on wg_ i 1S
. H’Uj . . . .
Var(v|w]_,) = Var(z Yiwl_p, + ul|w]_,)
h=0
=Var(viw]_|Jw]_,) = (v])*Var(w})

because the past EMPS is homoskedastic white noise, and orthogonal to ug Similarly, the

total variance conditional on the history of EMPS is

Hy,
Var(vl{w]_,}1) = Var(Y wl_, +uf {w]_ i)
h=0
Hw . . Hw . .
— Z Var(viw] ,) = (Z(’yzf) Var(w])
h=0 h=0

Combining these two equations gives the ratio

Vartlwl ) ()

Var(u[{w]_, 3Ty S (4])?2
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B Smooth Term Structures

This appendix describes how to estimate the smoothed term structures, analogous to the
smooth local projections of Barnichon and Brownlees (2019). First we derive how to esti-
mate smooth local projections in closed form. In particular, we show that there is a shortcut
such that transformation with B-splines is not needed at all; the local projection can be
estimated by ridge regression using a suitable penalty matrix. Then we show how to apply

the smoothing in the context of our broader method.

B.1 Smooth Local Projections

Consider the following local projection for h = 0,1, ..., H:

Yi+h = WeYn + €ntth

where y;,, is the outcome variable of interest, w; is an exogenous shock, and €, 44, is the
error term. If w; is white noise, then the local projection coefficients can be estimated from

the following regression:

Yo=Y Wi+ € (13)

The smooth local projection approach is to approximate the ~y;, coefficients with B-
splines, which are indexed piecewise polynomial functions By(h), Bi(h),..., Bk (h). The

coefficients are given by
K
=Y arB(h)
0

where a4, are coefficients to be estimated. We can rewrite the local projection regression as

H K
§ E apBi(h)wi—p, + €
h=0 0

K
= Z QpUVi—p + €t
0
where

H
vi—n = Y Br(h)wi_p (14)
h=0

is a smoothed version of the shock. The coeflicients oy can be estimated by OLS.
A vector respresentation is useful. Let w; be the H + 1-dimensional row vector of shocks

at time ¢, and ¥y be the H 4 1-dimensional row vector of smoothed shocks at time t. They
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are related by

Uy = W B

where B is the (H + 1) x (H + 1) matrix of B-spline basis functions, sampled at appropriate
points to recover equation . Stack the vectors into matrices, so that V' is the T'x (H +1)
matrix of smoothed shock vectors, W is the T' x (H + 1) matrix of shock vectors, and y is

the T' x 1 vector of outcomes. The smooth local projection regression is written
y=Va+e

where « is the K + 1-dimensional vector of coefficients, and ¢ is the T x 1 vector of errors.

The coefficients from the original form ¥ = W+ + € can be recovered by
v = Ba

because WB = V.
Barnichon and Brownlees| (2019)) estimate the smooth local projections by ridge regres-
sion. An appropriate penalty term gives the interpretation that the local projection is

shrunk towards a lower order polynomial. The ridge regression estimator is
@y = argmin (y — Va) (y — Va) + A\d’Pa
(6%

— (V'V +AP) ' VY

where ) is a positive shrinkage parameter, and P is the penalty matrix. A can be chosen

by cross-validation. For the canonical smooth local projections the penalty matrix is
P=D/D,

where D, is the rth difference matrix.
Because the estimated original coefficients are related by 4y = Bdy, there is a short-cut

to smooth local projections that skips the transformation step entirely:

Proposition 8 The smooth local projection coefficient vector 4y can be found by estimating

equation by ridge regression with penalty matriz
P = (B YHPB~!
so that the estimate is given by
A= (W'W + APg) ' W'y
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Proof. The relationship 4, = Bé&) and the expression for the ridge regression estimator
Gy imply
=B (V'V+AP) ' Vy

— B(BW'WB+AP) ' BW'y
= (W'W + B YPB Y Wy

The definition Pp = (B~!)PB~! gives the proposed expression, which is equivalent to the
ridge regression estimator with penalty matrix Pp. =
Ridge regression also has closed form standard errors. The conditional variance of the

ridge regressor is
Var(8|V) = o® (V'V +AP) ' V'V (V'V 4 AP) !

where o is the error variance. Returning to the original coefficients, the conditional variance
is

Var(ia|V) = a?B (V'V +AP) V'V (V'V +AP) ' B/
Var(,|W) = 0B (BW'WB + AP) " BW'WB (BW'WB + AP) ' B
— o (W'W + XB~YPB™) " WW (W'W + AB)yPB )™
B.2 Smoothed Term Structures

We can apply the smooth local projection method to the term structure estimation. The
final step of the four-stage procedure is to regress the estimated policy residuals 24 onto lags
of the EMPS wg . The smooth local projection method is directly applicable to equation
(5). The regression is

Hay
Vg = Z’yiwg_h + ui
h=0

Hw K . . .
= Z Z o B (h)w!_, + u]

h=0 0
K
_ JoJ J
= E LUy, T Uy
0

where again vz_h is the smoothed shock.

The ridge regression estimator for the vector of o coefficients is

ar=(V'V+AP) VD
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where V' is the vector of transformed shocks vf . The penalty matrix AP is the same as in

the previous section. The coefficients are related to the term structure coefficients by
I = Bay

and the vector 7 is given in matrix notation by 7 = Mg Myvy, so the smoothed term
structure estimator is

An=B(V'V +AP) " V' Mg My

In terms of untransformed shocks, the estimator is
A= (W'W +APg) " W' Mg My
The penalized regression of course is biased, with probability limit
D (W'W 4+ APg) Wy

following the same logic as in the proof of Proposition
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C Further Taylor Rule Specification Alternatives

Consistent estimation of the Taylor rule is crucial for our estimation exercise. In Section
[4.2.7] we explored how robust our estimates are to alternative measures of inflation and real
activity. In this appendix, we explore further alternative specifications.

Table [6] presents how our results depend on the sample period used. Our results are
broadly robust across these choices, except in the extreme case where we both begin the
sample after 1985 and include the zero-lower-bound (ZLB) period.

In our baseline IV estimation, we used three types of structural shocks as instruments,
listed in Table In case one of the instruments fails the exclusion restrictions, we also
repeat our analysis with different subsets of instruments. Table [7] reports the estimates.
The inflation coefficient in the Taylor rule is robust to these choices, although the GDP
coefficient changes substantially.

Finally, we include a variety of OLS estimates for the Taylor rule, to compare our
approach with the typical method in the literature. These are reported in Table |8 which
reveals that OLS estimates are highly attenuated compared to our IV results. In addition
to the expected bias, OLS estimates are also highly sensitive to changes in the regression

specification.

D Alternative Synthetic Shocks

In Section | we used a set of modern EMPS to construct the synthetic MPS. In this
appendix, we repeat the exercise with alternative sets of EMPS. Broadly speaking, the
estimated IRFs look similar to the baseline case: the immediate shock is contractionary
with little effect on prices, the short-run shock is expansionary at some horizons, and the
long-run shock is deflationary and reduces rates on impact.

In our first alternative, we employ a smaller set of EMPS, restricted to a few shocks
that are thought to represent traditional monetary policy tools. In this implementation, we
drop the Swanson LSAP shock from the baseline, which may capture non-traditional tools
used by the Fed beyond classic interest rate policy. Figure [9 plots the estimated IRFs to
the synthetic shocks estimated from this smaller set. They closely resemble the baseline
approach, although now the short-run news shock does not feature a temporary production
expansion.

In our second alternative, we employ an expanded set of EMPS in order to more ac-
curately approximate the target synthetic shock structure (Figure . To the baseline we
add the [Jarocinski and Karadil (2020) shock, which controls for central bank information

in a different way than [Miranda-Agrippino and Ricco| (2021)). And even though they have
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Figure 9: Impulse Responses to Synthetic Shocks (Smaller Set)

Figure shows impulse responses from a VAR to synthetic monetary policy shocks. The first column shows
responses to the immediate shock, which has news on impact and in the first following month. The second
column shows responses to the short-run news shock, which has news about months 2 — 6. The third column
shows responses to the long-run news shock, which has news about months 7 — 24. The shaded region
indicates the 90% confidence interval conditional on the impact values; the dotted lines indicate the 90 %
confidence intervals accounting for impact uncertainty due to the proxy VAR. The VAR lag length is 11 and
is chosen by AIC.

relatively similar term strucutres, the shocks are not perfectly correlated and cover different
samples improving our statistical power. Figure plots the IRFs. The main difference
relative to the baseline is that the IRFs are more precisely estimated. Beyond this, the
short-run news shock has a more negative effect on rates and a longer-lived expansion.
Our final alternative adds the Bundick and Smith| (2020) term structure uncertainty
level shock, which is constructed from high-frequency data to capture yet another channel
of monetary policy. Altogether, we use seven different EMPS to construct this series of
synthetic shocks. The IRFs of the synthetic shocks are plotted in Figure and the IRFs
of each component are plotted in Figure Again, the main differences between these
results and the baseline specification are in the effects of short-run news. The interest
rate effect is more negative, and real activity now falls for several months before a mild

expansion.
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Figure 10: Impulse Responses to Synthetic Shocks (Larger Set)

Figure shows impulse responses from a VAR to synthetic monetary policy shocks. The first column shows
responses to the immediate shock, which has news on impact and in the first following month. The second
column shows responses to the short-run news shock, which has news about months 2 —6. The third column
shows responses to the long-run news shock, which has news about months 7 — 24. The shaded region
indicates the 90% confidence interval conditional on the impact values; the dotted lines indicate the 90 %
confidence intervals accounting for impact uncertainty due to the proxy VAR. The VAR lag length is 11 and
is chosen by AIC.
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Figure 11: Impulse Responses to Synthetic Shocks (Largest Set)

Figure shows impulse responses from a VAR to synthetic monetary policy shocks. The first column shows
responses to the immediate shock, which has news on impact and in the first following month. The second
column shows responses to the short-run news shock, which has news about months 2 — 6. The third column
shows responses to the long-run news shock, which has news about months 7 — 24. The shaded region
indicates the 90% confidence interval conditional on the impact values; the dotted lines indicate the 90 %
confidence intervals accounting for impact uncertainty. The VAR lag length is 11 and is chosen by AIC.
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Figure 12: Impulse Responses to Empirical MPS (Largest Set)

Figure shows impulse responses from a VAR to each of the underlying empirical MPS. Each column shows
the response to a different shock. The shaded region indicates the 90% confidence interval conditional on
the impact values; the dotted lines indicate the 90 % confidence intervals accounting for impact uncertainty.
The VAR lag length is 11 and is chosen by AIC.
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E Monte Carlo Validation

To validate our method and to check some of its properties, we conduct a Monte Carlo
experiment. We simulate data from the motivating three-equation New Keynesian model
from Section |2, extended to include additive shocks to the Euler equation (a “demand”
shock) and the Phillips curve (a “supply” shock). We also simulate two instruments for
each of the two non-monetary shocks, one strong and one weak. We then assess our method
against these data in two distinct exercises: a long-sample assessment using 25,000 periods
of simulated data; and a short-sample assessment using fewer periods.

Since the aim here is to test our method, rather than shock identification per se, we
assume that the target empirical monetary shock is noisy (so Uarff > 0) and inherently
monetary in nature, but that it has a non-trivial term structure (so B,{ # 0 for some h > 0).
Then the subsequent exercises answer the question: if a shock were identified perfectly,

under what conditions would we correctly measure its term structure?

Parameter Interpretation Value Parameter Interpretation Value
11—« Returns to scale 0.67 B Utility discount factor 0.997
Pa Technology shock persistence 0.98 p, Interest rate smoothing in Taylor rule 0.49
Pz Demand shock persistence 0.56  ppe Supply shock persistence 0.49
o Risk aversion 1.0 ¢ Labor supply elasticity 1.0
On Taylor rule inflation coefficient 1.5 ¢n Taylor rule output gap coefficient 0.125
0 Calvo parameter 0.75 Demand elasticity 6.0

{Bi iL:’Ol EMPS lag structure 1
L EMPS lag length 4 warg MPS measurement error variance 0.0032
varyvy EMPS surprise variance 0.0032  wvary, EMPS 1-period news variance 0.00082
varvs EMPS 1-period news variance  0.00012 wvaryy EMPS 1-period news variance 0.000032

Table 9: Parameters of the Monte Carlo Simulation

Table shows parameters used for simulations drawn from a calibrated version of the standard three-line New
Keynesian model of |Gali (2008]).

E.1 Large Sample Properties

Table [10] reports the results of this first exercise, using standard parameters for the Taylor
rule, an arbitrary declining term structure for the monetary policy shock, ~;, and an AR(1)
residual. The model parameters otherwise match a standard monthly calibration (see Table
[9] for details). The specification in column (1) uses all four instruments, including the two
strong ones. In this case, estimation recovers the correct parameters almost perfectly. With
large enough sample and strong enough instruments, our method works.

In columns (2)-(3) we consider alternatives when multiple strong instruments are not

available. In column (2), the case where we have only instruments for the demand shock,
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but one is strongE Although the point estimates are not as accurate as in the case with
strong instruments for multiple shocks, the standard errors are appropriately wider, in that
the true value of the parameters lies within two standard errors in all cases. In column (3)
we include only weak instruments, although since one is a supply shock and one a demand
shock there they cover more dimensions of variation in the data. Unsurprisingly, with only
weak instruments, performances is worse. However, in column (4) we allow for the most
obvious practical fix, just including lags of the weak instruments. The intuition is that past
shocks can have distinct effects on contemporaneous endogenous variables. In this case,
adding just six lags results in improved performance for almost all point estimates, and

confidence intervals which continue to nest the true parameters.

Model Four-stage IV OLS

(1) (2) (3) (4) (5) (6) (7) (8)

Taylor Rule ér 1500  1.501  1.566 1524  1.519 1417 1405  1.404  1.404
(0.003) (0.076) (0.031) (0.024) (0.003) (0.003) (0.003) (0.003)

¢, 0125 0128 0120 0146  0.137  0.093 0.084 0.084  0.084

(0.002) (0.010) (0.015) (0.010) (0.001) (0.001) (0.001) (0.001)

Term Structure v 0435 0435 0433 0450 0443 0402 0394 0393  0.392
(0.005) (0.006) (0.014) (0.010) (0.004) (0.004) (0.004) (0.004)

v 0109 0107 0021 0059 0097 0111 0110  0.104  0.104

(0.004) (0.254) (0.052) (0.017) (0.004) (0.004) (0.004) (0.004)

v 0017 0017 -0.054 -0.018 0.010 0.016 0017 0016 0.016

(0.004) (0.196) (0.039) (0.013) (0.004) (0.004) (0.004) (0.004)

vs 0.004  0.008 -0.028 -0.013 0.003  0.009 0009 0.007  0.007

(0.004) (0.104) (0.022) (0.008) (0.004) (0.004) (0.004) (0.004)

Residual lag length, L 1 1 1 1 1 1 6 24
Demand instrument 2 2 1 1

Supply instruments 2 0 1 1

Instrument lags 0 0 0 [

F-test, first stage, my 374.2 7.7 26.2 7.3

F-test, first stage, y: 102.2 37.5 9.1 3.2

Lagged v No Yes Yes Yes

Table 10: Monte Carlo Simulation: Long sample

Table reports the results of two estimating the term structure to 25,000 periods of simulated data using a
New Keynesian model with a well-identified monetary policy shock. Columns (1) to (4) use our four-stage IV
approach, and columns (5) to (8) estimating the Taylor rule by OLS. In all cases where only one instrument
is used, it is the weakest one available.

In columns (5) to (8) we repeat this exercise for OLS estimation. In all cases, OLS is
inaccurate in large samples and provides misleadingly narrow confidence intervals. As is
well-known, OLS estimates of Taylor rules are inconsistent, and so even including extensive

lagged endogenous variables and interest rates as controls does not fix this problem.

1We need to use at lease two instruments to estimate a Taylor rule with two contemporaneous variables.
With fewer instruments than endogenous variables, the fitted endogenous regressors in the second stage are
colinear.
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In summary, our four-stage IV method works in large samples. It is best with strong
instruments but including instruments lags in the first stage can help offset some of the
problems of instrument weakness. Even the worse version of the IV approach is superior to
the best OLS method.

E.2 Small Sample Properties

We now report the performance of our method on repeated small samples. To avoid a
profusion of specifications, we select three models, a “strong instruments” IV, a “weak
instruments” IV, and a long-lagged OLS. These versions, which correspond to columns (1),
(4), and (8) of Table represent reasonable best- and worst-cases for the IV and the best
case for OLS in practice.

Figure [13| reports the distribution of the estimates for the Taylor rule coefficients, for
repeated samples of 250, 500 (which is close to our sample size), and 750 observations.
This shows that if strong instruments are available, then our four-stage method is unbiased
and relatively powerful even in small samples. When instruments are weak, the method is
much less powerful. In general, the distribution of OLS is tight, but it is biased and to a
non-trivial extent in samples of size relevant to our work.

It is important to note that the results presented here do not contradict |(Carvalho et al.
(2021). There, the authors argue that Taylor rule estimation by OLS is, in most reasonable
cases, better than GMM using lagged endogenous variables. Although they are inconsis-
tent, the small-sample bias of OLS estimates Taylor rule is proportional to the variance of
endogenous variable due to the monetary shock. Since this is small, the resulting bias is also
small. One intuition for their findings is that lagged-variable GMM addresses endogeneity
but only by throwing out contemporaneous co-variation of endogenous variables and the
policy rate (except for that due to autocorrelation). In contrast, OLS uses information
about the current period, but at the price of endogeneity bias. The key result of |Carvalho
et al.| (2021) is that this is usually a price worth paying. Our method gives the best of both
worlds. It exploits contemporaneous variation in the endogenous variables, but by isolating
only the variation due to non-monetary shocks it corrects for endogeneity bias. This also
has important implications for some of the limitations of OLS laid out by |Carvalho et al.
(2021)), who show that both OLS and lagged-variable GMM perform increasingly poorly for
either persistent monetary shocks or for Taylor rule coefficients near to unity. Neither of
these limitations apply to our method. And, as we will see in the next paragraph, these
properties matter when estimating the term structure of monetary policy.

Figure [14]shows the same distribution of point estimates in the repeated samples for the
estimated term structure. When assessed in this way, the four-stage IV estimator performs

well even when instruments are weak, producing better estimates of the term structure
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compared to OLS even in cases where the IV Taylor rule estimates are clearly inferior. This
is particularly true for 7g, arguably the most important entry in the term structure. The
intuition is that because the term structure of the EMPS is the projection of the whitened
estimated Taylor rule residuals onto the EMPS, and because the endogenous variables are
autocorrelated, the estimated residuals are correlated with the whitening regressors. As a
result, the relationship between gZ) and ¥ is effectively concave The confidently incorrect
Taylor rule estimates from OLS are heavily penalized by this convexity and so are projected
onto term structure estimates far from the truth. In contrast, the IV estimates are more
spread out and so the mapping to 4 is,on average, more forgiving.

Another important measure of the accuracy of test statistics is the coverage ratio. To
assess this, we compute for each simulation the p-value of a hypothesis test with the true
null. If the distribution of these p-values is uniform, then the test will have good coverage
ratios at all confidence intervals. Note that this is a joint test of both the point estimate
and its variance. From a practical perspective is the gold standard for creating useful
estimators: if an estimate delivers uniform p-values, it says that one can do reasonably
accurate inference about the data generating process, even if the if the point estimates are
maccurate.

Figure (15| reports the distribution of p-values for the estimated Taylor rule coefficients.
Throughout, the IV estimates are relatively close to the diagonal. Performance is better,
of course, when instruments are strong or when the sample size is larger. But for samples
similar to the size we use, the results are generally good. In contrast, confidence intervals
based on OLS cannot be trusted for any parameters for small sample sizes or for ¢, ¢, at

any sample size.

15This concavity can be seen in the slight skews for the smallest sample sizes in Figure
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Figure 13: Short sample simulation: Distribution of estimated Taylor Rule coefficients

Figure shows the distribution of the estimated Taylor rule coefficients at different sample sizes. Calculations
drawn from disjoint subsamples of a 100,000 period simulation.
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Figure 14: Short sample simulation: Distribution of estimated term structure of monetary
policy.

Figure shows the distribution of the estimated monetary policy term structure at different sample sizes.
Calculations drawn from disjoint subsamples of a 20,000 period simulation.
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Figure 15: Short sample simulation: Distribution of p-values for Taylor Rule coefficients
Figure shows the distribution of the p-value of the true model parameter for Taylor rule coefficients at

different sample sizes, using small-sample point estimates and standard errors. Perfect coverage ratios
would produce diagonal lines. Calculations drawn from disjoint subsamples of a 20,000 period simulation.
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