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A: Consumer-Optimal and Social-Optimal Segmentations

This subsection collects proofs for consumer-optimal and social-optimal segmentations.
It is organized as follows. First, we restate Proposition 5 as Proposition Al and
provide a detailed proof. Second, in Proposition A2, we prove that a consumer-optimal
segmentation yields a strictly higher producer surplus and hence leads to a Pareto
improvement relative to uniform pricing, if and only if I¥ € (y/(1 — %),1). We
characterize the social-optimal segmentation in Proposition A3, and investigate the

issue of alignment between social surplus and consumer surplus in Proposition A4.

Proposition A1 Suppose that v, > 7o and consumers are highly risk-averse (i.e.,
condition (18) fails). Let I¢ € (0,1) be implicitly defined by ®(I¢) = 0.

1. If 1§ € (0,72/(1 — y1)], then the consumer-optimal segmentation is the standard

field-leveling segmentation.

2. If ¥ € (72/(1 — 1),/ (1 — )], then following modified field-leveling segmenta-
tion maximizes consumer surplus:
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3. If 1€ € (v1/(1 — ), 1), then following modified field-leveling segmentation maxi-

mizes consumer SUTplUS.’

my ( - ) +(1—m3) (?_‘fo) (A2)

my mk

where m§ € (292, v2(1 + v — v2) /7)) is implicitly determined by the first-order
condition of Problem (OPT-D). Moreover, this segmentation yields a strictly

higher producer surplus than uniform pricing, leading to a Pareto improvement.
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Proof. By Proposition 1, the C-Max problem is equivalent to Problem (OPT-D) with
Alq,2) = C(q1, q1):

max mgC* (72,72) + (1 — mg) C* (71_72,0> :
mg€[2v2,1—y14+72] mg Mg 1—mg

By Lemma 4, C# (q,q) = C(q,q). The objective of Problem (OPT-D) is strictly

concave because its second-order derivative with respect to mg is given by
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where the inequality follows because C# (v, /myg, vo/ms) = C(v2/ms, y2/ms) is strictly
concave and C% ((y; —72)/(1 — mg),0) is weakly concave. Therefore, mj% is either a
corner solution with m% € {2v,,1 — 41 + 12}, or a unique interior solution to the first-
order condition. Consequently, if there is an mj such that it is interior and satisfies
the first-order condition, then mY solves Problem (OPT-D).

To further simplify the objective of Problem (OPT-D), we need Lemma 6, which

shows that the concave envelope of a nested segment is given by

O# (QI, 0) -

i )
=C (1€,0) + ";_[15 (1,0) if ¢ > 1€
In order to apply Lemma 6, we consider the three cases separately (in the revserse
order) in the remaining proof.

Case 3: I{ € (v1/(1 —72),1). We argue that there is an interior solution mj €
(272,72 (L +71 —72) /m)-

We first show that m¥§ < 5 (1 + 791 — 72) /71. Note that for mg < v, (1 4+v1 — ¥2) /71,

we have
71— 2 < 71— 2 94!

1—mg — 1 — 20tn—n) - Yo
7

C
<

where the last inequality follows from assumption that I{ € (71/(1 — 72),1). Hence,
by Lemma 6, C#((y; — 72)/(1 —ms),0) = C((71 — 2)/(1 —mg),0), and the objective
function of Problem (OPT-D) becomes

mgC (72, 72) +(1—mg)C (Yl — " O) : (A3)
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The first-order derivative is

273 (W*>2 T v (W)dw 4 2 (mg — ’Yz)v ( 2 7T>k>

(mg — 2v)° 2 T ms — 279 ms — Yo
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L 72)21} () + (11 72)2 (W*)z/ v, o (% V2 W*> |
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It is negative at mg = v2 (1 + 71 — 72) /71, because
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where the last equality follows from the definition of [$ and the assumption of 7, /(1 —
v9) < 1€, Since the objective of Problem (OPT-D) is continuous and strictly concave
in mg, its derivative must be strictly negative for all mg > 7o (1+9 — ) /7. It
follows that the optimal solution m¥ must satisfy m¥§ < v2 (1 + 71 — v2) /7.

Next we argue that mg > 2v,. It suffices to show that the first-order derivative is
strictly positive at mg = 2792. Since m¥§ < v (1 + 91 — 72) /71, we have (73 —72)/(1 —
mg) < If. The objective of Problem (OPT-D) is then given in (A3). Hence, the

first-order derivative evaluated at mg = 27, is

22 (142 2mg — 2
lim _72(7?)2/ v (;T)dﬂ Lams =2y f w
ms= 20\ (mg —2v)° Jaliom T ms =273 \Ms — %2

mgs—2

2 2 .
— 2 — ™ —
+7(71 72)21) (") + 2n =) 72)2 (7T*)2/7 . U (;T)dw — 2v (71_ 72 7T*> :
(1 —mg) (1 —mg) A 1—mg
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To show it is strictly positive, we first note that by L’Hospital’s rule,

242 (1%)? ™ 2mg — 2
lim _W)z/ U<?d7r+ ms—=2% ( B,
ms— 272 (mg — 2”)/2) 2 g T ms — 272 ms — 72
(3)d7r

mg—72
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We further note that
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We can use (A4) and (A5) to rewrite the first-order derivative at mg = 25 as

— 2 * / _
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where the first inequality follows since 7'(7) > 7'(7n*) for all # < 7* by concavity of
v(m). Given that I¥ < 1, (71 —72)/(1 — m%) < € implies that m} < 1 — v + 7s.
Therefore, we must have m¥ € (27,1 — 1 +72) and it is implicitly determined by the
first-order condition.

The statement about Pareto improvement is a direct corollary of Proposition A2
below. This completes the proof for Case 3.

Case 2: I{ € (vo/(1—71),71/(1—72)].- We guess and verify that there is an interior
optimal solution mg = 7, (1 + llc) /1. We first verify that mj satisfies the first-order
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condition. Note that, at mg = 7 (1 + lf) /i€,

’71—72: Y1 — V2 _ Y1 — 72 € > €
1 —mg 1— 72 (14 (1 —)lf — b=
I

where the inequality follows from the case assumption of v, /(1 — 72) > (¥, Therefore,

the objective function can be rewritten as

Yo Yo o ’171—’72 ’171—72 o l?
eIz _ _ 1-ms c 1l-ms 2
msc<ms,ms)+(1 ms)( i C (1f,0) + . 0(1,0)).

Substituting mg = v, (1 + llc) /1 into the first-order derivative, we have

_ 273 ; (7r*)2 /“* v (W>d7r I 2 (mgs — 72)1} < V2 7r*>
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It remains to show that mj is interior. Since, by the case assumption, (¢ € (72/(1 —
1), 1), we have v (1 +1£)/1¢ € (272, 1 — 71 + 72). Therefore, the optimal my is indeed
mi = v2(1+1¢)/1¢, and an optimal segmentation is as specified in the proposition.

Case 1: 1§ € (0,7/(1 —71)]. Similarly to Case 2, the first-order derivative equals
0 at mg = Y (1+19)/I¢. By the case assumption, yo(1+1¢)/1¢ > 1—~; +7,. Since the
objective of Problem (OPT-D) is strictly concave, the objective is strictly increasing
in mg for all mg € [272,1 — 1 + 72). Thus, the optimal solution to Problem (OPT-D)
is m¢ =1 — 1 + 72 and the standard field-leveling segmentation is optimal. m

The optimal solution is unique in Cases 1 and 3, but is not unique in Case 2. In

Case 2, we can replace any segment whose captive-to-reach ratio equals [§ with infinite
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combinations of segments that have the same captive-to-reach ratio. By Lemma 2, all
these combinations yield the same producer surplus. Indeed, in Case 2, all consumer-
optimal segmentations generate the same producer and consumer surplus.

The following proposition shows that the consumer-optimal segmentation in Case
3 strictly increases producer surplus relative to uniform pricing, and hence it leads
to a Pareto improvement. In fact, it provides a stronger result—it characterizes the

necessary and sufficient condition for Pareto improvement.

Proposition A2 Suppose v, > v2. A consumer-optimal segmentation yields a strictly

higher producer surplus than uniform pricing if and only if condition (18) fails and
/(1 =) <If.

Proof. Necessity. Since field-leveling segmentation minimizes producer surplus, the
failure of (18) is clearly necessary, and consumer-optimal segmentation cannot increase
producer surplus in Case 1 of Proposition Al. Therefore, to show that v, /(1 —,) < I§
is also necessary, it suffices to show that the optimal segmentation (A1) in Case 2 does

not strictly increase producer surplus relative to uniform pricing. By Lemma 2, the

segmentation
2 (1471 — ) ( N " >+(%—72)(1—72) < " 0) (A6)
M I+m =7 14+m—7 M -7’

yields the same producer surplus as uniform pricing. This segmentation will serve as
our benchmark in evaluating whether the optimal segmentation (A1) in Case 2 can
strictly improve producer surplus.

Since P (q,q) is linear in ¢, the consumer-optimal segmentation (A1) yields the

same producer surplus as the segmentation

" I+y—7 1+7 — 7
1+1¢ 1+m —
_|_<’)/2( C 1)_72( 71 72)) (0,0)
I3 §é!
1€ —1C~; — + ¢
1 _ 1’710’72 (19,0)4-% 1’720
ll(l—ll) 1 =105

72(1+%—72)< o0 o )

— ¢
+ 1

(1,0).

Because P (¢, 0) is strictly concave in ¢;, we can weakly increase the producer surplus
by replacing the last three components of this segmentation with (73 — v2) (1 — ¥2) /71 %
(71/(1 —72),0), which leads to the segmentation in (A6). Therefore, producer surplus
is lower under segmentation (A1) than under uniform pricing. This completes the proof

of necessity.

20



Sufficiency. It suffices to show that the consumer-optimal segmentation (A2) in
Proposition A1 strictly increases producer surplus relative to segmentation (A6). Since
mg < y2 (1 4+ —72) /7, it is sufficient to show that the following problem is strictly

decreasing in mg:

max msP (72,72> —l—(l—ms)P(%_%,O)

1 —
mge [272,72( 42111 “/2)}

Because P (71,72) = (2 — v — v2) 7™ /(1 — 2), the objective function is

2o + <2 _n= 72) (1 — o) 7"
1 — Mg

which is clearly strictly decreasing in mg. This completes the proof for sufficiency. =

Finally, we investigate when consumer surplus and social surplus are aligned in
the sense that consumer-optimal segmentation also maximizes social surplus. We first
solves the S-Max problem.

As we have argued in the text, s(7*) — s(0) — 27*s'(0) < 0. Therefore, by Lemma
6,

S(q1,0) if q <If
S (15,0) + 45H5(1,0) if > 1§

S# <Q170) - { 1—q1

S
115

where [ € (0, 1) is implicitly defined by ®* (lls) = 0 with

O (1) = (1—1)%s () — 20 (2 — 1) (w*)z/”* s (M) g 2= ll)8<l7r*).

Im* 73

Note that 1§ # 1§,
By Proposition 1, the S-Max problem is equivalent to Problem (OPT-D) with

A(QhQZ) = S(Qh%) :

max mgS* (72 72) + (1 —mg) S* <¥1 — 72,0) .

Y
mg€[2y2,1—y1+72] mg Mg —mg

By Lemma 4, 5% (¢, q) = S (¢, q).
The following proposition characterize the S-Max segmentation. Its proof is similar
to that of Proposition Al and hence omitted.

Proposition A3 Suppose that y1 > 7, and let 1§ € (0,1) be implicitly defined by
(1) = 0.
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1. If 1§ € (0,72/(1 —)], then the social-optimal segmentation is the standard field-

leveling segmentation.

2. If1 € (v2/(1=71),v1/(1—"2)], then following modified field-leveling segmentation

maximizes social surplus:

s S(1 — ) —
72(1+11)<115 lf>+l1(1 ) — e (lfyo)

lf 1+lf7 1+lls lls(l - llc) (A7)
n—Q1-p)l
+ S (1,0).
11—

3. If I € (y1/(1 — %), 1), then following modified field-leveling segmentation maxi-

mizes social surplus:

T2 =
m§<n;,rr;>+(1—mg><l 20) (A8)

S?
s Mg 1 —mg

where m3 € (272, v2(1 +v1 — Y2) /1) is implicitly determined by the first-order
condition of Problem (OPT-D).

Now we are ready to investigate when the social-optimal segmentation coincides

with the consumer-optimal segmentation.

Proposition A4 Suppose v; > 5. Consumer surplus and social surplus are aligned
if and only if v/ (1 — ) > 1.

Proof. We distinguish two cases.

Case (i): Condition (18) holds. By Proposition 4, field-leveling segmentation
is consumer-optimal. Hence, consumer- and social-optimal segmentations coincide if
and only if the conditions in Case 1 of Proposition A3 are satisfied, or equivalently if
Yo/(1 =) > 17,

Case (ii): Condition (18) fails. In this case, the consumer-optimal segmentation

is given by Proposition Al. Note first that m% in Proposition Al is determined by

=0

o(2.2) o(nmo)- 2 IC(E. ) =y OO0

+
* ) * * 7 * Y2 * Y172
ms mg 1 —mj mg 8m,§ 1-mgy o0L=2

1
1—mS
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and m3 in Proposition A3 is determined by

2 ’}’2 71*’72
0=5 Y2 2 _g 71—720 _7285(mg )+’V1 65( O)
ms m3 1—m3 mg 0% 1— mg 011 mw
S S

1 Y2 Y2 M — 2 Y2 2 = Ve
- (c -C 0|+P(=,=)-P 0
2 2 Y1i— 72 Y1=72 72
72(80(2 m@_%ap<s,m§)+ =y OO 0)+ap( ,0)
ng (9725 87% 2(1—m§) 371 72 71 72

mg mg —m32 mg
J2. - J2 n=7
o ) _ofmmr o)) e 2GEnd) | = OS50
2\ \mg"m3 L—m§’ g 0% al-my ope

where the the inequality holds because P(0,0) = 0, P(q1,¢1) is linear and P(qy,0) is
strictly concave. Thus, m% is different from m}. Moreover,

(7)) = o(lf) — (1 = 17)°n"
which implies I¥ > [§. Thus, consumer- and social-optimal segmentations coincide if

and only if the conditions in Case 1 of Proposition A1l and those in Case 1 of Proposition
A3 both hold, i.e.

2500 a nd - 2,
L=m —N
Since 7 > 1§ this reduces to yo/(1 — ;) > I

Combining the two cases, we conclude that if and only if

consumer surplus and social surplus are aligned. m

B: Proofs of Lemma 5 and 6

This appendix contains ommitted proofs of Lemma 5 and 6.

Proof of Lemma 5. We first prove the monotonicity of A(q;,0). If a(m) is strictly
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increasing, then A(qq,0) is also strictly increasing because

9A(q1,0) 2 [T a(m) a(qm”)
_— = 2 * 4 * / ——dr — 2
oq e (ﬂ ) T <7T ) qurr T " q1
> 2qa () Hg () [ I @) 4 p2 (@)
qm* ™ q1

1_ 2 *
2 q12 (17_r*)_2a(Q17T)

= 2qa (") +4q (77) 242 (%) atq q1
= 2¢1 (a(7") —a(qm"))
> 0.

The proof for the case with strictly decreasing a(m) is symmetric.
Next, we prove the shape of A(q;,0). Consider first Case (d-scav) where a(m) is
strictly decreasing and strictly concave. The second and third derivatives of A(g,0)

are

9?A(q1,0) ™ q(m) 2 27

— 9 * 4 * 2/ d _“ *®\ / *
aq% CL(’H’ >+ (ﬂ- ) - 3 m q%a(qlﬂ- ) ¢ a (Q17T )
PA(q,0 2 (7*)?
(q;’ ) _ (7T ) CLH (qlﬂ_*)
g q1
It is immediate that
%A 0 0*A 0
# >0 and lim # = —27"d’ (7*) > 0.
dqy a—1  Jg

To establish the claim that A(qy,0) is first strictly concave and then strictly convex,
it is sufficient to show that lim,, o+ 9*A(q1,0)/0¢} = —oco. Suppose by contradiction
that limg, ,o+ 02A(q:1,0)/0¢f = y € (—00,00). Then we can repeatedly apply the
L’Hopital’s rule to rewrite y as

4 (7?*)2 Q@ qu;* o) dr — 2a (™) = 2% qra (™)

3

2a (") + lim

=0t q
= 2a(7m")
8 *)2 ™ Cb(ﬂ')d —4 #\3 2a(q1m*) — 4r* / *\ _ 9 *\2 " *
(7)1 gy St dm — A (7)1 — Amd (™) = 2(77)" qua” ()
+ lim n
q1—07F 2q1
4 (%) g2 qu;,r ag)dw —2a (%) = 2% qua’ (i)

= 2a(7")+ q}iﬂ& o
= y— (71_*)2 a” (0) 7

which leads to a contradiction. Therefore, lim, o+ 0*A(¢1,0)/9q¢; does not have a
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finite limit. But since 9*A(qy,0)/0q? is continuous and striclty increasing in ¢ for all
q1 € (0,1), we must have lim,, o+ 9*A(q1,0)/0¢? = —o0.

In Case (d-wcvx), a(n) is strictly decreasing and weakly convex, and

33A(q1, 0) . 8214((]17 O) * *
Tq%go and qlllglaiq%:—%ra'(w)>0.
It follows that 94 0
# > ( for all ¢; € [0,1],
aQ1

and therefore A(qy,0) is strictly convex in ¢ for all ¢; € [0, 1].

In Case (i-wcav), a(m) is strictly increasing and weakly concave, and

PA@0) | o g FA@L0)

= 27" (™) < 0.
dqt o=l Oqf ma ()

This implies that
8214((]1, 0)
dqt

which means that A(q;,0) is strictly concave.

< 0 for all ¢; € [0,1],

Finally, for Case (i-scvx), since a(7) is strictly increasing and strictly convex, it is
immediate that

PAD,0) _ o g i TA@0)

= 2% (%) < 0.
oq} a—1  9¢i ()

As we have shown in the proof of Case (d-scav), 9?A(q1,0)/9¢3 does not have a finite
limit as ¢ — 07. We must have

2A
lim 78 (q21,0) = +400.
Q1—>0+ 8q1

Therefore, A(¢q;,0) must be initially convex and then concave. m

Proof of Lemma 6. For Case (d-scav), it remains to show that {; = 0, or equivalently
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®(0) > 0, if and only if a(7*) — a(0) — 27*a’(0) > 0. This is true because

(7)? fiv- “dm — (i) a (i)
1

®(0) = a(r")—2lim

1—0t =)
a(ln*) Vol s sy, (212-51+4) .
. . 3 - 12(27071' a (l7T ) + WG (l'ﬂ' )
= a(m")— 2lhrg}r =1
% —

12(2—1)?
—IQ(E:ZI)Qa (Im*) — ﬁﬂ*a’ (I7*)

= a(r*)—2 lim

10+ — 12?2*_2;)2
= a(r*) — ll_i)ror}r (a(Im*) + (2= 1) 7*d (1))

= a(r*) —a(0)— 27" (0).

When [; is interior, the expression of concave envelope A% (qy,0) directly follows from
the definition of I; (see Figure 3).
The claims for Case (d-wevx) and Case (i-wcav) directly follow from Lemma 5.
For Case (i-scvx), we first establish that [y is interior. In the proof of Lemma 5, we
have shown that in Case (i-scvx)

83/4((]1, O) . a2/4((117 0) * *
o <0 and qlllgllﬁiqf = —27"d’ (7*) < 0.
and that
aQA(qla O) _

lim
a—0t  O¢}

Therefore, there must exist some [* € (0, 1) such that 9*A(q1,0)/9¢? > 0 if and only if
¢1 < I*. We can use the expressions for A(q;,0) and dA(q1,0)/0q to show that

A(I*,0) — 2a (i) + a (0)

= aAgl’ 0) — A(I*,0) + A(0,0)
¢
OA(l,0) 1" 0A(q1,0)
= 1= | T g
oq /0 oq
B /l* <8A(l* 0)  9A(q,0
0 oq1 Iq

> 0,

where the inequality follows from the convexity of A(q,0) for ¢; < I*.
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Since A (1,0) — 2a (I7*) 4+ a (0) is continuous in [ and
A(1,0) —2a(7") 4+ a(0) = —a(7*) +a(0) <0,

I exists and I, € (0,1). Then the expression of concave envelope A#(q;,0) directly

follows from the definition of I (see Figure 3). m
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