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1 An example for which assumptions 1 through 4 hold

In this section I present an example of a production function G and a set of feasible partitions F

that satisfy assumptions 1 through 4.

As in section 2.1, there are two groups of workers, dominant and oppressed. Let αd and αo be

the measures of dominant and oppressed group workers.

There are N levels of tasks. Each worker inelastically supplies one unit of labor to one out of

the set of level-0 tasks. Higher levels of tasks then consist of aggregates of lower level tasks. More

specifically, each level-k task consists of an aggregate of level-(k-1) tasks.

In order to label tasks, I locate each level-k task within an (N − k)-dimensional unit cube. Let

(ik, ..., iN−1) be the coordinates of a particular level-k task within the level-k unit cube [0, 1]N−k.

Let ℓk(ik, ..., iN−k) be the quantity produced of the level-k task with coordinate (ik, ..., iN−1). Since

level-0 tasks are produced directly from raw labor supply, ℓk(i0, ..., iN−1) is just the quantity of labor

supplied to the level-0 task with coordinate (i0, ..., iN−1).

For all k > 0, the production function for each level-k task has the following CES form:

ℓk(ik, ..., iN−1) =

[∫ 1

0

ℓk−1(ik−1, ..., iN−1)
(τk−1−1)/τk−1dik−1

]τk−1/(τk−1−1)

(1)

That is, the quantity of each level k task is a CES aggregate of the level k − 1 tasks that share the

same final N − k coordinates. Here τk−1 is the elasticity of substitution between level k − 1 tasks.

Aggregate labor L is just the level N aggregate task:

L = ℓN =

[∫ 1

0

ℓN−1(iN−1)
(τN−1−1)/τN−1diN−1

]τN−1/(τN−1−1)

(2)

Final output is produced using aggregate labor L and the non-labor factor of production Z. The

final production function is

Y = G(L,Z) (3)

A partition P divides the set of level-0 tasks into sets of reserved and unreserved tasks. The set

of feasible partitions F is the following. Let R be the set of coordinates of tasks in the set of reserved

tasks generated by a partition P. The partition P is feasible if and only if there exists k < N and

R ∈ [0, 1] such that R = {(i0, ..., ik, ..., iN−1)|ik ≤ R}.
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Figure 6 shows an example of two different feasible partitions with N = 2 levels.

Figure 6: Reserved and unreserved tasks

This figure shows two different feasible partitions with N = 2 levels. Level-0 tasks are indexed by
(i0, i1). The figure on the left shows a partition such that all level-0 tasks with coordinate i0 ≤ R are
reserved, while the figure on the right shows a partition such that all level-0 tasks with coordinate
i1 ≤ R are reserved.

Suppose that a partition is chosen such that all level-0 tasks with k coordinate ik ≤ R are

reserved. Suppose also that R > αd/(αd +αo), so that the constraint that oppressed group workers

cannot choose reserved jobs binds. Then all dominant group workers choose reserved tasks and all

oppressed group workers choose unreserved tasks. All tasks enter symmetrically into the production

function. The law of one price for tasks thus implies that within the sets of reserved and unreserved

tasks, the amount of labor allocated to each task is the same. Thus, ℓ0(i0, ..., ik, ..., iN−1) = αd/R

if ik ≤ R, and ℓ0(i0, ..., ik, ..., iN−1) = αo/(1− R) if ik ≥ R. Plugging these quantities into (1) and

solving iteratively yields that aggregate labor is given by:

L =

[
R
(αd

R

)(τk−1)/τk
+ (1−R)

(
αo

1−R

)(τk−1)/τk
]τk/(τk−1)

(4)

Thus the reduced form production function can be written as Y = F (L,Z) where L is given by (4),

for any pair (R, σ) such that R ∈ [αd/(αd + αo), 1] and such that σ ∈ {τ0, ..., τN−1}. The set of

feasible values of σ is thus S = {τ0, ..., τN−1}. As mentioned in section 2.1, the set S is discrete.
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I do not know if it is possible to construct an example that satisfies assumptions 1 through 4 and

such that S is continuous.

2 Conditions under which assumption 5 holds

I show if F is the CES production function, then part 3 of assumption 5 holds if and only if the

elasticity of substitution between labor and the non-labor factor θ satisfies θ > 1− sL, where sL is

the labor share of income.

Proposition 8. Let

F (L,Z) =
(
βL(θ−1)/θ + (1− β)Z(θ−1)/θ

)θ/(θ−1)

(5)

Then (∂2F/∂L2)L+ ∂F/∂L > 0 if and only if θ > 1− sL.

Proof. Write the labor share as:

sL =
LFL

F
, (6)

Some algebra shows that:

FLL

FL
=

sL − 1

θ L
=⇒ FLLL+ FL = FL

(sL − 1

θ
+ 1

)
= FL

sL + (θ − 1)

θ
. (7)

Since FL > 0,

FLLL+ FL > 0 ⇐⇒ sL + (θ − 1) > 0 ⇐⇒ θ > 1− sL. (8)

3 Conditions under which assumption 6 holds

I show that assumption 6 holds if F is the CES production function.

Proposition 9. Let

F (L,Z) =
(
βL(θ−1)/θ + (1− β)Z(θ−1)/θ

)θ/(θ−1)

(9)

Then

−∂3F/∂L3

∂2F/∂L2
L ≤ 1− ∂2F/∂L2

∂F/∂L
L (10)
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Proof. Define

A = β L
θ−1
θ , B = (1− β)Z

θ−1
θ , U = A+B,

so

F (L,Z) = U
θ

θ−1 .

Some algebra yields:

FL = U
1

θ−1 β L−1/θ,

FLL = U
2−θ
θ−1

β

θ
L−1/θ−1

(
(1− θ)A + B

)
,

FLLL = U
3−2θ
θ−1

β

θ2
L−1/θ−2

[
(1− θ)

(
(2− θ)A+B

)
+ (2− θ)B

]
.

The labor share sL is:

sL =
FL L

F
=

β L(θ−1)/θ

A+B
=

A

U
, 1− sL =

B

U
.

A little algebra shows

LFLL

FL
= − θ − 1

θ
(1− sL),

LFLLL

FLL
= − θ − 1

θ
(1− sL) − 1 +

(θ − 1)2

θ2
AB

U2
.

Plug these into

1 − LFLL

FL
+

LFLLL

FLL
= 1 −

[
− θ−1

θ (1− sL)
]
+

[
− θ−1

θ (1− sL)− 1 + (θ−1)2

θ2
AB
U2

]
.

Everything but the last term collapses, leaving

1 − LFLL

FL
+

LFLLL

FLL
=

(θ − 1)2

θ2
AB(

A+B
)2 =

(θ − 1)2

θ2
β (1− β)L

θ−1
θ Z

θ−1
θ(

β L
θ−1
θ + (1− β)Z

θ−1
θ

)2 .

Hence
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1 − LFLL

FL
+

LFLLL

FLL
> 0,

which rearranges to

− LFLLL

FLL
< 1 − LFLL

FL
.

4 Conditions under which assumption 7 holds

I show that if F is the CES function, then part 2 of assumption 7 holds if and only if the elasticity

of substitution θ between labor and the non-labor factor is such that θ < 1.

Proposition 10. Let

F (L,Z) =
(
βL(θ−1)/θ + (1− β)Z(θ−1)/θ

)θ/(θ−1)

(11)

Then

−∂3F/∂Z∂L2

∂2F/∂Z∂L
< −∂2F/∂L2

∂F/∂L
(12)

if and only if θ < 1.

Proof. Let sL = FLL/F be the labor share of income. Some algebra shows that:

FLLZ

FLZ
− FLL

FL
=

1− θ

θ

sL
L

(13)

Thus

−FLLZ

FLZ
< −FLL

FL
⇐⇒ θ < 1 (14)

5 Proofs not included in the main text

For the following proofs it is helpful to reproduce equations (3), (9), and (12) from the main text:
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wd(αd, αo, R, σ) =
∂F

∂L

(
L
R

αd

)1/σ

(15)

MRTS =
∂L/∂αd

∂L/∂αo
=

[
R

(1−R)

αo

αd

]1/σ
(16)

∂wd

∂R
=

∂2F

∂L2

∂L

∂R

(
L
R

αd

)1/σ

︸ ︷︷ ︸
competition effect

+
1

σ

∂F

∂L

(
L
R

αd

)(1−σ)/σ
L

αd︸ ︷︷ ︸
wage premium effect

+
1

σ

∂F

∂L

(
L
R

αd

)(1−σ)/σ (
∂L

∂R

R

αd

)
︸ ︷︷ ︸

complementarity effect

(17)

5.1 Proof of proposition 2

I begin by proving a lemma:

Lemma 2. Assumption 6 implies the following statement. Suppose that ∂F/∂L > 0 and ∂2F/∂L2 <

0. Given a constant k, if

∂2F

∂L2
L+ k

∂F

∂L
≥ 0, (18)

then

∂3F

∂L3
L+ (1 + k)

∂2F

∂L2
≥ 0 (19)

Proof. Suppose that

FLLL+ kFL ≥ 0, (20)

Then

k ≥ −LFLL

FL
(21)

By assumption 6,

−LFLLL

FLL
≤ 1− LFLL

FL
(22)

Putting these results together yields

−LFLLL

FLL
≤ 1 + k (23)

which rearranges to

LFLLL + (1 + k)FLL ≥ 0 (24)
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as was to be shown.

Now, by proposition 1, σ = σ at the optimum. Set σ = σ and rearrange (17) to get:

∂wd

∂R
=

∂L

∂R

R

αd

(
L
R

αd

)(1−σ)/σ {
∂2F

∂L2
L+

1

σ

∂F

∂L

[
1 +

1

∂L/∂R

L

R

]}
(25)

Define

ξ(R, σ) = 1 +
1

∂L/∂R

L

R
(26)

Define

k(R, σ) = (1/σ)ξ(R, σ) (27)

Define

ζ(R, σ) =
∂2F

∂L2
L+

1

σ

∂F

∂L
ξ(R) (28)

Suppose first that ζ(R, σ) < 0 for all R < 1. Then ∂wd/∂R > 0 for all R < 1, since ∂L/∂R < 0.

So the unique optimal value of R is R∗ = 1.

Now suppose that ζ(R, σ) ≥ 0 for some R. Differentiating ζ(R, σ) with respect to R yields:

∂ζ

∂R
=

∂L

∂R

[
∂3F

∂L3
L+ (1 + k(R, σ))

∂2F

∂L2

]
+

∂k

∂R

∂F

∂L
(29)

Differentiating L with respect to R shows that ∂L/∂R < 0, which implies that ξ(R, σ) < 1. Since

ζ(R, σ) ≥ 0, (∂2F/∂L2)L + k(R∗, σ)(∂F/∂L) ≥ 0. Thus by lemma 2, the first term of (29) is

non-negative. Differentiating k with respect to R shows that the second term of (29) is positive.

Thus ∂ζ/∂R > 0. Since ζ(R, σ) approaches −∞ as R approaches αd/αd + αo, and since ζ(R, σ) is

continuous, there exists exactly one value of R such that ζ(R, σ) = 0. Let R∗ be the value of R such

that ζ(R, σ) = 0. Since ζ is strictly increasing in R, wd is strictly increasing in R for all R < R∗

and strictly decreasing in R for all R > R∗, which implies that R∗ is the unique optimal value of R.

5.2 Proof of proposition 3

I begin with a lemma:
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Lemma 3. Assumption 7 implies the following statement. Given a constant k, if

∂2F

∂L2
L+ k

∂F

∂L
≥ 0, (30)

then

∂3F

∂Z∂L2
+ k

∂2

∂L∂Z
> 0. (31)

Proof. Suppose that

FLLL+ kFL ≥ 0 (32)

Then

k ≥ −LFLL

FL
(33)

By assumption 7,

−FLLZ

FLZ
< −FLL

FL
(34)

Putting these results together yields

−FLLZ

FLZ
< k (35)

Since FLZ > 0, this expression rearranges to

FLLZ + kFLZ > k (36)

This completes the proof.

Suppose first that ζ(R, σ) < 0 for all R < 1. Then ∂wd/∂R > 0 for all R < 1, so the unique

optimal value of R is R∗ = 1. In this case wd does not depend on σ so dR∗(σ)/dσ = 0.

Now suppose that ζ(R, σ) = 0 for some R < 1. Then R∗ is the value of R such that ζ(R∗, σ) = 0.

Differentiating ζ(R, σ) with respect to Z yields:

∂ζ

∂Z
=

∂3F

∂L2∂Z
L+ k(R, σ)

∂2F

∂L∂Z
(37)

Lemma 3 implies that ∂ζ/∂Z > 0, which implies that ∂2wd/∂R∂Z < 0 at R = R∗. Therefore, R∗ is

strictly decreasing in Z.

The second part of proposition 3 follows from the observation that the wage ratio wd/wo is
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strictly increasing in R from (16).

5.3 Proof of proposition 4

I begin with a lemma:

Lemma 4. Suppose that L1 ≤ L2. Let

g(Z) =
∂F (L1, Z)/∂L

∂F (L2, Z)/∂L
(38)

Then g′(Z) ≤ 0, with strict inequality if L1 < L2.

Proof. Applying the quotient rule and rearranging shows that

g′(Z) =
FL(L1, Z)FL(L2, Z)

[FL(L2, Z)]2

[
FLZ(L1, Z)

FL(L1, Z)
− FLZ(L2, Z)

FL(L2, Z)

]
(39)

If L1 = L2, then it follows that g′(Z) = 0.

Let

h(L,Z) =
FLZ(L,Z)

FL(L,Z)
(40)

Then we have

∂

∂L
h(L,Z) =

FL(L,Z)FZLL(L,Z)− FLZ(L,Z)

[FL(L,Z)]2
(41)

So

sign(hL) = sign

(
FZLL

FLZ
− FLL

FL

)
(42)

By assumption 7, FZLL/FLZ > FLL/FL, which implies that hL > 0. If L1 < L2, then g′(Z) < 0,

completing the proof.

The dominant group prefers to impose discrimination if (1− c)wd ≥ w, that is, if

(∂F (L(R∗), Z)/∂L)
(
L(R∗)R

∗

αd

)1/σ

∂F (αd + αo, Z)/∂L
≥ 1

1− c
(43)

Let

∆(R,Z) =
(∂F (L(R), Z)/∂L)

(
L(R) R

αd

)1/σ

∂F (αd + αo, Z)/∂L
(44)

10



Choose Z and Z̄ such that Z < Z̄. For any R > αd + αo, L(R) < αd + αo, so by lemma 4,

∆(R∗(Z̄), Z) > ∆(R∗(Z̄), Z̄). Since R∗(Z̄) is not optimal for Z = Z, ∆(R∗(Z), Z) ≥ ∆(R∗(Z̄), Z).

Putting these inequalities together yields

∆(R∗(Z), Z) > ∆(R∗(Z̄), Z̄) (45)

which implies that d∆(R∗(Z), Z)/dZ < 0.

Let c(Z) be the value of c such that ∆(R∗(Z), Z) = 1/(1− c(Z)). Since d∆(R∗(Z), Z)/dZ < 0,

∂c/∂Z < 0, completing the proof.

5.4 Proof of proposition 5

From (16), the wage ratio wd/wo is increasing in R. Differentiating L with respect to R shows that

L is decreasing in R. Therefore, if assumption 8 holds, then increasing R both increases the wage

ratio wd/wo and increases the total payment to labor, so increasing R must increase the wage wd.

So it is optimal to set R as large as possible, that is, R = 1. If R = 1 then the wage wd is the same

for all finite values of σ, so any finite value of σ is optimal.

5.5 Proof of proposition 6

By assumption 1, dw/dαo < 0.

Differentiate (15) with respect to αo and apply the envelope theorem to get:

dw∗
d

dαo
=

∂wd

∂αo
=

∂L

∂αo

R

αd

(
L
R

αd

)(1−σ)/σ [
∂2F

∂L
L+

1

σ

∂F

∂L

]
(46)

Recall again the expression for ξ(R) derived in (26). Since ∂L/∂R < 0 for all σ < ∞, ξ(R) < 1.

Using this fact, comparing (46) with (25) shows that whenever (25) is equal to zero, (46) is strictly

greater than 0. If R∗ < 1, then (25) is equal to zero at R = R∗. Therefore, if R∗ < 1, dwd/dαo > 0.

If R∗ = 1 then it is straightforward to verify that dwd/dαo = 0.

5.6 Proof of proposition 7

The sign of (46) is the same as the sign of the expression within the square brackets in (46). By

assumption 5, for σ sufficiently large, the expression in the square brackets is negative. Therefore
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∂wd/∂αo < 0 for sufficiently large σ.

6 Simulation robustness checks

Figure 7: Simulation robustness, θ = 0.5

Figure 8: Simulation robustness, θ = 0.9
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