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Abstract

This Supplemental Appendix is organized as follows. Appendix A contains additional
results, details, derivations, and extensions for our structural model. Appendix B sim-
ilarly provides additional results and detail for our cross-sectional empirical results.
Last, Appendix C provides a full description of our construction of our GG-Microdata
homeownership rate series, and presents its properties compared to existing alterna-

tives.
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A Model Appendix

A.1 Model Details

This section presents details on model timing, the full set of equilibrium conditions, and the

definition of equilibrium.

Model Timing. The timing of the borrower’s problem proceeds as follows:

1. A random fraction p of borrowers receive moving shocks, which leads them to sell their

housing in the main (inter-type) market at price p; and prepay their mortgages.

2. A fraction v of moving borrowers become active, allowing them to buy new housing in

the main (inter-type) housing market at price p; and obtain new mortgages.

3. All borrower-occupied housing (i.e., housing owned by either the borrower or the land-

lord) is divided into equal-sized units.

4. Borrowers observe their value of wft and choose whether or not to own by buying

housing on the internal borrower market at price p; per unit of housing.
5. Borrowers choose their nondurable and housing services consumption.

We have chosen this particular timing structure to overcome four challenges. First, if all
households were allowed to participate in the inter-type mortgage and housing markets each
period, allocations of housing and mortgages would adjust very quickly, which is both at odds
with reality (see e.g., Andersen, Campbell, Nielsen and Ramadorai (2014)) and can make the
model responses unstable. To address this, we assume that only a fraction p of households
receive moving shocks allowing them to update their housing and mortgage allocations.

Second, since only a fraction of moving households were previously owners, if we allowed
all moving households to buy housing, the typical size of the purchased property would
be much smaller than the typical size of the properties being sold. For instance, if half
of borrowers own housing (approximately true in our steady state), then half of moving
borrowers are selling housing. If all movers then bought housing there would be twice as
many buyers as sellers, implying that each newly purchased house would be half the size
of the sold ones, on average. Purchasing smaller properties would artificially relax the PTI
limit, which binds with the value of the property is large compared to the borrower’s income.
Imposing that only a fraction 1 of mover households are able to buy, calibrated so that 7 is
equal to the steady state fraction of borrowers who own, ensures that the sizes of purchased

and sold properties are similar, avoiding this problem.



Third, without an internal market, housing would not be allocated to the highest w?®
borrowers at any given time. As a result, instead of our tenure demand and tenure supply
schedules relating the price-rent ratio to the overall homeownership rate, we would obtain
schedules relating the price-rent ratio to the homeownership rate among moving households
only. While this is a reasonable specification, and we have computed results under this
assumption, it is further from our intuitive motivation, and delivered much more sluggish
responses of homeownership that were an inferior fit for the data. Our imposition of an
internal borrower market addresses this issue by allowing housing to be reallocated to all
borrowers with the highest w? values, restoring the relation between house prices and the
overall homeownership rate.

Fourth, without further frictions, borrowers with different values of w? would buy dif-
ferent amounts of housing, making the problem much more complex. To keep the model
parsimonious, we assume that housing is separated into equal-size blocks on the internal

market, yielding a simple indifference condition that pins down house prices.

Borrower’s Problem. First, we consider the problem of the fraction pn of borrowers
who are eligible to purchase housing on the inter-type market decide how much housing to
purchase, to be sold later on the internal borrower market. The optimality condition for

purchasing housing on this market at price p, is

Pt
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where p; is the price of housing on the internal market. Intuitively, the numerator (the
internal market price) reflects the value of a property that must be purchased outright and
cannot be used as mortgage collateral. The denominator accounts for the marginal value of
using the property as collateral to obtain mortgage credit, increasing p;. The collateral value

term Cp, is in turn defined by

LTV gLTV
Cpi = MB,tFB,t 93,t .

where pp; is the multiplier on the borrowing constraint, F7" is the fraction of borrowers
who are LTV-constrained (see Greenwald (2018) for a full derivation of this expression). The

LTV-constrained share is in turn defined by:
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In the second stage, all borrower-inhabited housing is divided into equal portions, including
borrower-owned housing. Borrowers then draw their owner surplus shocks wft. For the market
to clear, the fraction of borrowers who choose to own by buying on the internal market
(1 -T,, g(wp+)) must equal the share of borrower-inhabited housing that is owner-occupied
(Hp,/H,). The price of housing on the internal market then adjusts so that the marginal

borrower is indifferent at equilibrium:

pe = Ey {AB,t+1 [(DB,t + Gry1 — 0P + (1 - P)ﬁtﬂ + Ppt+1} } . (A-2)

Equation (A.2) specifies that for the marginal borrower who buys housing, the price of
housing must be equal to the present value of next period’s service flow (the rent combined
with the owner’s utility bonus), net of the maintenance expense, plus the continuation value.
With probability 1 — p the borrower will only be able to sell the property in next period’s
internal market at price p;, but with probability p the borrower will receive a moving shock
and be able to sell housing at the inter-type market price p;, which is higher as it allows
housing to either be sold to landlords or be used to collateralize new mortgages. Substituting
in the relation p; = (1 — Cpy)ps, which follows directly from (A.1) and manipulating this
expression yields (5).

The borrower’s optimality conditions for housing services (hp) is

(hpy) : qe = (U}JZB,t/UCB,t)> (A.3)

which sets the rent equal to the marginal rate of substitution between housing services and
consumption.
The optimality condition for new mortgage debt for each active borrower who buys (Mg ;)

is:
(Mg,t) : 1= QJ]\BM + T;,tQJ)B},t + UBts (A.4)

where 71 = Xp4_1/Mp—1 is the average rate on existing debt, and where the marginal

continuation cost of principal balance Qf}, and of interest payments Q% , satisfy:
O3 = B {/\B,t+17f_1 [VB +(1—vp) (PB +(1- PB)Qﬁ,t+1>] }

Equation (A.4) sets the marginal benefit of one unit of face value debt ($1 today) against

the marginal cost (the continuation cost of the debt plus the shadow cost of tightening the



borrowing constraint).

Saver’s Problem. The saver’s optimality conditions are:

(By) : 1 =RiE; [W_IAS,tH]
(Mg,t) : 1= Qiﬂ + T*B,th(,m

where the marginal continuation values of principal balance and promised interest payments

are given by:

QJ‘?M =F, {As7t+1ﬂ'_l [VB + (1 —wvg) (PB + (1 — PB>Q§4¢+1>] }
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Construction Firm’s Problem. The construction firm’s optimality conditions are:

PLand,t = pt(;DLf_IZtl_w
L=p(1—p)L7Z "

A.2 Extension: Landlord Credit

When landlords use credit, we impose that their problem becomes symmetric to the bor-
rower’s, with the same random selection to move (refinance their mortgages) and become
active buyers. In this case we set the share of active buyers to 1 — 7, which is equal to the
steady state share of borrower-inhabited properties owned by landlords. However, because
landlords do not face PTI limits, we note that this assumption is not restrictive, and al-
ternative assumptions about exactly which landlords are able to buy housing and in what
quantities would lead to similar results, as LTV limits are linear in the amount of housing

purchased. When using credit, the landlord’s budget constraint becomes:
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while the landlord’s laws of motion are:

My = p(l— W)MZ,,: + (I =p)(1— V)WilML,tfl
Xy =p(1— 77>7’z,th,t + (1= p)(1 - V)WilXL,tfl
HL,t = p(l - U)Hz’t + (1 - p)HL,t—l-

We assume that the landlord also faces the LTV limit:
My, < 9fTthHZ,t-
The landlord’s indifference condition for the marginal property now becomes

E, {AL,t-H |:@L,t + Q1 + (1 -0—(1- PL,t+1)CL,t+1>pt+l:| }
1—-Cry
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where Cr; = g F ﬁtTV%;V is defined analogously to the borrower case. The optimality

condition for new credit issuance (M; ,) becomes
* . _ 0L * L
(M7 ;) : L=y + 15805+ pree

The fixed point conditions that pin down the marginal continuation costs of debt are defined
by:

Qﬁu = E; {AL,t+17T_1 [V +(1-v) (PL,t+1 +(1— PL,t+1)Q§/1,t+1>] }

Oy = B Ao [(1=7) + (1= 0)(1 = pras)% ] }

symmetric to the borrower case.

The saver’s budget constraint becomes:
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A /

v v~

after-tax income net housing purchases maintenance rebates
—1/= * -1
+ ) {ZT (7 + V) Mja—1 = pje (exp(s; A) My, — 7 (1 — Vj)Mj,t—l)}
. N N ~"
JE{B,L} total payment net mortgage iss.

where the s; terms control the degree to which spreads react to the spread shock A, used

in our recalibration exercise below.



Calibration. We assume that landlords face a 65% LTV limit, and no PTI limit, so 0£7V =
0.65 and 677" = oo. This implies F/{" = 1.

Calibrating the model to match our empirical IRF's as in Section IV requires mapping the
identified LS shock into the model not only for borrowers but also for landlords. This is more
subtle than for borrowers, for whom all loans are affected by the shock, because only single
family rental properties and multifamily rental properties with fewer than 5 units are eligible
for GSE financing and thus affected by changes in the conforming loan limit. Since roughly
50% of rental units are in eligible 1-4 family buildings (Joint Center for Housing Studies of
Harvard University (2020)), we choose the parsimonious recalibration sp = 1,s;, = 0.5, so
that half of landlord credit is eligible for the GSE subsidy. Beyond this, the calibration is

the same as in the main text.

Results. We first solve this extension using our Benchmark value of o, ;. Figure A.1
displays the results from an experiment analogous to that of Figure 7 Panel (b), which both
relaxes credit conditions and allows interest rates to fall. Summary statistics are displayed
in Table 2. To provide a quantitative example of a loosening of landlord credit, we assume
that landlord mortgages face an equal decline in rates and that landlord credit also expands
to a new LTV limit of 85% during the boom, implying that credit standards for landlords
and households are relaxed to a similar degree.

The resulting responses show that, holding parameters fixed (the path denoted “Landlord
Credit (No Recal)”), adding landlord credit increases the response of the price-rent ratio,
explaining 75% of the rise observed in the data, compared to 70% for the Benchmark model.
At the same time, the landlord credit model features a smaller rise in the homeownership
rate, explaining only 6% of the rise in the data, compared to 35% for the Benchmark model.
These results are consistent with the intuition in Figure 2 Panel (d) where landlord credit
shifts the supply curve out.

The results holding parameters fixed would, however, make the model inconsistent with
our empirical results.! To address this, we repeat the counterfactual that combines a credit
expansion and decline in interest rates exercise in Section IV to recalibrate o, ; for the
landlord credit model.? The resulting responses, denoted “Landlord Credit (Recalibrated),”
follow a very similar pattern, explaining 70% of the observed rise in the price-rent ratio (as

opposed to 70% without landlord credit), and 27% of the rise in the homeownership rate (as

'We note that under this extension the ratio estimated by our regressions now reflects a locus of equilibria
as both demand and supply shift, rather than the slope of the supply curve alone.

2Roughly half of rental units are located in multifamily buildings too large to be affected by the changes
in the CLL on which the LS instrument is based (see the calibration subsection above for details). In
recalibrating, we thus assume only half of the landlords get the subsidy.



Figure A.1: Credit Standards + Falling Rates Experiment, Landlord Credit Extension
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Notes: Plots display perfect foresight paths following a relaxation of credit standards and a decline in interest
rates. The “Benchmark” model sets a value of o, j, calibrated to match our empirical IRFs as in Section IV.
The “Landlord Credit (No Recal)” model applies the landlord credit extension holding oy, 1, fixed as in our
Benchmark calibration, while the “Landlord Credit (Recalibrated)” model applies the same extension while
recalibrating o, 1, under the new model. Results are summarized numerically in Table 2. For data definitions
see notes for Figure 1 and Table 2.

opposed to 35% in the baseline).

Overall, these results indicate that incorporating landlord credit and its relaxation during
the housing boom period would strengthen the role of credit in driving house prices. As a
result, we believe that our Benchmark calibration is conservative and should provide a lower

bound on the true contribution of credit over this period.

Robustness: No Landlord Credit Relaxation. Our main results with landlord credit
relax both landlord and household credit in the boom, which is the most plausible assumption.
In the less likely scenario in which landlord credit did not relax in the boom, our main
landlord credit counterfactual would overstate the degree to which credit affects house prices
because supply would shift out less in the boom. In this section, we quantitatively evaluate
this scenario to put a lower bound on the role of credit in the boom.

To check robustness to this concern, we compute the responses to an alternative boom-
bust experiment in which we recalibrate the model as in our baseline landlord experiment,
lower mortgage rates, and relax borrower credit standards, but do not relax landlord credit
standards. The results of this experiment are displayed in Figure A.2. This figure shows
that the alternative experiment delivers a path for the price-rent ratio that is slightly lower
(explaining 51% vs. 70% of the observed increase), but a substantially larger increase in the
homeownership rate (explaining 120% vs. 27% of the observed increase). The intuition for

this finding is that the slope of our calibrated demand curve, estimated to match estimates



Figure A.2: Robustness, No Relaxation of Landlord Credit Standards
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Notes: Plots display perfect foresight paths following a relaxation of credit standards and a decline in inter-
est rates. The “Landlord Credit (Recalibrated)” model applies the landlord credit extension recalibrating
0,1, under the new model, as in Figure A.1. The “Landlord Credit (HH Expansion Only)” uses the same
model, but applies an alternative experiment in which household credit standards are relaxed and household
mortgage interest rates decline, but landlord credit standards and mortgage interest rates are left unchanged.

from Berger, Turner and Zwick (2020), is substantially flatter than our calibrated supply
curve. As a result, expansions of credit supply to borrowers, which shift the tenure demand
curve, have a larger impact on homeownership than on the price-rent ratio. We conclude
that our main results indicating strong effects of credit on house prices are robust, while
our results on the impact of credit on homeownership may be understated if landlord credit

standards were not relaxed during the boom period.

A.3 Extension: Flexible Saver Demand

In this section, we relax our assumption of fixed saver demand Hg; = Hg and allow savers
to freely trade housing, with Hg; as an additional control variable. This adds an additional

equilibrium condition from the saver first order condition

p§aver — Et{AfH[ uit/uit + (1 — 5>pt+1 } } (A.5)
N—— —_—

housing services continuation value

This expression is nearly identical to the borrower’s condition (5) with two exceptions. First,

the collateral value term C is equal to zero, as the saver does not use credit. Second, we

assume no saver heterogeneity (wft = 0). Instead, reaching an equilibrium where p“er =
pPemand — pSupply gccurs entirely through changes in saver housing Hg, which adjusts the

marginal utility term uit Juf,. Since heterogeneity would steepen the slope of the saver

demand curve, diminishing their ability to absorb changes in borrower demand, these results



Figure A.3: Credit Standards + Falling Rates Experiment, Saver Demand Extension
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Notes: Plots display perfect foresight paths following a relaxation of credit standards and a decline in interest
rates. The “Benchmark” model sets a value of o, calibrated to match our empirical IRFs as in Section
IV. The “Saver (Not Recalibrated)” model applies the flexible saver demand extension holding o, 1 fixed
as in our Benchmark calibration, while the “Saver (Recalibrated)” model applies the same extension while
recalibrating o, 1, under the new model. Results are summarized numerically in Table 2. For data definitions
see notes for Figure 1 and Table 2.

represent an upper bound on the role of savers.

Figure A.3 compares the response to our experiment in which credit standards are loos-
ened and interest rates fall between our Benchmark calibration and this saver demand ex-
tension. As before, we plot one version holding o, 1, fixed (“Not Recalibrated”) and a second
version (“Recalibrated”) after repeating the o, calibration procedure in Section IV. Be-
ginning with the non-recalibrated response, we observe that the rise in price-rent ratios is
diminished as savers react to the rise in prices by selling portions of their housing stock
to borrowers, absorbing the expansion in demand due to credit. Since these savers are still
homeowners, there is no major change in the response of the homeownership rate.

However, introducing savers while holding o, ;, fixed worsens the model’s fit of our em-
pirical IRFs in Section II.B, as the price-rent ratio increases by too little relative to the
homeownership rate. Recalibrating o, 1, to restore this fit yields the “Recalibrated” response,
which yields a slightly larger rise in price-rent ratios and a much smaller change in the home-
ownership rate, returning the ratio of these responses to the values observed in our empirical
estimates.? Even with a perfectly frictionless saver margin, the recalibrated saver model still
explains 50% of the observed rise in the price-rent ratio from changes in the price and quan-
tity of credit alone. While this response is about significantly smaller than the 70% observed

in the Benchmark model, it does not overturn our core results.

3The reason the recalibration ends up mostly adjusting along the homeownership margin rather than the
price-rent margin is that the price-rent ratio response in the Benchmark model is already very close to the
Full Segmentation model, leaving little room for further increases as o, r, rises.



We consider this saver extension to be an extreme lower bound on the strength of credit on
house prices. While savers in our model are able to frictionlessly adjust the size of their home
at the intensive margin in response to the housing cycle, housing is in reality both indivisible
and highly heterogeneous in both location and quality. In practice, it is not a viable option for
saver households to sell portions of their homes to borrowers when credit relaxes and rebuy
these portions when credit tightens. Instead, Landvoigt, Piazzesi and Schneider (2015) show
that while changes in demand can ripple up or down the housing quality ladder, this effect
is still significantly muted relative to a frictionless benchmark, implying that the real world

likely falls closer to our benchmark model than our saver extension.

A.4 Testing the Model Against Johnson (2020)

To further test the empirical performance of our model, we simulate a version of the main
empirical exercise in Johnson (2020). Johnson (2020) exploits empirical variation driven by a
divergence of PTT limit policy between Fannie Mae and Freddie Mac. Specifically, beginning
in 1999, Freddie Mac appears to impose a PTI limit of 50 for a large share of borrowers, while
Fannie Mae appears to leave PTI limits effectively unconstrained, with no clear bunching
at any level. As a result, Johnson (2020) finds that the share of loans originated by Freddie
Mac in a county in 1998, prior to the policy change, negatively predicts both the share of
loans issued in that county with PTT ratios exceeding 50, and also predicts lower house price
growth.

To replicate this experiment in our model, we consider a hypothetical house price that
would hold in an area with lending standards designed to mimic those of Freddie Mac.
To mimic Freddie Mac standards, as shown in Johnson (2020) Figure I(A), we assume that
following the credit expansion, Freddie Mac imposes a PTT limit of 65% (as in our benchmark
experiment) for half of borrowers, but imposes a lower PTT limit of 50% for the other half.
This 50-50 split is chosen to visually match the evidence in Johnson (2020) Figure I(A), but
the exact split is not particularly important, as we will be studying the ratio of the effect
on house prices to the effect on the share of borrowers with PTT limits in excess of 50%. For
example, while a smaller share with the 50% PTI limit should reduce the response of both
variables, the impact on the ratio of the two should be second order.

The resulting “Freddie Mac” house price satisfies (5) using an alternative measure of Cp

that takes into account the alternative PTI limit. Specifically:

Freddie Eq {AB’tH [(1 + 0BG + (1 —0—(1- PB)Cgr,fic}ie>Pt+1] }
pt - 1 — CFreddie
Bt
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Table A.1: Comparison: Model vs. Johnson (2020)

Experiment Ratio
Johnson (2020), Controls 0.645
Johnson (2020), No Controls 0.787

Model, Credit Standards Only 0.567%
Model, Credit Standards + Rates 0.737%
Model, Full Boom 0.584%

Notes: top two rows display ratios of coefficients in Table V of Johnson (2020) to Table III of Johnson
(2020). Bottom three rows display ratios of (log p; — log pf*°d4i®) and (Shares o — ShareZss ) under various
experiments: “Credit Standards Only” (see Figure 7 Panel (a)), “Credit Standards + Rates” (see Figure 7
Panel (b)), and “Full Boom” (see Figure 8 Panel (a)).

where
Freddie __ LTV Freddie )L TV
Cpyi1 = miF 0
LTV Freddie 1 - =50
Ft = 5 (Fe(et) + Fe(et ))

550 _ QLTthHE,t(T*B,t +v+a)
! (50% - W)yB,t

We also compute the share of borrowers with PTI ratios in excess of 50 in the Benchmark

and Freddie Mac economies:

Sharesso = 1 — I'.("),

. 1 1
Sharel;\rsgdle = 5 (1 — F€<é50)) = §Share>50.

With these variables defined in the model, we compare their response to the empirical
estimates of Johnson (2020). Table III of Johnson (2020) displays the estimated coefficients
of the change in the share of loans with PTT exceeding 50 (“Share DTI > 50”) after the policy
change on the lagged Freddie Mac share, reporting point estimates of -2.90 with controls and
-3.29 without controls. Table V reports the estimated coefficients of the percent change in
house prices over the two quarters following the change in policy (Jun 1999 - Dec 1999) on
the lagged Freddie Mac share, finding point estimates of -1.87 with controls or -2.59 without
controls. Taking the ratio of these yields values of 0.645 with controls or 0.787 without
controls.

To compute model equivalents, we the ratio of (logp; — log pi*ddi®) and (Share.sy —
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Share™"s94¢) under our various boom experiments. For the most direct comparison to Table V
of Johnson (2020), we evaluate this ratio two quarters following the unexpected shock (change
in policy), with the results displayed in Table A.1. In our experiment that only loosens credit
standards (Figure 7 Panel (a)) — our most direct analogue to the policy change — we find
a ratio of 0.541, which is very close to the main ratio 0.645 of Johnson (2020), and within
the empirical confidence interval. Incorporating the decline in rates as in Figure 7 Panel (b)
increases this ratio to 0.681, while moving to our “Full Boom” experiment of Figure 8 Panel

(a) yields 0.518, showing that these results are robust to allowing for additional sources of

variation.
Figure A.4: Comparison: Model vs. Johnson (2020)
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Notes: Plots display perfect foresight paths. Results are summarized numerically at the 2Q horizon in Table
A.1. Experiments map to previous figures as follows: “Credit Standards Only” (see Figure 7 Panel (a)),
“Credit Standards + Rates” (see Figure 7 Panel (b)), and “Full Boom” (see Figure 8 Panel (a)). For data
definitions see notes for Figure 1 and Table 2.

Figure A.4 displays our model ratios for additional horizons, as well as the numerator
and denominator used in computing these ratios. The resulting paths show that our ratios
are not highly sensitive to the choice of a two-quarter horizon. The figure plots the implied
ratio over the first 14Q of each experiment, showing that the ratios remain close to that
of Johnson (2020), particularly for our main model analogue, the “Credit Standards Only”
experiment.

This multi-horizon plot can also be used to compare our model implications to an alterna-
tive set of house price regressions that Johnson (2020) estimates over a longer 14Q horizon.
These regressions, shown in Johnson (2020) Table VI, find a coefficient on the lagged Fred-
die Mac share of -6.69 with controls and -8.86 without controls. Dividing by the coefficients
found in the Share DTT > 50 regressions in Table III yield larger ratios of 2.31 with controls
and 2.69 without controls. These ratios are not directly comparable to our results in Figure

A .4 because the denominator in these empirical ratios is the initial response of the high-PTI
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share, while the numerator is the 14Q response of house prices. As shown above, house prices
were trending upward in the data over this period. Since the share of borrowers with high
PTI ratios should be increasing in the house price, the coefficient on the high-PTI share
regressions should also have been increasing over this period. As a result, the ratio using
14Q changes in both numerator and denominator should be smaller, just as predicted by the
model in Figure A.4.% Still, to the extent that the long-run ratio may be higher, Figure A.4
shows that our results do not overstate these longer horizon ratios, implying that our results

are if anything conservative in this case.

A.5 Robustness: Varying o, 1

Since our empirical results in Section II present our main findings in terms of the ratio of
the price-rent response to the homeownership rate response, we provide a mapping between
these ratios and our main model results. For this exercise, rather than jointly matching the
entire path of price-rent ratio and homeownership rate responses to our LS instrument, as
in Section IV.B, we instead calibrate o,, ;, to match a specific ratio of the price-rent response
to the homeownership rate response at a fixed horizon, which we choose to be two years.?
By varying the target ratio of the price-rent response to the homeownership rate response,
we can provide a clear mapping between the various ratios we computed in our empirical
analysis and the implied results fitted to that ratio.

The results of this exercise are displayed in Table A.2. Our baseline estimates, for which
the implied ratio at the two-year horizon is close to six, are unsurprisingly very close to
the “Ratio = 6” rows of the table. For robustness, recall that our empirical point estimates
for this ratio were at least three across all specifications and horizons. Mapping this into
the “Ratio = 3” rows of the table, we observe that these minimum estimates would still
deliver strong effects of credit on house prices, with a credit relaxation alone explaining
28% of the observed rise in price-rent ratios, and a combination of credit relaxation and low
rates explaining 61% of this observed rise. Similarly, our bootstrapped lower bounds of our
confidence intervals for this ratio were at least two across all specifications and horizons.
Mapping this into the “Ratio = 2” rows, we find that a credit relaxation alone would explain
24% of the observed rise in price-rent ratios, while a combination of credit relaxation and

low rates would explain 52% of this observed rise. At the same time, estimates using these

4In principle, we could have taken the ratio of the 14Q difference in house prices to a shorter-horizon
change in the high-PTI share. However, one shortcoming of our parsimonious model is that house prices
jump on arrival of the policy rather than adjusting gradually, implying that our model would not be a good
laboratory for measuring the size of this bias.

SUnlike in our baseline estimation, we only re-estimate o, 1, while holding fixed our estimates of the
persistence and size of the interest rate shock from our initial estimation.
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Table A.2: Results, Boom Experiments, by Target Ratio

Experiment Price-Rent Homeown. Loan-Inc.
Peak Data Increase 51.5% 3.3 pp 71.2%
Credit Relaxation (Share of Peak Data Increase)
Ratio = 1 14% 109% 41%
Ratio = 2 24% 59% 47%
Ratio = 3 28% 38% 50%
Ratio = 4 30% 27% 51%
Ratio = 5 31% 21% 52%
Ratio = 6 32% 17% 52%
Ratio = 7 33% 14% 53%
Ratio = 8 33% 12% 53%
Ratio = 9 33% 11% 53%
Ratio = 10 34% 10% 53%
Credit Relaxation + Decline in Rates (Share of Peak Data Increase)

Ratio =1 31% 202% 58%
Ratio = 2 52% 115% 72%
Ratio = 3 61% 75% 78%
Ratio = 4 66% 54% 81%
Ratio = 5 68% 42% 83%
Ratio = 6 70% 34% 84%
Ratio = 7 1% 29% 84%
Ratio = 8 2% 25% 85%
Ratio = 9 72% 22% 85%
Ratio = 10 73% 19% 85%

Notes: This table displays results varying o, 1, for the “Credit Relaxation” and “Credit Relaxation + Decline
in Rates” experiments from Figure 7 in Section V. Each row corresponds to a calibration of oy, 1 chosen so
that for e.g., Ratio = 5, our model-implied IRFs computed as in Figure 6 have a price-rent response that is
5 times larger than the homeownership rate response at the 2-year horizon. “Price-Rent” is the price-rent
ratio, “Homeown.” is the homeownership rate, and “Loan-Inc.” is the aggregate loan to income ratio. The
top row displays the actual changes in these variables, in levels from 1998:Q1 to the peak of each series during
the boom period (2006 - 2008). The remaining numbers below display the shares of these peak increases
explained by each model-experiment combination, calculated from 1998:Q1 to the peak of each model boom
in 2007:Q1. For data definitions see notes for Figure 1 and Table 2.

lower ratios deliver larger responses of the homeownership rate to credit, in line with the
intuition in Section I.

We conclude that calibrating our model to match any of our empirical results, not only
our baseline LS estimates, would lead to strong measured effects of credit on house prices

that do not differ dramatically from our baseline estimates.
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A.6 Additional Model Results

This section presents additional model results referenced in the main text. Figure A.5 shows
results for our “Credit Relaxation” experiment (Figure 7a in the main text) varying the
borrower heterogeneity parameter o, p. Since our borrower heterogeneity parameter o, p is
calibrated to match the number of rent to own switches in a hypothetical First Time Home-
buyer Credit experiment, the “Higher Dispersion” series targets a number of switchers half as
large as in our Benchmark calibration, while the “Lower Dispersion” series targets a number
of switchers twice as large as in our Benchmark calibration. For intuition, higher dispersion
means that borrowers differ more in their valuations of housing, meaning that fewer house-
holds need to switch to adjust the marginal buyer’s valuation and clear the market. For both
alternative models, we do not recalibrate o, ;. Figure A.5 shows that the response series
are virtually identical, reinforcing that borrower dispersion is not a particularly important

parameter for our results for any value within the reasonable range.

Figure A.5: Credit Relaxation by Borrower Heterogeneity
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Notes: the figure shows responses to our Credit Relaxation experiment from Figure 7a varying the level of
borrower dispersion (o). The “Higher Dispersion” series sets o, g so that half as many renters (0.64%/2 =
0.32%) switch to ownership under the First Time Homeownership Subsidy, while the “Lower Dispersion”
series sets o, g so that twice as many renters (2 x 0.64% = 1.28% switch. For data definitions see notes for
Figure 1 and Table 2.

Last, Figure A.6 compares results under our Benchmark model to those from an alterna-
tive model with fixed housing supply (H; = H for all t). The figure shows that the responses
in the two economies are largely similar, with the fixed-supply model producing a slightly
larger price-rent ratio response. The intuition behind this finding is that, while construction
supply affects the degree to which housing demand influences house prices or rents, it has a
much smaller impact on the ratio of prices to rents, which is the key object we study. This
can be seen in the second row of Figure A.6, where we see a larger response of both prices

and rents in the model with fixed construction supply.
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Figure A.6: Credit Relaxation by Construction Supply Elasticity
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Notes: Figure shows responses of the indicated variables to our Credit Relaxation experiment (as also shown
in Figure 7a) comparing the Benchmark model to a model with no construction sector and a fixed housing
supply H. For data definitions see notes for Figure 1 and Table 2. Additional definitions are “House Price”
(p1), “Rent” (qq), “H” (Hy).

16



B Empirical Appendix

This section describes our data construction and presents additional empirical results and

robustness checks.

B.1 Data Construction

We construct three different data sets for each of the three instruments. Our data sources
and construction are described in detail in the Data Availability Statement in our replication

readme, with a shorter summary of things a reader would find useful to know here.

B.1.1 LS Instrument Data Set

We create an annual panel of CBSAs and metropolitan divisions, henceforth referred to as
“CBSAs” from 1990 to 2017.° The main data set is comrpised of 402 CBSAs. For most of
our analysis in the main text we focus on data from 1995 to 2017 (the TW data is only
available for all CBSAs in 1994 and we lag this variable by on year). We either take annual
averages or choose quarter 2 as the observation for a given year, as appropriate (quarter 2
for HPI and QCEW employment, annual averages for most other variables).

Our data sources are:

e House Prices: Our primary data source if CoreLogic’s single family combined (detached
and non-detached) price index, which they call tier 11. This data set is proprietary
and not included in our replication package but can be purchased from CoreLogic. Our
monthly data covers 402 CBSAs and metropolitan divisions from 1976 to 2018; for cases
where we need a house price index for a CBSA with metro divisions, we aggregate the
metro division indices to create a CBSA-wide index. We use FHFA house price indices
(all transaction for all CBSAs, purchase only for the largest 100 CBSAs, and expanded
data for the 50 largest CBSAs) as a supplementary data source.

e Rents: Our rent series is the CBRE Economic Advisers Torto-Wheaton index. In par-
ticular, we use their nominal rent index. This is available for 66 geographic areas that
we map to CBSAs. We are able to map to a quarterly panel for 53 CBSAs beginning
in 1989 and 62 CBSAs beginning in 1994.

6CBSAs are collections of counties. For 11 of the CBSAs there are “metropolitan divisions” which are
smaller subdivisions of the larger CBSA, such as Orange County and Los Angeles in the greater LA-Orange
County CBSA or Dallas and Ft. Worth in the larger Dallas-Ft.Worth CBSA. There are 11 CBSAs with
metropolitan divisions. Whenever possible we use metropolitan divisions and drop the larger CBSA, al-
though in some cases some data (e.g., a homeownership rate) will come at the CBSA level for a CBSA with
metropolitan divisions, in which case we use the CBSA.
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e Homeownership rates:

— Our first homeownership measure is from the Census Housing Vacancy Survey.
The Census produces homeownership rates at the CBSA level, however the CBSA
definitions change over time. They use 1980 MSA definitions from 1986-1994, 1990
MSA definitions from 1995-2004, 2000 CBSA definitions from 2005-2014, and 2010
CBSA definitions from 2015-2017. We use a crosswalk to link these longitudinally.
To deal with changing definitions, we use data on homeownership rates aggregated
from the county level to each MSA/CBSA definition. If the difference between
the homeowner rates using the two different CBSA definitions is more than 4% in
either of the two closest censuses, we flag the series as bad and drop it from our
main analysis. For instance, the 1990 MSA definitions include far fewer suburbs
in the New York Metropolitan Area than the 2000 CBSA definition. As a result,
in the Census data the homeownership rate is 37% in 2004 and 55% in 2005.
Using the Census data, we see that using both the 2000 and 2010 census data
(the two closest censuses to the 2004-2005 switch), the difference between the
homeownership rates based on the two definitions is over 45%, so we drop any
log changes in the homeownership rate that cross over the 2004-2005 redefinition.
We also do not include some locations in the final HVS analysis sample if (1) the
geographies at which the HVS data are available do not match the TW data or
(2) the HVS data does not have a complete panel from 1994-2017 for a geography.

— Our second homeownership rate measure is our new microdata-based homeown-
ership rate. Because the creation and benchmarking of this data series is involved,
we cover it separately in Appendix C. This data series provides homeownership
rates for a balanced panel of 390 CBSAs from 1994-2017.

e Credit Data: We use credit data from the Home Mortgage Disclosure Act microdata,
which we collapse to the CBSA level to create the fraction of originations within 5%
of the CLL. We use the same data restrictions as Loutskina and Strahan (2015) in
creating this fraction: There has to be a positive and non-missing loan amount, a
positive, non-missing, and non-top-coded applicant income, a non-missing state and
county, be coded as a conventional loan (non-Veterans Administration, non-Federal
Housing Administration, non-Farm Service Agency, and non-Rural Housing Service),
and finally be originated or denied. We have experimented with other data restrictions
and find that the exact restriction used does not meaningfully impact the results, which

is why we simply follow LS.
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e 2000 Population and Housing units are obtained from NHGIS.

e Housing supply elasticity: We use data from Saiz (2010) which we crosswalk from his

MSA definitions to our CBSAs using principal cities.

e Employment and industry shares: We use the quarterly series of county-level employ-
ment from the QCEW and aggregate to the CBSA level to create a measure of log
employment and employment shares for each NAICS two-digit industry. The QCEW
suppresses observations where employment in a county-year-industry is small. To han-
dle cases where a county barely slips below the suppression threshold for one year, we
linearly interpolate employment when we have a few missing years. For other cases,
employment is small enough for a missing year that ignoring the issue does not matter

once we aggregate to the CBSA level. We then use quarter 2 as the annual observation.

The CBRE Torto-Wheaton rent index merits additional discussion. As mentioned in the
main text, it measure the average change in rents for identical units in the same multi-
family buildings. This has two advantages. First, it is a "repeat sales” methodology while
most rent measures (e.g., the BLS) tend to be average or median rents. Second, it focuses on
newly rented units, which is more appropriate for a price-rent ratio. In unreported results,
we have compared the TW index with several other rent measures and have found two main
results. First, the TW rent index is far more volatile than average or median rent series
that do not use rents for newly-rented units. This makes sense: average rent series include
contracts negotiated a long time ago and also include properties where a landlord has not
passed rent increases through to a tenant in order to keep a good tenant and avoid paying
the costs of finding a new tenant. Second, one may be concerned that the TW rent index
is not representative because it only includes large, multi-family buildings. To assuage this
concern, we obtained a single family rent index from a major data vendor. While we are not
permitted to publish results with this data, we found that it was highly correlated with the
TW rent index.

From the merged data set, we create several samples. The two main samples are the
“HVS Sample” and the “GG Microdata Sample,” which are used in the main text. The HVS
Sample has 41 CBSAs from 1994-2017 (with results form 1995-2017 due to using lagged
outcome variables as a control), while the GG Microdata Sample has 62 CBSAs form 1994-
2017. The GG Microdata sample includes all CBSAs for which we have TW rent data. The
HVS sample drops CBSAs that (1) have a “bad” HVS series due to a significant CBSA
definition change as detailed above, (2) that have an incomplete HVS panel (e.g. are not
covered for all 24 years), and (3) where the HVS and TW data cover different geographies.
The CBSAs in each sample are listed in Table B.1.
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Table B.1: CBSAs in Main Analysis Samples

CBSA Name

In HVS Sample

In GG Microdata Sample

Albuquerque NM Metropolitan Statistical Area
Anaheim-Santa Ana-Irvine CA Metropolitan Division
Atlanta-Sandy Springs-Roswell GA Metropolitan Statistical Area
Austin-Round Rock TX Metropolitan Statistical Area
Baltimore-Columbia-Towson MD Metropolitan Statistical Area
Birmingham-Hoover AL Metropolitan Statistical Area
Boston-Cambridge-Newton, MA-NH
Charlotte-Concord-Gastonia NC-SC Metropolitan Statistical Area
Chicago-Naperville-Elgin, IL-IN-WI
Cincinnati OH-KY-IN Metropolitan Statistical Area
Cleveland-Elyria OH Metropolitan Statistical Area
Columbus OH Metropolitan Statistical Area
Dallas-Plano-Irving TX Metropolitan Division
Denver-Aurora-Lakewood CO Metropolitan Statistical Area
Detroit-Warren-Dearborn, MI
El Paso TX Metropolitan Statistical Area
Fort Lauderdale-Pompano Beach-Deerfield Beach FL. Metropolitan Division
Fort Worth-Arlington TX Metropolitan Division
Greensboro-High Point NC Metropolitan Statistical Area
Greenville-Anderson-Mauldin SC Metropolitan Statistical Area
Hartford-West Hartford-East Hartford CT Metropolitan Statistical Area
Houston-The Woodlands-Sugar Land TX Metropolitan Statistical Area
Indianapolis-Carmel-Anderson IN Metropolitan Statistical Area
Jacksonville FL. Metropolitan Statistical Area
Kansas City MO-KS Metropolitan Statistical Area
Las Vegas-Henderson-Paradise NV Metropolitan Statistical Area
Los Angeles-Long Beach-Glendale CA Metropolitan Division
Louisville/Jefferson County KY-IN Metropolitan Statistical Area
Memphis TN-MS-AR Metropolitan Statistical Area
Miami-Miami Beach-Kendall FL. Metropolitan Division
Minneapolis-St. Paul-Bloomington MN-WI Metropolitan Statistical Area
Nashville-Davidson—Murfreesboro—Franklin TN Metropolitan Statistical Area
Nassau County-Suffolk County NY Metropolitan Division
Newark NJ-PA Metropolitan Division
New York-Jersey City-White Plains NY-NJ Metropolitan Division
Oakland-Hayward-Berkeley CA Metropolitan Division
Oklahoma City OK Metropolitan Statistical Area
Orlando-Kissimmee-Sanford FL. Metropolitan Statistical Area
Oxnard-Thousand Oaks-Ventura CA Metropolitan Statistical Area
Philadelphia PA Metropolitan Division
Phoenix-Mesa-Scottsdale AZ Metropolitan Statistical Area
Pittsburgh PA Metropolitan Statistical Area
Portland-Vancouver-Hillsboro OR-WA Metropolitan Statistical Area
Providence-Warwick RI-MA Metropolitan Statistical Area
Raleigh NC Metropolitan Statistical Area
Richmond VA Metropolitan Statistical Area
Riverside-San Bernardino-Ontario CA Metropolitan Statistical Area
Sacramento—Roseville-Arden-Arcade CA Metropolitan Statistical Area
St. Louis MO-IL Metropolitan Statistical Area
Salt Lake City UT Metropolitan Statistical Area
San Antonio-New Braunfels TX Metropolitan Statistical Area
San Diego-Carlsbad CA Metropolitan Statistical Area
San Francisco-Redwood City-South San Francisco CA Metropolitan Division
San Jose-Sunnyvale-Santa Clara CA Metropolitan Statistical Area
Seattle-Tacoma-Bellevue, WA
Tampa-St. Petersburg-Clearwater FL. Metropolitan Statistical Area
Tucson AZ Metropolitan Statistical Area
Tulsa OK Metropolitan Statistical Area
Urban Honolulu HI Metropolitan Statistical Area
Virginia Beach-Norfolk-Newport News VA-NC Metropolitan Statistical Area
Washington-Arlington-Alexandria, DC-VA-MD-WV
West Palm Beach-Boca Raton-Delray Beach FL Metropolitan Division

No
No
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In this Appendix, we run a number of analyses on expanded samples which are described
as we come to them. The largest sample includes 390 CBSAs for which we have house prices,
GG homeownership, and other necessary data to run the full analysis with only house prices

and GG homeownership rates.

B.1.2 DK Instrument Data Set

For the DK instrument, our base data set is a data file provided to us by DK. The original
DK data set is at the county level, which we collapse to the CBSA level weighting by
population. We then merge in the CoreLogic HPI data, TW Rent data, and Census and
ACS homeownership rate data as described above. The analysis uses data from 2001 to 2010
and includes 370 CBSAs for the GG microdata-based homeownership rate and 47 when using
the HVS homeownership rate.

B.1.3 MS Instrument Data Set

For the MS data, we begin with the Mian-Sufi NCL share in 2002 provided to us by MS for
259 CBSAs. We merge this into the same data set as for the LS instrument. Our final data
set includes 258 CBSAs from 1990 to 2017. We are missing one CBSA from the MS data
set, Poughkeepsie NY, because it was absorbed into another CBSA using the 2013 CBSA

definitions and thus does not match to one of the CBSAs in our analysis.

B.2 LS Instrument Details and Robustness

In this section, we present additional results and robustness for the Loutskina-Strahan in-
strument.

The Loutskina-Strahan instrument is the interaction of the change in the national con-
forming loan limit and the share of HMDA mortgage originations within 5% of the conforming
loan limit in the prior year. We use the CLL for single-unit mortgages provided by FHFA.
As mentioned in a footnote in the main text, starting in 2008 Congress allowed the CLL to
rise by more in high-cost cities if their local house price index grew sufficiently quickly. This
would violate an instrumental variable’s exclusion restriction because the change in the CLL
would be mechanically correlated with lagged local outcomes. Consequently, in constructing
the instrument we use the change in the national CLL regardless of the change in the local
CLL in high-cost areas.

Figure B.1 shows the impulse response of rents and prices separately for various sample
(the HVS sample of 41 CBSAs, the GG sample of all 62 CBSAs with TW data, and, for
prices, the full sample of 390 CBSAs). One can see that essentially all of the IRF to our credit
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Figure B.1: Loutskina-Strahan Instrument LP Impulse Response For House Prices and Rents
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of the
response of the indicated outcomes for the indicated samples to the LS instrument ShareNearCLL; X
%ChangeInCLL, as estimated using equation (1). Control variables include ShareNearCLL; ; and its lag
and lags of the instrument and outcome variables, and regressions are weighted by 2000 population. Standard

errors are clustered by CBSA.

shock comes from prices: rents respond by a statistically insignificant amount. Furthermore,
the three price samples have similar IRFs.

The limited response of rents motivates using the full sample of 390 CBSAs with prices
and the GG microdata-based homeownership rather than price to rent and homeownership
to see if the results are different for the expanded sample. This is shown in Figure B.2. We
can see that the results are quite similar to the baseline results in Figure 3 for years 0-2
but have a slightly larger homeownership response and a smaller price response in years 3-4.
The ratio (not the inverse ratio) is generally larger than our baseline estimates for the GG
microdata, ranging from 28 to infinity in years 0-2 and 6.6 to 7.8 in years 3-4 when the price
response is smaller and homeownership response is larger.

Figure B.3 shows the response of the HVS homeownership rate for various samples and
shows that the results are similar across samples. In particular, it show the baseline (41 CB-
SAs), a version that does not condition on having rents from the TW index in the sample but
continues to drop CBSAs with a large change in the HVS homeownership rate (54 CBSAs),
and finally a version that does not require a full balanced panel (67 CBSAs, unbalanced from
1992-2017). The results are similar across the samples.

Figure B.4 repeats the main analysis in Figure 3 but includes time-varying controls for
employment and industry shares from the QCEW. For the GG microdata-based homeown-
ership rate, this uses log total employment and two-digit industry shares. Because of the

smaller sample we cannot control for two-digit industry shares in the HVS and instead use
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Figure B.2: Loutskina-Strahan Instrument LP Impulse Responses: Expanded Sample House
Prices Only (No Rents)
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of the
response of the indicated outcomes to the LS instrument ShareNearCLL; ; x %ChangeInCLL, as estimated
using equation (1). Control variables include ShareNearCLL;; and its lag and lags of the instrument
and outcome variables, and regressions are weighted by 2000 population. Panel (a) shows the price and
homeownership rate for the GG homeownership rate with standard errors clustered by CBSA. Panel (b)
shows the inverse ratio B,f RRE/ ﬁ,f OR with standard errors block bootstrapped by CBSA.

Figure B.3: Loutskina-Strahan Instrument LP Impulse Responses: HVS Various Samples
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of the
response of the HVS homeownership rate to the LS instrument ShareNearCLL;; x %ChangeInCLL; as
estimated using equation (1), for the indicated samples. Control variables include ShareNearCLL;, and
its lag and lags of the instrument and outcome variables, and regressions are weighted by 2000 population
with standard errors clustered by CBSA. The ”baseline” sample is the main sample of HVS CBSAs with
good homeownership rates and TW rents. The ”All CBSAs in HVS” sample is all HVS CBSAs with good
homeownership rates but a full balanced panel. The ” All CBSAs in HVS, Unbalanced” is the same as ” Al
CBSAs in HVS” but drops the requirement that there be a full balanced panel.

23



Figure B.4: Loutskina-Strahan Instrument LP Impulse Responses: Employment and Industry
Share Controls
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of the re-
sponse of the indicated outcomes to the LS instrument ShareNearCLL;; x %ChangeInCLL, as estimated
using equation (1). Control variables include ShareNearCLL; ; and its lag, lags of the instrument and out-
come variables, log employment, and industry employment shares (one-digit for HVS and two-digit for GG),
and regressions are weighted by 2000 population. Panels (a) and (b) show the price/rent and homeownership
rate for the HVS and GG homeownership rates, respectively, with standard errors clustered by CBSA. Panels
(c) and (d) show the inverse ratio BL B /BHOE for the HVS and GG homeownership rates, respectively, with
standard errors block bootstrapped by CBSA.

log total employment and one-digit industry shares. For the HVS, the impulse response for
both PRR and HOR are moderately smaller, leading to larger ratios in all periods as the
denominator effects is stronger than the numerator. The results for the GG homeownership
rate sample are similar, with both impulse responses slightly smaller and a larger ratio. This
implies that time-varying city characteristics related to employment and industry composi-
tion are not driving the results.

Figure B.5 adds the employment and industry controls to the 390-CBSA specification
that uses house prices and GG homeownership as in Figure B.2. Again, the results are similar
and the ratios are slightly higher, from 35 to infinity in periods 0-2 and 9.1 to 11.0 in periods
3-4.

Figure B.6 compares the impulse responses for price for various price indices. In the main
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Figure B.5: Loutskina-Strahan Instrument LP Impulse Responses: Expanded Sample House
Prices Only (No Rents) With Employment and Industry Share Controls
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of the
response of the indicated outcomes to the LS instrument ShareNearCLL; ; x %ChangeInCLL, as estimated
using equation (1). Control variables include ShareNearCLL;; and its lag, lags of the instrument and
outcome variables, log employment, and two-digit industry employment shares, and regressions are weighted
by 2000 population. Panel (a) shows the price and homeownership rate for the GG homeownership rate with
standard errors clustered by CBSA. Panel (b) shows the inverse ratio 35 %#F/BHOR  with standard errors
block bootstrapped by CBSA.

text we use the CoreLogic price index. The figure shows this alongside the responses of the
FHFA all transactions (which includes sales and appraisals) for 388 CBSAs and the FHFA
purchase only index for 99 CBSAs. The figure shows that our results are robust to the price
index used.

Finally, Figure B.7 repeats the analysis for 1991-2017 instead of 1995-2017 and drops the
requirement of a fully balanced panel, although we do require each CBSA in the sample to
have at least 20 years of data. Again, the results are similar to the baseline analysis in Figure
3, suggesting that starting the analysis in 1995 to have a full balanced panel of TW rents is

not an important sample restriction.

B.3 DK Instrument Details and Robustness

As described in the main body, we use a county-level data set generously provided by Di
Maggio and Kermani which we collapse to the CBSA level. We are able to run the same
regression at the CBSA level that they run at the county level with the exception of one
proprietary control variable: the share of loans that are subprime. We also use log changes
rather than percent changes for growth variables. We run the same regression as DK, then
transform the impulse response from log changes to log levels by cumulating the coefficients

from the log changes regression.
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Figure B.6: Loutskina-Strahan Instrument: FHFA House Price Index
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of the
response of the indicated price indices to the LS instrument ShareNearCLL;; x %ChangeInCLL, as esti-
mated using equation (1). Control variables include ShareNearCLL;, and its lag and lags of the instrument
and outcome variables. Regressions are weighted by 2000 population and standard errors block bootstrapped
by CBSA.

B.3.1 Replicating DK’s Exact Specification

To compare our results directly to Figure 3 of DK, Figure B.8 replicates DK’s exact speci-
fication as best we can by showing the impulse response in growth rates rather then levels.
The blue circles show the CBSA-level data, while the green triangles show the analysis us-
ing DK’s full county-level data set. One can see that the CBSA and County level data are
similar, and our estimates are close to to DK’s published results. For the remainder of this

appendix, we return to using cumulated impulse responses.

B.3.2 Robustness

Figure B.9 shows the same analysis as in the main text, that is using the GG microdata-
based homeownership rate with a cumulated IRF, but adding in controls for log employment
and two-digit industry shares from the QCEW. The results are very similar to Figure 4 in
the main text; the house price response and the homeownership rates response are both
statistically and economically insignificantly smaller. Because of the small magnitude of the
homeownership rate response, the ratio is at 1

Figure B.10 shows the Di Maggio and Kermani analysis using the HVS homeownership
rate sample. This yields 53 CBSAs instead of 370. The HVS yields a much lower ratio
(between 1.7 and 3.0), but has extremely wide confidence intervals, to the point that one

cannot reject a ratio of infinity. We thus do not make much of the lower ratios for the HVS
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Figure B.7: Loutskina-Strahan Instrument LP Impulse Responses: 1991-2017 Unbalanced
Panel
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Notes: 95% confidence interval shown in bars. The figure shows panel local projection estimates of he response
of the indicated outcomes to the LS instrument ShareNearCLL; ; x %ChangeInCLL, as estimated using
equation (1). Control variables include ShareNearCLL; ; and its lag and lags of the instrument and outcome
variables, and regressions are weighted by 2000 population. Panels (a) and (b) show the price/rent and
homeownership rate for the HVS and GG homeownership rates, respectively, with standard errors clustered
by CBSA. Panels (c) and (d) show the inverse ratio Sf#%/BHOE for the HVS and GG homeownership
rates, respectively, with standard errors block bootstrapped by CBSA. This figure differs from the main text
because it includes data from 1991 onwards instead of 1995 onwards and is an unbalanced panel, although
we require each CBSA in the sample to have at least 20 years of data.
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Figure B.8: Di Maggio-Kermani APL Preemption Reduced Form: Replicating DK’s Specifi-
cation
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Notes: 95% confidence interval shown in bars. The figure shows estimates of the estimates of 8 for each
indicated year and outcome variable (price or the GG microdata-based homeownership rate) estimated from
equation (2), with the instrument being Z; = APLogos X OCCs3. The controls include median income
growth, population growth, the Saiz (2010) elasticity interacted with a dummy for post-2004, the fraction
of loans originated by HUD-regulated lenders interacted with a dummy for post-2004, and the fraction of
HUD-regulated lenders interacted with a dummy for APLs. All regressions are weighted by 2000 population
and standard errors are clustered by CBSA, as in the original DK paper.

data.

B.4 MS Instrument Details and Robustness

Figure B.11 reestimates our main MS regression controlling for log of total employment and
two-digit industry shares from the QCEW. The impulse response for prices peaks lower, but
the qualitative pattern of a large response of prices and a small response of homeownership
still holds. The ratio is between 22 and 23 in 2004 and 2005.

Figure B.12 reestimates our main MS regression using homeownership rate data from the
HVS. This yields 36 CBSAs instead of 258. As mentioned in the main text, using the HVS
gives smaller estimates between 1.7 and 2.4 in 2004 and 2005, but with very wide confidence
intervals, to the point that one cannot reject a ratio of infinity. We thus do not make much
of the lower ratios for the HVS data.
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Figure B.9: Di Maggio-Kermani APL Preemption Reduced Form With Employment and
Industry Share Controls
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Notes: 95% confidence interval shown in bars. The figure shows estimates of the cumulative sum from 2003
of B for each indicated year and outcome variable (price or the GG microdata-based homeownership rate)
estimated from equation (2), with the instrument being Z; = APLgggs X OCCag03. The controls include
median income growth, population growth, the Saiz (2010) elasticity interacted with a dummy for post-
2004, the fraction of loans originated by HUD-regulated lenders interacted with a dummy for post-2004, the
fraction of HUD-regulated lenders interacted with a dummy for APLs, the log of total employment from the
QCEW, and 2-digit employment shares from the QCEW. All regressions are weighted by 2000 population
and standard errors are clustered by CBSA, as in the original DK paper.

Figure B.10: Di Maggio-Kermani APL Preemption Reduced Form With HVS Homeowner-
ship Rate

o
!
I
I
I
|
I
I
|
==
|
I
I
¢
S S —

2000 2002 2004 2006 2008

® Price 4 Homeownership

Notes: 95% confidence interval shown in bars. The figure shows estimates of the cumulative sum from 2003
of By for each indicated year and outcome variable (price or the GG microdata-based homeownership rate)
estimated from equation (2), with the instrument being Z; = APLogos X OCCs003. The controls include
median income growth, population growth, the Saiz (2010) elasticity interacted with a dummy for post-
2004, the fraction of loans originated by HUD-regulated lenders interacted with a dummy for post-2004, and
the fraction of HUD-regulated lenders interacted with a dummy for APLs. All regressions are weighted by
2000 population and standard errors are clustered by CBSA, as in the original DK paper.
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Figure B.11: Mian-Sufi PLS Expansion Reduced Form With Employment and Industry Share
Controls
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Notes: 95% confidence interval shown in bars. The figure shows shows estimates of the effect of a city’s NCL
share on the indicated outcome (price or the GG microdata-based homeownership rate) based on estimating
equation (2) with the instrument being Z; = NCLShare?%°? and 2002 being the base year. The regressions
control for the log of total employment from the QCEW, and 2-digit employment shares from the QCEW.
All standard errors are clustered by CBSA and all regressions are weighted by housing units as in the original
MS paper.

Figure B.12: Mian-Sufi PLS Expansion Reduced Form With HVS Homeownership Sample
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Notes: 95% confidence interval shown in bars. The figure shows shows estimates of the effect of a city’s NCL
share on the indicated outcome (price or the GG microdata-based homeownership rate) based on estimating
equation (2) with the instrument being Z; = NCLShare?°°? and 2002 being the base year. All standard
errors are clustered by CBSA and all regressions are weighted by housing units as in the original MS paper.
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B.5 National Price-Rent Ratio Construction

This appendix describes our construction of the aggregate price-rent ratio, used in Figures 1,
as well as for our main model experiments. Our measure of the national price-rent ratio comes
from the BEA and the Financial Accounts of the United States The ideal measure would be
the ratio of the market value of household real estate (FRED code: BOGZ1FL155035013Q) to
the value of owner-occupied housing services (FRED code: A2013C1A027NBEA). However,
this housing service measure is only available annually.

To obtain a quarterly measure, we use the method of Chow and Lin (1971), which ap-
proximates a higher-frequency series using a lower-frequency version of that series and a
higher-frequency related series. For the lower-frequency series (y) we use the log of the an-
nual series for owner-occupied housing services. For our related or proxy series, we use the

log of the product of total housing services and the national homeownership rate:
r; = log <T0talServicest X HORt>

For intuition, this series would be exactly equal to the target (log owner-occupied housing
services) under the assumption that housing services per unit of housing is identical for
owners and renters. We then create a quarterly version of the log owner-occupied housing

services series (z;) implied by the regression relationship

Y =BX +¢
where the matrix
000 - 0 0
000
B =
0Ooo0o0o0O0OO0OO0OO0O---1111

ensures that each annual element of y should be an average over four quarters of z.” We
follow the formulas in Chow and Lin (1971) to compute the high-frequency proxy z;, which
we use as the quarterly value of log owner-occupied housing services. Taking the ratio of the
market value of household real estate to the level of this value produces the desired price-rent

ratio.

"In principle, the averaging relationship should hold in levels rather than logs. However, we choose to use
logs to avoid issues with the changing scale of our variables over time.
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C A New Measure of the Homeownership Rate

C.1 Data Sources

Our data construction relies on two sources.

Infutor. For information on the inhabitant of a property, we use Infutor’s Total Consumer
ID Plus (CRD4) data set. These data contain information on the address history of the
majority of adults in the United States. The data trace individual address histories for up to
10 addresses or 30 years, whichever is shorter. For each historical address and each individual,
Infutor provides the first and last name, the first date at which the individual lived at that
address, and data on the address itself. We define the end date of a residential spell as the
next start date that is strictly greater than the current start date, or as January 1st, 2020

(beyond the sample end date) for the final residence for that individual.

ZTRAX. For information on the owner of a property and its characteristics, we rely on
Zillow’s Transaction and Assessment Database, also known as ZTRAX (Zillow, 2021). These
data provide information on the buyers and sellers on deeds transactions, including first
and last name, the property address, the transaction type, and the sale date. The data also
provide information on the owner on dates when the property is assessed for taxes, including

the address, assessment date, and owner name.

Public Housing. We obtain data on all public housing units from the department of Hous-
ing and Urban Development. Our data was obtained on September 24th, 2020 from: https://
hudgis-hud.opendata.arcgis.com/datasets/HUD: :public-housing-buildings/about

C.2 Data Preparation

Before performing our main data merge, we take several steps to prepare and clean the
data. We first describe the generic steps for name separation, name cleaning, and address
standardization that we apply to all data sets, before listing additional cleaning steps dataset-
by-dataset.

Name Separation. A major challenge is that some data, particularly the deeds and as-
sessor data, combine multiple individuals in a single name, or put both first and last name
in the last name field. As a result, the “last name” variable often includes both first and

last names of multiple individuals. In addition, the data include several inconsistent ways of
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recording multiple names varying with whether the first name comes before the last name,
whether the names are separated with a comma, and whether individuals with the same last
name are grouped with a single last name and multiple first names. To address these issues,
we run perform the following steps to separate names into different individuals and into first

and last names in all of our data sets that include name data:

1. For observations that include a non-missing first name, we leave the data as is, since

these observations usually represent a single individual, correctly formatted.

2. We classify observations that appear to be some type of corporate entity, and also
leave these observations as is. We assign names to this category if they include an

exact match of any of the following words:

AND, ASS, ASSET, ASSS, BARCLAYS, BEAR STEARNS, BUILT, CHURCH, CITY,
CO, CU, DEUTSCHE, DEV, ENTER, ENTS, FIN, GA, HOMES, HUD, IGLESIA,
JP MORGAN, LEASE, LL, LOAN, LP, MONEY, MOR, MORGAN STANLEY, NB,
OWNER, PROP, PROPS, RE, REAL, REO, RLTY, SONS, STORE, STRUCTURES,
TAX, TITLE, UNION, US, USA, VA

or if the string ends with an exact match of any of the following words:

ADVISORS, ALTISOURCE, AMERICA, AMERICAN, ASSETS, ASSN, ASSOC*,
BANK, BANKING, BAPTIST, BK, BKNG, BLDG, BLDR, BLDRS, BORROWER,
BROADCASTING, BUILDERS, CAPITAL, CENTER, CITIGROUP, CITIMORT-
GAGE, CNTY, COALITION, COMMUNIT*, CONGREGATION, CONSORTIUM,
CONST, CONSTR, CONSTRUCTION, CONTRACTOR, CONTRACTORS, CORP,
CORPORATION, COUNTRYWIDE, COUNTY, CREDIT, DEPOSIT, DEPT, DE-
VEL, DEVELOP*, ENTERPRISES, ENTPR, EQUITIES, FARGO, FB, FBS, FCU,
FDIC, FED, FEDERAL, FINANCE, FINANCIAL, FINL, FIRST, FNB, FNDG, FNMA,
FSB, FSB, FUND, FUNDING, GMAC, GRP, HOLDING, HOLDINGS, HOME, HOME-
OWNERS, HOUSING, HSBC, INC, INDEPENDENT, INTL, INVEST, INVEST-
MENT, INVESTMENTS, INVESTORS, INVST, INVTRS, JLC, JPMORGAN, LDNG,
LENDER, LENDERS, LENDING, LIABILITY, LIMITED, LLC, LLP, LNDNG, LOANS,
LTD, MANAGEMENT, METHODIST, MGMT, MINISTRIES, MORT, MORTG, MORT-
GAGE, MSAC, MTG*, MUTUAL, NATIONAL, NATIONSTAR, NATL, OPENDOOR,
PARTNERS, PARTNERSHIP, PROPERTIES, PROPERTY, PURCHASE, REALTY,
RELOCATION, RENEWAL, RENTAL, RENTALS, RESIDENTIAL, SB, SEC, SEC-
RETARY, SECURITIES, SERIES, SERVICES, SERVICING, SFR, SOLUTIONS, SRVC,
SUNTRUST, SVCNG, SVCS, UNDERWRITING, UNITED, VENTURES, VETER-
ANS, WAREHOUSE.

The “*” symbol above is a wildcard including any additional letters that finish the word,
as in typical regular expressions. For any entry without that wildcard, we require an

exact match from the start to the end of an individual word in the string.
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3. For remaining observations that include a comma, we base our name separation ap-

proach on the pattern of commas and ampersands in the last name.

(a)

For strings with a single name followed by a comma and then a set of additional
names separated by ampersands, we assume that this string represents a single
last name followed by a set of first names. For each first name we create a new
observation with that first name and the common last name. For example, the
string “SMITH, JOHN & JANE” would be mapped into two (first name, last
name) pairs: (JOHN, SMITH), (JANE, SMITH).

For strings with one or more patterns of two names separated by commas, each of
which are separated from each other by ampersands, we assume that each “name,
name” pair represents a last name followed by a first name. We create a new
observation with that first and last name for each “last, first” pair. For example,
the string “SMITH, JOHN & JONES, JANE” would be mapped into two (first
name, last name) pairs: (JOHN, SMITH), (JANE, JONES).

For strings that first feature a comma, followed by some alternative comma and
ampersand pattern that does not fall into one of these two cases (e.g., “SMITH,
JOHN, JANE”), we treat the initial name before the comma as the common
last name, and create separate observations using each name following the initial
comma as the first name. For example, the string “SMITH, JOHN, JANE” would
be mapped into two (first name, last name) pairs: (JOHN, SMITH), (JANE,
SMITH).

4. For remaining observations that do not include a comma, it is very difficult to distin-

guish first and last names. Because of this, we create a new observation for each word

in the original last name string, and set the last name equal to this word. This means

that our deeds data assign to the last name variable to some names that are actually

first names. However, we note that because the Infutor data is almost always correctly

formatted into first and last names, there is little danger of accidentally matching a

first name in the deeds data to a first name in the Infutor data, so this type of error

should have little impact on our measure of owner occupancy.

Name Cleaning. Once combined names have been separated into individual (first name,
last name) observations, we clean the name data. We first make adjustments for prefixes and
suffixes. For some observations there can be inconsistencies in how common prefixes such as
“Le” or “La” are treated. A common discrepancy is that one data set will include a space

between the prefix and the remainder of the name, while the other will not. To address this,
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for a set of common name prefixes (DE, ST, MC, VAN, LE, LA, DEL) we remove any space
between the prefix and the remainder of the last name.

Similarly, there can also be inconsistencies in whether and how suffixes such as “Jr.” are
recorded. To address this, we remove any suffix in the set (JR, SR, II, III, IV) that form an
exact match at the end of the last name string.

Last, we first convert all names to uppercase, to address possible inconsistencies in how
names are cased. We then remove any non-alphanumeric characters other than dashes,

whitespace, or ampersands, and strip any whitespace at the start or end of the string.

Adjusting Residential Spells. In our Infutor historical address data, we often observe
that individuals appear to repeatedly move in and out of the same address. Since this may
reflect measurement error rather than actual moves, we redefine an individual’s spell at
a given address as a continuous stretch between the first time they begin residence at an

address to the last time they end residence at that address.

Address Standardization. As a final update to all data sets, we standardize all addresses
so that they will match more consistently in our merge. We use a standardization service
from SmartyStreets to obtain standardized versions of each address. We associate with each
standardized address a unique address ID number that we will use in our merge. Since
properties can be owned either at the individual unit (e.g., apartment) level or at the building
level, we create standardized versions each address after removing the portions of the address
relating to the subunit, which we denote the building address. For example, if “123 Main
Street Apt 17 is the full address of the unit, we would define the building address as “123
Main Street.” We add unique address ID numbers to each building address not already

present elsewhere in our data.

Address History Data. In addition to the steps listed above, we take the following steps

to clean and prepare our Infutor address history dataset.

1. We construct the end date for each residential spell as the start date of the next

residential spell that is strictly after the current one.

2. Using the start and end dates defined in the previous step, we often observe that
individuals appear to repeatedly move in and out of the same address. Since this may
reflect measurement error rather than actual moves, we redefine an individual’s spell
at a given address as a continuous stretch between the first time they begin residence

at an address to the last time they end residence at that address.
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3. Properties may be an entire building or a subunit (e.g., apartment) of that building.

It may be possible that an inhabitant lives in a subunit, while the owner owns the
entire building. To deal with this issue, we define for each property the building ID as

described abaove.

Deeds Data. This section describes how we combine our original deeds, assessor, and

public housing data to create a final set of deeds transactions.

1.

We drop all deeds transactions that do not have broad document type “D” or “H,”
which cover sales transactions. This drops transactions with broad document type “M”

or “F,” which relate to mortgage and foreclosure-related transactions, respectively.

. We set the end date of each ownership spell as the next recorded transaction date.

For the final transaction recorded for a given property, we set the end date to a date

beyond the end of our sample.

. While we generally use the most recent buyers to identify the names of the current

owners, this approach alone would not be able to define owner names prior to the first
recorded transaction. To obtain the initial owners prior to the first recorded transaction,
we create an additional deeds record for the property with date prior to the start of our
sample (e.g., January 1, 1900) that lists the sellers on the first recorded transaction in
our data as the buyers on this newly created observation. This ensures that the initial
sellers will be recorded as the owners of the property for all periods prior to the first

recorded transaction.

. We create additional deeds records corresponding to the recorded owners in our as-

sessment data. For each assessment, we create a new deed using the recorded owner
from the assessment as the buyer, with a purchase date equal to the previous recorded
purchase in our transaction data (or January 1, 1900 if missing), and a sale date equal
to the next recorded purchase in our transaction data (or January 1, 2100 if missing).
These extra assessment-based records are particularly useful for cases where we have
no transaction data at all, such as the case of a very longstanding owner who has not

transacted for decades.

. We create additional deeds records for all addresses in our public housing data that will

identify these properties as owned by a government entity. For these records we use a
placeholder for the last name that will never match with any last name in the address

history data, and hence will never show up as an owner-occupied property. However, by
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assigning an owner to these properties, we will correctly be able to identify residential

spells in these properties as non-owner-occupied.

C.3 Data Merge

After constructing our two data sets containing information on residential spells and owner-
ship, we merge the two data sets. We perform the merge by address ID, keeping all residents
and all owners who have ever been associated with a given address, as well as the start and
end dates of both the residential spells and of homeownership. These merged data are thus
indexed at the (address, inhabitant, owner) level. This is a many-to-many nature merge, so
that all inhabitants are matched with all possible owners.

Our initial merge will not capture properties that are owned at the building level but
inhabited at the subunit (e.g., apartment) level, because the address ID of the building will
differ from the address ID of the subunit. To deal with this, we separately merge our deeds
data with our residential spells data using address ID as the merge key for the deeds data,
and building address ID as the merge key for the residential spells data, where building
address is defined as above. We append this second merged data set to our initial data set
after dropping any observations where the building address ID and address ID are the same
(in which case the observation is already in the data set).

Our initial merge includes many observations that are not relevant because they include
entirely non-overlapping dates, either because the inhabitant moved into the property after
the owner sold it, or the inhabitant left the property before the owner bought it. Because
these observations cannot possibly influence either the numerator (whether the inhabitant
and owner have the same last name at a given date) or the denominator (whether we have
data on both an inhabitant and an owner at a given date), we drop these observations.

For each remaining (address, inhabitant, owner) observation, we check whether we obtain
an exact match between the last name of the inhabitant and the last name of the owner.
To address the possibility that first and last names were reversed, we also check whether we
obtain an exact match between first name of the inhabitant and last name of the owner and
between last name of the inhabitant and first name of the owner. In either of these two cases,
we say that this property owner is an owner-occupier and that the property is owner occuped
throughout that owner’s ownership spell. We chose this date convention over an alternative
date convention where we only define a property as owner occupied during the overlapping
period between the ownership spell and the inhabitant’s residential spell because from our
hand checking of the data we believe that the dates associated with the deeds data are much

more precise than the dates in the residential history data. However, we acknowledge that
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this approach will misclassify events where an owner spends part of their ownership spell

inhabiting a property and part of their ownership spell renting it.

C.4 Homeownership Rate Calculation

Given our owner occupied flag for each (address, inhabitant, owner) observation, we can

aggregate to obtain a geographic time series of homeownership rates as follows.
1. Fix a date, denoted DATE, at which we are going to evaluate the homeownership rate.

2. Find all observations where DATE is weakly between the date at which the owner
purchased the property and sold the property.

3. For each remaining address, compute an occupancy flag for whether the address has

at least one registered inhabitant and at least one registered owner.

4. For each remaining address, compute an owner-occupancy flag as the maximum over
the values of the owner-occupancy flag over all (address, inhabitant, owner) observa-
tions. This determines whether we identify a property as owner-occupied at a given
date.

5. At the geographic level, sum over values of the occupancy flag and the owner-occupancy
flag. Divide the sum of the owner-occupancy flag (number of owner-occupied units) by
the sum of the occupancy flag (number of units for which we have both resident and
owner information) to obtain an estimate of the geographic homeownership rate on
date DATE.

6. Repeat for DATE equal to each date of interest.

In our implementation, we computed the homeownership rate at the county (FIPS) level
on the first day of each quarter from 1980:Q1 to 2019:Q4. We sum our totals of the owner-
occupied and in-sample flags over the four quarters of each calendar year to obtain annual

ratios. We will denote this initial measure for county i and year t as H ORiGiG’raW.

C.5 Trend Adjustment

Our data construction in the previous sections provides a raw measure of the homeownership
rate, corresponding to the share of units with non-missing owners and occupants that are
owner-occupied. However, our data coverage changes over time, mostly due to the Infutor

data increasing coverage and scope. This may create low frequency trends that do not match
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actual homeownership changes. Moreover, because of differences in coverage over time across
counties, these time trends may vary from county to county, and will not be completely
removed by a combination of date and county fixed effects

In this section, we describe how we use high-quality homeownership data available at
low frequencies from the Decennial Census and the American Community Survey (ACS) to
remove the low-frequency trend in raw homeownership rate data.

To motivate our procedure, our main approach to this trend adjustment is to update
the low-frequency trend in our data to match a trend line that interpolates linearly over the
10 year periods between each Decennial Census. However, at the time our data were con-
structed, county-level homeownership rates in the 2020 Decennial Census were not available.
To address this, we instead use the low-frequency trend in the ACS from 2005 onward to
construct corrected trends over the end of our sample.

Our procedure for doing so is as follows.

1. To address any bias in the aggregate homeownership rate for each date, we remove
time effects from our GG homeownership measure, and will replace these constants
later on with the correct national homeownership rate at each date. Specifically, we

remote time effects from our homeownership measures using
—~—S8 [
HOR,, = HOR;, — HOR,,

where s represents the source of the homeownership rate, which is either our newly
constructed GG measure (“GG, raw”), the ACS, or the Decennial Census, where the
latter two will be used to adjust the low frequency trends in our data later on. The
time averages HOR, are computed as weighted averages of H OR;, across counties ¢

using constant county weights equal to the number of occupied units in that county in
the 2005 ACS.

2. Compute the county-level trend in the homeownership measure in each county over
the period where the ACS is available using the regression:
—~—S8

HOR,, = &; + 3 x t + e,

where we run a separate regression for each county ¢, and the source s is one of our GG
measure, the ACS, or the HVS. If at least three observations are available for county

1, we compute the trend homeownership rate over the ACS sample as:

———s,post-2005 trend

HOR;, = &5+ 35 x L.
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3. Construct our measure of the correct low-frequency trend in the data, denoted FO?%M

as follows:

(a) For years 2005 or later, compute:
% ——ACS ~
HOR,, = HOR;, +vi =&; + B3] xt+;,

where the addition of the constant:

Census ——ACS

= HORi,201O - HORmom’

ensures that our trend line is exactly equal to the Decennial Census measure

0%87;72010 in 2010.

(b) For years 2000 or earlier, we linearly interpolate between homeownership rates in
Census

the time-demeaned Decennial Census HOR,, . For example,
————Census ————Census

HOR, 1995 = 0.7 X HOR, 1499 + 0.3 X HOR, 550 -

(c) For the years 2001-2004, we linearly interpolate between ﬁO\R;OOO and @:72005,

where these two values are computed using the steps above (and ﬁmooo =

Census
HOR; 5509 )

4. Repeat the procedure in the previous step to construct the low-frequency trend with
the same structure in our “GG, raw” data, @Staraw. The idea is that we will remove
this low-frequency trend from H ORGGMW and replace it with ﬁOT%:t To be precise,
we compute H/Oﬁftamw as follows:

(a) For years 2005 or later, compute the fitted value from a linear time trend:

GG, raw . ~
HOR,, = af 4+ BP9 x

(b) For years 2000 or earlier, we linearly interpolate between homeownership rates
GG raw
HOR;,; , where d € {1980,1990,2000} is a Decennial Census year. For exam-

ple,

———GGraw GG raw GG raw

HOR, 1493 = 0.7x HOR, 195 + 0.3 X HOR, g0 -

———GG raw
(c) For the years 2001-2004, we linearly interpolate between H ORZ 9000 " and H OR, 5005 >
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———GG,raw

where these two values are computed using the steps above (and HOR, 50 =

GG ,raw
HORi,QOOO )

5. Compute a trend-adjusted measure of the homeownership rate as:

GO Agg GGraw _—— GG raw %
HOR;"™ = HOR,”™ +HOR,, — HOR,, + HOR,, (C.1)
' —_—— ~ ~ ~ . ——
national HOR raw data raw data trend Census/ACS trend

where m;‘ % is the national homeownership rate, obtained from the US Census
Bureau (FRED code RHORUSQ156N). To understand these expressions, note that
e.g., (C.1) begins with the national homeownership rate, which since our remaining
series are all demeaned will ensure that our data will always aggregate to the correct
national number when using 2005 ACS occupied units as weights. Next, we add the

GG, raw
demeaned data series HOR, , , and subtract off the county-specific low frequency

———GGraw .
trend in our “GG, raw” data HOR,, . Last, we add back in the “correct” low-

frequency trend from the Decennial Census and ACS ﬁO\R:t

6. To aggregate from the county level to the CBSA level, we compute weighted averages
of our H OthG’* measures for each CBSA j, using the 2013 mappings from counties to
CBSA (source: NHGIS), and using the population of each county, interpolated between

Decennial Census years, as the weight.

The results of this procedure is the the CBSA-level series H OthG

C.6 Data Validation

After constructing our homeownership rate series H OR]-Cf . we next seek to validate it by
comparing it to the American Community Survey, a high quality data set but one available
only since 2005, and to the Housing Vacancy Survey, the best existing public series con-
taining years prior to 2005. To remove mechanical sources of common variation due to our
trend adjustment procedure, we remove year and geographic fixed effects (weighted by ACS
occupied units in 2005), as well as a linear time trend for each CBSA. This has the additional
benefit of isolating the variation that would be left over in regression analyses, which often
remove geographic and time fixed effects and time trends. We compare these homeownership
rate series on the overlapping sample for which all three homeownership rates are available

for at least ten years. This sample contains 960 observations from 75 CBSAs over the period
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Table C.1: Homeownership Rate Comparison

Statistic ACS HVS GG

Standard deviation (levels) 0.70% 1.87% 0.34%
Standard deviation (1Y differences) 0.94% 2.18% 0.29%
Autocorrelation (levels) 0.089 0.331 0.738
Autocorrelation (1Y differences) -0.395 -0.108 0.669
Standard deviation (deviation from ACS) - 236% 0.94%
Correlation with ACS (levels) 1.000 0.058 0.216

Correlation with ACS (1Y differences) 1.000  0.027  0.092
Correlation with ACS (3Y differences) 1.000 0.036 0.245
Correlation with ACS (5Y differences) 1.000 0.081 0.339

Notes: This table presents summary statistics from homeownership series from the American Community
Survey (ACS), Housing and Vacancy Survey (HVS), and our newly constructed GG-Microdata series for the
2015-2017 period in which all three series overlap. Statistics are equally weighted across CBSAs and time.
Statistics are computed after removing CBSA and time fixed effects, as well as a linear time trend. The
sample includes all CBSAs with at least ten years of data for the ACS, HVS, and GG series.

2005 to 2017.%

To compare these series, we present summary statistics in Table C.1, and a full set
of CBSA-level comparisons for each CBSA in our overlapping ACS/HVS/GG sample in
Figures C.1 through C.5. Each figure presents the three versions of the homeownership
rate for a particular CBSA. Since we remove a geographic effect and a linear time trend,
all homeownership rates by construction have mean zero and no linear trend. However,
we observe that the remaining variation, which is likely the most important for empirical
analyses with fixed effects, varies widely across measures.

The top panel of Table C.1 displays statistics for the individual series. The HVS measure
is by far the most volatile series, exhibiting twice the volatility of the ACS series in both
levels and differences. This is not surprising as the HVS is built off of a supplement to
Current Population Survey, which samples roughly 72,000 units. In 2021 there were roughly
142 million units in the US housing stock, meaning the HVS is built off of a roughly 0.05%
sample. Visual analysis of the figures by CBSA reveal reveals that this volatility is due
to large swings that appear mostly uncorrelated with either the ACS or GG-Microdata
homeownership rate. This series also displays negative autocorrelation in first differences,
which is consistent with the presence of measurement error.

By contrast, the GG-Microdata series is the least volatile of all the series, with less than
half the volatility of the ACS series in both levels and differences. This is likely due to the

8There are 89 CBSAs in the HVS. Dropping CBSAs with major redefinitions leads to 80. Dropping CBSAs
with under 10 years of data leads to 75.
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Table C.2: Regression Results

ACS;, HVS;; GGy

ACS; 111 0.051  0.002  0.392%**
(0.043) (0.014) (0.076)
N 885

Adjusted R?  0.036

Notes: This table presents results from an equal-weighted OLS regression of (C.2). The sample includes all
CBSAs with at least ten years of data for the ACS, HVS, and GG series. Heteroskedasticity-robust standard
errors are reported in parentheses.

fact that our series is not a randomly resampled draw of households, but includes all of our
data at each date. In contrast, while the ACS uses a larger sample than the HVS, it still only
represents a random subsample of individuals far smaller than the actual population (around
2 million households, or a roughly 1.5% sample), which may incur sampling variation. Our
series also displays the highest persistence in levels, and unlike the other series, does not
display negative autocorrelation in first differences, providing further evidence that it has
less measurement error.

The bottom panel of Table C.1 compares each series to the ACS. We observe that de-
viations between our GG series and the ACS are less than half of that for the HVS series.
Similarly, the correlations between our series and the ACS in both levels and first differences
are several times larger than for the HVS series. We conclude that our GG-Microdata series
provides a much closer match to the ACS data over the overlapping sample when both are
available. Looking at correlations with 3-year and 5-year differences, we observe that our
GG-Microdata series exhibits large and growing correlations with changes in the ACS as
the horizon becomes longer. This provides reassurance that the low volatility of our series
is due to dampening noise and does not stem from a failure to capture true variation in the
homeownership rate. We can also observe this visually from cases where the ACS homeowner-
ship rate exhibits large changes over the sample, such as Las Vegas-Henderson-Paradise, NV,
Phoenix-Mesa-Scottsdale, AZ, or Salt Lake City, UT. These figures show that GG-Microdata
series’ reduction in noise does not come at the cost of understating actual movements in the
ACS homeownership rate. Indeed, the GG-Microdata series generally tracks the ACS series
very well, including in cases where the ACS series is far from stagnant.

Last, we provide evidence that, to the extent that our GG-Microdata and ACS series

differ, the GG-Microdata may be the more accurate series. To this end, we regress:

ACS]'J_H = ﬂo + ﬂlACSj,t + BQHVSN -+ ﬁgGijt + €541 (CQ)
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where ACS;;, HV S}, and GG, are the homeownership rates in CBSA j at time ¢ from the
ACS, HVS, and GG-Microdata series, respectively. The results, displayed in Table C.2, show
that our GG-Microdata series at time ¢ is by far the strongest predictor of the ACS series at
time ¢t + 1 in the same CBSA, driving out all predictive power of the ACS series at time ¢
itself. This implies that our GG-Microdata series is faithfully capturing the true “signal” in
the homeownership rate, without the additional noise created by the ACS sampling scheme.
We believe our method provides even more error reduction at the county level, where the
random sampling of the ACS poses an even larger issue.

To summarize, on the overlapping sample for which the ACS, HVS, and GG-Microdata
series are available, we find the GG-Microdata series to be the least volatile, most persis-
tent, and most predictive of the next value of the ACS homeownership rate. All of these
findings are consistent with the GG-Microdata series being a high-signal, low-noise measure
of homeownership that is much more accurate than the HVS series, and may even improve
on the accuracy of the ACS. These benefits should be considered alongside GG-Microdata’s
expanded coverage that provides many more CBSAs than the HVS (390 vs. 75 with a con-
tinuous sample of more than three years) and a longer sample than the ACS, which begins
only in 2005.
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Figure C.1: Homeownership Rate Comparison by CBSA, Page 1
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Figure C.2: Homeownership Rate Comparison by CBSA, Page 2
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Figure C.4: Homeownership Rate Comparison by CBSA, Page 4
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Figure C.5: Homeownership Rate Comparison by CBSA, Page 5
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