
Online Appendix
In the paper, we presented our main result for Inhomogeneous Random Networks (IRN),
which capture as special instances Erdős-Renyi graphs, networks with power-law degree
distributions and island models with homophily. A remaining question is how would results
hold up for networks that have features not captured by the IRN model, e.g., networks with
clustering, like “small-world" networks (Watts and Strogatz, 1998) or networks exhibiting
power-law degree distributions and homophily).

In Section 4.3, we presented a generalization using the notion of graphs with solar system
structure, showing that our results hold in any network models that admit a unique giant
component with high probability or no giant component at all. For the sake of completeness,
we include a description of this concept and the accompanying theorem in Section 1.

Here, we show that a broader class of networks enjoy the structure which is necessary
for our results. Central to our extension is the notion of local convergence of graphs. Local
convergence has recently become an essential tool for analyzing sparse graphs. It has been
instrumental in determining the convergence and limits of various factors, such as clustering
coefficients, the size of giant connected component, and the distribution of PageRank values
in sparse random graphs; see Hofstad (2024) for an exposition.

We build on the recent work of Alimohammadi, Borgs and Saberi (2023) and Alimoham-
madi, Borgs and Saberi (2022) to extend our seeding results for certain families of graphs
that exhibit local convergence. We incorporate several definitions and theorems from those
works, but simplify statements in certain places to facilitate reading.

We show that the small-world or “Watts-Strogatz-type networks" satisfy the conditions for
the main theorem of the paper to apply. We also discuss a natural approach for incorporating
homophily into power-law networks and demonstrate that our results go through for the
resulting model.

1 Networks with a solar system structure
Let {Gn}n∈N be a sequence of (possibly random) graphs in which the number of vertices
of Gn is equal to n. We build the communication network K(Gn) by keeping each link in
the graph independently and with probability c. Let Ci denote the set of vertices in the
i’th largest connected component of K(Gn). Finally, we use P→ to denote convergence in
probability with respect to both the random graph distribution and the process of forming
the communication network.

Definition 1. We say a sequence of graphs has the solar system structure if and only if
there exists a threshold probability 0 < cp < 1 such that

1. If c < cp then,
|C1|
n

P→ 0.

2. If c > cp, then there exists a function ζ : [0, 1] → (0, 1]

|C1|
n

P→ ζ(c),
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3. Moreover, for all c ∈ [0, 1], |C2|
n

P→ 0.

In a graph with solar system structure, either all connected components are of size o(n)
or there is a unique giant connected component that is of size linear in n. All the classes
of random graphs considered in our paper have this property. In this appendix, we show
that many other classes of graphs enjoy this property as well, including those that feature
clustering and homophily.

Theorem 2. Let {Gn}n∈N be a sequence of (possibly random) graphs with solar system
structure and s be the number of seeds.

• If c > cp, random seeding catches up to the omniscient seeding at an exponential rate in
the number of extra seeds, i.e., for any x,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.

• If c < cp, then any seeding strategy diffuses to only a vanishing fraction of the population:

lim
n→∞

H(OMN, s) = 0.

The solar system property lays bare the intuition driving the results in the paper. The
random seeding is likely to reach the large component, if it exists, with sufficiently many
seeds. If such a component does not exist, then a small number of seeds cannot diffuse to a
sizable fraction of agents for large networks.

1.1 Definition of local convergence

Crucial to our formalization is the notion of local convergence, initiated independently by
Aldous and Steele (2004) and Benjamini and Schramm (2001). A sequence of (possibly
random) graphs is said to have a local weak limit in probability, if the distributions of the
neighborhoods of randomly sampled vertices converge in probability. The limit is then a
probability measure µ on the space of rooted, locally finite, connected graphs.

A rooted graph is simply a pair (G, o) where G is a graph and o ∈ V (G) is a specific
node. The graphs (G1, o1) and (G2, o2) are isomorphic, denoted as (G1, o1) ≃ (G2, o2), if there
exists a bijection ϕ : V (G1) 7→ V (G2) such that ϕ(o1) = o2 and (u, v) ∈ E(G1) if and only if
(ϕ(u), ϕ(v)) ∈ E(G2). Denote the space of (potentially infinite) connected rooted graphs as
G⋆, where two rooted graphs are considered equivalent if they are isomorphic. Therefore, G⋆
consists of equivalence classes of rooted graphs modulo isomorphism.

This space of rooted graphs, G⋆, can be endowed with a metric structure denoted as dloc.
Let Br(G, o) denote the subgraph of G comprised of all nodes at a graph distance of at most
r from o. The metric dloc between two rooted graphs (G1, o1) and (G2, o2) is defined as:

dloc((G1, o1), (G2, o2)) =
1

1 + infk{k : Bk(G1, o1) ̸≃ Bk(G2, o2)}
.
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Two rooted graphs are closer according to dloc if they are isomorphic for a larger neighborhood
of their respective roots.

Note that this metric endows G⋆ with the natural σ-algebra of Borel sets, allowing us in
particular to consider measures µ on G⋆.

Definition 3 (Local convergence in probability). Let µ be a measure on G⋆. A sequence of
graphs (Gn)n≥1 converges locally in probability to a limit (G, o) ∼ µ if and only if for every
r ≥ 0 and H⋆ ∈ G⋆,

1

|V (Gn)|
∑

v∈V (Gn)

1{Br(Gn, v) ≃ H⋆}
P−→ µ(Br(G, o) ≃ H⋆). (1)

This definition implies that the proportions of subgraphs in the random graph Gn converges
in probability to those given by µ. If vertex on ∈ V (Gn) is chosen uniformly at random, then
the above expression is equivalent to p(Gn)

r (Br(Gn, on) ≃ H⋆)
P−→ µ(Br(G, o) ≃ H⋆).

We also need to define a notion of graph expansion, which is a measure of connectivity of
graphs.

Definition 4 (Large-set edge expansion). Given a graph G = (V,E) and a constant ϵ < 1/2,
define

ϕ(G, ϵ) = min
A⊂V :ϵ|V |≤|A|≤|V |/2

e(A, V \ A)
|A|

(2)

where e(A, V \ A) is the number of edges joining A to its complement.

In words, ϕ measures how connected a group of nodes is nodes outside of it, relative to
the size of this group. It takes the minimum of this ratio over all sufficiently large sets of
nodes (hence the name “large-set expansion").

Call a graph G an (α, ϵ, d̄) large-set (edge) expander if the average degree of G is at most
d̄ and ϕ(G, ϵ) ≥ α. A sequence of possibly random graphs {Gn}n∈N is called a large-set (edge)
expander sequence with bounded average degree, if there exists d̄ and α > 0 such that for
any ϵ ∈ (0, 1/2) the probability that Gn is an (α, ϵ, d̄) large-set (edge) expander goes to 1 as
n → ∞.

1.2 Locally convergent graphs have a solar-system structure

One can define the communication network K(G) for the (infinite) limit graph G as well.
Given a probability measure µ on G∗, w define

ζ(c) = Eµ

[
PK(G)(|C(o)| = ∞)

]
(3)

where o is the root in (G, o) ∼ µ and C(o) is the connected component of o in K(G), and we
define the percolation threshold cp(µ) of µ as

cp(µ) = inf
c
{c ∈ [0, 1] : ζ(c) > 0}. (4)

Theorem 5 (Theorem 1.1 in Alimohammadi et al. (2023), rephrased). Let {Gn}n∈N be a
sequence of (possibly random) large-set expanders with bounded average degree converging
locally in probability to (G, o) ∈ G∗. Then Gn has a solar system structure. Specifically,
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1. If c < cp then,
|C1|
n

P→ 0.

2. If c > cp, then for ζ : [0, 1] → (0, 1]

|C1|
n

P→ ζ(c),

with P→ denoting convergence in probability with respect to both µ and percolation.

3. Moreover, for all c ∈ [0, 1], |C2|
n

P→ 0.

1.3 Extension to directed communication networks

The above theorem can be further extended to the case where the communication network is
directed. More formally, let DG(c) be the random digraph obtained from a graph G by first
replacing each edge {u, v} by two oriented edges uv and vu and then keeping each oriented
edge independently with probability c.

Next, given a digraph, let C+(v) (and C−(v)) be the set of nodes w that can be reached by
a directed path from v to w (from w to v). We refer to these sets as the fan-out (and fan-in)
of v. As usual, the set SCC(v) = C+(v) ∩ C−(v) is called the strongly connected component
of v. For a strongly connected component SCC, we use the symbol SCC+ for the set of nodes
SCC+ =

⋃
v∈SCC C+(v) and the symbol SCC− for the set of nodes SCC− =

⋃
v∈SCC C−(v).

Finally, as usual, we say that a sequence of events, (En), holds with high probability if
the probability of En goes to 1 as n → ∞.

Theorem 6 (Theorem 1.3 in Alimohammadi et al. (2023), rephrased). Let c ∈ (0, 1] and
{Gn}n∈N be a sequence of (possibly random) graphs satisfying the conditions of Theorem 5.
Also, let SCCi be the ith largest strongly connected component in DGn(c). Then

1. if c < cp, for all v ∈ V (Gn)

|C+(v)|
n

P→ 0,
|C−(v)|

n

P→ 0 and
|SCC1|

n

P→ 0.

2. If c > cp then
|SCC1|

n

P→ ζ(c).

Furthermore, for all v ∈ V (Gn), with high probability the following holds:

• If v /∈ SCC−
1 , then |C+(v)| = o(n).

• If v ∈ SCC−
1 then |C+(v)| = ζ ′(c)n+ o(n).

Given the above structure of the percolated graph, it is easy to show that the main
statement of the paper in fact holds for any family of graphs satisfying the conditions of
Theorem 5.
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Proposition 7. Let {Gn}n∈N be a sequence of (possibly random) graphs satisfying the condi-
tions of Theorem 5. Consider the directed communication model and denote the probability of
successful transmission from a vertex to its neighbor by c. Let s be the number of seeds.

If c > cp, random seeding catches up to the omniscient seeding at an exponential rate in
the number of extra seeds, i.e. for any x,

lim
n→∞

H(RAND, s+ x)

H(OMN, s)
= 1− (1− α)s+x.

If c < cp, then any seeding strategy diffuses to only a vanishing fraction of the population:

lim
n→∞

H(OMN, s) = 0.

1.4 Application to networks in preferential and configuration models

Theorems 5 and 6 are applicable to a wide range of network models, including random graphs
in both configuration model and preferential attachment models, as well as Watts-Strogatz
small-world networks.

In order to apply our results to the configuration model, we first need to describe the
conditions for the existence of the local weak limits. To formulate it, let Dn be the degree
of a uniform random node in the degree sequence dn. Recall the definition of the empirical
distribution Fn of the sequence dn,

Fn(x) =
1

n

∑
j∈[n]

1dj≤x.

Condition 1.1. Let dn = (d1, . . . , dn) be a graphical degree sequence. Then there exists a
random variable D such that

1. P(D ≥ 3) = 1 and as n → ∞, Dn
d→ D, and E[Dn] → E[D] < ∞.

2. The empirical distribution Fn satisfies, [1 − Fn](x) ≤ cFx
−τ−1, for some cF > 0 and

τ ∈ (2, 3).

For the preferential attachment model {PA}m,n, we follow the set up of Alimohammadi
et al. (2023). The model has a parameter m ∈ N, and is defined as follows. Starting from
a connected graph Gt0 on at least m vertices, a random graph Gt is defined inductively:
given Gt−1 and its degree sequence di(t − 1), we form a new graph by adding one more
vertex, vt, and connect it to m distinct vertices w1, . . . , wm ∈ V (Gt−1) by first choosing
w1, . . . , wm ∈ V (Gt−1) i.i.d with distribution P(ws = i) = di(t−1)

2|E(Gt−1)| , s = 1, . . .m, and then
conditioning on all vertices being distinct (thus avoiding multiple edges).

Proposition 8. The conditions of Theorem 5 holds for the following models:

• {Gn} = {PA}m,n, for m ≥ 2, that is networks of size n in the preferential attachment
model
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• {Gn}n∈N = {CM∗(dn)}n∈N, where {dn}n∈N is a graphical degree sequence satisfying
Condition 1.1.

It is possible to generalize the above theorem to “household” or “motif-based” preferential
or configuration models in which every vertex is replaced with a small subgraph sampled
from a give distribution. We refer the reader to Alimohammadi et al. (2022) for a more
detailed discussion.

1.5 Application to Watts-Strogatz models

Using the above formalization, we can show that our results hold for Watts-Strogatz small-
world graphs. Not surprisingly, the answer is positive. Let us start with a natural formalization
for such networks following Barbour and Reinert (2006).

Definition 9 (Small-world network). A Small-World network SWn of size n is comprised of
n = Ld vertices around a circle, where each vertex is connected to all its neighbors within
distance d by an undirected edge. Shortcuts or long-range links are formed by adding edges
between every pair of non-adjacent vertices with probability q/n.

The local limit of the family {SWn} is shown to be a two-type branching process as in
Barbour and Reinert (2006). These graphs are known to be expanders as well Flaxman
(2007). Therefore, we have:

Proposition 10. Small-world networks have a solar system structure. Therefore, they satisfy
the conditions of Theorem 2 and Theorem 6.

1.6 Application to power-law networks with homophily

There are different ways to introduce homophily in preferential attachment networks. We
build on the island model discussed in the paper. Specifically, we adapt the preferential
attachment model with global communities as discussed in Hofstad (2024), (section 9.3.4),

Start with an initial graph Gn0 where each vertex v has out-degree m and a type σ(v) ∈ [t].
At time n+1, a new vertex n+1 arrives with type σ(n+1) chosen iid from [t] with distribution
µ(s) = P (σ(n+ 1) = s). Vertex n+ 1 has m out-half edges, each labeled with σ(n+ 1). An
affinity matrix κ : [t]× [t] → [0,∞) assigns weights to half-edges where half-edge x with label
r has weight κ(σ(n+ 1), r). Each of the m half-edges of n+ 1 chooses an existing half-edge
to connect to proportional to the weights κ(σ(n+ 1), r). This process is repeated indefinitely
to grow graph Gn.

Now, consider the above process with an affinity matrix κ whose entries are positive and
is diagonally dominant to support homophily. The resulting network has a power-law degree
sequence, as proved in Theorem 9.14 in Hofstad (2024). The local limit and expansion of
these models can be derived similar to the argument in Alimohammadi et al. (2022) for
preferential attachment networks.

Proposition 11. Power-law networks with homophily as defined above have a solar system
structure. Therefore, they satisfy the conditions of Theorem 2 and Theorem 6.
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