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B Time-Dependent Pricing with Heterogeneous Firms

B.1 Model
Household

Using the period budget constraints (18) and the no-Ponzi scheme condition, we derive the

lifetime budget constraint
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The household maximizes its utility (16) and (17) subject to (O.1). Note that this problem
has no solution if R, < 1 for any ¢ > 0, since in that case the household could achieve
unbounded utility through a sufficiently large choice of M;,;. We thus assume that R; > 1
for all ¢ in what follows.

Denote the Lagrange multiplier on the lifetime budget constraint as A\. The first order

conditions with respect to ¢, ¢;(p) and M, for t > 0 are
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Equation (O.3) implies that ¢;(p)/c.(p’) = (p'/p)". Using this, together with the definition

of C; in equation (17), we get the standard demand function

ci(p) = CLP'p™,



where P, is defined in equation (19).

Now we focus on an environment with constant money growth in all periods, M;,,/M; =
14+ > [, and look for an equilibrium in which the real interest rate converges to a constant
as t gets big. To find the implied real interest rate, take ratios of equation (O.4) at ¢ and
t+1 and use Q; = Ht_l <L to get a difference equation for R;:
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Define R = (1 + m)/8 > 1. This difference equation has two stationary solutions, R; = R
and R; = 1. The former is globally unstable, while the latter is inconsistent with a solution
to the household problem. Thus a necessary condition for the real interest rate to converge
to a constant is R, = R for all ¢. We impose that in what follows.

Next, we evaluate equation (0.4) at t = 0 and use R; = R and M; = My(1+7) to obtain
A = 1/(My(R — 1)). Equation (0.2) together with @Q; = R~! imply that W; grows at the
rate m, Wy = Woy(1 4+ m)". Moreover, evaluating (0.2) at ¢ = 0 pins down the initial level of

wages, Wy = aMy(R — 1). This proves

W, = aM,(R — 1). (0.5)

Finally, we manipulate equation (O.3). In particular, we take (1 —n) power of both sides and
integrate across all p to get \Q;CyP; = £*. Combining it with (O.2), we find that aggregate

consumption is inversely proportional to markup,

Cr=—.
! OéPt

(0.6)
Equivalently, using equation (O.5), nominal output P,C; is equal to a share R — 1 of the

money supply M;. This means that monetary policy determines nominal output.

Firms

Now we turn to the maximization problem of a firm with time-dependent pricing rule ®. If
the firm has a chance to set the price at time ¢ > 0, it sets it so as to maximize the present

discounted value of its profits until the next price adjustment, I, (p; @)
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where ci15(p) = Crys Py ;p~" is the demand for a good with price p at time ¢ + s, determined
by the household. The household’s problem implies that Q;W; = o'/ (equation (O.2))
and that P, = W;/(aC}) (equation (O.6)). We use these expressions to write firm’s profit as
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We thus get
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We use that W, = Wy(1 + 7)* and take the first order condition with respect to p to find
that the optimal price is
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Note that if additionally consumption C} is constant over time, equation (O.7) reduces to
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for all t. This equation then implies P(®) grows at rate m. From the definition of the ideal

price index in equation (19) and the result that nominal wages grow at rate m, we then get
1
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for all t. This ensures that P, grows at rate 7 as well. Finally, since nominal output grows at

rate 7 (equation (O.6)), real consumption must be constant. Thus we can construct a sta-
tionary equilibrium with constant real variables (Cy, M;/P,, W;/P,, R;) and a time-invariant

distribution of relative prices v;(p) = vo(pFo/Py).

B.2 Log-Linearization

The economy converges to a stationary equilibrium if money growth remains constant for
a long time. Here we approximate the transitional dynamics of an economy that starts
from one stationary equilibrium with zero money growth and then unexpectedly at time 1
experiences a change in the money growth rate.

First define the function 2(C, 7, s, ®) = B5C'"®,(1+7)"~D* and rewrite equation (0.7)



as
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We log-linearize P;(®) around a stationary equilibrium with zero inflation where C; = C
and m = 0. A little bit of algebra yields

0Z(m,Cy, Cryq,y...; @) _ —0
Cs=Cr=0 —

aCt-i—s
0Z(m,Cy, Cyyq,...; D) >y 2(C0,8,®)s X B Dgs

5 lc=Cin=0 = >0 2(C.0,8,®@)  3TE B0,

Furthermore, equation (5) states w;(®) = ®;_1w;(P), so
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where (@) is defined in (23). Denoting p;(®) = log P;(®), w; = log W} and p; = log P, the

log-linearized dynamics of the model is thus given by

=7(®)—1
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Dt = /Zowsﬂ(q))pts(@)dF(@). (0.11)

In the experiment, we assume the economy is in a stationary equilibrium with zero money
growth at time ¢ = 0. There is an increase of money growth to 7 so that M; = My(1 + 7)*
for t > 0. We now analyze the deviation of log-output from the old steady state at time
t, denoted 7, which is equal to the negative deviation of log-markup. In the equilibrium

with zero money growth, equation (O.10) implies that each firm has a log-markup of log n—ﬁl



Hence, the deviation of log output from the old steady state is given by
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Next, split the sums into two parts
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where we used that for ¢ < 0, w, = wy and py(P) — w;, = log -, while for ¢ > 0, it holds

log
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w; = wo + t7 and the log-markup of firm & is given by (O.l()). Finally, rearrange the terms
and use the fact that [ > 27 wsi1(P)dF(P) =1 to find the expression in the text:
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B.3 Calibration

For the numerical exercise, we use estimates from our baseline model. We assume that the
baseline hazard is given by our estimates presented in Section 6.1. We do not use spells
shorter than T in the estimation, and set b, =0 for t < T

We also want to estimate moments of the frailty distribution. Since the feasible mixture
hazard gives zero weight to any product that we observe for less than T periods (see Sec-
tion 4.4), we wish to measure a comparable frailty distribution, and so weight products by

the product of the expected censoring time and frequency of price adjustment,
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f
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and let g = (u1, p2, p3) denote its first three moments. We can use purely cross-sectional

data to estimate p. In particular, we look at the fraction of spells with duration 7'
Uy — Uy = / ObrdFL(0).
Rearranging the terms, we can equivalently write
Uy — Vg — by = 0. (0.12)

This is an equation for p;. To obtain an equation for us, we look at the fraction of spells
with duration 7"+ 1

Uris = Wr = [ Obrs (1= br)AF{(6) = brea(us — b, 013

Finally, we use the share of spells with duration 7"+ 2 to find an equation for pus.

Assuming that ¢ = ((o, (1, --.,Cx) follows a stationary mixture model, we translate



equations (0.12), (O.13) and equation for pg into moment conditions for p, po, 113,
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where we use weights -
E.3, we prove that E [ [‘“ (C; s )] =0, fori=1,2,3.
We find that g = (1,1.331,2.137). Let Gé(@) be the distribution of # implied by the

stationary MPH model,
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We assume that G; has a beta distribution over the interval [0, 0], and choose its two

(12). In Online Appendix

parameters &, 3 together with 6;, 6y to match the first two estimated moments of the dis-
tribution and to minimize the mean squared error between the model-implied and estimated
mixture hazard. We find 6, = 0.156, 65 = 6.071, & = 1.668, 8 = 10. This distribution has
a mass point at O = 1/ 132, with mass 0.0057, which ensures that 1 — b, is always positive
for all . The third moment of this distribution, which is not targeted in the calibration, is
2.178, very close to the estimated jig = 2.137.

Figure 7 shows that we fit the estimated mixture hazard and average type for 2 <t < 60
very well. Using the estimated baseline hazard and the frailty distribution with the above
parameters, we use equation (9) to compute the implied mixture hazard, call it H,, and then
compute the average type as H, / b,. These are depicted with dashed lines in Figure 7.

We use the mixture hazard estimated in Section 6.1 for 2 < ¢ < 60 and assume that it
is given by H; = 79 + 1/t for 60 < ¢t < 500, and 1 for t = 501. We estimate vy and 7,
by fitting this function to the estimated mixture hazard for weeks 10 < ¢t < 60. We find
Yo = 0.009 and ~; = 1.142. We then use the model structure to recover the baseline hazard
for t > 60 using the decomposition H; = 6,b,. For any initial distribution G(6), we can
compute distribution of types among products surviving to ¢, G(6|t), using the distribution
G (O]t — 1) and baseline hazard at t, b,. We use this relationship together with H, = 6,b,,

where H, is known, to recover b; for ¢t > 60.
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Figure 7: Fit of the mixture hazard by estimated frailty distribution and b;. The left panel
shows the baseline hazard Bt as well as two estimates of the mixture hazard H;. ﬁt uses
GMM on purely cross-sectional data, following equation (4) in Proposition 4. H, uses the
estimated type distribution and l;t. The right panel compares the implied measures of the
“average type,” calculated as the ratio of mixture and baseline hazards, as in Figure 1.

C Price Plans

C.1 Shape of Hazards

In this section, we consider a trinomial discrete-time process z; with exit at two boundaries
z,Z, and derive formulae for the hazard of exiting through one or both of the boundaries.
We then explain how to apply these results to the conditional and unconditional hazard of
changing price plans.

We consider the following model. Time is discrete. The process Z; attains one of N > 3
values {z,x + A,...,Z — A, z}. We denote z, = z + (n — 1)A for n € {1,..., N}, with
z=z+(N-1A.

We assume T = x,, for some ng € {1,..., N}. Subsequently, for z < &; < Z, T441 takes
on one of three possible values: #;.; = #; + A with probability 1/4, #;.1 = & — A with
probability 1/4, or Z;41 = Z; otherwise. There is exit at the boundary, so if Z; = z, there is
a 1/4 chance of exit, a 1/4 chance of 7, = x + A, and a 1/2 chance of Z;, = z. The outcomes
at the upper boundary are symmetric. All shocks are independent over time.

Let my(z) be the fraction of realizations with Z; = x at time ¢. The law of motion of



my(x) is given by the Kolmogorov forward equation

me(z — A) + imy(z) + imp(z + A) ifz <z < T
m(z — A) + imy(z) ifz =7 (0.17)
my(z+ A) + imy(z) if o = 2

my1(x) =

o =N L N o

with initial condition mg(z,,) = 1 and mg(z,) = 0 for n # ny.

Proposition 6 The solution of the equation (O.17) with the initial condition mo(x,) = 1

at n = ngy and zero otherwise is given by

N
. n .
my(x,) = Z A} sin (N n 1]7T> Y, (0.18)

where
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See Online Appendix G for the proof.

We now turn to duration analysis. The survival function at duration ¢ is S; = 27]:7:1 my(zy,).
The hazard of exiting at boundary Z (), denoted h¥ (h;), is given by the ratio of the outflow
through z (z) and the survival function. The hazard of exiting at either boundary, hy, is

given by the sum of the two hazards:

1my(z) _ 1my(z)
4 S

- he= B R

hE =
t 4 S,

The following proposition establishes the shape of h; for large ¢.

Proposition 7 For 1 <ng < N, hy = 0. For all ng, limy_,oc hy =1 — Ny, If % < ng <

%, then the hazard hy converges to its asymptote from below. Ifnyg < % %,

the hazard h;, converges to its asymptote from above. The expected time to hit either x or T
is 2no(N + 1 —nyg).

orng >

See Online Appendix G for the proof.

We next turn to analyze shapes of h; and h¥ for large t.

Proposition 8 For 1 < ny < N, hazard hi = h¥ = 0 and lim;_ b} = lim;_ o AT =
%(1 —A1). Forng < %, hazard by converges to its asymptote from above and hazard h¥

N+l hazard hi converges to its asymptote from below and

2
hazard hi converges from above. For ng = %, both converge from below. .

converges from below. For ng >

9
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Figure 8: Hazards hy, h? and h; for N = 9 and different choices of ng € {3,5,7}. Note the
lines for ny = 3 and ng = 7 are identical in the right panel.

See Online Appendix G for the proof.

Figure 8 shows the shapes for the three hazards for N = 9 and different initial condition
ng. The expected time until hitting a barrier when ng =5 and N =9 is 32 periods.

To apply these results to the model described in Section 8, it is enough to appropriately
choose the barriers z, T and thus N = (z — z)/A + 1, and initial point ny. For the un-
conditional hazard of changing plans after a price increase, we choose x = p, ¥ = p, and
no = (p — p)/(p — p) since we know the initial condition for the process is p. )

If, star%ing with a price increase, we want to study the conditional hazard of changing
plans conditional on not changing the price within a plan, then = p, = p and the initial

point is p which corresponds to ng = (p — p)/(p — p).

C.2 Constructing Price Plans Data

We describe in detail how we construct spells for price plans.

In the Online Micro Price data, where we observe posted prices, construction is straight-
forward. We take any three consecutive prices of a product py, ps, ps3. If p; = p3, then prices
{p1,p2} constitute a price plan and we keep it. We measure duration of the spell which
started with p3 and consider the next price py. If py = po, the spell ends with a price change
within the plan, if py # ps, the spell ends with a price outside the plan. If ps3 is right censored,
we keep the plan and treat the spell as right-censored.

In the IRI data, one-week spells might be spurious and hence we want to avoid them.

10
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We proceed according to this algorithm:

1. We start from a price p; observed for at least 2 periods, say ti,...to — 1. This is

potentially one element of the price plan.
2. Let py = p(ta + 1) (not p(t2)). This price lasts from t,...,t3 — 1 or to + 1,...t5 — 1.

3. If po = p(ta) or po = p(ta + 2), i.e. price lasts at least two periods, we have another

element of the price plan. Otherwise stop.
4. Let ps = p(t3 + 1). This price lasts from t3,....,t4y — L or t3+1,....,t4 — 1.

5. If py = p3, we have a price plan {p;,p2}. We do not require ps to last as least two

periods.?! Otherwise stop.
6. Let py = p(ty +1).

7. If py = p(ts) or py = p(ty + 2), that is, price lasts at least two periods, we look at
whether py = po. If so, this is a within-plan price change. If not, this is a between-plan

price change.

8. If py # p(ts) and py # p(ts + 2), we cannot establish the nature of the price change,

and hence we drop the plan.
9. If ps is right-censored, we keep the plan.

We use these price plans to estimate the model with competing risks, where one risk repre-
sents within-plan price change, and another a between-plan price change.

We also use these price plan spells to construct data which we use to estimate uncondi-
tional hazard of changing the price between plans. In Online Micro Price, starting from any
p3 which is part of a plan, i.e. p; = p3, we measure duration until the first time the price
changes to a new plan. That is, we look at the elapsed time between switch to the price ps3
and a new price p’ with p’ # pq, p’ # ps. This is the duration of the price plan. If we never
observe such a price, the duration is right censored with duration given by the time elapsed
between p; and the last time the product is in a dataset.

In the IRI data, we start from any ps which is part of the plan and following our notation
above, lasted from t3, ...t — 1. If duration of ps is right censored or the price py = p(t4+ 1)
is such that ps # py4, we record duration of the spell starting with ps. If p, = ps and py4 lasted
till ¢5 — 1, we look at price ps = p(ts + 1). If p5s = p(t5) or ps = p(ts + 2), that is, ps lasts

21This is because p3 = p1, where p; has already been established to be a potential element of a price plan.
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new plan (uncond.) within plan new plan (cond.)

starting with py,

number of pairs 5,069,174 2,595,883 2,747,753
number of products 988,593 532,911 701,286
J-statistic 8,257 3,174 2,767

starting with p;

number of pairs 2,107,146 1,734,287 565,776
number of products 433,304 345,617 178,390
J-statistic 7,090 2,738 2,295

Table 1: Descriptive statistics for price trends and price reversals, IRI data. For this table,
we consider only pairs of spells which are used in estimation. The first row reports the
number of pairs, the second row reports how many products have at least one such pair.
The third row reports the J-statistic. The critical value for the J-statistic 1,207.

at least 2 periods, we compare p3 and ps. If p; # p3, the duration of spell is given by time
elapsed between t3 and the end of price ps. If ps = p3, we repeat this step.

Table 1 shows the number of observations (pairs of products as well as products with
n > 2) for six different data sets, the ones used to estimate the conditional and unconditional
hazard of a new plan, as well as the hazard of a within-plan price change, starting from
either the high or low price within the plan. We also show the .J-statistic from a test of the

overidentifying restrictions implied by the proportional hazard structure.

D Price Trends and Price Reversals

We analyze the hazard of adjusting the price allowing for different dynamics for sales and
regular prices, without relying on any particular model of sales. To do this, we use the
MPH model extended to allow observable spell-specific characteristic and competing risks,
as introduced in Section 3.5 and characterized in Appendix A. In particular, we distinguish
spells based on whether they started with a price increase or price decrease, and so we
have two observable characteristics (X = 2 in Appendix A). Let Xj’ denote the observable
characteristic of the j spell of product i. For mnemonic convenience let Xé* =“4+" if the

[43

5t spell of product i follows a price increase and X; =“="if it follows a price decrease. We
also distinguish whether a spell ends with a price increase or decrease, and so we have two
competing risks (R = 2 in Appendix A). We use ,03 to denote the reason for why the j™* spell
of product ¢ ends, and let p} =“+" if it ends with a price increase and p} ="“—"if it ends

with a price decrease. Spells with x’ = p represent price trends, while spells with x} # p}

12



pH+ bt p—+ b
number of pairs 42,077,438 275,322,989 72,940,882 17,876,354
number of products 4,313,488 9,416,198 5,637,378 2,911,651
J-statistic 3,920 8,737 7,910 3,401

Table 2: Descriptive statistics for price trends and price reversals, IRI data. For this table,
we consider only pairs of spells which are used in estimation. For b*~, the first row reports
the number of pairs (j, k) such that T < (; < T, T < G, x; = X6 ="“+", pj =“=". The
second row reports how many products have at least one such pair. Columns for ™", b=+
and b~~ are analogous. The third row shows the J-statistic for the estimated model. The
critical value for the J-statistic 1,749.

are price reversals.

We separately estimate four different baseline hazards, one for each possible combination
of observable characteristic and risk. We use b " (b, ") to denote the baseline hazard that a
spell which starts with a price increase subsequently ends with a price increase (decrease) at
duration ¢. Similarly, b; * (b; ~) denotes the baseline hazard that a spell which starts with
a price decrease subsequently ends with a price increase (decrease) at duration ¢. We do
not restrict the unobserved type vector for the different observables and risks, and so some
products may have a relatively high risk of certain outcomes and a relatively low risk for other
outcomes, for example. Additionally, the validity of the proportional hazard assumption for
one combination of observable characteristics and risks does not impact the consistency of
the estimates for other combinations.

This richer model allows for the possibility that price trends have different dynamics
than price reversals. We estimate the baseline hazard using the moment conditions specified
in Proposition 5 in Appendix A, with the level of the baseline hazard at duration 71" set
equal to the mixture hazard for that observable-risk pair from equation (O.21) in Online
Appendix E.2. Table 2 shows descriptive statistics of the data used, while Figure 9 shows
the estimated baseline hazards.The baseline hazards for price trends, b/ " and b, ~, are rather
flat, especially the hazard for two consecutive price increases. The baseline hazards for the
price reversals are declining, with b; 7, i.e. temporary sales, showing the sharpest decline.
We conclude from these findings that the shape of the baseline hazard we recovered in Figure
1 is primarily driven by price reversals, especially those associated with sales. Price reversals
are common in the data: the hazard for a price reversal is higher than the hazard of a price
trend at all durations, regardless of whether the spell started with a price increase or a price
decrease.

The model is over-identified and so we can again apply the J-test. We run a separate

J-test for each hazard, since each baseline hazard can be estimated without assuming a MPH
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Figure 9: Baseline hazards in the competing risks model for pooled IRI data, log scale. bt

is the baseline hazard for spell which begin and end with a price increase; b, ~ for spells
which begin and end with a price decrease; b~ for spells which begin with a price increase
and end with a price decrease; and b, * for spells which begin with a price decrease and end
with a price increase. The shaded regions show two standard error bands. Standard errors
are clustered at the store x product category level. The baseline hazard at duration 1" = 2
is set to be equal to the corresponding mixture hazard at duration 7'.

structure for the other competing hazards. The five percent critical value is 1,749 for each
observable and risk, and the test statistics are J*+ = 3,920, J*~ = 8,737, J~* = 7,910, and
J~7 = 3,401. Even though we still reject the model at the five percent level, the rejection is
“milder” for price trends than price reversals.

Figures 16 and 17 in Online Appendix J show estimated b™* and b=~ for individual
product categories. The results are in line with those for the pooled sample. The hazard b+
declines for about 6 weeks and then is flat, and the baseline hazard b=~ is declining in most
categories. The value of the J-test for individual categories is lower than the value on the
pooled sample because of the smaller sample. In particular, we cannot reject the specification
for 8 categories for bt and 21 categories for b~—. We investigate the nature of the failure
of the proportional hazard assumption more systematically in Online Appendix H.4.

We conclude that the dynamics of price trends is well described by the MPH assumption,
and that the baseline hazard is fairly flat. On the other hand, we conclude that MPH
assumption is not a good description of the dynamics of price reversals. One possible reason
is that temporary changes might have fixed duration, which does not fit into the MPH
framework.

Based on these findings, we believe distinguishing price trends from price reversals is
useful in this data. The baseline hazard for two consecutive price increases is decreasing

until week 6, which covers a substantial amount of price changes: 76.8 percent of complete

14



spells which start after a price increase last at most 6 weeks (among complete spells which
start and end with a price increase, 76.7 percent last at most 6 weeks). During first 6 weeks,
the baseline hazard drops by almost 50 percent and then is then flat until week 45. There
is a pronounced spike at around one year, consistent with Taylor-type pricing. The baseline

hazard for two consecutive price decreases is mildly decreasing over the examined range.

E Mixture Hazard

We provide proof of Proposition 4 and show how we compute mixture hazard at T in the

model with competing risks.

E.1 Mixture Hazard Proofs

Proof of Proposition 4. Take an entity ¢ with measured durations ¢* = (¢(, (i, ..., (k)
and hence censoring time ¢’ = Zﬁo ¢; — 1. Let 2* = {2{,..., 2.} be a vector of length ¢’

with the following elements:

. Ch fors:Z§;éC;andk:1,...,Ki

0 otherwise.

2! encodes the measured duration of any spell that starts s periods into the observation
window for the entity, with zeros in any period when a new spell does not start.

We first claim that for any product i and any duration t =1,...,T + 1,

K? =T
E I]-C;Et,c§27_’: E ﬂzgzu
j=1 s=1

where we understand that the left hand side evaluates to 0 when ¢ < T. The left-hand sum
counts the number of spells (except the initial left-censored one) with duration at least ¢ and
residual censoring time at least 7. The right-hand sum counts the same spells by dropping
all those that start after ¢ — T, when the residual censoring time would be less than T
Next, we compute the expected value of ZEZ_IT T, forany t =1,... ,T + 1 conditional
on ¢ and ®°. Here we use the assumption that initial duration is drawn from the stationary
distribution. This implies that with probability w;(®?), a spell ends in any period s > 1, in
which case 2% > 0, while otherwise 2 = 1,:5, = 0. If the spell does not end, the probability
that the measured duration of the spell is at least ¢ is given by the type-specific survival

function @i_l. This uses the fact that right censoring is not an issue for t < T+ 1 and
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s < — T.
Putting this together, in any period s € {1,...,c" — T}, the expected value of Lisy

conditional on ¢’ and ® is ®!_w;(P?). It follows that

Cl, Pt

=T
CZ, o'l =E E 1222t
s=1

KZ
E E : Leist it
J J
j=1

(d=T)P! (P ifct>T
0 if ¢ <T.

Now condition only on ®¢. Using the conditional distribution of ¢ given ® we get

E

c K
= E ILg->tc->T
c—T I=0T=
Jj=1

@i] = D cqo(®@) ]| B ywi (D).

c=T+1

Finally, integrating across ® using the distribution F', we get

K o)
c
. ﬂ<] S @) e o)
Jj=1 c=T+1
forallt=1,...,T +1.
For any ¢ = 1,...,T, this implies
c K oo
E T Z ﬂgj2t+1,chT] = / Z cqe(®) | P (P)dF (D).
Jj=1 c=T+1

We can then take first differences for any such ¢ to get

E

c Z%:tvcf'”] = / 3 (@) | (@ioy — Bo)eor (D)AF(®). (0.20)

c—T -
= c=T+1

Then using equations (12), (0.19) and (0.20), it follows immediately that E [ft[? (¢; H)] =0
for t =1,...,T if and only if H, = Hf defined in equation (11), proving the first result.

Now assume ¢ and ¢ are independent, so g.(®) = ¢. for all ¢ and ®. Then a similar logic
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to the derivation of equation (0O.19) implies

K 00
E Zn@t,%ﬁ] = > (-1 / D11 (P)dF (D).
Jj=1 c=T+1

And a similar logic to the derivation of equation (0O.20) implies

E Z HCj=t,€j>T] = Z (c—T)qg /(‘I)tl — Q)i (P)dF (D).

Combining these with equation (13), we get that E [ft[l;l] (¢; H)] =0fort=1,...,Tif and

only if
J (@1 — ®p)wy (P)dF (D)
fCI)t_lwl(CI))dF(CD)

Ht:

Since ¢.(P) = ¢, implies ¢(P) = ¢, this is equal to H; in equation (10), proving the second

result. =

E.2 Mixture Hazard with Competing Risks and Observables

In several applications, it is useful to estimate the mixture hazard associated with risk r and

observable characteristic # at duration 7', H". We use the following formula

K
0= Z Z (H;mlqzt,x;:x - :H'C;:t,pézr,x;-:x)) (021)

where ¢ = 1,...I indexes the products. In words, the mixture hazard at duration 7' as-
sociated with risk r and observable characteristic = is given by the ratio of the spells with
characteristic x which ended at duration 7" due to risk r, and the number of all spells with
characteristic = lasting at least 7. This is analogous to the formula (12) for the mixture
hazard when the type and censoring time are independent, with the exception that we select
spells which ended due to risk . Note that since we are interested in estimating mixture
hazard at just one duration, 7', there is not need to condition on the censoring time exceeding

a certain number.
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E.3 Moments of the Frailty Distribution

We use insights from Section E.1 to prove that the moment conditions for the first three
moments of the frailty distribution, which we use in Section B.3, have the expected value of
Zero.

Consider first equation (0.14). To see that E [f%“l] (¢ e, b)} = 0, we use equations (0O.19)
and (0.20). We use equation (0O.19) and set t = T' to find an expression for the expected

value of the second term in f¥):

5 c—Cszllcp_T,cpT] = / :TZH cqe(®) | Pr_1wi(P)dF(P)
= [wh@ar@)

where we used that ®;_; = 1 because by =0 for t <T.
In the next step, use equation (0.20) with ¢ = T to find the expected value of the first

term of fg“]:

[e.e]

- Zﬂcj=_T,cj>T] :/ D cqe(®) | (P11 — Op)wn(P)dF (D)

E _
c—1T -
c=T+1

[e.e]

_ > cqe(®) | 0(2)brPr_yw; (0)dF (D)

where 6(®) is the type, as defined in Section 4.5.

Since

Y

[0(2)wi(P)dF (D)
Jwh(®)dF(®)

[y = / 0(®)dFf =

the result follows. The proof that E [ ,}“2] (C; b)} = 0in equation (O.15) and E [ Y[ff”’} (C; s b)] =

0 in equation (0O.16) is similar and so we omit it.

F GMM Estimation

We provide additional details on the GMM estimation.
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F.1 GMM Estimator

We start with the GMM estimator for the baseline hazard. Proposition 2 gives us one
moment condition for the choice t;,t, such that T < t; < t, < T

E [/ 0] =o.

Let Y(T,T) = {(t1,ts) : T <t; <ty <T}. Denoting T = T—T, this set has M = T(T+1)/2
elements which we index with m and refer to it as %, = (Ym,, Ym, ). Let fP(¢;b) be a vector
function with m!" element corresponding to the choice y,,, € Y(T',T), given by fﬂpymz (C;0).

Since the baseline hazard is identified up to scale, we choose one normalization. We
choose Ty € {T,...T} to be the shortest duration such that there exists a product i with
at least two spells and measured complete duration of one of its spells equal to Ty, K > 2,
and 1 < j < k < K’ such that ! = Ty, ¢}, =t for any t € {Tp,...T}.*> Without loss of
generality, we normalize by, = 1.

Let b.7, be the vector b without its component by, that is, b./7, = (br, ... bp,—1, bry41, - - - b7).

Linearity of fgﬂh(( ;b) and normalization of by, implies that we can write

FU¢b) = UP(Ob.m, — VI(Q),

where Ul is M x T matrix, and V"(() is a vector of length M. With this notation, we can
write

E [U(Q)] bym, —E[VI(Q] = 0. (0.22)

We now discuss GMM estimator for the mixture hazard. Proposition 4 gives us one

moment condition for each T < t < T. Define f%H] as a vector function, with m* element

given by fy[nlﬂzq,f((; HT) for m =1,...,T + 1. Since equation (12) is linear in HT, we can
write f'r[rﬁ]—f—l,'f(c; HT) = yHIgT — VIH] where UM is a (T +1) x (T'+ 1) matrix and VI# is

a (T +1) x 1 vector. With this notation, the moment condition from Proposition 4 becomes
B[O HT —E[VI(Q)] = 0. (029)
We stack these moment conditions for b and HT. Define

b, . (¢ D) Ul o Vb
" (HT) 0= (f%H](C;HT)> o= ( 0 U[H}> V= (V[H1>'

22If there is no product with at least two spells and a complete duration ¢, then we estimate b, = 0 and
so we cannot use it for normalization.
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Then the moment conditions are

EUQ] 8 -E[V(Q] = 0. (0.24)

To estimate the model, we replace expected values with sample means. In particular,

indexing the products with ¢ = 1,... I, we have

The sample analog of (0.24) is U;f — V; = 0. For a given positive-definite (M + T + 1) x
(M + T + 1) weighting matrix W, the estimator Be R2TH solves

B=arg min (U;8—V)) W (UB—-Vp).

This is a linear-quadratic maximization problem and its solution is known in closed-form,
B= U (W+W)U) U (W + W)V,

In practice, we use the identity matrix as a weighting matrix to estimate the parameters.
To construct the J-statistic, we estimate the variance-covariance matrix as discussed in the
next section.

Results in Newey and McFadden (1994) imply that this GMM estimator using the mo-
ment conditions in Proposition 2 and 4 is consistent without any additional assumptions.??
In particular, we do not need to impose that the space of possible parameters [ is compact

since our estimator is linear.

F.2 Clustered Standard Errors and J-test
Recall that the GMM formula for the variance-covariance matrix of the parameter vector /3
is

1
VAR = 7(F’WF)—1F’WQW'F(F’W’F)—1, (0.25)

23Theorem 2.7 states conditions for consistency of estimators without compactness. Example 1.2 on page
2134 then shows that these conditions are satisfied for the linear GMM estimators.
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where F' is the score matrix F' = E[Vsf] and Q@ = E[ff’]. To get an estimate of the

variance-covariance matrix, we replace F' and () with its sample analogs F; and €);:

e

I 1
SV =t =3 2SI,

where 3 is a GMM estimate of 8.

To implement one-way clustering, we follow Cameron, Gelbach, and Miller (2011). For-
mula (0O.25) still applies but with cluster-robust sample analog of 2. Let Q denote the
number of clusters indexed by ¢ = 1,...,Q. If a product ¢ belongs to cluster ¢, we say

l,eq = 1. Define fq as the sum of the moment conditions across products in cluster g,

1

fo= Zf(CiSB)HiEq'

=1

Then

Q
-1 1k,
Q[cluster] _ Q - E / 0.26
I Q- 11— (2T +1)1 &7 (0.26)

where 2741 is the number of parameters. The term =2 ) is adjustment for the degrees

o-11- (2T+1
of freedom; without this adjustment, the clustered standard errors are biased downwards.

[cluster]

We obtain the variance-covariance matrix by substituting 2} into equation (0.25).

Finally, we use the variance-covariance matrix to compute the J-statistic

T ! I
1 ) cluster] 1 1 i A
=1 (72f(<’;5)) Qe (72f<< ;m) , (0.27)
i=1 i=1
which, under the null hypothesis that the model is correctly specified, is distributed x3, .

F.3 Practical Consideration

It is known that in practice matrix €; (or Q[Idusm]) can be badly scaled, especially with a
large number of moments as we have. This is not necessarily an issue for estimating of the
variance-covariance matrix VAR but is for the J-test which requires inverting the matrix €2;

(OI‘ Q[Icluster} ) .

Moreover, in our application, €2; has some negative eigenvalues. This is a result of

Just
numerical imprecisions; matrix 2; as well Q[C uster] ;

is positive semidefinite in any sample by
construction.

We address both of these issues in one step, following Cameron, Gelbach, and Miller

21



(2011) and Politis (2011). We construct matrix €2;, compute its eigenvalues and replace
eigenvalues which are either negative or close to zero in absolute term with a small positive
number £ to construct f, a positive definite matrix. Specifically, we write Q; = AAA’,
where A = Diag()\,...,\g) are the eigenvalues of €);, and A is a matrix of eigenvectors.
We define ] = max(e, \;) and A* = Diag(\[, ..., \f;). We then construct Qf = AATA’.

We need to balance two forces when choosing €. It has to be small enough so that it does
not affect results as the sample size grows, and at the same time, it has to be big enough to
address the problem of ill-conditioned matrix. Politis (2011) suggests to choose ¢ = I~* for
a € [1,2]; we follow this suggestion and choose a = 1.5.

We find that Q; with no clustering and Q[Id“Ster] with one-way clustering, have a small
share of negative eigenvalues, less than 2.5 percent, and that they are small in absolute value,
of the order of 10713, This gives us confidence that these are indeed numerical imprecisions

which we correct with the above described procedure.

G Proofs for the Price Plans Model

It is useful to state the following two lemmas.

Lemma 2 For all integers N > 1 and numbers n,n’ € {1,2,..., N},

isin ©_jr)sin i T ) = R A
— N+1/ N+17") T,

otherwise.

Lemma 3 For integers N > 2 and 1 < k < N,

N ‘ ( n ) 0 if k is even
Z sin km | =
— N+1 cot <2(]€11)> if k is odd.

The proofs are in Supplemental Appendix L.

Proof of Proposition 6. We proceed in several steps. First, we can easily verify that a
function of the form A (z) with ¢(z) = sin(£ + ), for some constants «, 3 solves equation
(0.17) in the interior if A = % (1 + cos(%)) by just plugging it into equation (0.17) and
simplifying using sin(*£2 + ) = sin(Z + 3) cos(£) £ cos(£ + ) sin(£). Second, we impose
that the solution satisfies the boundary conditions, which gives us two conditions
Sin(f—kﬁ—i—é)zo, sin(g—i-ﬁ—é):().
« a ! «
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These conditions hold for any integer j = 1,2,... for which

z A x A
Z 4+ B4+ ==jm, —+8—-——=0.
a ! Q@ a
For given j, we thus obtain (a;, §;) as a solution this system, and plug it into ¢(x) using
T, =2+ (n—1)A and ¥ = z + (N — 1)A to obtain ;(r,) = sin(§%7jm). Next, we plug
the solution for a into the expression for A to obtain A; = 1 (1 + COS(ﬁjﬂ')).

We note that for each n we can regard ¢, = {¢; (mn)}évzl as an N dimensional vector.
Lemma 2 implies that the set of vectors {¢,} for n = 1,2,..., N are orthogonal with each
other. Since the law of motion is linear, the solution m;(z) can be expressed as a linear

combination of these solutions, with weights ;. We choose 7, such that m;(x) satisfies the

initial condition mg(x). Again using Lemma 2, this means
N

_<90j7m0>_ 2 . n . - 2 . 1o .
v = (0 —N+1251n N+1j7T mo(xn)—N+181n N+1j7T .

n=1

Proof of Proposition 7. Since my(z) =0 if ng < N and mg(z) = 0 if n > 1, we obtain
immediately from its definition that hg =0if 1 <ng < N.

We next analyze the limit of h;. It is useful to write h; using the survival function as

N

S, — 8.
hy = tTtH :E :(1 — A\w;y
t

j=1
N . n -
o )\EWJ Zn:l Sin (N_Jrl']ﬂ-)
w.]vt - N t N : 23 :
D ket ARk Dy SID (N_Hlm)

Since 1 > Ay > Ay > ... Ay > 0, it follows that lim; o wy; = 1 while lim; o w;; = 0 for
7 > 1, and hence lim;_,oo hy =1 — Aq.

We next analyze the shape of h; for large ¢t. We first observe that w,;; > 0 for all ¢, and,
following Lemma 3, w;, = 0 for j even. This implies that the behavior of h; for large ¢ is
governed by Ay and A3, with h; &~ (1 — A)wiy + (1 — A3)(1 — wyy). We are interested in
whether this is bigger or smaller than the asymptotic hazard 1 — A;.
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To answer this, we look at w4, which for large ¢ is also determined by A; and As:

A Zn 1 Sin (N+17T)
A Zn  Sin (N+1 ) + A57s Zn  Sin (NT-LH?’W)

Atl’)/l cot <m>

i1 cot (W) + A3 cot ( (N+1)>

th ~

where the equation uses Lemma 3. Note that for N > 3, cot (ﬁ) > Cot( > 0.

(N+1))
), which is positive for all

~or sin (W)

Additionally, we know from Proposition 6 that v; = 75 sin (

N+ N1 T
no € {1,2,..., N}. Thus the asymptotic behavior of w;; depends on v3 =

N+

e if ng < TH or ng > (N+1)

(I=Xwi+(1—A3)(1 —wl,t) for large t, it follows that h; > 1— \;, and so the hazard

converges to its asymptote from above.

, v3 > 0, and so wy; < 1 for all large t. Since h; ~

N+1)

o if N“ <ng < (—, 73 < 0, and so wy; > 1 for all large t. Again, hy = (1 — \j)wy s+

(1 = A3)(1 — wq,) implies hy < 1 — Ay for large ¢, and so the hazard converges to its
asymptote from below.

2(N+1
Finally, we can have ng = % or ng = AN+D) + )

since nyg is an integer, these cases require N > 5. In this case, we have cot ( SN +1)) > (0 as well,

, in which case 73 = w3, = 0 for all £. Note that

and so the asymptotic slope of w;; depends on the sign of 5. It is straightforward to verify
that 75 < 0 whenever 73 = 0, and so again wy; > 1. Now hy &~ (1 —=A)wy 4+ (1 —X5) (1 —wy )
implies h; < 1 — \; for large ¢, which means that in this borderline case, the hazard is again
converging to its asymptote from below.

Finally, denote T'(x,) the expected time to hitting either barrier if the current state is
Zp. Then for z,, € {z + A,...,z — A} it holds

1 1 1
T(xn) =1+ Z—lT(‘rn+1> + ZT(‘xn*ﬁ + QT('r”>’

with T'(z) = 1+ 1T (z+A)+1T(z) and T(z) = 1+ 3T (z—A)+37(z). This is a second-order
difference equation and it can be verified that its solution is given by T'(x,,) = 2n(N +1—n).
n

Proof of Proposition 8.  We focus on analyzing h;. The analysis of h? is symmetric.

Using the derived formulae, we can write

o Lmu(e) 1 Mg Nowsin (fgkm) 1350, A
t — - . B
45 4 Zrlyzl Zivzl A sin (N_Hkﬂ) 4 Zivzl Ry
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where weights 4, and 2 are defined as

N
1
ykE%Sin(N—l—lkﬂ)’ zszyk;sin(]\]ilkﬂ).

Since 1 > Ay > Xy > ... Ay > 0, it follows that lim,_,, b} = ii’l Moreover, using Lemma 3,

we get z; = 7y cot(m/(2(N + 1))), which implies ;% = (1 — A;). Thus half the asymptotic

hazard comes at the lower bound.

At large t, h} is shaped by the largest roots. Note that Lemma 3 implies that z, = 0 for

k even, and so we can write

BE A TNy +Aye Ly Ay
P g o (B S
4 /\tZI 4 )\Ii 1

Observe that z; = 7 cot(n/(2(N + 1))) > 0. Hence, if yo < 0, then h; converges to
its asymptote from below. Since by definition yo = 72 sin ( ~ +1) yo < 0 if and only if

ng
T2 = N+1 N+1

below. Conversely, if that ng < %, the hazard h{ converges to its limit from above.
N+1

sin ( 27r) < 0. Equivalently, if ng > %, the hazard converges to its limit from

Finally, it remains to analyze the case of ny = , which implies yo = 0. For large ¢,

BE L Xy + Nys
VY bz1+ Mozg

Some algebra yields that, for z; > 0, 23 <0, 21 + 23 > 0,

)\ + M
SR TP T
121+ Az z1 Z1 Z3

J

and so h; converges to its limit 1 yl from below.

We next verify that these Condltlons hold in our case. For ng = ¥, we have v, =
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2/(N+1)and v3 = —2/(N + 1). Using Lemma 3, we have

2ot [T >0
21 = CO
"TN+1 2(N +1)

2 ‘ 3m <0
=———cot | ————+
BTN oV

B o= o (cot (m) _ cot (ﬁ)) -0

v sin (—(N11)> B sin <—(N7-T1-1)> sin (—2(1\7,11)) g2 ( - )
- T\ n B 2IN+1) )
1 cot (2(N+1)) oS (2(N+1)) (N+1)

where in the last row we used that sin(2z) = 2sin(x) cos(x). Similar steps lead to

Y3 — 924in? 3—7T
23 Q(N—i— 1) ’

and hence indeed

Al ) ™ . 2 3T Y3
h_y _ T )9 _ o ) 8
Pk (2(N+1)> < =sin <2(N+1)) 73

H Additional Empirical Results

H.1 IRI Data by Category

We provide summary statistics for the IRI sample used in estimation. Table 3 summarizes

the number of price spells by product category in the IRI data.

H.2 Test of Ergodic Distribution of In-Progress Duration

To estimate the mixture hazard, we assume that when we first observe a product, the

duration of the in-progress spell is a random draw from the stationary duration distribution

for that product. This assumption has a testable implication: conditional on censoring time,

the share of products changing its price in any week should be constant. We implement a

test in the following way. For all products with censoring time ¢, we compute the fraction

of price changes that occur by week t since the start of the in-progress spell; we call it

F.(%). We then average the cumulative distribution function F, across all ¢ > T, using the
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number of products with number of percentiles of (!

> 1spell > 2 spells pairs 50th 90“1
Yoghurt 1,402,766 1,155,766 98,999,368 3 10
Carb. Beverage 1,819,607 1,321,762 90,836,025 3 8
Salty Snack 2,481,250 1,670,539 72,485,278 3 9
Frozen Dinner 2,272,888 1,693,017 70,495,598 3 8
Cold Cereal 1,429,028 1,038,096 56,080,465 4 12
Beer 701,604 470,815 37,454,496 3 11
Milk 549,261 426,316 34,036,391 4 14
Soup 1,286,921 897,080 33,873,770 4 14
Spaghetti Sauce 501,088 353,379 25,015,292 3 11
Frozen Pizza 711,065 519,293 24,984,150 3 8
Margarine 244 844 204,293 23,833,374 4 13
Hot Dog 213,598 172,031 19,603,427 3 9
Coftee 793,004 455,555 13,969,362 3 10
Toilet Tissue 412,746 312,604 10,791,034 3 11
Laundry Det. 804,837 489,482 9,993,575 3 9
Facial Tissue 250,134 185,450 9,557,189 3 11
Peanut Butter 203,380 150,692 9,255,148 4 13
Mayonnaise 186,392 136,585 7,992,048 4 14
Mus. & Ketchup 217,559 143,485 7,659,886 4 16
Paper Towel 340,032 252,339 6,939,886 3 13
HH Cleaners 413,061 232,276 5,959,387 4 11
Toothpaste 716,457 322,194 4,615,305 3 8
Shampoo 1,134,428 352,570 2,483,449 3 7
Diapers 602,164 247,864 1,918,554 3 7
Sugar Sub. 94,528 56,644 1,818,682 4 17
Deodorant 972,970 291,558 1,633,620 3 6
Toothbrush 512,729 178,488 1,097,352 3 7
Blades 297,314 114,407 1,076,134 3 10
Photo 65,503 28,187 358,959 3 8
Razors 86,391 26,001 102,574 2 6
Total 21,717,549 13,898,768 684,919,778 3 10

Table 3: Descriptive statistics by product category, IRI data. For this table, we consider
only spells 5 > 1 with C]z: > T = 2. The first column shows the number of products with at
least one spell longer than 7. The second column reports the number of products with at
least two such spells. The third column reports the number of pairs where both are longer
than 7. The last two columns show the median and 90" percentile value of the censored
spell length.
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Figure 10: Empirical density of times when products change prices, measured from the start
of an in-progress spell, pooled IRI data.

number of products with the corresponding value of ¢ as weights. Figure 10 shows that
the corresponding empirical density lies within five percent of a uniform density. It is close
enough to uniform that we think the stationary mixture assumption is an empirically useful

starting point.

H.3 Correlation between Spells

We compute correlation between two spells within narrowly defined categories to understand
the extent of unobserved heterogeneity in such categories. As in our main sample, we select
the longest cycle for each product. We drop spells lasting one week, and then keep first two
spells of each product. Out of these products, we keep only those with two completed spells
shorter than 30 weeks, and censoring time (minus the sum of one-week spells) at least 60
weeks. This guarantees that we can observe two completed spells of less than 30 weeks for
each selected product.

We then compute correlation between the two spells within narrowly defined cells of
products, which is a cross between good category (30 categories) and a retail chain (163
chains). This gives us 4,890 potential cells. There are 2,041 cells with at least 100 products
in it. We find that the median (mean) correlation within all cells is 0.13 (0.13).
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H.4 Sensitivity of Results to the Choice of 7" and T

The choice of T and T is guided by the nature of our data. We choose T = 2 to exclude
spurious price spells lasting 1 week from our analysis, as explained in the main text. The
choice of T has to balance two forces. On the one hand, we want to choose a large value
for T to learn about the baseline hazard at long durations. On the other hand, the number
of spells longer than T' decreases quickly with 7. Indeed, Table 3 shows that depending on
the product category, the median spell duration is 2-4 weeks and the 90" percentile varies
between 6 and 17 weeks. This means that data are thin at durations longer than half a year.
While this does not constitute a problem for estimating the baseline hazard—smaller sample
size will be reflected in larger standard errors—the choice of T' affects our estimates of the
mixture hazard at all durations because we condition on ¢ > T. Balancing these forces,
we choose T = 60 weeks, a little over a year, because there is an interesting pattern in the
hazard at 52 weeks. Figure 11 shows estimates beyond 60 weeks. The estimates are noisy
but follow the same trend from before T = 60 so our main results are for T' = 60.

We next examine the sensitivity of our results to the choice of 7" and T. This allows us
to see if there is a systematic failure of the MPH assumption. The idea is the following.
Suppose we want to learn about the relative baseline hazards at duration 10 and 20, byo/ba.
The MPH model admits several ways of recovering the ratio. We can directly recover the
ratio byg/byo from equation (4) by choosing t; = 10 and ¢, = 20. But there are other options
which use information on spells at other durations. Specifically, we can use this moment
condition to recover byg/b; and by /b, for some ¢ # 10,20, and combine them to find byg/bsp.
Our estimator uses all such conditions. If it is the case that the MPH model is not correctly
specified at ¢, then including ¢ into estimation will affect the relative hazards by /b.

Let b,(T,T) denote the GMM estimate of the baseline hazard at duration t € {T,...,T}
using some values 7" and T. We first fix T = 60 and estimate the model for different values
of T'=2,3,...,10. To help visualize the impact of T" on the shape of the baseline hazard,
we normalize by(2,60) = 1 and then recursively set bp(1,60) = bp(T° — 1,60) for 7' > 2. If
the model is correctly specified for t € {T',..., T}, we should find that b,(T,T) = b,(T",T)
for all T < 1" < t < T. Substantial deviations from this indicate systematic violations of the
MPH assumption. The left panel of Figure 11 shows the results for the benchmark model.
The choice of T" affects the estimate of the baseline hazard in the benchmark model. This is
in line with the fact that we reject the model using the J-test.

To analyze the role of T, we fix T = 2 and estimate the model for T' € {10, 20,...,90}.
We now normalize by(2,T) = 1 for each value of T. The right panel of Figure 11 shows that
the choice of T does not affect the estimates.

Finally, we offer one additional justification for our choice of 7. An implication of any
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Figure 11: Baseline hazard for pooled IRI data, log scale, estimated using different values of
T €{2,...,10} and T' = 60 in the left panel, and using different values for T' € {10, 20, ...90}
and T' = 2 in the right panel.

mixture model where each product has two independent spell durations from its type-specific
distribution, and of the MPH model in particular, is that the correlation of the completed
duration of two spells for a given product is non-negative, and strictly positive when there
is heterogeneity in mean duration. To understand why, note that conditional on a product’s
type, the cross-spell correlation of duration is zero by assumption. But with heterogeneity,
the correlation captures differences in the type-specific means and is generally positive.
Inspired by this, we measure the autocorrelation of the duration of price spells in the
data. To avoid introducing bias due to censoring, we select products with at least 60 weeks
of censoring time and first two completed spells shorter than 30 weeks. This guarantees that
a product is in the dataset for long enough to us to observe two completed spells shorter
than 30 weeks. If we include all spells, including one-week spells, we find a correlation of
0.0032 when duration is measured in levels, and -0.0321 when duration is measured in logs.
This suggests that the data are unlikely to come from a mixture model. But once we exclude
spells lasting one week, the correlation increases to 0.176 in levels and 0.176 when measured
in logs. That is, once we exclude one-week spells, the correlation is positive, which further

justifies our decision to exclude one week spells.

H.5 Robustness to Iterated GMM

Our model is over-identified, with many more moment conditions than parameters. In such
situations, iterated GMM might perform better than 1-step or 2-step GMM. We implement
iterated GMM as follows. We estimate baseline hazard b using identity matrix as a weight-

ing matrix in our GMM estimation and denote this estimate i)(l). Using 3(1), we estimate

30



002 | | | | |
10 20 30 40 50 60

t in weeks

=1 - i=2 e i=10

Figure 12: Robustness results for the baseline hazard for pooled IRI data, log scale. Solid
line represents estimates after ¢ = 1 iteration, dashed line after + = 2 iterations and dotted
after ¢« = 10 iterations. The baseline hazard is normalized to equal the mixture hazard at
duration 2 weeks.

variance-covariance matrix {2 using (0.26), denoting it Q(l). In the next step, we estimate
b using Q(_S as a weighting matrix to obtain 13(2). That is, in the " iteration, we Q&il) to
obtain b(;), and then bg; to estimate (1.

Figure 12 shows the results for the baseline hazard for the IRI data. We depict estimates
fori = 1,7 =2 and ¢ = 10. We conclude that the estimates are robust to the method we

use.

I Maximum Likelihood Estimators

The usual approach to estimating the MPH model is via maximum likelihood for the continu-
ous time model. Formulating the likelihood requires an assumption on the frailty distribution
and taking a stance on whether the data are measured in continuous or discrete time. In this
section, we investigate the role of frailty distribution and timing assumption on estimates of
the baseline hazard.

We formulate the MPH model in continuous time and write down the likelihood function
under two different timing assumptions. First, we assume that the data are generating by
a continuous time model but durations are measured only in discrete times; we call this
model Continuous Time with Discrete Measurement (CT-DM). Second, we assume that
durations are measured exactly in continuous time; we call this model Continuous Time
with Continuous Measurement (CT-CM).

Initially, we assume that the frailty distribution is gamma with mean m and variance v,
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a convenient assumption as it allows us to integrate out the frailty distribution analytically
and obtain a simpler expression for the likelihood function. We later relax this assumption
by assuming that the frailty distribution is a mixture of several gamma distributions.

We make two simplifying assumptions when formulating likelihoods for CT-DM and CT-
CM models. First, in line with the literature, we assume that censoring time c is independent
of product’s types #. Second, we use at most two spells per product which allows us to
represent the data in a simple way. For each combination of durations (t1,¢s), with ¢; > 1
and t5 > 0, it is enough to store the number of products with these measured durations and
the share of these with the right-censored first and/or second spell. Due to this simplification,
maximizing the likelihood is very fast but we are aware of the fact that usefulness of this
trick disappears in a general setup where different products have a different number of spells.

Finally, we estimate the CT-CM model using all spells using Stata’s built-in procedure

streg, and compare it to the baseline hazard estimated using our GMM estimator.

1.1 Continuous Time with Discrete Measurement

We formulate a continuous time MPH model with discrete time measurement (CT-DM),
which is correctly specified in real-world data where durations are rounded up to the next
integer values. We assume each product has a type 6 drawn from a Gamma distribution with
mean m and variance v, though we later consider an extension to the case where the frailty
distribution is a mixture of Gamma distributions. A censoring time ¢ € R is drawn from a
continuous distribution, with Q! denoting the probability that censoring time following the
first price change is at least ¢ — 1 periods. In contrast to our GMM estimates of the discrete
time model, we impose that ¢ and 6 are independent random variables, and so Q! does not
depend on 6.

In the continuous time MPH model, the probability that a spell lasts at least ¢ for a
product with type 6 is e~ I b(s)ds for all t > 0. With discrete measurement, we assume that
the measured duration is always rounded up to the next integer. That is, for t = 1,2,...,
the probability that measured duration is at least ¢ is e~ O

In the CT-DM model, there is no hope of recovering the baseline hazard at all real
durations, since we only observe integer outcomes. Instead, for any ¢ = 1,2,..., define
b, = ftt_l b(s)ds. Additionally, for notational convenience, we continue to assume by = 0.
Our objective is to recover b = {by,...,bs, by, 1}, where sparsity of data lead us to impose
by = bpyy for all t > T + 1. Tt is also useful to define the integrated hazard z = Zizo bs =
fot b(s)ds, so the probability that measured duration of a spell is at least t = 1,2,... for a

—02¢—1

type 0 product is e
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We formulate the likelihood function for the case where we observe two spells per product.
For a typical product i, we observe (c',d},ds, (i, (i) where ¢ is residual censoring time for
the first spell after a left-censored spell, Cj is the measured duration of j** spell and dj- equals
one if j spell is censored. If the first spell right-censored (and hence the second spell is not
observed), we code the duration of the second spell as ¢} =0 and db = 1.

Following the analysis of single spell data in Meyer (1990), we write the likelihood of
different outcomes. First, we may observe two completed spells, ¢! = t; € {1,2,...},
G=t€{1,2,...}, and d} = d, = 0. The probability of this event is

E []lq:tl,%':t%di:dé:o] -
> e
Q% +t2 / e_e(Ztl_lJthQ_l)(l o e_ebtl)(l - e_ebt"’)
1
0

The integrand is equal to the probability that the censoring time exceeds t; 415, multiplied by
the probability that the uncensored durations (7}, 7i) are exactly (¢1,%) given 6, multiplied
by the density of a Gamma distribution with mean m and variance v, where we use I' to
denote the gamma function. We integrate this expression to get

) ) ) ) _ N1 CT—DM .
]E |::H'q:t17§§:t27d7i:d12:0:| - Qt1+t2 0 (t17 tQ? 2, m, U)

where

v v
_ <1 +—(a + th_l))

v

_ v
oCT DM(tbtz; Z,m,v) = <1 + E(Ztl—l + Zt2—1)>

m2 "LZ

v v
n (1 +—(an + th))

v

v
_ <1 v D+ zt2)>
m

We note the explicit dependence of this function on the integrated hazard z = {z, 29, ... },
as well as the mean and variance of the frailty distribution.

Second, we may observe a completed spell followed by a censored spell, (! = t; €
{1,2,...}, ¢4 =ty €{0,1,...}, d. =0, d; = 1. The probability of this event is

E []lc{:tl,c;:tzvdi:o,dgzl} =

This is the probability that the censoring time is exactly t; + ta, ¢ = t; + to multiplied by
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the probability that 7{ = ¢; and 7§ > t,. Again, solve the integral to get

~1 ~1 CT—-DM .
E [lg{:tl,g’:tg,dizo,dgzl} = (Qt1+t2 - Qt1+t2+1) 1 (t17t27 Z,Mm, ’U)

where

m2 m?

- (1 + %(ztl + zt2)>

v

_ v
flCT DM(tlth; z,m,v) = <1 + E(zh—l + th))

Finally, we may observe a single censored spell, { = t; € {1,2,...} and d} = d} = 1.

The probability of this event is

L —QF ¥ ()
i) = - 0h) T S

This is the probability that the censoring time is ¢, ¢! = t;, multiplied by the probability
that 7{ > t;. Solve the integral to get

E |:]1Ci=t1,d1i:1:| = (Qr, = Qpya) 57PN (81,05 2,m,0)

where

1’n2
fET=PM (L 0 2,m,v) = <1 + Ezh)iT .
m

We can use the probability of these three events to compute the log-likelihood. We treat
Q! as a nuisance parameter and take advantage of the fact that each of the probabilities is

multiplicatively separable in the terms involving Q! to get

1 & -
LOT=PM — N Z log dciigéDM(G, (552, m,0). (0.28)

i=1
By definition, 2y = 0 and we normalize m = 1.2* Given data, we can search for values of z
and v to maximize this likelihood, subject to the constraint z;,1 — 2z, = bpyq for t > T. We
then first difference the integrated hazard z; to recover the baseline hazard, b, = z; — z;_1.

It is straightforward to extend this analysis to the case where the frailty is a mixture of

K gamma distributions. Let {my, vg, wi} denote the mean, variance, and weight on each

24The likelihood is unaffected by doubling m, quadrupling v, and halving z.
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distribution. Then the likelihood is
LOT-DM Zlog <Zw Fotal M (G G z,mk,vk)> . (0.29)

We again impose z; = 0 and fix Zle w = 1 and my, vg, and wy all nonnegative to have
a mixture model. We also normalize Zszl wrmy, = 1. We then search for values of z and
distributional parameters which maximize the likelihood for fixed K.

An interesting and open question is whether this model is identified. We are unaware of
any existing results on identification of continuous time models with discrete measurement
and repeat spells.?> Conversely, we are unaware of any examples that illustrate a failure of
identification. Here we give one such example when data are censored, finding two different
CT-DM models with non-trivially different baseline hazards that generate the same data.

Model I has a Gamma-distributed fraﬂty with mean m = 1, variance v = 1 and baseline
hazards b; = fo s)ds = 1, by = f1 ds = 0.5, implying by/b; = 0.5. Model II has a
two-type distribution, with 6; = 0.2819, 02 = 1.7950, shares dG(6,) = 0.5254 and dG(6;) =
1 — dG(#,), and baseline hazards b; = fol b(s)ds = 0.9071 and by = ff b(s)ds = 0.4495,
implying by /by = 0.4955. We assume our dataset is censored so that we observe all products
for exactly three periods.

Let @, ;, denote the survival function as in equation (3), and let z; be the integrated

hazard defined before as z; = ZZ:O bs. For model I, the survival function is

Py = / T e ra) © g !
Y ‘ L) 14z, 42,

where the second term in the integral is the density of the Gamma distribution with m =

1,v = 1. For model II, we have
B, = N DG 4 e G ).

With censoring time equal to three periods, we can measure @4, ®30, @11, and ®5; (but
not ®95). It is easy to verify that for both processes ®19 = 0.5, @29 = 0.4, &1, = 0.3333,
and ®,; = 0.2857.

To summarize, we have found two different CT-DM models which explain the same data.

The two models have non-trivially different baseline hazards, in the sense that by/b; is not

2Ridder (1990), Brinch (2011), Abbring and Ridder (2015) study identification of the continuous time
MPH model, or the less restrictive Generalized Accelerated Failure-Time model, with time-aggregated records
and single-spell data. As in Elbers and Ridder (1982) and Heckman and Singer (1984), identification comes
from observable characteristics which affect the hazard function.
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the same, which shows lack of identification of both the frailty distribution and the baseline
hazard. This raises a concern that maximum likelihood estimates of the CT-DM model may
depend on the assumed functional form of the frailty distribution. Perhaps for this reason,

we are unaware of any attempts to estimate the CT-DM model using repeated spell data.

1.2 Continuous Time with Continuous Measurement

We next turn to the continuous time model with continuous time measurement (CT-CM). As
in CT-DM, we assume each product has a censoring time ¢ € R, with continuous counter-
CDF Q! and density ¢!, and a type  drawn from a Gamma distribution with mean m and
variance v. We later consider an extension to the case where the frailty distribution is a
mixture of Gamma distributions. We again impose that ¢ and 6 are independent random
variables.

For any t € R, , the probability that the true duration of a spell is at least ¢ for a product
with type 0 is e %®) for all ¢ > 0, where z(t) = fot b(s)ds. As usual, measured durations
may be censored, but here we assume that we can measure the exact duration or censoring
time for each spell.

For a typical product 4, we observe the vector (c',d},d5, (i, ¢4). Under the assumption
of the Gamma frailty distribution with mean m and variance v, we can write down the
likelihood of different outcomes. First, we may observe two completed spells, (i = ¢; > 0,
(i =ty >0, and di = d, = 0. The density of this event is

_ o0 e (m_e)m*2
E ]lq:tl’@:t%dil:d%:o — Q%l+t2b(t1)b(t2) /0 92@_9(zt1 +ztz)W§/v)d9,

where I is the gamma function. The integrand is equal to the probability that the censoring
time exceeds t; + to, multiplied by the density that the uncensored durations (7i,7%) are
exactly (t1,t3) given 6, multiplied by the density of a Gamma distribution with mean m and

variance v. We then solve the integral to get

) ) o _ N1 CT-CM .
E [ﬂciztl,q:tz,da:d;:o] = Qu110 (t1, 125 2,m, v)
where

_g_m?
v

OT=CM (4 4 2 m,v) = b(t1)b(ts) (m* + v) <1 + %(z(h) + z(t2))>

Second, we may observe a completed spell followed by a censored spell, ¢! = t; > 0,
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(b =1t,>0,d, =0, d,=1. The density of this event is

_mo (mg
Rl LA

. ) ) . _ Al = —0(2t, +2¢ € U)T
B Loty gimto,di=0.di=1 —Qt1+t2b<t1)/0 feCn 2)Wd6.

This is the density that the censoring time is exactly t; + to, ¢ = t; + t» multiplied by the
density that 7{ = ¢, and 74 > t,. Again, solve the integral to get

, , ‘ , _ A OT—CM ,
E [1<;:t1,<;:t2,d3:0,d5:1] = 41,1 (t1,t2; 2,m, )

where
m?

v g
T (b s z,m,v) = b(tm (14 —(2(0) +2(8))
Finally, we may observe a single censored spell, ! = t; > 0 and d} = d = 1. The density

of this event is
_mb (m_g

B A )mT
E |:1Cf=t1,di1=1} = qy, /0 e tlmd&
This is the density that the censoring time is t1, ¢ = ¢;, multiplied by the probability that
7l > t;. Solve the integral to get

E (Ut aia] = 0SSOV (10,0;2,m,0)

m
—_m_

v
QCT_CM(tb 0; Z,m, U) = <1 =+ _Zt1>
m

As in the CT-DM model, we use the density of these three events to compute the log-
likelihood, taking advantage of the fact that each of the probabilities is multiplicatively
separable in the terms involving Q! and g', allowing us to treat them as nuisance parameters.

The part of the likelihood that we are interested in is

N
- 1 - i
LM = =% Jlog fil M (G Gizm, ). (0.30)

di+dj
i=1

As usual, we normalize m = 1.
It is again straightforward to extend this analysis to the case where the frailty is a mixture

of K gamma distributions. Let {my, vy, wi} denote the mean, variance, and weight on each
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distribution. Then the likelihood is
XN K
LOT-CM — v Zlog (Z wkfcﬁgécM(G,C;, z,mk,vk)> . (0.31)
i=1 k=1

We again impose Zle wg = 1 and my, v, and wy all nonnegative to have a mixture model.
We also normalize Zszl wpmy = 1.

Given any finite dataset, we need to impose some restrictions on the baseline hazard in
order to maximize either likelihood (0.30) or (0.31). We assume that the baseline hazard

is piecewise constant between integer values and so z is piecewise linear.

1.3 Results

We use IRI pooled sample data where we use the first two spells per product. We emphasize
that all durations in this data set are coded to equal an integer. We then estimate three
models. The first is the CT-DM model. We are unaware of previous attempts to estimate
this model using repeated spell data. The second is the CT-CM model, which ignores
the fact that durations are coded to integer values. Gagliarducci (2005) and Nakamura
and Steinsson (2008) use this model to examine labor market data and price stickiness,
respectively. The third is our discrete time model with discrete measurement (DT-DM)
using our GMM estimator. For the CT-CM and CT-DM models we assume that the frailty
distribution is either gamma or a mixture of gammas.

The right panel of Figure 13 shows the results. The hazards are normalized to be equal 1
at duration of 2 weeks. The blue line shows the baseline hazard estimated from the discrete
time model with discrete measurement (DT-DM) using GMM. The other solid lines show ML
estimates for the continuous time model, either with discrete measurement CT-DM(1) (black
line) or continuous time measurement CT-CM(1) (green line). The CT-DM(1) model, which
properly takes into account time aggregation, gives an estimate basically identical to our DT-
DM model. The CT-CM(1) baseline hazard is much lower, recovering little heterogeneity.
In general, CT-DM and DT-DM models are not the same and so we should not expect them
to deliver the same estimates. There is, however, an important special case when they are,
which is when the baseline hazard is constant.

Heckman and Singer (1984) pointed out that imposing a specific distribution for the ML
estimation can bias the estimates of the baseline hazard. We investigate whether misspecifi-
cation of the frailty distribution can explain the difference between CT-CM(1) and DT-DM.
We cannot formulate the likelihood without choosing a frailty distribution but we can choose

a more flexible distribution than a single gamma, for example a mixture of several gamma
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Figure 13: Baseline hazard estimated using different methods with IRI data, log scale. The
green lines correspond to continuous time with continuous time measurement (CT-CM), the
black lines correspond to the continuous time, discrete measurement (CT-DM) model. The
blue line is the discrete time model with discrete measurement (DT-DM). The left panel
uses two spells per product, the right panel uses all spells. For the CT estimates in the
left panel, we assume that the frailty distribution is either a single gamma (solid line) or
a mixture of two gammas (dashed line). For the CT model in the right panel we assume
that the frailty distribution is gamma, but the estimator uses a full set of duration dummy
variables to overcome this assumption.

distributions. In the CT-CM model, we could not find the second gamma distribution and
hence the estimates of CT-CM(1) and CT-CM(2) are identical. In the CT-DM model,
modeling the frailty as a mixture of distributions does not affect the baseline hazard and
CT-DM(1) and CT-DM(2) are very close. We therefore conclude that in this case, imposing
a specific functional form on the frailty distribution does not affect results.

Our conclusion from this exercise is that the most important factor explaining the differ-
ence between the CT-CM and DT-DM model is the failure of CT-CM to deal with discrete
data.

Stata has a built-in command for parametric estimation of the MPH model with multiple
spells (streg) and observable characteristics. Even though it is necessary to specify frailty
distribution as well as the functional form of the baseline hazard, one can use a full set of
dummy variables for duration to “over-ride” the parametric form of the baseline hazard and
estimate it flexibly. This is the estimation method employed by Nakamura and Steinsson

(2008). Since we are interested in estimating hazards up to duration T', we have only one
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dummy variable for spells longer than 7. This dummy is equal to 1 if the measured duration
exceeds T + 1 and zero otherwise. We find that when we use two spells per product, the
maximum likelihood estimates in Stata coincide with the CT-CM model estimates with one
gamma distribution. We use Stata to estimate the baseline hazard using all spells (not only
first two spells per product).

The left panel of Figure 13 compares estimates from Stata with ours for the baseline
MPH model from Section 6. The baseline hazard estimated using maximum likelihood is
somewhat steeper than the one estimated using GMM, which is the result of the failure
of CT-CM to account for time-aggregated data. Using more spells per product helps to
overcome this misspecfication, since the difference between CT-CM and DT-DM is much

smaller.

I.4 Advantages of GMM

In closing, we note that there are several advantages to using the GMM estimator we de-
veloped over maximum likelihood. First, our estimator does not require us to specify the
frailty distribution. Second, it is linear in b and hence is very simple and fast to solve. Third,
Proposition 2 establishes that we find a global optimum. In contrast, the log-likelihood is
non-linear in b and finding its maximum can be slow.2% Importantly, there is no guarantee
that maximum likelihood finds a global maximum. Fourth, our model formulated in discrete
time is identified even with censored data, while an example in Supplemental Appendix 1.1
illustrates that the time-aggregated continuous-time model may not be identified. Finally, we
showed that our method is easily extended to a competing risks framework with spell-specific
observable characteristics. We can handle these even if the proportional hazard assumption
only holds for some risks and some observables. This was central to the explorations of price
plans in section 8.. This set of assumptions has proven to be extremely hard to handle in
the maximum likelihood framework. For example, Fougere, Le Bihan, and Sevestre (2007)
try to estimate a CT-DM competing risks model without unobserved heterogeneity but say
on page 260 that “...convergence of the maximum likelihood procedure is very difficult to

reach.”

26Using our pooled IRI sample, it took 15 hours to estimate the baseline hazard using the ML method
in Stata on a computer with 256 GB memory. It took 70 minutes to estimate it (including standard errors)
using GMM. A computer with 60GB memory failed to deliver ML estimates but produced GMM estimates.
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J Baseline Hazards for Product Categories

Here we present our results by product category. Figure 14 shows the baseline and mixture
hazards and Figure 15 shows the average type estimated using the GMM conditions for the
MPH model. Figures 16 and 17 show the baseline hazard for price trends, ™" and b=~
respectively, estimated using the GMM conditions for the competing risks model of price

trends and price reversals with observable characteristics, developed in Section D.

K Additional Figures for Price Plan Hazards

We estimate the unconditional and conditional hazards of changing plans, and the conditional
hazard of changing a price within the plan, using the Online Micro Price Data. Figure 18
shows estimates of the three baseline hazards. We observe that the unconditional hazard
of switching to a new plan is mildly increasing, while the conditional hazards are flat or

declining.
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Figure 14: Mixture and baseline hazards for individual product categories, IRI data, log
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Figure 15: Average type for individual product categories, IRI data, log scale. Product
categories are sorted by the number of spell pairs.
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Figure 16: Baseline hazard b™" in the model with price trends and price reversals for indi-
vidual product categories, IRI data, log scale. Product categories are sorted by the number
of spell pairs.
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Figure 17: Baseline hazard b~ in the model with price trends and price reversals for indi-
vidual product categories, IRI data, log scale. Product categories are sorted by the number
of spell pairs.
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Figure 18: Baseline hazard of changing a price within a plan and between plans for Online
Micro Price Data, starting at high and low price of a plan, using daily and weekly data, log
scale. The top row shows daily data, the bottom row weekly data. The green line shows
the within-plan hazard (part of competing risks), the brown lines shows the hazard to a new
plan (competing risks); both are conditional. The blue line shows the unconditional hazard
of choosing a new plan.
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L  Trigonometric Simplifications

Proof of Lemma 2. We start with the product-to-sum identity for sine functions,

sin(A) sin(B) = 1 (cos(A — B) — cos(A + B)). Applying this to our expression, we get:

) n . . n . 1 n—n . n+n .
11n 1n = — —
s N+1j7r s N+1j’/T 5 | cos N+1j’/T cos N+1j’/T

Next we sum this expression over j from 1 to V:

N n n' 1 (Y n—n' N n—+n'
;¥m<N+rM)m(N+rM):5(??%<N+r“>_;?%<N+lﬁ>)

(0.32)

We next prove a preliminary result by applying Lagrange’s trigonometric identity:

sin((N + 1)6)

2sin(%)

- 1
Zcos(j@) =3 +
j=1

which holds whenever 0 that is not a multiple of 27 (so sin(f) # 0).
Fix an integer k with —2N <k <0 or 0 < k < 2N, so k/(2(N + 1)) is not an integer.
Then

. : (2N+1)kn : km
= COS( kjm ) 1 sin ( 2(N+1) ) 1 n sin (km — 2(N+1)) 14+ (—1)F (0.33)
T o9 T 9 (_kr_\ 9 : kr - ) .
=1 N+1 2 2sin (2(N+1)) 2 2sin (2(N+1))

where the first equation is Lagrange’s trigonometric identity; the second equation breaks
the term inside the numerator into two pieces and applies the definition of a to one of
them; and the third uses the fact that sin(km — an) = sin(aw) if k is an odd integer and
sin(km — ar) = —sin(an) if k is an even integer.

We use equation (0.33) to evaluate the two summations in equation (0.32), considering

two cases separately.

Inequality: n # n’. First let kK =n —n’ and then let k = n+n’. Since n,n’ € {1,...,N}
and n # n/, this satisfies the restrictions that —2N < k < 0or 0 < k < 2N. Equation (0O.33)

implies

/

N / _ N ’ ’
n—n L4 (—1)m i L4 (—1)m
jEZl COS (N n 1]7'(') = —# and ngl COs (N I 1]7T) = —#
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Thus when n % 1,
! (é cos (?v—ﬂ“) - ii:cos (?VTW))
() ()T )=

2n’

where the last equation uses (—1)*" = 1 since n’ is an integer.

Equality: n =n/. When k =n —n’ = 0, we cannot apply equation (0O.33), which holds

only for non-integer k. Instead, we evaluate it directly:

al n—n
jzlcos (N+1j7r) = N,

where we use cos(0) = 1. For k =n+n’ =2n € {2,...,2N}, we apply equation (0.33)
directly:

EN Ccos ( 2n
, N
Jj=1

where the last equation uses (—1)?" = 1. Thus when n = n/,

(ch(”_” ) - Zcos("” )>=§<N—<—1>>=¥.

This completes the proof. m

1 -1 2n

Proof of Lemma 3. We use the other Lagrange trigonometric identity:

N 0 (2N+1)8
cos(%) — cos
Zsm(n&) = () : g > )
— 2sin(3)
Setting 6 = kn/(N + 1), we apply this to our expression:
N km (2N+1D)km kr
Zsin < n kw) _ CO8 (2(N+1)) — cos ( 2(N+1) ) _ COo8 (2(N+1)) — cos (kr — (N+1))
o : km _ : kr ?
n—1 N+1 2sin (2(N+1)) 2sin (2(N+1))

where the second equation algebraically manipulates the second term in the numerator. Now
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if k is even, cos(km — a) = cos(—a) = cos(a) for all a. Thus when k is even we have

isin( n k7r> = o (%) — EOS (ﬁ) =0.
vt N +1 25111( u )

2(N+1)
In contrast, k is odd, cos(km — a) = — cos(—a) = — cos(a) for all . Thus when k is odd we
have v . .
ZSin ( n kfﬂ') _cos (2(N7-r|—1)) + cos (2(N:—1)) ot ( km )
- . Lk - -~ |-
~ N +1 2 sin (—2(N+1)) 2(N +1)

This completes the proof. m
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