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A Mathematical Details for Section 1.1

Denote by varg(log Eq[0s]/60;) the variance of logE;[f2] /61 conditional on time 0 information.

Lemma 12. Suppose that the agent chooses the allocation z° = 1/2 at time 0 and the
(random,) allocation x' at time 1. Suppose that log(z'/(1 — z')) is normally distributed with

mean m and variance v. Then

Eo[02] = Eo[01]
(v — 1)m = K, [log Ele[fﬂ + log(B) (12)
(v = 1)% = vary (log Ele[le 2]> '

Proof. Taking first order conditions yields that the optimal effort at time 0 is

ZIZ'O Eo[eg]
—1)1 =1 .
(v —1)log y— =log AT
The optimal effort at time 1 satisfies
£L‘1 El[eg]
(v =1)log T—— =log ot log(83) .

As 2° =1 — 2% we have that Ey[f,] = Ey[f;]. Taking expectations yields that

x! E,|0
(= m = (0= DB frog | = o 1o =] +10g(s),
Furthermore, we have that
2 Eq[6;]
(v —1)*v = varg loge— O.
1

With this Lemma in hand, we now provide calculations for how [ is identified under the

different structural assumptions listed in Table 1.



Rows 1 and 2: Independent 6,,60,, revealed at t =1 Suppose that 6y, 0, are indepen-
dent and log(6;) ~ N (u1,0%), log(f2) ~ N (g, 03). Then (12) becomes

exp(p + 07 /2) = Eol01] = Eo[f] = exp(ps + 03/2)
(v = D)m = Eo[log(62/61)] — log(B) = p2 — pu1 + log(3)
(y = D*v=0i+05 = 0i(1+03/0]).

The first equation and third equation imply that

1—02/0?

— ;= 0.5(62 —62) = 0.50%(1 — 62/0%) = 0.5(y — 1)? .
o — U1 (U1 ‘72) 01( 02/01) (’Y )U1+0§/a%

Plugging into the second equation yields

1 —o03/0?
1 =(y—1)m—0.5(y — 1) ’o———.
og(f) = (v = )m = 05(y = 1)"o37=5725

In the case of i.i.d. taste shocks, this reduces to

log(B) = (v — 1)m.

The analyst’s estimate thus depends on ¢2/0%, which captures what the analyst assumes
about how well informed the agent is at time 0 about their time 2 taste-shock relative to
their time 1 taste-shock. This ratio captures both the variance of the agents’ taste shocks as
well as the quality of the information about the agents’ taste shocks. Setting o3 /07 = oo
captures the case where the analyst assumes that the agent is uninformed about the time 1
preference at time 0. Setting o3/0%? = 0 captures the case where the analyst assumes that
the agent is uninformed about the time 2 preference at time 0 (and recovers the result we
obtained before). If the agent knows equally much about their time 1 and time 2 preferences

at time 0, i.e. 03/0% =0, we get that

log(8) = (v — L)m.



Rows 3 and 4: 6, learned at t = 0 and 6, learned in ¢t =1 If 8, is learned at time 0

but 65 is not, then ¢; must always take on the value #; = E;6,. Then (12) becomes

01 = Eo[0a] = exp(pz + 03/2)
(v = 1)m = Eq[log(62/61)] — log(B3) = p2 — log(61) + log(p3)
(y—1)*v=03.

The first equation and third equation imply that
pa — log(6;) = —0.505 = —0.5(y — 1)v.
Plugging this into the second equation yields that
log(8) = 0.5(y = 1)*v + (y = )m

Rows 5 and 6: 65 learned in ¢t = 0 and 6, learned in ¢t =1 If 05 is learned at time 0

but 6, is not, then 6, must always take on the value 3 = E16;. Then (12) becomes

Oy = Eo[0h] = exp( + 07 /2)
(v = 1)m = Eq[log(62/61)] — log(3) = log(62) — i1 + log(p3)
(y—1*v=o07.

The first equation and third equation imply that
w1 —log(fy) = —0.507 = —0.5(y — 1)%v.
Plugging this into the second equation yields that
log(B8) = —0.5(y = 1)*v + (y = 1)m

Rows 7 and 8: 0; learned in t =1 and 6, learned after t =1 Assume that log(6,) is
Normally distributed with mean p and variance o2, and assume, without loss of generality,
that E[¢;] = 1. By assumption we have that Eq[fs] = E;[fs] and hence (12) becomes

1 =Eyl61] = exp(py + o'/2)
(v = 1)m = log(Eo[0s]) — Eo [log(61)] + log(5)
(v — 1)*v = varg(log(6,)) = o?.



The first and third equation together imply that u = —0%/2 = —0.5(y — 1)*v and hence
log(B) = (y = Dm = [u+0?/2] + p=(y = )m = 0?/2 = (v = 1)m — 0.5(y — 1)*v.

Rows 9 and 10: Multiplicative random walk with 6,0, both learned in ¢t = 1
Formally, 05 = 0, - €1, where log(e;) ~ N(u,o0) is log-Normally distributed and 6y, 6, are
learned by the agent only at the beginning of time 1. Then (12) becomes

1 =Eofe1] = exp(p + 0?/2)
(v — Dm = Eollog(e1)] — log(8) = p — log ()

(v —1)%v =02,

The first and third equation together imply that y = —0?/2 = —0.5(y — 1)?v and hence
log(B) = (y — )m + 0.5(y — 1)v.

Rows 11-14: Mulitplicative AR(1), with 0, learned in ¢t = 1 and 6, learned after
t =1 Suppose that log(6s) = alog(6;) + log(e), where log(6;) ~ N(u1,0?) and log(e) ~
N(p.,0?). That is, log(6;) and log(6;) form an AR(1) process. The agent learns 6; at time 1
and ¢ at time 2. The scalar a can be regarded as a parametrization of how much is learned
at about time-1 versus time-2 shocks at time 1. For example, &« = 0 means that nothing is
learned about time-2 shocks at time 1, while & — oo captures the case where at time 1 the
agent mostly learns about time-2 shocks.

Under this process, we have that log6s|f; ~ N(alogt; + u.,0?) and E[log6s]6,] =
aby + pe + 02/2. Thus, (12) becomes

exp(in +01/2) = Eolh] = Eo[fs] = exp(apn + a*0}/2 + pic + 02 /2)
(v = 1)m = Eo[alog 1 + pe +02/2 —log 61] +log 8 = (o — 1)1 + pie + 02 /2 +log B
(v — 1% = (a — 1)%07.

The first equality implies that
(0% =V + e +02/2 = (1 — a?)o?/2.
The third equality implies that

of = (v = D*/(a - 1)’



and thus that

(1= a?)o2/2 = 05(y — 1)20 L=
' ‘ (a—1)
Plugging this into the expression for (y — 1)m yields
1 —a?
_ 2
1+ o

=(y—1)m+0.5(y —1)%

a—1

Now when o > 1, § becomes arbitrarily large as a converges to 1 from the right. When

a < 1, B becomes arbitrarily small as a converges to 1 from the left.

B Relation to Other Technical Results

Social Choice. The ordinal efficiency welfare theorem (McLennan, 2002, Carroll, 2010)
states that for any lottery that is Pareto efficient given a vector of ordinal preferences,
there exist utility functions consistent with the ordinal preferences such that this lottery
maximizes the sum of utilities. This result is mathematically equivalent to the special case
of Proposition 3 where the analyst only observes the most preferred time-0 alternative.?*
The sharper and more interesting characterizations that we provide for single-peaked and
concave preferences in Theorems 1 and 2 do not, to our knowledge, relate to any known
results in the social choice literature—although they of course have implications for that
literature. For example, they imply that for complete single-peaked preferences, it is not
necessary to consider lotteries: an alternative is a maximand of some social welfare function
as long as it is not Pareto-dominated by any other alternative. Example 4 shows that this

stronger conclusion fails for social choice problems without the single-peaked property.®

Dynamically Consistent Preferences over Acts. A literature in decision theory has
studied the question of when preferences over acts are consistent with EU (e.g. Chapter 8.2
in Strzalecki, 2021). In this literature, the analyst observes any decision-relevant state as
well as preferences over acts. This contrasts with our setting where states are unobserved and
only preferences over actions—i.e., constant acts—are observed by the analyst. For example,

in the context of food choices, the assumption made in this literature would correspond to

34Specifically, this is the case for the more general version stated by Carroll (2010). The original version
stated by McLennan (2002) imposes a more special structure.

35Tt is perhaps also worth clarifying that to our knowledge and understanding, our results do not have a
mathematical connection to the literature on aggregation of time preferences (e.g., Jackson and Yariv, 2015,
Millner, 2020).



the analyst observing how hungry the agent is, what type of meal he had last, and whether
or not it is a warm day, as well as preferences over strategies that specify at time 0 what
the agent will eat in each of these observable states. Notably, such a data set—where states
and preferences over strategies are observable—is much richer than the data sets collected
in the preference reversal literature, which are our objects of study. This decision literature
refers to the analog of our no sure direct preference reversals condition on acts as “dynamic
consistency” (Axiom 8.6 in Strzalecki, 2021). Imposed over acts this condition is much
more restrictive and (together with consequentialism) implies that there is a subjective EU
representation of the preference (Theorem 8.10 and Theorem 8.24 in Strzalecki, 2021 and
Ghirardato, 2002). This is in contrast to our setting where we show that “no sure direct
preference reversal” is, without the restriction to single-dimensional choice sets and single-

peaked preferences, not sufficient to ensure the existence of an EU representation.

Random Utility Models. In the literature on random utility models, the analyst observes
the distribution of optimal choices from all choice sets at a single point in time (comparable
to our time-1 data (<!, f)). The question is what can be learned about the agent’s mean
utility for the different alternatives. By contrast, we assume that the analyst observes the
distribution of preferences over a choice set. This data can not be reconstructed from the
optimal choices (Fishburn, 1998). The data sets we study, which are based on the types
of experimental data collected in practice, are therefore richer. Allowing the analyst to
observe the distribution over a complete ranking of all alternatives is equivalent to allowing
the analyst to observe a joint distribution of preferred alternatives from all subsets in the
random utility literature.®® While our time-1 data is always consistent with EU, one needs
additional conditions to ensure consistency with EU when only the marginal distribution of
choices from subsets, but not the joined distribution is observed. A focus of the random
utility literature has been to identify such conditions (Block et al., 1959, McFadden and
Richter, 1990, Clark, 1996, Gul and Pesendorfer, 2006).

A second difference is that the random utility literature typically makes the “positivity”
assumption that each alternative is the most preferred one with positive probability. This
is a strong assumption when combined with the assumption of single-peaked preferences,
which are the main focus of our paper. Positivity and single-peakedness together imply
that the agent ranks the alternatives both in increasing and decreasing order with positive
probability. Furthermore, a corollary of our Proposition 1 implies that this assumption

is highly consequential, as it implies that the average utility cannot be identified without

36Formally, when observing the distribution f over strict rankings, one can infer the probability of choosing
x from the set M C X as ) fuler1yvyte-



imposing additional structure on the preference shocks. There is also a thematic, but not
mathematical, connection to identifying time preferences in dynamic discrete choice models.
See, e.g., Magnac and Thesmar (2002), Abbring and Daljord (2020), Levy and Schiraldi
(2020), Mahajan et al. (forthcoming). This generalizes the insight from Alds-Ferrer et al.
(2021) who highlight a related identification issue in a setting where the analyst has less
information and only observes the marginal distribution of preferences over binary choice
sets. They propose to resolve it by inferring cardinal information from response times,
which is similar to the additional choice dimension we propose in Section 5.2.The literature
on dynamic random utility (e.g. Fudenberg and Strzalecki, 2015, Frick et al., 2019) studies
questions that are further removed from ours. We are interested in settings where the agent
makes the same choice repeatedly, while that literature studies when a sequence of dynamic
choices can be rationalized if the agent’s utility function and choice set can change over
time. An exception is the case of Bayesian evolving beliefs discussed in Section 6.2 of Frick
et al. (2019). Their Proposition 6 concerns a special case of their model which is similar to a
special case of our Proposition 3 where preferences over some set of lotteries are observable.

Similarly, our model is different from those analyzed in the literature on preferences for
flexibility due to taste uncertainty, as in Ahn and Sarver (2013), where the agent chooses a

menu at time-0 and then chooses from that menu at time-1.



