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C Nonlinear Equilibria

Weng, Wu and Yin (2023) study nonlinear separating Perfect Bayesian Equilibria in linear-

quadratic games such as ours. For the special case φ = 1, k = 0, c = 1, σ2 = 0, i.e. perfectly

persistent types, they show that our game admits a unique nonlinear PBE. In particular,

let the consumer’s type θ ∈ [θ, θ̄] and consider the consumer’s first-period PBE strategy

q1(θ, p1, y1).

When λ2 < 0, Weng, Wu and Yin (2023, Section 5.2) show that this strategy takes the

form
(q1 − (θ + b1y1 − p1)− θλ2)

λ2

[q1 − (θ + b1y1 − p1) + (1 + λ2)θ]−1−λ2
=

(−θ̄λ2)
λ2

[(1 + λ2)θ̄]−1−λ2
. (46)

When λ2 > 0, this strategy takes the following form:

(−q1 + (θ + b1y1 − p1) + θλ2)
λ2

[q1 − (θ + b1y1 − p1) + (1 + λ2)θ]−1−λ2
=

(θλ2)
λ2

[(1 + λ2)θ]−1−λ2
. (47)

Under these strategies, the highest (resp. lowest) consumer type chooses the myopic strategy

q1 = θ + b1y1 − p1 when λ2 < 0 (resp. > 0). Figure 10 compares the Weng, Wu and Yin

(2023) with the myopic consumer’s best reply to prices and quality p1, y1 and with the linear

equilibrium strategy in our paper.
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Figure 10: Linear and Perfect Bayesian Equilibria (fixed support)

The characterization in Weng, Wu and Yin (2023) implies (but their paper does not

show) that, for all θ < θ̄, the Perfect Bayesian Equilibrium strategy converges pointwise to
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our Linear Bayesian equilibrium strategy as the support of the type distribution grows. In

particular, let qLIN and qPBE denote the Linear and Perfect Bayesian equilibrium strategies,

respectively. We then obtain the following new result.

Proposition 11 (Approximation). If λ2 < 0, we have qPBE(θ) → qLIN(θ) for every θ < θ̄

as θ̄ → ∞. If λ2 > 0, we have qPBE(θ) → qLIN(θ) for every θ as θ → 0.

Proof of Proposition 11. Consider the case λ2 < 0 first. The closed-form solution for the

PBE strategy is provided in equation (46). Fix θ and let θ̄ → ∞. Because 1 + 2λ2 > 0, the

right-hand side of (46) diverges, but the denominator on the left-hand side remains bounded

because the solution to the best-response problem of each type θ < θ̄ is given by a finite q1.

Therefore, the numerator must vanish (because the exponent is λ2 < 0), which occurs at the

linear equilibrium strategy

q1 = (1 + λ2)θ + b1y1 − p1.

For the case of λ2 > 0, Weng, Wu and Yin (2023) establish that the PBE and linear

equilibrium coincide when θ = 0. The convergence result then follows from the continuity

of (47) in q and θ for every θ.

In Figure 11, we augment the picture in the Weng, Wu and Yin (2023) paper by comparing

the PBE strategies for different supports of the consumer’s type. (Note that the PBE first-

period price and quality p1 and y1 depend on the distribution of types, and as such, they

will vary with the support. In Figure 11, we hold them fixed to highlight the consumer’s

equilibrium strategy q1(θ1).)
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Figure 11: Linear and Perfect Bayesian Equilibria (varying support)

Weng, Xi, Fan Wu, and Xundong Yin. 2023. Linear Riley equilibria in quadratic

signaling games. Journal of Economic Theory, 213.
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D Two-Part Tariffs

We now relax the assumption that the second-period firm must adopt a linear pricing rule

for each consumer. Specifically, we now assume that the second-period firm is able to offer

a single two-part tariff T + pq that conditions on the first-period information.

In this section, we derive conditions under which a linear equilibrium exists in both

periods. In such an equilibrium, the second-period firm’s quality provision, as well as the

fixed and variable parts of the optimal tariff are linear in the first period outcome data.

Furthermore, the consumer’s quantity choice is a linear function of the current-period terms

of trade. In particular, the consumer’s strategy in the first period is given by

q1 = αθ1 + βy1 + γp1 + δ. (48)

Throughout this section, we let ε2 ∈ [−∆,∆] and assume ∆ is small enough that the

second-period firm offers a two-part tariff that serves every type θ2. We then obtain the

following result.

Proposition 12 (Linear Equilibrium). If λ2 ∈ (−4φ2/(1 + 4φ2), 0), there exists a unique

linear equilibrium in which the consumer plays strategy (48) with

α∗ =

√
(λ2 + 1)φ2

λ2

+
1

4
+

1

2
, β∗ = b1, γ∗ = −1, δ∗ =

(1− α∗)(2∆ + µ(φ− 1))

φ
.

Proof. Consider the second period. In any separating (e.g., linear) equilibrium, firm 2 holds

degenerate beliefs over the consumer’s first-period type θ1. Under our full coverage assump-

tion (i.e., ∆ small), the fixed part of the optimal two-part tariff for firm 2 extracts the entire

willingness to pay of the lowest type in the support of its beliefs. Because the consumer’s

second-period demand function is given by

q2 = θ2 + b2y − p,

the fixed part of the optimal second-period tariff is given by

T ∗(m) =
(m−∆+ b2y − p)2

2
.

Consequently, the second-period firm maximizes the following profit function

Π2(p, y) :=
[
(p− ky)(m+ b2y − p)− c2y

2/2 + (m−∆+ b2y − p)2/2
]
.
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Note that the function Π2 is globally concave if and only if

λ2 :=
(b2 − k)2 − c2
2c2 − (b2 − k)2

< 0.

When λ2 < 0 the second-period firm’s optimal (variable) price and quality satisfy

p∗2(m) =
∆ (λ2(b2 + k) + k)− k(2λ2 + 1)m

λ2(b2 − k)
, y∗2(m) =

(2λ2 + 1)(∆−m)

λ2(b2 − k)
.

These price and quality levels yield the following indirect utility function for the consumer:

U2(θ,m) =
(∆−m+ θ2) (2∆− 2m+ (∆− 3m+ θ2)λ2)

2λ2

.

Under the linear conjecture for the first-period demand function by the consumer (26) and

upon observing the outcome of the first period, firm 2 forms (degenerate) beliefs about θ1,

m2(q1, p1, y1) = φ
q1− (βy1 + γp1 + δ)

α
+ (1− φ)µ.

Under this conjecture, the consumer then solves the following problem in the first period

q1 = argmax
q

[
q1(θ1 + b1y1 − p1)− q21/2 + U2(φθ1 + (1− φ)µ,m(q1, p1, y1)]

]
. (49)

Taking the first-order condition in problem (49) and matching coefficients with the conjec-

tured strategy (48) yields the result.

In particular, Proposition 12 implies that α∗ < 1 for all λ2 < 0 that admit a linear

equilibrium, as in the baseline analysis (Proposition 2). The major difference with our

baseline setting is that for λ2 > 0 or φ large, the returns to quality are unbounded and hence

no linear equilibrium exists in the static game.

However, whenever a linear equilibrium exists, it has qualitatively similar implications

for markets for information as under linear pricing. Figure 12 shows the set of (λ1, λ2) pairs

for which total producer surplus is higher with a data linkage than without.
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Figure 12: Linkages (λ1, λ2) ∈ ΛPS with two-part tariffs

Absent regulation, the pairs of firms in the shaded region will actively trade the con-

sumer’s information. The parameter values are µ = 1, φ = 1/6, and the first and second

period types εt are uniformly distributed on [−4/9, 4/9]. (The details of the calculations of

producer surplus are available from the authors.)
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E Noisy Data

We now extend our baseline model to the case where the second-period firm observes the

first-period outcome with noise. For ease of exposition, we set the marginal cost of production

k = 0, and we let types be fully persistent, i.e., φ = 1. We then introduce the following

information structure.

The consumer’s first-period type θ ∈ R is drawn from a Gaussian distribution

θ ∼ N (µ, 1/τθ) .

Under a data linkage, the second-period firm observes the realized p1, y1 as well as a signal

of the consumer’s interaction with firm 1,

s ∼ N (q1, 1/τq) .

The analysis in the second period is unchanged relative to the baseline model—the con-

sumer’s second-period payoff can be written as a function of her type and the firm’s posterior

mean beliefs m,

U2 (θ,m) =
1

2
(θ + λ2m)2 , where λ2 ≜

b22 − c2
2c2 − b22

.

In the first period, the consumer chooses q1 to solve the following problem,

U1 (θ, p1, y1) = max
q

[
(θ + b1y1 − p1)q − q2/2 +

∫
U2 (θ,m) dF (m | q)

]
,

where F (m | q) denotes the distribution of firm 2’s posterior mean m given the consumer’s

quantity choice and the firm’s conjecture about the consumer’s strategy. Under the Gaussian

information structure we have assumed, the consumer’s choice of q leads to shifts in F (m).

It is then natural to look for a linear equilibrium.

Proposition 13 (Linear Equilibrium with Noisy Signal). There exists a unique equilibrium

in linear strategies. In this equilibrium, the consumer’s first period demand is given by

q∗1 (θ, p1, y1) = α∗θ + b1y1 − p1 + δ∗,

where α∗ solves

λ2 = (α∗ − 1)

(
τθ

α∗2τq
+ 1

)
, (50)
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and

δ∗ =
α∗λ2

2µτqτθ

(α∗2τq + τθ)
2 .

Proof of Proposition 13. To characterize a linear equilibrium, suppose firm 2 conjectures a

linear strategy

q̂1 (θ, p1, y1) = α̂θ + β̂y1 + γ̂p1 + δ̂. (51)

The consumer’s first-period best reply is then given by

q1 (θ, p1, y1) = θ + b1y1 − p1 + λ2
∂E [m | q]

∂q
(θ + λ2E [m | q]) .

Under a conjectured linear strategy (51) for the consumer, the second-period firm’s posterior

mean as a function of the realized signal s is given by

m := E [θ | s] =
µτθ +

s−δ̂−γ̂p1−β̂y1
α̂

α̂2τq

τθ + α̂2τq
.

From the consumer’s perspective, the expectation of the firm’s belief m is a function of the

first-period quantity choice, which is given by

E [m | q] =
µτθ +

q−δ̂−γ̂p1−β̂y1
α̂

α̂2τq

τθ + α̂2τq
.

Substituting in the linear best reply for the consumer and matching the coefficients yields

the result.

The linear equilibrium of the model with noisy observations has the following properties,

which are immediate from condition (50).

Corollary 2 (Equilibrium Properties).

1. α∗ is continuous and strictly increasing in λ2, with α∗ = 1 if λ2 = 0.

2. α∗ > 0 is decreasing in the signal precision τq if λ2 < 0 and increasing if λ2 > 0.

3. For all λ2 > −1/2, α∗ → 1 + λ2 as τq → ∞.

Therefore, as expected, the linear equilibrium of a model with noisy observations con-

verges to the linear equilibrium of the baseline model as the precision of the first-period

quantity signal grows without bound.
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F Direct Payments for Consent

We now describe the equilibrium outcome under a complete and efficient market for consumer

information. In this section, we assume that transparency and consumer consent are required

and that firm 1 is allowed to offer a direct (positive or negative) payment to the consumer

in exchange for her consent to form a linkage with firm 2. For ease of exposition only, we let

φ = 1 and ε2 = 0, and we assume that firm 1 has all the bargaining power vis-à-vis firm 2

and the consumer. That is, firm 1 extracts all the surplus from the formation of a link. As

the two firms bargain efficiently, firm 1 proposes forming the linkage (λ1, λ2) if and only if

this linkage increases social surplus. Proposition 14 establishes our characterization result.

Proposition 14 (Social Welfare).

There exist two thresholds λ̃2 (λ1, σ̃) and
˜̃
λ2 (λ1, σ̃) satisfying λ̃2 (λ1, σ̃) < 0 for all λ1, σ̃ ≥ 0,

and
˜̃
λ2 (λ1, σ̃) > 0 for all λ1 < 0 < σ̃, such that the following hold.

1. For λ1 ≥ 0 all linkages with λ2 ≥ λ̃2 (λ1, σ̃) increase social welfare.

2. For λ1 < 0, all linkages λ2 ∈ [λ̃2 (λ1, σ̃) ,
˜̃
λ2 (λ1, σ̃)] increase social welfare.

Proof of Proposition 14. The total change in social welfare ∆W due to the formation of a

linkage can be obtained by adding ∆U and ∆Π :

∆W =
µ2

2
(λ1 + 1)λ2 (2λ1 + λ1λ2 + 2) +

σ̃2

2
(3λ2 + 1)

Dividing by µ2, multiplying by 2, and rearranging, we obtain

∆W ∝ λ2 (λ2 + 2)λ2
1 + λ2 (λ2 + 4)λ1 + (3λ2 + 1) σ̃2 + 2λ2. (52)

This is a quadratic expression in λ2 with a coefficient λ1 (1 + λ1) on the quadratic term. The

two roots are given by

λ̃2 (λ1, σ̃) ≜
−3σ̃2 − 2 (1 + λ1)

2 +

√
−4σ̃2λ1 (1 + λ1) +

(
3σ̃2 + 2 (1 + λ1)

2)2
2λ1 (1 + λ1)

,

and

˜̃
λ2 (λ1, σ̃) ≜

−3σ̃2 − 2 (1 + λ1)
2 −

√
−4σ̃2λ1 (1 + λ1) +

(
3σ̃2 + 2 (1 + λ1)

2)2
2λ1 (1 + λ1)

.

The term in the root is always positive. Furthermore, the following properties hold.
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Whenever λ1 ≥ 0, we have 0 > λ̃2 (λ1, σ̃) > −1/2 >
˜̃
λ2 (λ1, σ̃) for all σ̃ ≥ 0, and the

expression (52) has a positive coefficient on the quadratic term. Therefore, all λ2 ≥ λ̃2 (λ1, σ̃)

increase social welfare.

Whenever λ1 < 0, we have −1/2 < λ̃2 (λ1, σ̃) < 0 <
˜̃
λ2 (λ1, σ̃) and (52) has a negative

coefficient on the quadratic term. Therefore, all λ2 ∈ [λ̃2,
˜̃
λ2] increase social welfare.

In Figure 13, we illustrate the set of welfare-improving linkages (λ1, λ2) .

-0.4 -0.2 0.0 0.2 0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

λ1

λ
2

Figure 13: Socially Efficient Linkages (σ̃ = 1/2)

In a static version of our model, the social value of information is positive for all λ

larger than a threshold λ∗ < 0. In a dynamic model with a data linkage, the consumer has

an incentive to distort her demand, and the situation becomes more complex. Specifically,

suppose the second-period firm has a large λ2 > 0: if the first-period firm has λ1 < 0,

any linkage between these two firms causes a considerable loss in consumer surplus due to

higher monopoly prices and upward quantity distortions in the first period. Likewise, for

large λ1 > 0, any linkage with λ2 < 0 causes an inefficient reduction in consumer demand

and underprovision of quality. The resulting loss is more severe for larger values of λ1, for

which the consumer’s average consumption is higher. Thus, relative to the λ2 cutoff policy

of Proposition 3, the social planner forms all linkages such that (heuristically) λ1 · λ2 is

sufficiently large, and would only form linkages with λ2 > 0 as λ1 becomes large.

In this scenario, the consequences for consumer welfare relative to the outcome of regu-

lation depend heavily on the distribution of bargaining power. In our stylized setting, where

firm 1 has all the bargaining power, the consumer is as well off as under privacy for any

(λ1, λ2) . This outcome is weakly worse than that under required consent for any (λ1, λ2),

but the ranking relative to laissez faire, transparency, or no discrimination is sensitive to the

specific values of λ1, λ2, and σ̃.
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G Consent by Informed Consumers

In this section, we revisit the most favorable privacy regulation in our baseline model, i.e., the

case of Voluntary Consent (Section 5.3.2). We now analyze a game where consumers make

their consent decisions after learning their first-period type. Our goal is to investigate the

robustness of our conclusions regarding the active linkages in equilibrium under uninformed

consent, which are given by (λ1, λ2) ∈ ΛCS ∩ ΛPS as in Proposition 9.

Our approach consists of characterizing pooling equilibria (when they exist) for any

given pair of firms (λ1, λ2) . Because in these equilibria all types θ grant or deny consent,

these equilibria are outcome-equivalent to uninformed decisions by consumers in our baseline

model.

For expositional convenience, we let φ = 1 and ε2 = 0, i.e., θ1 = θ2, and we denote the

consumer’s type by just θ. We further impose a specific assumption on the distribution of

the consumer’s type, namely that θ is uniformly distributed over the interval

θ ∼ U
[
θ̄/2, θ̄

]
, (53)

parameterized by θ̄ > 0. (Under this assumption, we show below that the existence of

pooling equilibria is independent of θ and is thus much easier to illustrate.)

We begin our analysis with the relevant subgame, in which the firms have offered a linkage

to the consumer. In this subgame, we show that there always exists a pooling equilibrium

without consent. In contrast, a pooling equilibrium with consent exists only for linkages in

the set Λ∗ defined by the inequalities in (56) at the bottom of this section.

Proposition 15 (Pooling Equilibria).

1. For any (λ1, λ2), there exists an equilibrium where all types θ deny consent.

2. There exists an equilibrium where all types θ grant consent if and only if (λ1, λ2) ∈ Λ∗.

The first part of Proposition 15 states that consumers can always be “trapped” into

denying consent. On the equilibrium path, the two firms do not update their prior beliefs

on the consumer’s type. In contrast, the second part of Proposition 15 establishes that

pooling equilibria where every consumer grants consent do not always exist. Indeed, if such

an equilibrium exists, it can be supported by degenerate off-path beliefs. In particular, a

consumer who denies consent will face the worst possible terms of trade in a static game

in both periods. However, on the candidate equilibrium path, the consumer must play her

dynamic best response to the firms’ prices, which entails costly behavior distortions. When

these equilibrium distortions are too high, the consumer is then willing to face worse terms

10



of trade in both periods in order to avoid them. This is the case if, for example λ1 < 0 and

λ2 is sufficiently large.

Proof of Proposition 15. (1.) We build a pooling equilibrium with no consent. To do so, it

is sufficient to specify the off-path beliefs (if a consumer grants consent) in such a way that

both firms assign probability one to the worst type for that transaction (i.e., θ̄/2 if λt > 0

and θ̄ if λt < 0). Because the firms’ beliefs are degenerate, the consumer cannot signal her

type through her purchase level either. Thus, the terms of trade she faces in each period are

the optimal ones (for the firms holding those beliefs) in a static game. Therefore, she would

be better off denying consent and facing the equilibrium terms of trade for an anonymous

consumer in a static game.

(2.) Consider the consumer’s decision to grant consent. If she grants consent, she receives

the equilibrium surplus level

U∗ (θ, µ, λ1) + U (θ, θ, λ2) . (54)

If she denies consent, under our uniform distribution assumption (53), she receives the terms

of trade for the worst type in each period. This type is given by

θ̂ (λ) ≜
θ̄

2
+ 1{λ<0}

θ̄

2
.

Consequently, the consumer’s surplus off-path is given by

U
(
θ, θ̂ (λ1) , λ1

)
+ U

(
θ, θ̂ (λ2) , λ2

)
. (55)

The resulting difference in surplus levels (54)-(55) can be written as a quadratic function of

θ, with a coefficient of λ2 on the term θ2. Evaluating the difference at the endpoints of the

support of the type distribution (if λ2 < 0) or at the unique critical point (if λ2 > 0), and

substituting the definition of the worst type θ̂ (λ), we obtain the set of linkages (λ1, λ2) ∈ Λ∗

for which

U∗ (θ, µ, λ1) + U (θ, θ, λ2) ≥ U
(
θ, θ̂ (λ1) , λ1

)
+ U

(
θ, θ̂ (λ2) , λ2

)
for all θ. This set is given by the union of the regions in (λ1, λ2) space described in (56) and

illustrated in Figure 14. Recall that the set Λ∗ is independent of θ̄ under our distribution

assumption (53).

We now compare the set of linkages Λ∗ with the set of linkages ΛCS that benefit consumers

ex ante. Although the two share similar qualitative properties, they are distinct. However,

as σ̃ → 0, the set ΛCS becomes a strict subset of Λ∗. This is shown in Figure 15.
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Figure 14: Linkages (λ1, λ2) ∈ Λ∗

A fortiori, as the degree of uncertainty over the consumer’s type vanishes, the set of

linkages that do form under ex ante consent ΛCS ∩ ΛPS is a strict subset of Λ∗. When this

is the case, we can select the pooling equilibrium with consent for any (λ1, λ2) ∈ ΛCS ∩ΛPS

and the pooling equilibrium without consent for all other (λ1, λ2).

Corollary 3. As σ̃ → 0, the equilibrium outcome of the game with uninformed voluntary

consent can be obtained as a pooling equilibrium of the game with informed consent for all

(λ1, λ2) .

Finally, note that there may exist other equilibria for some sets of linkages, such as

threshold equilibria in which the consumer’s types are partitioned into two intervals. In any

one of these equilibria, high consumer types may grant or deny consent, depending on the

firms’ types. However, these equilibria exist for limited ranges of parameters, even in the

uniform case.
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Figure 15: Comparison of Λ∗ and ΛCS

Note: the set Λ∗ is given by the union of the following regions. (A Mathematica file with

the calculations is available from the authors.)λ1 >
4

3
, λ2 ∈

2
√

8λ1+8λ2
1+3λ3

1

4+3λ1
− 3λ1

3λ1 − 4
, 0

λ1 ∈ [0, 4/3] , λ2 ∈

−2
√

8λ1+8λ2
1+3λ3

1

4+3λ1
− 3λ1

4− 3λ1

, 0

{
λ1 ∈

[
−1

2
,
4

55

(
3
√
5− 10

)
, λ2 ∈

[
−1

2
, 0

]]}
λ1 ∈

 4

55

(
3
√
5− 10

)
, 0, λ2 ∈

−4
√

2λ1+2λ2
1+3λ3

1

4+3λ1
− 3λ1

4− 3λ1

, 0

{
λ1 >

2

3
, λ2 > 0

}
{
λ1 ∈

[
0,

2

3

]
, λ2 ∈

[
0,

3λ1

2− 3λ1

+ 2

√
3λ3

1 + 4λ2
1 + 2λ1

(3λ1 − 2)2 (2 + 3λ1)

]}
{
λ1 ∈

[
−1

2
, 0

]
, λ2 ∈

[
0,

3λ1

2− 3λ1

+ 2
√
2

√
6λ3

1 + 2λ2
1 − λ1

(3λ1 − 2)2 (2 + 3λ1)

]}
. (56)
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