
Supplemental Appendix for “The Trade-Off Between
Flexibility and Robustness in Instrumental Variables

Analysis”

By Ben Deaner*

These appendices contain proofs of results in the main paper and
other materials. Section B contains details regarding the practi-
cal illustration and an additional numerical exercise. Section C
contains proofs of statements in the main text and appendices.

Additional Simulation Results and Details

B1. Calibration Details

The NPIV estimate that we use for h0 in our numerical exercises is a penalized
sieve 2SLS estimator based on Horowitz (2011) (we adapted code available with
his paper when implementing the estimator). To define the estimator, let Φ(Ii,a)
and Ψ(Zi,a) be vectors of technical regressors and instruments that are of the
same length. In addition, let Qi,a be a vector of controls. We use the same vector
of controls as Dahl & Lochner (2012) which includes polynomials of Pi,a−1 up
to fifth powers, second differences of time-varying household characteristics, and
constant household characteristics. Let I be the set of individual-age pairs in the
dataset. We first partial out the controls from the technical instruments to get
residualized technical instruments Z̃i,a:

Z̃i,a = Ψ(Zi,a)−
( ∑

(i,a)∈I

Ψ(Zi,a)Q
′
i,a

)( ∑
(i,a)∈I

Qi,aQ
′
i,a

)−1

Qi,a

Then, we perform linear IV taking as the outcome the second differenced test
scores ∆Yi,a, and as the endogenous regressors, the second differenced technical

regressors ∆Ĩi,a := Φ(Ii,a) − Φ(Ii,a−2). Following Horowitz (2011) we regularize
the inverse by adding the identify matrix I multiplied by a penalty parameter λ.
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The resulting coefficient estimates β̂ are given below:

Σ =
( 1

|I|
∑

(i,a)∈I

∆Ĩi,aZ̃
′
i,a

)( 1

|I|
∑

(i,a)∈I

∆Ĩi,aZ̃
′
i,a

)′
β̂ =(Σ + λI)−1

( 1

|I|
∑

(i,a)∈I

∆Ĩi,aZ̃
′
i,a

) 1

|I|
∑

(i,a)∈I

Z̃i,a∆Yi,a

The resulting estimate of h0 is given by ĥ(x) = Φ(x)′β̂−Φ(Ī)′β̂, where the second

term normalizes the intercept so that ĥ(Ī) = 0. In our implementation we take
Φ(Ii,a) and Ψ(Zi,a) to contain polynomials up to cubic that are orthogonalized as
in Horowitz (2011). For the penalty λ we use 10−15.

We now discuss calibration of the distribution of Ii,a given Zi,a. We use the
same procedure to calibrate the distribution of Ii,a−2 given Zi,a (simply replace
Ii,a with Ii,a−2 in the steps below). We first estimate the conditional mean of Ii,a
given Zi,a by Nadaraya-Watson. That is, we form an estimate of E[Ia,i|Zi,a = z]
as follows:

Ê[Ia,i|Zi,a = z] =

∑
(i,a)∈I ϕ

( |z−Zi,a|
wZ

)
Ii,a∑

(i,a)∈I ϕ
( |z−Zi,a|

wZ

)
To select bandwidths we use Silverman’s rule, namely ( 4

5|I|)
1/(3+4)σ̂Z for wZ ,

where σ̂Z is the standard deviation of Zi,a. We estimate the residual variance

by σ̂2
I =

∑
(i,a)∈I(Ii,a − Ê[Ia,i|Zi,a])

2. The conditional distribution of Ii,a given

Zi,a = z is then normal with mean Ê[Ia,i|Zi,a = z] and variance σ̂2
I . To be precise,

we calibrate the density of Ii,a given Zi,a as follows:

f̂Ii,a|Zi,a
(x|z) = 1√

2πσ̂2
I

exp
(
− (x− Ê[Ia,i|Zi,a = z])2

2σ̂2
I

)
Statistical completeness of the calibrated distribution of Ia,i given Zi,a then follows
by Hu & Shiu (2018). For the bias exercise in this appendix and to evaluate the
identified set for the slope of the best linear approximation to h0 we also require
the marginal density for Zi,a. We use the following:

f̂Zi,a(z) =
1

wZ |I|
∑

(i,a)∈I

ϕ
( |z − Zi,a|

wZ

)

Given an estimate ĥ of h0, and estimates f̂Ii,a|Zi,a
and f̂Ii,a−2|Zi,a

of the densities

of Ii,a and Ii,a−2 conditional on Zi,a, we calibrate E[Ỹi,a|Zi,a] and E[Ỹi,a−2|Zi,a]
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as follows:

E[Ỹi,a|Zi,a = z] =

∫
ĥ(x)f̂Ii,a|Zi,a

(x|z)dx

E[Ỹi,a−2|Zi,a = z] =

∫
ĥ(x)f̂Ii,a−2|Zi,a

(x|z)dx

E[∆Ỹi,a|Zi,a = z] is then the difference between these two objects. To evaluate
the integrals we use numerical integration, discretizing the support into a grid of
1000 evenly spaced points between the largest and smallest values of Ii,a in the
data.

B2. Evaluating the Envelopes of the Identified Set

Our method for evaluating features of the identified set is based on Deaner
(2019) who uses linear programming to estimate the identified set. First consider
the case in which H contains parametric functions of the form Φ(·)′β for some
basis functions Φ. Then the envelopes of the identified set for h0(·) − h0(Ī) at
some x, in the case of the moment condition in levels, are the maximum and
minimum of Φ(x)′β subject to the constraint that for all z in the support of the
instrument:

|E[Ỹi,a|Zi,a = z]− E[Φ(Ii,a)
′β|Zi,a = z]| ≤ b

And for the moment condition in differences:

|E[∆Ỹi,a|Zi,a = z]−
(
E[Φ(Ii,a)|Zi,a = z]− E[Φ(Ii,a−2)|Zi,a = z]

)′
β| ≤ b

We have already discussed evaluation of E[Ỹi,a|Zi,a = z] and E[∆Ỹi,a|Zi,a =
z]. In order to check the constraints at some value of z we must also evaluate
E[Φ(Ii,a)|Zi,a = z] and E[Φ(Ii,a−2)|Zi,a = z]. Again, this can be achieved by
numerical integration of the integrals below:

E[Φ(Ii,a)|Zi,a = z] =

∫
Φ(x)f̂Ii,a|Zi,a

(x|z)dx

E[Φ(Ii,a−2)|Zi,a = z] =

∫
Φ(x)f̂Ii,a−2|Zi,a

(x|z)dx

Following Deaner (2019) we enforce the constraints only on a discrete grid (here
1000 evenly spaced points), and thus the problem can be solved by linear program-
ming. If we wish to evaluate the set for the slope of the best linear approximation
of h0, we replace the objective with E[(Ii,a − Ī)Φ(Ii,a)]

′β/V ar(Ii,a) and we can
again evaluate the expectation and variance by numerical integration using the
densities f̂Ii,a|Zi,a

and f̂Zi,a .

For the bounds on second derivatives, we follow Deaner (2019) and alter the
above by a) using a very rich set of basis functions Φ, we use cubic splines with
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eighteen evenly-spaced knot points, leading twenty basis functions, b) we add a

constraint that | ∂2

∂x2Φ(x)| ≤ c over a dense grid of points in the support of Ii,a.
We evaluate these second derivatives analytically.

B3. Bias Simulation Study

To supplement the empirical exercises in Section IV of the main text, we carry
out a simulation exercise to evaluate the asymptotic bias in flexible 2SLS under
misspecification. Consider vectors of basis functions Ψ and Φ. Using these basis
functions, we may form endogenous regressors Φ(Ii,a) and instruments Ψ(Zi,a).

Given the outcome Ỹi,a, we can then estimate the structural function h0 by 2SLS.
The population analogue of this estimate, which we denote h◦, is given below:

π = E[Ψ(Za,i)Ψ(Za,i)
′]−1E[Ψ(Za,i)Φ(Ia,i)

′]

h◦(x) = Φ(x)′
(
π′E[Ψ(Za,i)Ψ(Za,i)

′]π
)−1

π′E[Ψ(Za,i)Ỹa,i]

Alternatively, we may instead apply 2SLS only after second differencing outcomes
and regressors. The population analogue of this estimate is denoted by h̃ and has
the formula below, where ∆Φ(Ia) := Φ(Ia)− Φ(Ia−2).

π̃ = E[Ψ(Za,i)Ψ(Za,i)
′]−1E[Ψ(Za,i)∆Φ(Ia,i)

′]

h̃(x) = Φ(x)′
(
π̃′E[Ψ(Za,i)Ψ(Za,i)

′]π̃
)−1

π̃′E[Ψ(Za,i)∆Ỹa,i]

In the main text we consider two, possibly misspecified, identifying moment re-
strictions. The misspecified restriction in levels and the restriction in second
differences are given below.

E[Ỹi,a − h0(Ii,a)|Zi,a] = u0(Zi,a)(B1)

E[∆Ỹi,a −∆h0(Ii,a)|Zi,a] = u0(Zi,a)(B2)

Suppose that the first equation above holds. That is, the moment condition in lev-
els is misspecified, with the misspecification captured in u0. Then the asymptotic
bias in the levels estimate can be decomposed into two parts:

h◦(x)− h0(x) =Φ(x)′
(
π′E[Ψ(Za,i)Ψ(Za,i)

′]π
)−1

π′E[Ψ(Za,i)u0(Za,i)]

+Φ(x)′
(
π′E[Ψ(Za,i)Ψ(Za,i)

′]π
)−1

π′E[Ψ(Za,i)h0(Ii,a)]− h0(x)

The term in the first line on the RHS above captures the bias due to the misspec-
ification of the conditional moment restriction. That is, bias due to the fact that
u0 ̸= 0 in (B1). The second line accounts for the approximation error. That is,
the fact that there is no β0 such that h0(x) = Φ(x)′β0.

For the estimator in differences h̃(x), an analogous decomposition applies when
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we impose (B2).

h̃(x)− h0(x) =Φ(x)′
(
π̃′E[Ψ(Za,i)Ψ(Za,i)

′]π̃
)−1

π̃′E[Ψ(Za,i)u0(Za,i)]

+Φ(x)′
(
π̃′E[Ψ(Za,i)Ψ(Za,i)

′]π̃
)−1

π̃′E[Ψ(Za,i)∆h0(Ii,a)]− h0(x)

Again, the second row captures the asymptotic bias due to approximation error.
In this case, the first row captures bias due to misspecification of the conditional
moment restriction in differences i.e., the bias that arises because u0 ̸= 0 in (B2).

We evaluate the bias due to approximation error and the bias due to misspecifi-
cation of the moment condition under our calibrated DGP. Given our calibration
of the joint distribution of Ii,a and Zi,a, and of Ii,a−2 and Zi,a, and calibration of
h0 (which we take as the NPIV estimator in the main text) we can evaluate the
approximation bias for both h◦ and h̃.

In order to evaluate the bias that results from misspecification of the relevant
moment restriction, we must know u0. Rather than keep u0 fixed or find the
u0 that maximizes the magnitude of the bias, we draw many values of u0 at
random and evaluate the bias under each draw. Thus we obtain a distribution
of this bias term and we can evaluate its quartiles. We constrain u0 to be of the
form u0(z) = Ψ(z)′ω0, where ω0 is a vector of coefficients and Ψ are the same
basis functions that we use for our instruments. We draw the components of
ω0 independently from a standard normal distribution and then normalize the
coefficients so that supz∈SZ

|u0(z)| = b. Throughout we take Ψ to be polynomial

of degree four, that is Ψ(z) = (1, z, z2, z3, z4)′. We consider Φ(x) to be powers up
to degree K for K = 1, 2, 3, 4.

Figure B1 plots the results. Panels (a), (b), and (c) pertain to the estimates
with second differencing h̃, and the remaining panels to the estimator in levels
h◦. From left to right, we plot subfigures for increasing values of K (we omit
K = 4 in these figures to aid legibility). In all cases we subtract off the bias at
Ī, the mean of Ii,a. Thus we plot contributions to the bias in the causal effect of
changing Ii,a away from its mean Ī. The approximation bias is given by the solid
black curve. Dashed curves plot the top and bottom quartiles of the bias due to
misspecification of the moment restriction for various choices of b. The dashed
lines in red, blue, and black are upper and lower bias quartiles for b = 0.01, 0.02,
and 0.03 respectively.

For K = 3 there is no approximation error as our calibrated h0 is in fact cubic.
Interestingly, the approximation error is not markedly lower for the quadratic
approximation (K = 2) than for the linear approximation K = 1. Note that
for sieve IV estimators, the bias due to approximation error is not guaranteed
to decrease as the model becomes more flexible. In fact, in the NPIV litera-
ture researchers typically assume that a ‘stability condition’ holds (for example,
Assumption 5.2(ii) in Chen & Pouzo (2012)) which ensures the bias due to ap-
proximation error vanishes.

In-line with the results in the main text, a more flexible specification is asso-
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(a) (b)

(c) (d)

(e) (f)

Figure B1. : Bias Quartiles (Polynomial Functional-Forms)

Bias contributions under the assumption that h0 is polynomial of degree K. (a), (b), (c) are for h̃

and (d), (e), (f) for h◦. Lower and upper dashed lines in red, blue, and black represent the upper

and lower quartiles of the bias due to moment condition misspecification for b = 0.01, 0.02, 0.03

respectively. These quantiles are over 1000 random draws of u0. The solid line is the bias due

to approximation error.

ciated with greater maximum bias due to misspecification over the support of
the treatment. This increase is small and difficult to discern in the differenced
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case between K = 2 and K = 3 but can be seen in Figure B2 (a). Figure B2
summarizes the trends in B1 and includes the K = 4 case. It plots the maximum
distance over the support of the treatment between the upper and lower quar-
tiles of the bias due to misspecification. Subfigure (a) corresponds to h̃ and the
moment restriction in differences, (b) to h◦ and the moment condition in levels.
Polynomials of degree K = 1, ..., 4 are given in green, red, blue, and black respec-
tively. Note that the bias due to misspecification must scale linearly with b. Note
that for K = 1, 2, 3 the bias due to misspecification of the moment condition
is more pronounced for the estimator with differencing but this is reversed for
K = 4.

(a) (b)

Figure B2. : Maximum Inter-Quantile Range

Maximum distances between the upper and lower 5% quantiles of the bias due to misspecification

of the relevant moment restriction. (a) corresponds to the moment condition in differences, (b)

in levels. Solid curves correspond to polynomials of degree K = 1, ..., 4 given in green, blue, red,

and black respectively.

Appendix C: Proofs

Throughout the proofs it will be convenient to introduce some additional no-
tation. We let A be the linear operator from X to Z defined by A[h](Z) =
E[h(X)|Z]. The operator norm of A, ∥A∥ is defined by suph∈X :∥h∥X=1 ∥A[h]∥X .
If A is injective we denote its inverse by A−1 so that A[h] = g if and only if
A−1[g] = h. If S is a subset of Z then A−1[S] is the pre-image of S under A (i.e.,
the set of elements h ∈ X such that A[h] ∈ S). The closure of a set S is denoted
S̄ and its interior by int(S).
We let X̃ be the subset of X that contains all h ∈ X such that E[h(X)] = 0.

Similarly, we let Z̃ be the subset of Z that contains all g ∈ Z with E[g(Z)] = 0.
We equip X̃ an Z̃ with the norms ∥ · ∥X and ∥ · ∥Z respectively and thus define
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open and closed balls on these sets. Finally, we defined a function g0 ∈ Z by
g0(Z) = E[Y |Z] which is well-defined and finite under Assumption 2.iii.

C1. Proofs of Results in the Main Text

It is convenient to rewrite some of the objects in Section II in terms of the
notation defined above. We can rewrite the identified set Θb as follows.

Θb = [h ∈ X : h ∈ H, g0 − A[h] ∈ U , ∥g0 − A[h]∥Z ≤ b]

Moreover, Assumption 1 states that A−1[U ] contains a closed X̃ ball of radius ru
centred at zero. Assumption 2.ii states that A is injective compact and infinite-
dimensional. The pseudo-solution h∗ (if it exists and is unique) is given by h∗ =
A−1[g0].
With Assumptions 1 and 2 and the identified set expressed in terms of A and

g0 as above, the proofs in this section apply for any linear operator A, not just
h 7→ E[h(X)|Z = ·]. That is, the proofs continue to apply when we replace the
condition E[Y − h0(X)|Z] = u0(Z) with any equation of the form:

g0 − A[h0] = u0

Thus our main results apply for all linear conditional moment restriction models
(but not necessarily non-linear moment restriction models). Of course, the specific
choice of A then impacts the interpretation of Assumption 2.ii which must apply
for this particular A.
An important example appears in Section IV, in which the relevant operator

and function g0 are:

A[h](z) = E[h(Ii,a)− h(Ii,a−2)|Zi,a = z], g0(z) = E[∆Yi,a|Zi,a = z]

It is not difficult to show that compactness of the operator follows from com-
pactness of h 7→ E[h(Ii,a)|Zi,a = ·] and h 7→ E[h(Ii,a−2)|Zi,a = ·]. Injectivity
of this operator requires that X incorporates some location normalization. For
example, we can let X be the Banach space of bounded continuous functions h so
that E[h(Ii,a)] = 0 or h(Ī) = 0. In this case, injectivity on X is equivalent to the
statement that for any bounded continuous function h (which does not necessarily
satisfy the location normalization), E[h(Ii,a)− h(Ii,a−2)|Zi,a = ·] = 0 if and only
if h is constant. In Section IV we evaluate the identified set for h0(·)− h0(Ī) and
so the normalization is of no consequence.

Lemma 1.1. Suppose Assumptions 2.i and ii. hold. Then X̃ is a Banach
space with the norm ∥ · ∥X , and the restriction of A to X̃ is a compact infinite-
dimensional linear operator from X̃ to Z.

Proof. First we show that X̃ is a Banach space with the norm ∥ · ∥X , that is,
a linear space that is complete with respect to ∥ · ∥X . Recall that X̃ contains
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all elements of X that have mean zero. Let h1, h2 ∈ X̃ and α, β ∈ R. Note
that E[h1(X)] = E[h2(X)] = 0 and h1, h2 ∈ X . Since X is a Banach space (by
Assumption 2.i) and thus linear, αh1 + βh2 ∈ X , and by linearity of the mean
E[αh1(X) + βh2(X)] = 0. Thus αh1 + βh2 ∈ X̃ and so X̃ is a linear space.
To show X̃ is complete, let {hn}∞n=1 be a Cauchy sequence in X̃ . Since X is

Banach and thus complete, this sequence converges (in the norm ∥ · ∥X ) to an
element h∞ ∈ X . By Assumption 2.i the mapping of a function in X to its
mean is continuous, and so hn → h∞ implies E[hn(X)] → E[h∞(X)] and since
E[hn(X)] = 0 for all n, we must have E[h∞(X)] = 0. Thus h∞ ∈ X̃ and so X̃ is
complete.
Finally we show that A is a compact operator from X̃ to Z. By definition a

compact operator maps bounded sets into relatively compact sets. Assumption
2.ii states that A is a compact operator between X and Z. Since any bounded set
in X̃ is also a bounded set in X we get that A is compact between X̃ to Z.

Lemma 1.2. Suppose Assumptions 1, 2.i, and 2.ii hold and in addition, there
is an open X̃ -ball centred at an element h◦ ∈ S̄ of radius rs. Then for any
δ, b > 0 there exist functions h1, h2 ∈ S, so that for i = 1, 2, A[hi − h◦] ∈ U ,
∥A[hi−h◦]∥Z ≤ b, ∥hi−h◦∥ ≥ min{rh, ru}−δ, and ∥h1−h2∥ ≥ 2min{rs, ru}−δ.

Proof. From Lemma 1.1 X̃ is a Banach space and A is a compact infinite-dimensional
operator from X̃ to Z. Thus we can apply Theorem 15.4 (or 2.20) in Kress (2014)
to get that A−1 is unbounded and so:

(C1) sup
h∈X̃ ,∥A[h]∥X=1

∥h∥Z = ∞

Let ∥A∥ be the operator norm of A, this must be finite because A is compact and
therefore bounded (see Theorem 2.14 in Kress (2014)). By (C1) for any 0 < δ <
2min{rs, ru, b

∥A∥} there exists an element h̃ of X̃ so that ∥h̃∥X = min{rs, ru} − δ
2

and ∥A[h̃]∥Z ≤ b − δ
2∥A∥. By linearity of A and the elementary properties of

norms we also have ∥ − h̃∥X = min{rs, ru} − δ
2 and ∥A[−h̃]∥Z ≤ b− δ

2∥A∥.
Because ∥h̃∥X ≤ rs we have h◦ + h̃ ∈ S̄ and similarly h◦ − h̃ ∈ S̄. Since a set S

must be dense in its closure S̄ there exists an h1 ∈ S so that ∥h◦ + h̃− h1∥X ≤ δ
2

in which case, by the triangle inequality and ∥h̃∥X = min{rs, ru} − δ
2 , we get

∥h1 − h◦∥X ≤ min{rs, ru}. Given Assumption 1, this inequality implies that
h1 − h◦ ∈ A−1[U ] and therefore A[h1 − h◦] ∈ U . Moreover, by the definition of
the operator norm, the triangle equality, and ∥A[h̃]∥Z ≤ b− δ

2∥A∥, we get:

∥A[h1 − h◦]∥Z ≤ ∥A[h̃]∥Z + ∥A[h◦ + h̃− h1]∥Z
≤ ∥A[h̃]∥Z + ∥A∥∥h◦ + h̃− h1∥X ≤ b

So in all, h1 ∈ S, A[h1 − h◦] ∈ U , ∥A[h◦ − h1]∥Z ≤ b, and ∥h◦ + h̃− h1∥X ≤ δ
2 .

Applying the same reasoning with h̃ replaced by −h̃ we see that there exists an
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h2 ∈ S with A[h2 − h◦] ∈ U , and ∥A[h◦ − h2]∥Z ≤ b, and ∥h◦ − h̃ − h2∥X ≤ δ
2 .

Now that note that by the triangle inequality:

∥h1 − h2∥X = ∥2h̃+ (h◦ − h̃− h2)− (h◦ + h̃− h1)∥X
≥ 2∥h̃∥X − ∥h◦ + h̃− h1∥X − ∥h◦ − h̃− h2∥X
≥ 2min{rs, ru} − δ

Lemma 1.3. Suppose Assumption 2.i and 2.ii hold. If S is a compact subset of
X then:

lim
b→0

sup
u∈A[S],∥u∥Z≤b

∥A−1[u]∥X = 0

Proof. Since Assumption 2.ii holds, A is compact (and therefore continuous) and
injective. Denote the restriction of A to S by AS and its inverse by A−1

S . It is
well-known that a continuous and injective function that maps from a compact
set in a Banach space to another Banach space (in fact, any Hausdorff topological
spaces, not necessarily Banach) has a continuous inverse. So by compactness of
S, A−1

S is continuous. Continuity of A−1
S implies:

lim
b→0

sup
u∈A[S],∥u∥Z≤b

∥A−1
S [u]∥X = 0

The final result follows because A−1
S [u] and A−1[u] coincide for u ∈ A[S].

Lemma 1.4. Suppose Assumptions 1 and 2 hold, and the set S⊂ X is such that
S is absolutely convex and infinite dimensional. Let h◦ ∈ S and suppose there
exists α > 1 so that αh◦ ∈ S. Then:

lim
b→0

suph∈S,A[h−h◦]∈U : ∥A[h−h◦]∥Z≤b ∥h− h◦∥X
b

= ∞

Proof. Assume the contrary, then for some b∗ > 0 there exists a finite scalar C
so that if h ∈ S, A[h− h◦] ∈ U , ∥A[h− h◦]∥Z ≤ b, and b ≤ b∗, then we must have
∥h− h◦∥X ≤ Cb. Therefore, if h ∈ S, A[h− h◦] ∈ U , and ∥A[h− h◦]∥Z ≤ b∗, we
get ∥h− h◦∥X ≤ C∥A[h− h◦]∥Z .
By definition of the operator norm of A, ∥A[h − h◦]∥Z ≤ ∥A∥∥h − h◦∥X . As-

sumption 2.ii implies that ∥A∥ > 0. And so for any h ∈ S with A[h− h◦] ∈ U we
must have:

∥h− h◦∥X ≤ 1

∥A∥
b∗ =⇒ ∥h− h◦∥X ≤ C∥A[h− h◦]∥Z

By Assumption 1 there is an open X̃ -ball centred at zero in A−1[U ] with radius
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ru. If ∥h − h◦∥X ≤ ru and h − h◦ ∈ X̃ it follows that A[h − h◦] ∈ U . Let
c∗ = min{ 1

∥A∥b
∗, ru}, we get that for any h ∈ S with h− h◦ ∈ X̃ :

(C2) ∥h− h◦∥X ≤ c∗ =⇒ ∥h− h◦∥X ≤ C∥A[h− h◦]∥Z

We have αh◦ ∈ S for some α > 1 and also that S is absolutely convex and
hence convex. Note that 1/α ∈ (0, 1) so by convexity, for any h ∈ S ∩ X̃ ,
h′ := (1 − 1

α)h + 1
α(αh

◦) ∈ S in which case, using linearity of X̃ (see Lemma

1.1), we have (1 − 1
α)h = h′ − h◦ ∈ X̃ . Applying (C2) and then substituting

h′ − h◦ = (1− 1
α)h we get:

∥h∥X ≤ α

α− 1
c∗ =⇒ ∥h∥X ≤ C∥A[h]∥Z

Note the above holds for any such an h ∈ S ∩ X̃ .

Let R be the closed ball in X̃ of radius α
α−1c

∗. Let C = [γh : h ∈ R∩S, γ ∈ R].
We have already shown that for any h ∈ R ∩ S, ∥h∥X ≤ C∥A[h]∥Z . By linearity
of A and properties of norms, for any h ∈ C we have that ∥h∥X ≤ C∥A[h]∥Z .
Let C̄ be the closure of C. By definition of the closure, for any h ∈ C̄ there is a

sequence hk in C so that ∥h − hk∥X → 0. For all k, ∥hk∥X ≤ C∥A[hk]∥Z , so by
the triangle inequality and the definition of the operator norm:

∥h∥X ≤ C∥A[h]∥Z + (1 + C∥A∥)∥h− hk∥X

A is compact by Assumption 2.ii and thus continuous, so ∥A∥ < ∞, and so since
∥h− hk∥X → 0 we get ∥h∥X ≤ C∥A[h]∥Z . Thus the inverse A−1 (which exists by
Assumption 2.ii) is bounded on C̄.
Now, R∩S is absolutely convex which implies C is a linear space and therefore

so is C̄. Because S is infinite-dimensional and absolutely convex, C is infinite-
dimensional and likewise C̄. It is well-known that a closed subset of a complete
space is complete, C̄ is a closed subset of X̃ by construction and X̃ is a Banach
space (see Lemma 1.1) and thus complete in the norm ∥ · ∥X . Thus C̄ is an
infinite-dimensional, complete linear space, i.e., an infinite-dimensional Banach
space. But the inverse of a compact injective operator on an infinite-dimensional
Banach space cannot be bounded (see Theorem 15.4 in Kress (2014)), and so we
have a contradiction.

Proof of Theorem 1. Part a.

By Assumption 2.ii, the inverse A−1 exists. Since H is finite dimensional under
Assumption 3.i, so too is its image under A, denoted A[H]. The restriction of
A−1 to A[H] is then bounded (see e.g., Kress (2014) Theorem 2.6). Suppose the
restriction of A−1 to A[H] has norm c. Now, by the triangle inequality, for any
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h1, h2 ∈ Θb, ∥A[h1 − h2]∥Z ≤ 2b, and since H is linear h1 − h2 ∈ H. But then:

∥h1 − h2∥X = ∥A−1A[h1 − h2]∥X ≤ c∥A[h1 − h2]∥Z ≤ 2cb

So we see diam(Θb) ≤ 2cb, and we are done.
Part b.
First we show that limb→0 diam(Θb) = 0. Assumption 3.ii states that αh∗ ∈ H

for some α > 1 which, by absolute convexity of H, implies h∗ ∈ H and thus
A[h∗] = g0 ∈ A[H]. Since A is injective by Assumption 2.ii:

sup
h1,h2∈Θb

∥h1 − h2∥X ≤ 2 sup
h∈Θb

∥h− A−1[g0]∥X

≤ 2 sup
h∈H: ∥A[h]−g0∥Z≤b

∥h− A−1[g0]∥X

≤ sup
u∈A[H]−g0: ∥u∥Z≤2b

∥A−1[u]∥X

Where the first inequality follows by the triangle inequality, the second because
the set [h ∈ H : ∥A[h] − g0∥Z ≤ b] is a subset of Θb, and the final inequality by
a reparametrization (A[H] − g0 is defined so that u ∈ A[H] − g0 if and only if
u + g0 ∈ A[H]). Finally, since H is compact by Assumption 3.ii, it follows that
H − A−1[g0] is compact. Thus we can apply Lemma 1.3 with S = H − A−1[g0]
and we get the result.
Now we show that limb→0 diam(Θb)/b = ∞. Since A−1[g0] ∈ Θb:

sup
h1,h2∈Θb

∥h1 − h2∥X ≥ sup
h∈Θb

∥h− A−1[g0]∥X

= sup
h∈S,A[h]−g0∈U : ∥A[h]−g0∥Z≤b

∥h− A−1[g0]∥X

Applying Lemma 1.4 with S = H and h◦ = A−1[g0] then gives the result.
Part c.
By Assumption 3.iii, H̄ contains an open X̃ -ball of radius rh centred at h∗.

Applying Lemma 1.2 with S = H and h◦ = h∗ and using that A[h∗] = g0, we see
that for any δ > 0 there exists h1, h2 ∈ H, with ∥h1 − h2∥X ≥ 2min{rh, ru} − 2δ
and for i = 1, 2, A[hi]− g0 ∈ U , and ∥g0−A[hi]∥Z ≤ b. Thus for i = 1, 2, hi ∈ Θb.
Since we can make δ arbitrarily small, it follows that the diameter of Θb satisfies:

sup
h1,h2∈Θb

∥h1 − h2∥X ≥ 2min{rh, ru}

Proof of Corollary 1. By Assumption 2.ii, 0 < ∥A∥ < ∞. Fix some b > 0. Given
U = Z, the identified set contains all functions h ∈ H with ∥A[h]− g0∥Z ≤ b. By
Theorem 1 part c., for any c < ∞ and 0 < ϵ < b, there exist h1 and h2 in the
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identified set with H = X so that ∥h1 − h2∥X ≥ c and ∥A[hi]− g0∥Z ≤ b− ϵ for
i = 1, 2. Since infh∈Hk

∥hi − h∥X → 0, there is some k∗ so that for all k ≥ k∗

there is a corresponding h∗1,k, h
∗
2,k ∈ Hk and ∥hi − h∗i,k∥X ≤ ϵ

∥A∥ for i = 1, 2. By

the triangle inequality:

∥A[h∗i,k]− g0∥Z ≤ ∥A[hi]− g0∥Z + ∥A∥∥hi − h∗i,k∥X ≤ b

So h∗1,k, h
∗
2,k ∈ Θb,k, and again by the triangle inequality:

∥h∗1,k − h∗2,k∥X ≥ ∥h1 − h2∥X − 2ϵ

∥A∥
≥ c− 2ϵ

∥A∥

And so for all k ≥ k∗, diam(Θb,k) ≥ c− 2ϵ
∥A∥ . But since c can be made arbitrarily

large and this will hold for some corresponding k∗, we have diam(Θb,k) → ∞.

Proof of Corollary 2. Consider some h ∈ Θb,η. Then by definition there is an h′ ∈
H so that ∥h− h′∥X ≤ η and ∥g0 − A[h]∥Z ≤ b. Then by the triangle inequality,
∥g0 − A[h′]∥Z ≤ b + ∥A∥η. As such, because U = Z, we see h′ ∈ Θb+∥A∥η,0 and
∥h − h′∥X ≤ η. Since there is such an h′ for any h ∈ Θb,η, we have that for any
pair h1, h2 ∈ Θb,η there is a pair h′1, h

′
2 ∈ Θb+∥A∥η,0 so that ∥hi − h′i∥X ≤ η for

i = 1, 2 and so by the triangle inequality:

∥h1 − h2∥X ≤ ∥h′1 − h′2∥X + 2η ≤ diam(Θb+∥A∥η,0) + 2η

And since this holds for any h1, h2 ∈ Θb,η, we see that

diam(Θb,η) ≤ diam(Θb+∥A∥η,0) + 2η.

Thus if H satisfies Assumption 3.i we have by Theorem 1 that for the same
constant C in Theorem 1.a diam(Θb,η) ≤ Cb + (C∥A∥ + 2)η and under either
Assumption 3.i or 3.ii limb,η→0 diam(Θb,η) = 0.

Proof of Theorem 2. We prove a more general result than the one stated in the
paper. We let X and Z be Hilbert spaces (not necessarily L2) with inner products
⟨·, ·⟩X and ⟨·, ·⟩Z respectively. We show that for b > 0, diam(L(Θb)) < ∞ if and
only if L[h] = ⟨w, h⟩X where w = A∗[α], in which case diam(L(Θb)) = 2b∥α∥Z .
A∗ is the adjoint of A. Specializing this to the L2 case in the main body of the
paper, ⟨h1, h2⟩X = E[h1(X)h2(X)], ⟨g1, g2⟩Z = E[g1(Z)g2(Z)], and the adjoint of
the operator A, denoted A∗ is given by A∗[g](X) = E[g(Z)|X] and so we recover
the result in the paper.

First we prove the following:

diam(L(Θb)) = 2 sup
g∈A[X ]: ∥g∥Z≤b

|LA−1[g]|(C3)
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Given our H and U , Θb = [h ∈ X : ∥A[h]− g0∥Z ≤ b], so we have:

diam(L(Θb)) = sup
h1,h2∈X : ∥A[hi]−g0∥Z≤b, i=1,2

|L[h1]− L[h2]|

= sup
g1,g2∈A[X ]: ∥gi∥Z≤b, i=1,2

|LA−1[g1 − g2]|

Where the final line uses linearity of L and that g0 ∈ A[X ]. Restricting g2 = −g1
we get the lower bound diam(L(Θb)) ≥ 2 supg∈A[X ]: ∥g∥Z≤b |LA−1[g]|, and by the
triangle inequality we obtain:

sup
g1,g2∈A[X ]: ∥gi∥Z≤b, i=1,2

|LA−1[g1 − g2]| ≤ 2 sup
g∈A[X ]: ∥g∥Z≤b

|LA−1[g]|

Noting that the LHS is equal to diam(L(Θb)) we get (C3). By linearity, from (C3)
we see that diam(L(Θb)) = b×diam(L(Θ1)). Moreover, supg∈A[X ]: ∥g∥≤1 |LA−1[g]|
is the operator norm of LA−1. If this operator is unbounded, diam(L(Θ1)) = ∞
and likewise for diam(L(Θb)) for b > 0.

Suppose instead that LA−1 is bounded. We will apply the Reisz representation
theorem (see Theorem 4.8 in Kress (2014)). First we need to deal with the
technicality that LA−1 is not defined on the whole of Z, but rather on A[X ].
Since LA−1 is bounded we can apply the Hahn-Banach theorem which shows
LA−1 has a bounded linear extension (with the same operator norm) that is
defined everywhere on Z and coincides with LA−1 on A[X ]. Applying the Reisz
representation theorem to this extension, we see LA−1 is bounded if and only if
there exists an α ∈ Z so that for all g ∈ A[X ] we have LA−1[g] = ⟨α, g⟩Z . In
which case supg∈A[X ]: ∥g∥≤1 |LA−1[g]| = ∥α∥Z . Thus diam(L(Θb)) = 2b∥α∥Z . But
since g ∈ A[X ], we have:

LA−1[g] = ⟨α,AA−1[g]⟩Z = ⟨A∗[α],A−1[g]⟩Z

And so, for all h ∈ X , L[h] = ⟨A∗[α], h⟩X in which case L[h] = ⟨w, h⟩X , where
w = A∗[α]. And so we are done. If diam(L(Θb)) < ∞ then L[h] = ⟨w, h⟩X where
w = A∗[α], in which case diam(L(Θb)) = 2b∥α∥Z .

C2. Proof of Results Stated in Appendix A

Proof of Proposition A.1. From Proposition A.2 (see proof below) it is enough to
show the following are all zero:

γ0(x, z) = E[Yx,z − Yx]

ℓ0(z;Z) = E[Yx0,z|Z]− E[Yx0,z]

δ0(x, z;X,Z) = E[Yx,z − Yx0,z|X,Z]− E[Yx,z − Yx0,z]
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Under Assumption C.i E[Yx,z] = E[Yx] and so γ0(x, z) = 0. Under C.ii E[Yx0,z|Z] =
E[Yx0,z] and so ℓ0(z;Z) = 0. Under Assumption C.iii E[Yx,z − Yx0,z|X,Z] =
E[Yx,z − Yx0,z] and so δ0(x, z;X,Z) = 0.

Proof of Proposition A.2. Fix some arbitrary treatment level x0. Using h0(x) =
E[Yx] and adding and subtracting terms, we get:

Yx,z − h0(x) = E[Yx0 − Yx] + Yx,z − Yx0,z

+ Yx0,z − E[Yx0,z] + E[Yx0,z]− E[Yx0 ]

Setting x equal to X and z equal to Z in the above and taking expectations
conditional on Z we get:

E[Y − h0(X)|Z] =E
[
E[Yx0 − Yx]|x=X |Z] + E[YX,Z − Yx0,Z |Z]

+E[Yx0,Z |Z]− E[Yx0,z]|z=Z + E[Yx0,z]|z=Z − E[Yx0 ]

=E
[
E[Yx0 − Yx]|x=X |Z] + E[YX,Z − Yx0,Z |Z]

+ℓ0(Z;Z) + γ0(x0, Z)

Now consider the term E[YX,Z −Yx0,Z |Z] on the RHS of the final equality above.
Applying the law of iterated expectations and then adding and subtracting terms,
we get:

E[YX,Z − Yx0,Z |Z] =E[E[YX,Z − Yx0,Z |X,Z]|Z]

=E[E[Yx − Yx0 ]|x=X |Z] + E[γ0(X,Z)|Z]

−γ0(x0, Z) + E[δ0(X,Z;X,Z)
∣∣Z]

Substituting this, we get:

E[Y − h0(X)|Z] = E[γ0(X,Z)|Z] + ℓ0(Z;Z) + E[δ0(X,Z;X,Z)
∣∣Z]

Proof of Proposition A.3. Consider some h ∈ X̃ with supx∈SX
|h(x)| ≤ a. Define
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u = A[h] ∈ Z̃. Note that for any z1, z2 ∈ SZ :

|u(z1)− u(z2)| = |
∫

h(x)
(
fX|Z(x|z1)− fX|Z(x|z2)

)
dx|

≤ sup
x∈SX

|h(x)|
∫

|fX|Z(x|z1)− fX|Z(x|z2)|dx

≤ sup
x∈SX

|h(x)| sup
x∈SX

|fX|Z(x|z1)− fX|Z(x|z2)|

≤ sup
x∈SX

|h(x)|c∥z1 − z2∥2

≤ ac∥z1 − z2∥2

Where the second inequality follows by the Hölder inequality and the third by
(??). From the above we get:

sup
z1 ̸=z2∈SZ

|u(z1)− u(z2)|
∥z1 − z2∥2

≤ ac

In addition, note that for all z ∈ SZ , we have |u(z)| ≤ supx∈SX
|h(x)| ≤ a. So we

see that if a = min{c̄, C/c} then A[h] ∈ U . If X is equipped with the max norm
then the set of functions h ∈ X̃ with supx∈SX

|h(x)| ≤ min{c̄, C/c} is precisely
the closed ball around zero with radius min{c̄, C/c} which contains the open ball
with the same radius. So we see that A−1[U ] contains this open ball with this
radius.

Proof of Proposition A.4. We will suppose a. holds and show b. cannot be true.
Fix some h0 ∈ H. Let Θ̃b be the identified set from assumptions h0 ∈ H and
∥u0∥Z ≤ b when the joint distribution of observables (X,Z, Y ) is pinned down by
(X,Z, η) ∼ FXZη and E[Y |Z] = E[h0(X)|Z]. Note that by construction, Θ̃b is the
set of functions h ∈ H so that ∥A[h0]−A[h]∥Z ≤ b. By definition of the diameter
and the triangle inequality, for any ϵ > 0 there must be some h ∈ Θ̃b so that
∥h − h0∥X > 1

2diam(Θ̃b) − ϵ. Fix such an h. Now suppose g0 = A[h]. Together
with (X,Z, η) ∼ FXZη this pins down the joint distribution of observables FXZY .
Because h is in the identified set, we must have:

∥u0∥Z = ∥g0 − A[h0]∥Z = ∥A[h0]− A[h]∥Z ≤ b

Now, note that the joint distribution of observables, FXZY is identical to the case
in which h0 = h and u0 = 0. Thus by the consistency properties of the estimator,
it follows that ĥ →p h. And so:

plim∥ĥ− h0∥X = ∥h− h0∥X >
1

2
diam(Θ̃b)− ϵ



VOL. VOLUME NO. ISSUE APPENDIX 17

Proof of Proposition A.5. Part a. Pick some 0 < c < 1. A compact infinite-
dimensional operator cannot have a bounded inverse (see e.g., Theorem 15.4 in
Kress (2014)) and so A−1 is unbounded. Thus for any ϵ > 0 there exists a non-
zero function h ∈ X so that ∥A[h]∥Z ≤ ϵ∥h∥X . Given our choice of Banach space
this means there is 0 < E[h(X)2] < ∞ so that:

E
[
E[h(X)|Z]2

]
≤ 1

4
c2E[h(Xi)

2]

Moreover, by the triangle inequality:

E
[
E[β′Φk(X)|Z]2

]1/2 ≤ E
[
E[h(X)|Z]2

]1/2
+ E

[
E[h(X)− β′Φk(X)|Z]2

]1/2
And note that any random variable W with E[W 2] < ∞, E

[
E[W |Z]2

]
≤ E[W 2]

and so:
E
[
E[h(Xi)− β′Φk(Xi)|Zi]

2
]
≤ E

[(
h(Xi)− β′Φk(Xi)

)2]
So we get that:

(C4) E
[
E[β′Φk(X)|Z]2

]1/2 ≤ 1

2
cE[h(X)2]1/2 + E

[(
h(X)− β′Φk(X)

)2]1/2
Moreover, again by the triangle inequality:

E[h(Xi)
2]1/2 ≤ E

[(
β′Φk(X)

)2]1/2
+ E

[(
h(X)− β′Φk(X)

)2]1/2
By assumption, for some k there is a β so that:

E
[(
h(X)− β′Φk(X)

)2]1/2 ≤ c

2c+ 2
E[h(X)2]1/2

Since c
2c+2 < 1, this β must be non-zero. Note that the choice of {Ψk}∞k=1 has no

bearing on the value of k that achieves the above. Combining the previous two
equations we get that for such a β:

(C5) E[h(Xi)
2]1/2 ≤ 2c+ 2

c+ 2
E
[(
β′Φk(X)

)2]1/2
And so:

(C6) E
[(
h(X)− β′Φk(X)

)2]1/2 ≤ c

c+ 2
E[

(
h(X)

)2
]1/2

Substituting (C5) and (C6) into (C4) we get:

E
[
E[β′Φk(X)|Zi]

2
]1/2 ≤ cE

[(
β′Φk(X)

)2]1/2
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Now, define q by the projection below:

q(Z) = Ψk(Z)′E[Ψk(Z)Ψk(Z)′]−1E[Ψk(Z)Φk(X)]′β

By elementary properties of least-squares projections:

E[q(Z)2] ≤ E
[
E[β′Φk(X)|Z]2

]
So we have E[q(Z)2] ≤ c2E

[(
β′Φk(X)

)2]
. Using the definition of q and πk, we

can re-write this as:

β′π′
kE[Ψk(Z)Ψk(Z)′]πkβ ≤ c2β′E[Φk(X)Φk(X)′]β

Now, note that from Φk(X) = π′
kΨk(Z) + Vk and the definition of πk, we have:

E[Φk(X)Φk(X)′] = π′
kE[Ψk(Z)Ψk(Z)′]πk + E[VkV

′
k]

Substituting the above into the RHS of the previous inequality, we get:

β′π′
kE[Ψk(Z)Ψk(Z)′]πkβ ≤ c2β′π′

kE[Ψk(Z)Ψk(Z)′]πkβ + c2β′E[VkV
′
k]β

Using 0 < c < 1 the above implies β′π′
kE[Ψk(Z)Ψk(Z)′]πkβ ≤ c2

1−c2
β′E[VkV

′
k]β.

Reparametrizing β̃ = E[VkV
′
k]

1/2β and dividing through by ∥β̃∥22, we get:

1

∥β̃∥22
β̃′E[VkV

′
k]

−1/2π′
kE[Ψk(Z)Ψk(Z)′]πkE[VkV

′
k]

−1/2β̃ ≤ c2

1− c2

But by elementary properties of eigenvalues, for any non-zero vector β:

λmin

(
E[VkV

′
k]

−1/2π′
kE[Ψk(Z)Ψk(Z)′]πkE[VkV

′
k]

−1/2
)

≤ 1

∥β∥22
β′E[VkV

′
k]

−1/2π′
kE[Ψk(Z)Ψk(Z)′]πkE[VkV

′
k]

−1/2β

Where λmin(·) returns the smallest eigenvalue. The LHS above is simply tmin,k,

so we conclude that tmin,k ≤ c2

1−c2
. Since 0 < c < 1 was set arbitrarily, we obtain

the result.

Part b. Decomposing the 2SLS formula in the usual way, we get:

β∗
k − β0 = (π′

kE[Ψk(Z)Ψk(Z)′]πk)
−1π′

kE[Ψk(Z)u0(Z)]
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So we see that:

E
[(
h0(X)− Φk(X)′β∗

k

)2]
=E

[(
Φk(X)′(β0 − β∗

k)
)2]

=E
[(
Φk(X)′(π′

kE[Ψk(Z)Ψk(Z)′]πk)
−1π′

kE[Ψk(Z)u0(Z)]
)2]

Substituting u0(Z) = Ψk(Z)′πkE[VkV
′
k]

−1/2v0 for some vector v0 gives:

E
[(
h0(X)− Φk(X)′β∗

k

)2]
=E

[(
Φk(X)′E[VkV

′
k]

−1/2v0
)2]

=v′0E[VkV
′
k]

−1/2E[Φk(X)Φk(X)′]E[VkV
′
k]

−1/2v0

As in part a., note that E[Φk(X)Φk(X)′] = π′
kE[Ψk(Z)Ψk(Z)′]πk +E[VkV

′
k], and

so E
[(
h0(X)− Φk(X)′β∗

k

)2] ≥ ∥v0∥22. Moreover, we have

E[u0(Z)2] = v′0E[VkV
′
k]

−1/2π′
kE[Ψk(Z)Ψk(Z)′]πkE[VkV

′
k]

−1/2v0

But then, letting v0 be the eigenvector of E[VkV
′
k]

−1/2π′
kE[Ψk(Z)Ψk(Z)′]πkE[VkV

′
k]

−1/2

associated with its smallest eigenvalue (which is tmin,k), we get:

E[u0(Z)2] = λmin

(
E[VkV

′
k]

−1/2π′
kE[Ψk(Z)Ψk(Z)′]πkE[VkV

′
k]

−1/2
)
∥v0∥2

= tmin,k∥v0∥22

And so E
[(
h0(X) − Φk(X)′β∗

k

)2] ≥ E[u0(Z)2]
tmin,k

Since we can scale the eigenvector

v0 however we like, we can scale it so that E[u0(Z)2] = b.

Proof of Proposition A.6. Given E[u0(Z)] = 0, for any h1, h2 ∈ Θb we have
E[h1(X)] = E[h2(X)] = E[Y ]. Then by the triangle inequality we see:

|h1(x)− h2(x)| ≤
∣∣(h1(x)− h1(x̄)

)
−
(
h2(x)− h2(x̄)

)∣∣
+
∣∣E[(

h1(x)− h1(x̄)
)
−
(
h2(x)− h2(x̄)

)]∣∣
≤
∣∣(h1(x)− h1(x̄)

)
−
(
h2(x)− h2(x̄)

)∣∣
+E

[∣∣(h1(x)− h1(x̄)
)
−
(
h2(x)− h2(x̄)

)∣∣]
≤2 sup

x∈SX

∣∣(h1(x)− h1(x̄)
)
−
(
h2(x)− h2(x̄)

)∣∣
Taking the supremum over x ∈ SX and dividing by 2 gives the result.

*
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