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OA.1 A cumulative prospect theory analysis of re-
peatedly gambling skewed risks

In this appendix, we provide an analytical result that shows that those cumulative
prospect theory (CPT, Tversky and Kahneman 1992) decision-makers (DMs) who
avert one or few left-skewed risks are the ones who most willingly gamble them
using trailing stop-loss (as shown numerically in Figure 5 in the main text). To
this end, we offer a closed-form expression for the CPT utility from gambling a
moment-parametrized basic gamble trailing stop-loss (and penny-picking in par-
ticular). This closed-form expression is for the tractable CPT specification with
neo-additive probability weighting and piecewise-linear utility, and allows for ad-
ditional comparative statics results.

The neo-additive weighting function of Chateauneuf et al. (2007) is given by:

wNA(p) =


0 p = 0

mp + a p ∈ (0, 1)

1 p = 1.

(OA.1)

where m > 0, a ≥ 0, and m + a ≤ 1. These conditions ensure that w is indeed a
weighting function (i.e., strictly increasing, non-negative, and bounded from above
by one). Inverse-S-shape follows for a > 0 and m < 1. Wakker (2010, p. 210)
remarks that “the neo-additive weighting functions are among the most promising
candidates regarding the optimal tradeoff of parsimony and fit” and that “the inter-
pretation of its parameters is clearer and more convincing than with other families.”
Ebert and Karehnke (2025) provide formal results on CPT with neo-additive prob-
ability weighting, which show that a > 0 is necessary and sufficient for skewness-
seeking.1 The tractability of the neo-additive function, as well as the restriction to
piecewise-linear gain-loss utility, allows for an analytical expression for the CPT
utility from gambling trailing stop-loss. The proof of the result is given at the end

1Note that a > 0 captures skewness-seeking regardless of the number of outcomes of a prospect.
In particular, when n ≥ 3, for any middle outcome xi (i = 2, . . . , n − 1) the CPT decision weight
is given by πi = mpi and thus underweighted regardless of whether the objective probability pi is
large or small.
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of this section.

Proposition OA.1 (Piecewise-linear, neo-additive CPT utility of TSL). For CPT

with the neo-additive probability weighting function from equation (OA.1) and

piecewise-linear utility (α = 1):

CPT(SτTSL∧T) =

√
V[X]

p(1 − p)

(
a(T(1 − p)− λp)− (λ − 1)m(1 − p)(T − k + 1)pT−k+1

)
,

(OA.2)

where k = max
(

1,
⌊

T + 1 − p
1−p

⌋)
and ⌊·⌋ denotes the largest integer smaller

or equal than ·.

The result reduces in complexity by noting that k = T ⇐⇒ p ≤ 0.5. That
is, for right-skewed basic gambles, SτTSL∧T features T gains and one loss. Then,
equation (OA.2) simplifies to:

CPT(SτTSL∧T) =

√
V[X]

p(1 − p)

(
a(T(1 − p)− λp)− (λ − 1)m(1 − p)p

)
.

It is easily observed (also for the more general expression (OA.2)) that larger loss
aversion λ unambiguously decreases utility. In the absence of skewness-seeking
(a = 0), CPT utility is negative if λ ≥ 1 so that loss aversion prevents the DM
from gambling any gamble.

The impact of skewness-seeking (a > 0) can be inferred from:

∂CPT(SτTSL∧T)

∂a
=

√
V[X]

p(1 − p)
(T(1 − p)− λp),

which is strictly positive if:

λ < T
1 − p

p
. (OA.3)

That is, greater skewness-seeking a increases risk-taking if enough time (and thus
strategy skewness) is available and/or if the basic risk is right-skewed enough to
begin with. Moreover, equation (OA.3) formalizes the message from Figure 5 in the
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main text that those DMs who avert one or few left-skewed risks are the ones who
most willingly gamble them trailing stop-loss. Specifically, when T is small and
p is large (i.e., (1 − p)/p is small), then the CPT utility of risk-taking decreases
in skewness-seeking a. As T increases, eventually, the utility of taking this same
risk increases in a. Moreover, from equation (OA.2) it is evident that, for every
skewness-seeker (a > 0), a sufficiently left-skewed risk is disliked once but liked if
offered sufficiently many times for gambling trailing stop-loss.2

A strong implication from Proposition OA.1 is that, as T → ∞, CPT utility not
only turns positive but approaches infinity, regardless of the value of p (no matter
how left-skewed) and regardless of the degree of loss aversion λ. The extreme result
is a consequence of the neo-additive weighting implying extreme skewness-seeking
already when a is close to zero but strictly positive. In particular, under neo-additive
weighting, the best payoff x1 receives a decision weight of at least a, regardless of
how tiny its probability. This observation thus implies that the DM is not only
willing to gamble any gamble trailing stop-loss (if sufficient time is available), but
also that his willingness to pay for doing so approaches infinity—a St. Petersburg
paradox-like result. In the next paragraph we show, however, that for large (but not
infinite) T this limit result on extreme risk-taking is not observed even for DMs that
are not loss-averse.

If the DM is skewness-seeking but not loss-averse, (a > 0 and λ = 1), then
equation (OA.2) simplifies to:

CPT(SτTSL∧T) > 0 ⇐⇒ T(1 − p)− p > 0 ⇐⇒ p <
T

T + 1
. (OA.4)

The latter inequality means that with a horizon of T = 99 periods, the DM is willing
to gamble any gamble trailing stop-loss with p < 99

100 . With loss aversion, this
threshold value for repeated risk-taking decreases further. Recall that Figure 5 in
the main text showed that, with the CPT parametrization of Tversky and Kahneman
(1992), it depends on parameters whether a very left-skewed risk with p = 0.99

2Note that the continuous weighting function underlying Figure 5 allows for a more refined re-
sult regarding this effect. Rather than “skewness-seeking yes/no” being the necessary and sufficient
condition for taking any risk eventually (if the horizon is long enough), the result depends on the
strength of skewness-seeking δ (as well as other CPT parameters).
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is taken. Unlike with neo-additive weighting, therefore, not every gamble will be
taken if sufficient gambling time is available.

As a final remark, note that trailing stop-loss gambling for one period corre-
sponds to gambling buy-and-hold. Therefore, the myopic CPT DM considered in
Section 5 gambles buy-and-hold if and only if the basic gamble is right-skewed

(p <
1

1 + 1
= 0.5) and abstains from gambling otherwise. The non-myopic DM,

taking into account strategy skewness, gambles strictly more gambles whenever
T < 1.

Proof of Proposition OA.1. First note that for the neo-additive weighting func-
tion and when the best outcome is a gain and the worst outcome is a loss, for a
general distribution X with outcomes x1, . . . , xT+1 and corresponding probabilities
p1, . . . , pT+1 it holds that:

π1 = w(p1) = mp1 + a and πT+1 = w(pT+1) = mpT+1 + a.

For an intermediate outcome xi, i = 2, . . . , T it holds that:
πi = m(p1 + . . . + pi) + a − (m(p1 + . . . + pi−1) + a) = mpi

and for an intermediate outcome xi, i = 2, . . . , T that is a loss it also holds that:

πi = m(pT+1 + . . . + pi) + a − (m(p1 + . . . + pi+1) + a) = mpi.

Therefore,
πi =

mpi + a if i = 1 or i = T + 1 and

mpi if i = 2, . . . T.
(OA.5)

After an index change, equation (A.7) can be expressed as:

P

(
SτTSL∧T = T

√
V[X]

1 − p
p

)
= pT−t+1 and

P

(
SτTSL∧T = (T − t + 1)

√
V[X]

1 − p
p

−
√

V[X]
p

1 − p

)
= pT−t+1(1 − p) for t = 2, . . . , T + 1.

Here, T − t + 1 corresponds to the number of upward movements and the indices

5



t = 1, . . . , T + 1 enumerate the payoffs xt from best to worst (so that the standard
CPT formula is easily applied). There are T + 1 possible payoffs, and the best state
x1 is the one with T upward movements. Clearly, x1 is a gain and xT+1 is a loss. A
middle state xt (t = 2, . . . , T) is a gain state, if and only if,

(T − t + 1)

√
V[X]

1 − p
p

−
√

V[X]
p

1 − p
≥ 0 ⇐⇒ t ≤ T + 1 − p

1 − p
.

Therefore, the index of the smallest gain, k, is given by k = max
(

1,
⌊

T + 1 − p
1−p

⌋)
.3

Therefore, from the definition of CPT and equation (OA.5),

CPT(SτTSL∧T) = (mpT + a)

(
T

√
V[X]

1 − p
p

)

+
k

∑
t=2

mpT−t+1(1 − p)

(
(T − t + 1)

√
V[X]

1 − p
p

−
√

V[X]
p

1 − p

)

− λ
T

∑
t=k+1

mpT−t+1(1 − p)

(
−
(
(T − t + 1)

√
V[X]

1 − p
p

−
√

V[X]
p

1 − p

))

− λ(m(1 − p) + a)
√

V[X]
p

1 − p
,

which simplifies to:

CPT(SτTSL∧T) =

√
V[X]

p(1 − p)

(
(mpT + a)T(1 − p) + m(1 − p)

k

∑
t=2

pT−t+1 ((T − t + 1)(1 − p)− p)

+ λm(1 − p)
T

∑
t=k+1

pT−t+1 ((T − t + 1)(1 − p)− p)− λ(m(1 − p) + a)p
)

.

3Intuitively, when p ≤ 0.5, then t ≤ T so that all but the worst payoffs are gains. When the
basic gamble is left-skewed (p > 0.5), however, several wins are necessary to make an overall
profit with trailing stop-loss, because the loss from a lost gamble is larger than the gain from a won
gamble.
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Exercising the sum formulas from equations (A.3) and (A.4) yields:

CPT(SτTSL∧T) =

√
V[X]

p(1 − p)

(
(mpT + a)T(1 − p)

+ m(1 − p)[(T − k + 1)pT−k+1 − TpT − λ((T − k + 1)pT−k+1 − p)]

− λ(m(1 − p) + a)p
)

and simplification yields the expression stated in the claim. ■

OA.2 Two-threshold strategies

Although a trailing stop-loss strategy is the guiding example of the paper, Propo-
sition 1 on the decomposition of total into basic and strategy skewness applies to
arbitrary strategies. In this section, we consider two-threshold strategies, that is,
stopping once reaching one of two thresholds (one lower and one higher than the
initial profit of zero). Similar to trailing stop-loss, these strategies are appealing
from practical, theoretical, and experimental viewpoints alike. Compared to trail-
ing stop-loss, the analysis is less tractable when the basic risk is skewed and/or the
horizon is finite because the distribution of the stopped random walk is more com-
plicated.4 For the sake of simplicity, therefore, we assume a symmetric basic risk
(a 50-50 risk to win or lose one), stopping thresholds a < 0 < b, with a, b ∈ Z,
and an infinite horizon T = ∞. We show that a and b can be chosen such that the
skewness of Sτa,b can take any value; that is, symmetric binary risks can be gambled
in such a way that total skewness takes any desired value.

Denoting the gambling strategy by τa,b, the induced profit distribution Sτa,b has
two outcomes that correspond to the two stopping thresholds a and b. One can thus
apply the insights on the basic skewness used in the main text on total skewness in

4For example, suppose the basic risk gives −4 with 20% probability and +1 otherwise and
suppose stopping occurs once wealth reaches −4 or +8. Either threshold my be hit exactly but also
be overshot (e.g., an upward move followed by two downward moves results in −7, overshooting the
lower threshold of −4 by three units). The resulting profit distribution is thus not binary. Similarly,
even when the basic gamble is symmetric, the profit distribution has many outcomes when the
horizon is finite.
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this section. In particular, the following statements are equivalent (Ebert 2015):

(i) The lower threshold is closer than the upper threshold, |a| < b.

(ii) It is less-likely to reach the upper than the lower threshold, P[Sτa,b = b] <
0.5.

(iii) It takes longer to reach the upper than the lower threshold, ρ(τa,b, Sτa,b) > 0.

(i) characterizes what is often referred to as a stop-loss strategy, emphasizing that
it stops before significant losses (relative to the gain potential) can arise. (ii) means
that total skewness of such a strategy is positive (Sτa,b yields a larger outcome with
low probability and smaller outcome with high probability; Ebert 2015 shows that
this property is equivalent to many others that indicate positive skewness), and (iii)
means that strategy skewness is positive. The equivalence of (ii) and (iii) is in
line with Proposition 1: if basic skewness is zero (as assumed here), total skew-
ness equals strategy skewness. (i) thus says that the two-threshold strategy is right-
skewed both in the sense that strategy skewness and total skewness are positive.

The observation above supports the terminology used in Heimer et al. (2025) and
Dertwinkel-Kalt and Frey (2024), who refer to a two-threshold strategy as right-
skewed, if and only if, it induces a right-skewed overall distribution (i.e, right-
skewed Sτa,b , which means positive total skewness). In the experiment of Heimer
et al. (2025), subjects commit to thresholds for gambling a symmetric basic gamble
that pays $0.50 with equal probability for up to T = 26 rounds. Subjects’ aver-
age thresholds are given by a = −4.06$ and b = +7.88$, which implies a total
skewness of 0.27 (computed by simulation). Conditional on choosing a stop-loss
strategy, the ratio between the gain loss limit is necessarily larger, and so is the
induced total skewness.

The current paper goes beyond the case of symmetric basic gambles as well as
beyond the case of threshold strategies in order to study phenomena such as penny-
picking. The consideration of negatively skewed risks to this end is evidently es-
sential; the focus on trailing-stop loss is merely for the sake of concreteness. The
result that risks with arbitrary negative skewness can be gambled in such a way
that total skewness is positive and that they become attractive to prospect theory
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individuals, holds for this strategy. The result is first and foremost an existence
result—the trailing stop-loss strategy is a strategy that “does the job.” Others may
do as well, but analytical results are more difficult to establish. Also, the intuition
for how other strategies work, and applying them in practice, may be more complex
than “stopping after the first loss of a given size.”
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