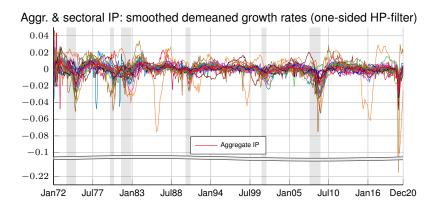
Identifying sectoral shocks with a modicum of economic theory:

from the 1970s to the pandemic

Ferre De Graeve

Jan David Schneider
KU Leuven


ASSA 2022 Annual Meeting: SCE Session

Motivation

- ► IP volatility decreased in mid-1980s (Great Moderation)
- More recently: intermittent periods of extreme fluctuations (Great Recession, Pandemic)
- What are the sources of aggr. business-cycle fluctuations?

Motivation

- Breaking down IP into 25 sectors
- Sectors co-move and correlated with aggregate growth
 - Average correlation btw. sectoral and aggr. growth: 0.53
- What drives sectoral co-movement?

Motivation

Questions

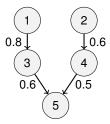
- What are the sources of aggr. business-cycle fluctuations?
- What drives sectoral co-movement?

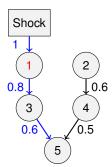
Potential drivers

- Macro (aggr.) shocks: demand, supply, fiscal, mp, etc.
- Micro to macro: sectoral shocks with aggregate consequences

Challenge

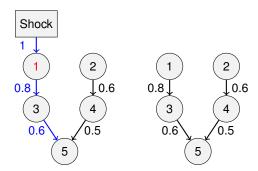
- Fundamental identification problem: sectoral co-movement from sectoral or aggr. shocks?
- Most quantifications rely on theoretical models
 - Misspecification concerns

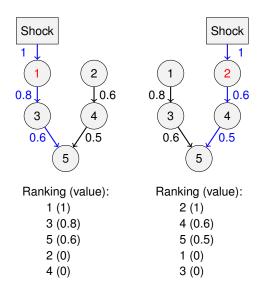

Approach

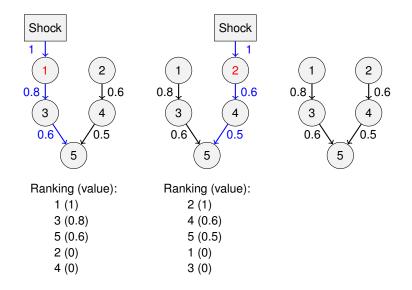

Method

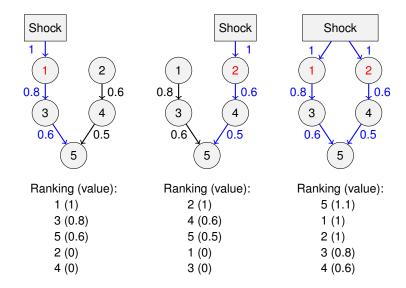
- Need theory-consistent restrictions to solve identification problem
- Identification not from time domain but using additional cross-sectional data

Identification idea


- Theory: Shocks propagate through network in particular pattern
- Summarize pattern using network measures, s.a. Leontief inverse: input-output data
- Rank connectedness and implement as heterogeneity restrictions in a FAVAR


Ranking (value):


- 1 (1)
- 3 (0.8)
- 5 (0.6)
- 2 (0)
- 4 (0)



Ranking (value):

- 1 (1)
- 3 (0.8)
- 5 (0.6)
- 2(0)
- 4 (0)
- . (0

Sectoral shocks in multi-sector RBC models

- e.g. Carvalho (2008) or Horvath-Dupor model
- ▶ Leontief inverse ≈ sufficient statistic for sectoral shock transmission through network
 - ightharpoonup Rankings of theoretical IRFs pprox rankings of Leontief inverse

Sectoral vs. aggregate shocks

- Aggregate shocks propagate differently through network
 - ► Rankings for aggregate shocks ≠ rankings for sectoral shocks

Rankings of a sectoral and aggr. tech. shock

Rank	u_{13} : Leontief	u_{13} : $IRF_{t=0}$	
1.	13	13	
2.	3	3	
3.	2	2	
4.	14	14	
5.	1	1	
6.	26	26	
	:	•	
20.	9	4	
21.	4	23	
22.	23	9	
23.	24	24	
24.	5	5	
25.	25	25	
26.	20	20	

26-sector Carvalho (2008) model

Rankings of a sectoral and aggr. tech. shock

Rank	u_{13} : Leontief	u_{13} : $IRF_{t=0}$	
1.	13	13	
2.	3	3	
3.	2	2	
4.	14	14	
5.	1	1	
6.	26	26	
:	:	:	
20.	9	4	
21.	4	23	
22.	23	9	
23.	24	24	
24.	5	5	
25.	25	25	
26.	20	20	

- 26-sector Carvalho (2008) model
- Direct correspondence btw. IRF rankings and Leontief inverse

Rankings of a sectoral and aggr. tech. shock

Rank	u_{13} : Leontief	u_{13} : $IRF_{t=0}$	v_{agg} : $IRF_{t=0}$
1.	13	13	13
2.	3	3	22
3.	2	2	6
4.	14	14	17
5.	1	1	7
6.	26	26	8
:	:		•
20.	9	4	1
21.	4	23	2
22.	23	9	24
23.	24	24	16
24.	5	5	3
25.	25	25	26
26.	20	20	25

- 26-sector Carvalho (2008) model
- Direct correspondence btw. IRF rankings and Leontief inverse

Rankings of a sectoral and aggr. tech. shock

Rank	u_{13} : Leontief	u_{13} : $IRF_{t=0}$	v_{agg} : $IRF_{t=0}$
	10	10	10
1.	13	13	13
2.	3	3	22
3.	2	2	6
4.	14	14	17
5.	1	1	7
6.	26	26	8
•	•	•	:
20.	9	4	1
21.	4	23	2
22.	23	9	24
23.	24	24	16
24.	5	5	3
25.	25	25	26
26.	20	20	25

- 26-sector Carvalho (2008) model
- Direct correspondence btw. IRF rankings and Leontief inverse
- Aggregate shock different ranking/ network propagation

Literature

Production networks (input-output data)

Long & Plosser (1983), Horvath (1998, 2000), Dupor (1999), Acemoglu et al. (2012), Bouakez, Cardia & Ruge-Murcia (2014), Baqaee & Farhi (2019, 2020), Bigio & La'O (2020), Pasten, Schoenle & Weber (2020, 2021)

Empirical prod. networks but calibrated on specific theory

Foerster et al. (2011), Acemoglu, Akcigit & Kerr (2016), Atalay (2017), vom Lehn & Winberry (2021)

Contribution: Minimal theory

Identification using cross-sectional information

De Graeve & Karas (2014), Amir-Ahmadi & Drautzburg (2021), Matthes & Schwartzman (2021)

Contribution: Using I-O data to identify sectoral shocks

Outline

- ► Reduced-form model
- Additional identification details
- 4 main results
- DGP exercise

Reduced-form FAVAR model

$$X_t = \Lambda F_t + E_t$$
$$F_t = \Phi F_{t-1} + U_t$$

- FAVAR companion form
- $ightharpoonup X_t$: sector and aggr. output growth rates
- $ightharpoonup F_t$: factors with loadings Λ
- ▶ E_t : includes measurement errors, $\epsilon_t \sim \mathcal{N}(0, R_{\epsilon})$
 - $ightharpoonup R_{\epsilon}$ diagonal
- ▶ U_t : includes reduced-form shocks, $u_t \sim \mathcal{N}(0, Q_u)$

Distinguish up- and downstream propagation

Downstream propagation of shocks:

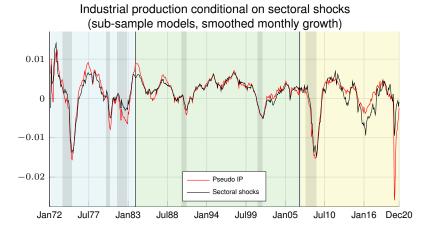
$$H = (I - A)^{-1}$$
 with $a_{ij} = \frac{\text{Sales of } j \text{ to } i}{\text{Total Sales of } i}$

Upstream propagation of shocks:

$$\widetilde{H} = \left(I - \widetilde{A}\right)^{-1}$$
 with $\widetilde{a}_{ij} = \frac{\text{Sales of } i \text{ to } j}{\text{Total Sales of } i}$

▶ Rank columns of H and \widetilde{H} ; use for identification

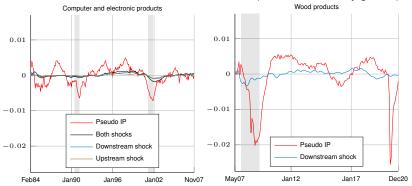
Parametrisation


Sub-sample dependent model parametrisation

Parameters	Feb72 – Dec20	Feb72 – Dec83	Jan84 – Nov07	Jan07 - Dec20
M	1	1	1	1
K	12	12	15	8
P	3	1	1	4
s	0	0	0	0
r	1	1	1	1

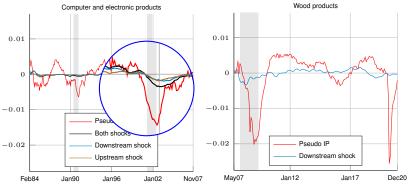
More details

- ▶ 1997 I-O accounts including materials and capital flows
- Derive rankings for 64 GDP sectors and only rank subset of 25 industrial production sectors
- Partial identification of single sectoral shocks; all sectoral shock contributions aggregated afterwards
- Use standard sign restriction algorithms (Uhlig 2005 or Rubio-Ramírez et al. 2010)
- Identify sectoral shocks only in somewhat connected sectors with sufficient heterogeneity of connections
- Implement rankings in clusters: allows for small deviations from strict rankings
- Regress historical decomp. on sectoral output: Account for individually identified shocks not being orthogonal to each other
- Models for different sub-samples to account for heteroskedasticity, structural breaks, etc.


1. Sectoral shocks major source of aggr. fluctuations

- Sectoral shocks explain major part of aggr. fluctuations
- Exception: Pandemic

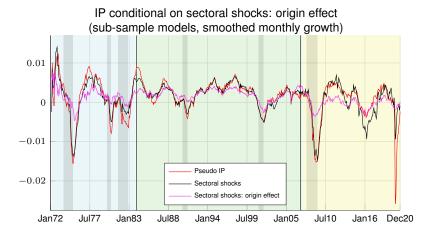
2. Sector examples match typical macro narratives


Individual contributions of sectoral shocks to IP (smoothed monthly growth)

- ► Tech boom (mid-1990s) and bust (early-2000s)
- ► GR: Wood products supplies construction (outside dataset)
- Pandemic: Wood products no major source of shocks

2. Sector examples match typical macro narratives

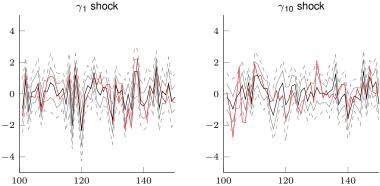
Individual contributions of sectoral shocks to IP (smoothed monthly growth)



- ► Tech boom (mid-1990s) and bust (early-2000s)
- ► GR: Wood products supplies construction (outside dataset)
- Pandemic: Wood products no major source of shocks

3. No single sector dominates (all of the time)

- Previous sector examples: Some sectors important sources of aggr. fluctuations at certain points in time
- No sectors with shocks that exhibit large aggr. consequences all of the time


4. Networks important for sectoral-shock propagation

- Business cycles: sectoral shocks many or a few important?
- Network amplifies sectoral shocks; generate co-movement
- Degree of network amplification varies through time

DGP exercise using Carvalho (2008) model

Theoretical and estimated shocks: 2 example shocks (AR version)

- Theor. shocks (red); FAVAR estimated (black & conf. bands)
- ► Single small-sample simulation
- Series track each other fairly well

DGP exercise using Carvalho (2008) model

Sectors	AR shocks	RW shocks
1.	0.73	0.79
2.	0.61	0.68
3.	0.56	0.64
4.	0.66	0.73
5.	0.58	0.66
6.	0.69	0.75
7.	na	na
8.	0.35	na
9.	0.54	na
10.	0.45	na
11.	0.63	na
12.	0.63	na
13.	0.47	na
14.	0.71	0.8
15.	na	na
16.	0.47	0.56
17.	0.51	0.65
18.	0.47	na
19.	0.55	0.63
20.	0.61	0.68
21.	0.5	0.54
22.	0.42	0.45
23.	0.56	0.57
24.	0.52	0.59
25.	0.66	0.75
26.	0.53	0.6
Average	0.56	0.65

- Correlation between simul./theor. shocks and median sectoral shocks estimated by FAVAR
- Relatively high correlation considering the small simulation sample

Conclusion

- Sectoral disturbances major source of aggregate volatility
- Network amplifies sectoral shocks; generate co-movement
- Pandemic is different to most other recessions
- Source sectors of major recessions plausible
- These results do not hinge on specific theoretical model

Conclusion (continued)

- DGP exercise: Method works in canonical multi-sector DSGE models
- Method can be extended in the following way:
 - Can incorporate different data, e.g. prices
 - Can use methodology in different settings, e.g. financial networks, different degrees of price stickiness,...
 - Broadly applicable: macro equivalence/ micro dissonance