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B Time-Dependent Pricing with Heterogeneous Firms

B.1 Model

Household

Using the period budget constraints (18) and the no-Ponzi scheme condition, we derive the

lifetime budget constraint

0 ≤M0 + A0 +
∞∑
t=0

Qt

(
Πt +Wtℓt −

∫
pct(p)dνt(p)

)
−

∞∑
t=1

Qt(Rt−1 − 1)Mt. (O.1)

The household maximizes its utility (16) and (17) subject to (O.1). Note that this problem

has no solution if Rt ≤ 1 for any t ≥ 0, since in that case the household could achieve

unbounded utility through a sufficiently large choice of Mt+1. We thus assume that Rt > 1

for all t in what follows.

Denote the Lagrange multiplier on the lifetime budget constraint as λ. The first order

conditions with respect to ℓt, ct(p) and Mt+1 for t ≥ 0 are

[ℓt] : 0 = αβt − λQtWt (O.2)

[ct(p)] : 0 = βtC
1−η
η

t ct(p)
− 1

η − λQtp (O.3)

[Mt+1] : 0 =
βt+1

Mt+1

− λQt+1(Rt − 1) (O.4)

where we used
∂Ct

∂ct(p)
= C

1
η

t ct(p)
− 1

η .

Equation (O.3) implies that ct(p)/ct(p
′) = (p′/p)η. Using this, together with the definition

of Ct in equation (17), we get the standard demand function

ct(p) = CtP
η
t p

−η,
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where Pt is defined in equation (19).

Now we focus on an environment with constant money growth in all periods, Mt+1/Mt =

1+π > β, and look for an equilibrium in which the real interest rate converges to a constant

as t gets big. To find the implied real interest rate, take ratios of equation (O.4) at t and

t+ 1 and use Qt ≡
∏t−1

s=0
1
Rs

to get a difference equation for Rt:

Rt(Rt−1 − 1)

Rt − 1
=

1 + π

β
⇒ Rt =

1 + π

1 + π − β(Rt−1 − 1)
.

Define R̄ ≡ (1 + π)/β > 1. This difference equation has two stationary solutions, Rt = R̄

and Rt = 1. The former is globally unstable, while the latter is inconsistent with a solution

to the household problem. Thus a necessary condition for the real interest rate to converge

to a constant is Rt = R̄ for all t. We impose that in what follows.

Next, we evaluate equation (O.4) at t = 0 and use Rt = R̄ andM1 =M0(1+π) to obtain

λ = 1/(M0(R̄ − 1)). Equation (O.2) together with Qt = R̄−t imply that Wt grows at the

rate π, Wt = W0(1 + π)t. Moreover, evaluating (O.2) at t = 0 pins down the initial level of

wages, W0 = αM0(R̄− 1). This proves

Wt = αMt(R̄− 1). (O.5)

Finally, we manipulate equation (O.3). In particular, we take (1−η) power of both sides and

integrate across all p to get λQtCtPt = βt. Combining it with (O.2), we find that aggregate

consumption is inversely proportional to markup,

Ct =
Wt

αPt

. (O.6)

Equivalently, using equation (O.5), nominal output PtCt is equal to a share R̄ − 1 of the

money supply Mt. This means that monetary policy determines nominal output.

Firms

Now we turn to the maximization problem of a firm with time-dependent pricing rule Φ. If

the firm has a chance to set the price at time t > 0, it sets it so as to maximize the present

discounted value of its profits until the next price adjustment, Π̃t(p; Φ)

Π̃t(p; Φ) ≡
∞∑
s=0

Qt+s

Qt

Φsct+s(p) (p−Wt+s) ,
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where ct+s(p) = Ct+sP
η
t+sp

−η is the demand for a good with price p at time t+ s, determined

by the household. The household’s problem implies that QtWt = αβt/λ (equation (O.2))

and that Pt = Wt/(αCt) (equation (O.6)). We use these expressions to write firm’s profit as

Π̃t(p; Φ) =
α1−ηβt

λQt

∞∑
s=0

βsΦsC
1−η
t+s

(
p

Wt+s

)−η (
p

Wt+s

− 1

)
.

We thus get

P ∗
t (Φ) = argmax

p

∞∑
s=0

βsΦsC
1−η
t+s

(
p

Wt+s

)−η (
p

Wt+s

− 1

)
.

We use that Wt = W0(1 + π)t and take the first order condition with respect to p to find

that the optimal price is

P ∗
t (Φ) =

ηWt

η − 1

∑∞
s=0 β

sΦsC
1−η
t+s (1 + π)ηs∑∞

s=0 β
sΦsC

1−η
t+s (1 + π)(η−1)s

. (O.7)

Note that if additionally consumption Ct is constant over time, equation (O.7) reduces to

P ∗
t (Φ) =

ηWt

η − 1

∑∞
s=0 β

sΦs(1 + π)ηs∑∞
s=0 β

sΦs(1 + π)(η−1)s
(O.8)

for all t. This equation then implies P ∗
t (Φ) grows at rate π. From the definition of the ideal

price index in equation (19) and the result that nominal wages grow at rate π, we then get

Pt =
ηWt

η − 1

(∫ ( ∞∑
s=1

ωs(Φ)(1 + π)(η−1)(s−1)

)( ∑∞
s=0 β

sΦs(1 + π)ηs∑∞
s=0 β

sΦs(1 + π)(η−1)s

)1−η

dF (Φ)

) 1
1−η

(O.9)

for all t. This ensures that Pt grows at rate π as well. Finally, since nominal output grows at

rate π (equation (O.6)), real consumption must be constant. Thus we can construct a sta-

tionary equilibrium with constant real variables (Ct,Mt/Pt,Wt/Pt, Rt) and a time-invariant

distribution of relative prices νt(p) = ν0(pP0/Pt).

B.2 Log-Linearization

The economy converges to a stationary equilibrium if money growth remains constant for

a long time. Here we approximate the transitional dynamics of an economy that starts

from one stationary equilibrium with zero money growth and then unexpectedly at time 1

experiences a change in the money growth rate.

First define the function z(C, π, s,Φ) ≡ βsC1−ηΦs(1+π)
(η−1)s and rewrite equation (O.7)
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as

logP ∗
t (Φ) = log

(
ηWt

η − 1

)
+ Z(π,Ct, Ct+1, . . . ; Φ),

where

Z(π,Ct, Ct+1, . . . ; Φ) ≡ log

( ∞∑
s=0

z(Ct+s, π, s,Φ)(1 + π)s

)
− log

( ∞∑
s=0

z(Ct+s, π, s,Φ)

)
.

We log-linearize P ∗
t (Φ) around a stationary equilibrium with zero inflation where Ct = C̄

and π = 0. A little bit of algebra yields

∂Z(π,Ct, Ct+1, . . . ; Φ)

∂Ct+s

|Cs=C̄,π=0 = 0

∂Z(π,Ct, Ct+1, . . . ; Φ)

∂π
|Cs=C̄,π=0 =

∑∞
s=0 z(C̄, 0, s,Φ)s∑∞
s=0 z(C̄, 0, s,Φ)

=

∑∞
s=0 β

sΦss∑∞
s=0 β

sΦs

.

Furthermore, equation (5) states ωt(Φ) = Φt−1ω1(Φ), so∑∞
s=0 β

sΦss∑∞
s=0 β

sΦs

= γ(Φ)− 1

where γ(Φ) is defined in (23). Denoting p∗t (Φ) = logP ∗
t (Φ), wt ≡ logWt and pt ≡ logPt, the

log-linearized dynamics of the model is thus given by

pt(Φ) = wt + log
η

η − 1
+ (γ(Φ)− 1) π (O.10)

pt =

∫ ∞∑
s=0

ωs+1(Φ)pt−s(Φ)dF (Φ). (O.11)

In the experiment, we assume the economy is in a stationary equilibrium with zero money

growth at time t = 0. There is an increase of money growth to π so that Mt = M0(1 + π)t

for t > 0. We now analyze the deviation of log-output from the old steady state at time

t, denoted yt, which is equal to the negative deviation of log-markup. In the equilibrium

with zero money growth, equation (O.10) implies that each firm has a log-markup of log η
η−1

.
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Hence, the deviation of log output from the old steady state is given by

yt = log
η

η − 1
− (pt − wt)

= log
η

η − 1
+ wt −

∫ ∞∑
s=0

ωs+1(Φ)pt−s(Φ)dF (Φ)

= log
η

η − 1
−
∫ ∞∑

s=0

ωs+1(Φ) (pt−s(Φ)− wt−s) dF (Φ) +

∫ ∞∑
s=0

(wt − wt−s)ωs+1(Φ)dF (Φ).

Next, split the sums into two parts

yt = log
η

η − 1
−
∫ t−1∑

s=0

ωs+1(Φ) (pt−s(Φ)− wt−s) dF (Φ)−
∫ ∞∑

s=t

ωs+1(Φ) (pt−s(Φ)− wt−s) dF (Φ)

+

∫ t−1∑
s=0

(wt − wt−s)ωs+1(Φ)dF (Φ) +

∫ ∞∑
s=t

(wt − wt−s)ωs+1(Φ)dF (Φ)

= log
η

η − 1
−
∫ t−1∑

s=0

ωs+1(Φ)

(
log

η

η − 1
+ (γ(Φ)− 1) π

)
dF (Φ)

−
∫ ∞∑

s=t

ωs+1(Φ)

(
log

η

η − 1

)
dF (Φ)

+

∫ t−1∑
s=0

(sπ)ωs+1(Φ)dF (Φ) +

∫ ∞∑
s=t

(tπ)ωs+1(Φ)dF (Φ)

where we used that for t ≤ 0, wt = w0 and pt(Φ) − wt = log η
η−1

, while for t > 0, it holds

wt = w0 + tπ and the log-markup of firm Φ is given by (O.10). Finally, rearrange the terms

and use the fact that
∫ ∑∞

s=0 ωs+1(Φ)dF (Φ) = 1 to find the expression in the text:

yt = −π
∫ t−1∑

s=0

ωs+1(Φ) (γ(Φ)− 1) dF (Φ) + π

∫ t−1∑
s=0

ωs+1(Φ)sdF (Φ) + tπ

∫ ∞∑
s=t

ωs+1(Φ)dF (Φ)

= −π
∫ t−1∑

s=0

ωs+1(Φ) (γ(Φ)− 1) dF (Φ) + π

∫ t−1∑
s=0

ωs+1(Φ)sdF (Φ) + tπ

(
1−

∫ t−1∑
s=0

ωs+1(Φ)dF (Φ)

)

= π

∫ (
t−

t−1∑
s=0

ωs+1(Φ) (γ(Φ)− 1− s+ t) dF (Φ)

)

= π

∫ (
t−

t∑
s=0

ωs(Φ) (γ(Φ)− s+ t) dF (Φ)

)
.
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B.3 Calibration

For the numerical exercise, we use estimates from our baseline model. We assume that the

baseline hazard is given by our estimates presented in Section 6.1. We do not use spells

shorter than
¯
T in the estimation, and set bt = 0 for t <

¯
T .

We also want to estimate moments of the frailty distribution. Since the feasible mixture

hazard gives zero weight to any product that we observe for less than T̄ periods (see Sec-

tion 4.4), we wish to measure a comparable frailty distribution, and so weight products by

the product of the expected censoring time and frequency of price adjustment,

wf

¯
T (θ) ≡

 ∞∑
c=T̄+1

cqc(θ)

ω1(Φ(θ)).

Denote the weighted distribution F f

¯
T :

dF f

¯
T (θ) =

wf

¯
T (θ)dG(θ)∫
wf

¯
T (θ

′)dG(θ′)
,

and let µ = (µ1, µ2, µ3) denote its first three moments. We can use purely cross-sectional

data to estimate µ. In particular, we look at the fraction of spells with duration
¯
T

Ψ
¯
T −Ψ

¯
T−1 =

∫
θb

¯
TdF

f

¯
T (θ).

Rearranging the terms, we can equivalently write

Ψ
¯
T −Ψ

¯
T−1 − µ1b

¯
T = 0. (O.12)

This is an equation for µ1. To obtain an equation for µ2, we look at the fraction of spells

with duration
¯
T + 1

Ψ
¯
T+1 −Ψ

¯
T =

∫
θb

¯
T+1(1− θb

¯
T )dF

f

¯
T (θ) = b

¯
T+1(µ1 − µ2b

¯
T ). (O.13)

Finally, we use the share of spells with duration
¯
T + 2 to find an equation for µ3.

Assuming that ζ = (ζ0, ζ1, . . . , ζK) follows a stationary mixture model, we translate
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equations (O.12), (O.13) and equation for µ3 into moment conditions for µ1, µ2, µ3,

f
[µ1]

T̄
(ζ;µ, b) ≡ c

c− T̄

K∑
j=1

(
1ζj=

¯
T,cj≥T̄ − b

¯
Tµ11ζj≥

¯
T,cj≥T̄

)
(O.14)

f
[µ2]

T̄
(ζ;µ, b) ≡ c

c− T̄

K∑
j=1

(
1ζj=

¯
T+1,cj≥T̄ − b

¯
T+1

(
µ1 − b

¯
Tµ2

)
1ζj≥

¯
T,cj≥T̄

)
(O.15)

f
[µ3]

T̄
(ζ;µ, b) ≡ c

c− T̄

K∑
j=1

(
1ζj=

¯
T+2,cj≥T̄ − b

¯
T+2

(
µ1 − (b

¯
T + b

¯
T+1)µ2 + b

¯
T b

¯
T+1µ3

)
1ζj≥

¯
T,cj≥T̄

)
,

(O.16)

where we use weights c
c−T̄

following the same logic as in equation (12). In Online Appendix

E.3, we prove that E
[
f
[µi]

T̄
(ζ;µ, b)

]
= 0, for i = 1, 2, 3.

We find that µ̂ = (1, 1.331, 2.137). Let Gf

¯
T (θ) be the distribution of θ implied by the

stationary MPH model,

Gf

¯
T (θ) =

∫
Φ
¯
T /Φ

¯
T−1≥1−θb

¯
T

dF f

¯
T (Φ).

We assume that Gf

¯
T has a beta distribution over the interval [θL, θH ], and choose its two

parameters α̃, β̃ together with θL, θH to match the first two estimated moments of the dis-

tribution and to minimize the mean squared error between the model-implied and estimated

mixture hazard. We find θL = 0.156, θH = 6.071, α̃ = 1.668, β̃ = 10. This distribution has

a mass point at θmax = 1/b̂2, with mass 0.0057, which ensures that 1− θbt is always positive

for all t. The third moment of this distribution, which is not targeted in the calibration, is

2.178, very close to the estimated µ̂3 = 2.137.

Figure 7 shows that we fit the estimated mixture hazard and average type for 2 ≤ t ≤ 60

very well. Using the estimated baseline hazard and the frailty distribution with the above

parameters, we use equation (9) to compute the implied mixture hazard, call it H̃t, and then

compute the average type as H̃t/b̂t. These are depicted with dashed lines in Figure 7.

We use the mixture hazard estimated in Section 6.1 for 2 ≤ t ≤ 60 and assume that it

is given by Ht = γ0 + γ1/t for 60 < t ≤ 500, and 1 for t = 501. We estimate γ0 and γ1

by fitting this function to the estimated mixture hazard for weeks 10 ≤ t ≤ 60. We find

γ0 = 0.009 and γ1 = 1.142. We then use the model structure to recover the baseline hazard

for t > 60 using the decomposition Ht = θ̄tbt. For any initial distribution G(θ), we can

compute distribution of types among products surviving to t, G(θ|t), using the distribution

G(θ|t − 1) and baseline hazard at t, bt. We use this relationship together with Ht = θ̄tbt,

where Ht is known, to recover bt for t > 60.
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Figure 7: Fit of the mixture hazard by estimated frailty distribution and b̂t. The left panel
shows the baseline hazard b̂t as well as two estimates of the mixture hazard Ht. Ĥt uses
GMM on purely cross-sectional data, following equation (4) in Proposition 4. H̃t uses the
estimated type distribution and b̂t. The right panel compares the implied measures of the
“average type,” calculated as the ratio of mixture and baseline hazards, as in Figure 1.

C Price Plans

C.1 Shape of Hazards

In this section, we consider a trinomial discrete-time process x̃t with exit at two boundaries

¯
x, x̄, and derive formulae for the hazard of exiting through one or both of the boundaries.

We then explain how to apply these results to the conditional and unconditional hazard of

changing price plans.

We consider the following model. Time is discrete. The process x̃t attains one of N ≥ 3

values {
¯
x,
¯
x + ∆, . . . , x̄ − ∆, x̄}. We denote xn ≡

¯
x + (n − 1)∆ for n ∈ {1, . . . , N}, with

x̄ =
¯
x+ (N − 1)∆.

We assume x̃0 = xn0 for some n0 ∈ {1, . . . , N}. Subsequently, for
¯
x < x̃t < x̄, x̃t+1 takes

on one of three possible values: x̃t+1 = x̃t + ∆ with probability 1/4, x̃t+1 = x̃t − ∆ with

probability 1/4, or x̃t+1 = x̃t otherwise. There is exit at the boundary, so if x̃t =
¯
x, there is

a 1/4 chance of exit, a 1/4 chance of x̃t =
¯
x+∆, and a 1/2 chance of x̃t =

¯
x. The outcomes

at the upper boundary are symmetric. All shocks are independent over time.

Let mt(x) be the fraction of realizations with x̃t = x at time t. The law of motion of
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mt(x) is given by the Kolmogorov forward equation

mt+1(x) =


1
4
mt(x−∆) + 1

2
mt(x) +

1
4
mt(x+∆) if

¯
x < x < x̄

1
4
mt(x−∆) + 1

2
mt(x) if x = x̄

1
4
mt(x+∆) + 1

2
mt(x) if x =

¯
x

(O.17)

with initial condition m0(xn0) = 1 and m0(xn) = 0 for n ̸= n0.

Proposition 6 The solution of the equation (O.17) with the initial condition m0(xn) = 1

at n = n0 and zero otherwise is given by

mt(xn) =
N∑
j=1

λtj sin

(
n

N + 1
jπ

)
γj, (O.18)

where

λj =
1

2

(
1 + cos

(
1

N + 1
jπ

))
, γj =

2

N + 1
sin

(
n0

N + 1
jπ

)
.

See Online Appendix G for the proof.

We now turn to duration analysis. The survival function at duration t is St =
∑N

n=1mt(xn).

The hazard of exiting at boundary x̄ (
¯
x), denoted hx̄t (h¯

x
t ), is given by the ratio of the outflow

through x̄ (
¯
x) and the survival function. The hazard of exiting at either boundary, ht, is

given by the sum of the two hazards:

hx̄t =
1

4

mt(x̄)

St

, h¯
x
t =

1

4

mt(
¯
x)

St

, ht = hx̄t + h¯
x
t .

The following proposition establishes the shape of ht for large t.

Proposition 7 For 1 < n0 < N , h1 = 0. For all n0, limt→∞ ht = 1 − λ1. If N+1
3

≤ n0 ≤
2(N+1)

3
, then the hazard ht converges to its asymptote from below. If n0 <

N+1
3

or n0 >
2(N+1)

3
,

the hazard ht converges to its asymptote from above. The expected time to hit either
¯
x or x̄

is 2n0(N + 1− n0).

See Online Appendix G for the proof.

We next turn to analyze shapes of h¯
x
t and hx̄t for large t.

Proposition 8 For 1 < n0 < N , hazard h¯
x
1 = hx̄1 = 0 and limt→∞ h¯

x
t = limt→∞ hx̄t =

1
2
(1 − λ1). For n0 <

N+1
2

, hazard h¯
x
t converges to its asymptote from above and hazard hx̄t

converges from below. For n0 >
N+1
2

, hazard h¯
x
t converges to its asymptote from below and

hazard hx̄t converges from above. For n0 =
N+1
2

, both converge from below. .
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Figure 8: Hazards h¯
x
t , h

x̄
t and ht for N = 9 and different choices of n0 ∈ {3, 5, 7}. Note the

lines for n0 = 3 and n0 = 7 are identical in the right panel.

See Online Appendix G for the proof.

Figure 8 shows the shapes for the three hazards for N = 9 and different initial condition

n0. The expected time until hitting a barrier when n0 = 5 and N = 9 is 32 periods.

To apply these results to the model described in Section 8, it is enough to appropriately

choose the barriers
¯
x, x̄ and thus N = (x̄ −

¯
x)/∆ + 1, and initial point n0. For the un-

conditional hazard of changing plans after a price increase, we choose
¯
x =

¯̄
p, x̄ = ¯̄p, and

n0 = (p̄−
¯̄
p)/(¯̄p−

¯̄
p) since we know the initial condition for the process is p̄.

If, starting with a price increase, we want to study the conditional hazard of changing

plans conditional on not changing the price within a plan, then x̄ = ¯̄p,
¯
x =

¯
p and the initial

point is p̄ which corresponds to n0 = (p̄−
¯
p)/(¯̄p−

¯
p).

C.2 Constructing Price Plans Data

We describe in detail how we construct spells for price plans.

In the Online Micro Price data, where we observe posted prices, construction is straight-

forward. We take any three consecutive prices of a product p1, p2, p3. If p1 = p3, then prices

{p1, p2} constitute a price plan and we keep it. We measure duration of the spell which

started with p3 and consider the next price p4. If p4 = p2, the spell ends with a price change

within the plan, if p4 ̸= p2, the spell ends with a price outside the plan. If p3 is right censored,

we keep the plan and treat the spell as right-censored.

In the IRI data, one-week spells might be spurious and hence we want to avoid them.
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We proceed according to this algorithm:

1. We start from a price p1 observed for at least 2 periods, say t1, . . . t2 − 1. This is

potentially one element of the price plan.

2. Let p2 = p(t2 + 1) (not p(t2)). This price lasts from t2, ..., t3 − 1 or t2 + 1, ...t3 − 1.

3. If p2 = p(t2) or p2 = p(t2 + 2), i.e. price lasts at least two periods, we have another

element of the price plan. Otherwise stop.

4. Let p3 = p(t3 + 1). This price lasts from t3, ..., t4 − 1 or t3 + 1, ..., t4 − 1.

5. If p1 = p3, we have a price plan {p1, p2}. We do not require p3 to last as least two

periods.21 Otherwise stop.

6. Let p4 = p(t4 + 1).

7. If p4 = p(t4) or p4 = p(t4 + 2), that is, price lasts at least two periods, we look at

whether p4 = p2. If so, this is a within-plan price change. If not, this is a between-plan

price change.

8. If p4 ̸= p(t4) and p4 ̸= p(t4 + 2), we cannot establish the nature of the price change,

and hence we drop the plan.

9. If p3 is right-censored, we keep the plan.

We use these price plans to estimate the model with competing risks, where one risk repre-

sents within-plan price change, and another a between-plan price change.

We also use these price plan spells to construct data which we use to estimate uncondi-

tional hazard of changing the price between plans. In Online Micro Price, starting from any

p3 which is part of a plan, i.e. p1 = p3, we measure duration until the first time the price

changes to a new plan. That is, we look at the elapsed time between switch to the price p3

and a new price p′ with p′ ̸= p1, p
′ ̸= p2. This is the duration of the price plan. If we never

observe such a price, the duration is right censored with duration given by the time elapsed

between p3 and the last time the product is in a dataset.

In the IRI data, we start from any p3 which is part of the plan and following our notation

above, lasted from t3, . . . t4 − 1. If duration of p3 is right censored or the price p4 = p(t4 +1)

is such that p2 ̸= p4, we record duration of the spell starting with p3. If p2 = p4 and p4 lasted

till t5 − 1, we look at price p5 = p(t5 + 1). If p5 = p(t5) or p5 = p(t5 + 2), that is, p5 lasts

21This is because p3 = p1, where p1 has already been established to be a potential element of a price plan.
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new plan (uncond.) within plan new plan (cond.)
starting with ph
number of pairs 5,069,174 2,595,883 2,747,753
number of products 988,593 532,911 701,286
J-statistic 8,257 3,174 2,767

starting with pl
number of pairs 2,107,146 1,734,287 565,776
number of products 433,304 345,617 178,390
J-statistic 7,090 2,738 2,295

Table 1: Descriptive statistics for price trends and price reversals, IRI data. For this table,
we consider only pairs of spells which are used in estimation. The first row reports the
number of pairs, the second row reports how many products have at least one such pair.
The third row reports the J-statistic. The critical value for the J-statistic 1,207.

at least 2 periods, we compare p3 and p5. If p5 ̸= p3, the duration of spell is given by time

elapsed between t3 and the end of price p5. If p5 = p3, we repeat this step.

Table 1 shows the number of observations (pairs of products as well as products with

n ≥ 2) for six different data sets, the ones used to estimate the conditional and unconditional

hazard of a new plan, as well as the hazard of a within-plan price change, starting from

either the high or low price within the plan. We also show the J-statistic from a test of the

overidentifying restrictions implied by the proportional hazard structure.

D Price Trends and Price Reversals

We analyze the hazard of adjusting the price allowing for different dynamics for sales and

regular prices, without relying on any particular model of sales. To do this, we use the

MPH model extended to allow observable spell-specific characteristic and competing risks,

as introduced in Section 3.5 and characterized in Appendix A. In particular, we distinguish

spells based on whether they started with a price increase or price decrease, and so we

have two observable characteristics (X = 2 in Appendix A). Let χi
j denote the observable

characteristic of the jth spell of product i. For mnemonic convenience let χi
j =“+” if the

jth spell of product i follows a price increase and χi
j =“−” if it follows a price decrease. We

also distinguish whether a spell ends with a price increase or decrease, and so we have two

competing risks (R = 2 in Appendix A). We use ρij to denote the reason for why the jth spell

of product i ends, and let ρij =“+” if it ends with a price increase and ρij =“−” if it ends

with a price decrease. Spells with χi
j = ρij represent price trends, while spells with χi

j ̸= ρij

12



b++ b+− b−+ b−−

number of pairs 42,077,438 275,322,989 72,940,882 17,876,354
number of products 4,313,488 9,416,198 5,637,378 2,911,651
J-statistic 3,920 8,737 7,910 3,401

Table 2: Descriptive statistics for price trends and price reversals, IRI data. For this table,
we consider only pairs of spells which are used in estimation. For b+−, the first row reports
the number of pairs (j, k) such that

¯
T ≤ ζj ≤ T̄ ,

¯
T ≤ ζk, χj = χk =“+”, ρj =“−”. The

second row reports how many products have at least one such pair. Columns for b++, b−+

and b−− are analogous. The third row shows the J-statistic for the estimated model. The
critical value for the J-statistic 1,749.

are price reversals.

We separately estimate four different baseline hazards, one for each possible combination

of observable characteristic and risk. We use b++
t (b+−

t ) to denote the baseline hazard that a

spell which starts with a price increase subsequently ends with a price increase (decrease) at

duration t. Similarly, b−+
t (b−−

t ) denotes the baseline hazard that a spell which starts with

a price decrease subsequently ends with a price increase (decrease) at duration t. We do

not restrict the unobserved type vector for the different observables and risks, and so some

products may have a relatively high risk of certain outcomes and a relatively low risk for other

outcomes, for example. Additionally, the validity of the proportional hazard assumption for

one combination of observable characteristics and risks does not impact the consistency of

the estimates for other combinations.

This richer model allows for the possibility that price trends have different dynamics

than price reversals. We estimate the baseline hazard using the moment conditions specified

in Proposition 5 in Appendix A, with the level of the baseline hazard at duration
¯
T set

equal to the mixture hazard for that observable-risk pair from equation (O.21) in Online

Appendix E.2. Table 2 shows descriptive statistics of the data used, while Figure 9 shows

the estimated baseline hazards.The baseline hazards for price trends, b++
t and b−−

t , are rather

flat, especially the hazard for two consecutive price increases. The baseline hazards for the

price reversals are declining, with b−+
t , i.e. temporary sales, showing the sharpest decline.

We conclude from these findings that the shape of the baseline hazard we recovered in Figure

1 is primarily driven by price reversals, especially those associated with sales. Price reversals

are common in the data: the hazard for a price reversal is higher than the hazard of a price

trend at all durations, regardless of whether the spell started with a price increase or a price

decrease.

The model is over-identified and so we can again apply the J-test. We run a separate

J-test for each hazard, since each baseline hazard can be estimated without assuming a MPH
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Figure 9: Baseline hazards in the competing risks model for pooled IRI data, log scale. b++
t

is the baseline hazard for spell which begin and end with a price increase; b−−
t for spells

which begin and end with a price decrease; b+−
t for spells which begin with a price increase

and end with a price decrease; and b−+
t for spells which begin with a price decrease and end

with a price increase. The shaded regions show two standard error bands. Standard errors
are clustered at the store × product category level. The baseline hazard at duration

¯
T = 2

is set to be equal to the corresponding mixture hazard at duration
¯
T .

structure for the other competing hazards. The five percent critical value is 1,749 for each

observable and risk, and the test statistics are J++ = 3,920, J+− = 8,737, J−+ = 7,910, and

J−− = 3,401. Even though we still reject the model at the five percent level, the rejection is

“milder” for price trends than price reversals.

Figures 16 and 17 in Online Appendix J show estimated b++ and b−− for individual

product categories. The results are in line with those for the pooled sample. The hazard b++

declines for about 6 weeks and then is flat, and the baseline hazard b−− is declining in most

categories. The value of the J-test for individual categories is lower than the value on the

pooled sample because of the smaller sample. In particular, we cannot reject the specification

for 8 categories for b++ and 21 categories for b−−. We investigate the nature of the failure

of the proportional hazard assumption more systematically in Online Appendix H.4.

We conclude that the dynamics of price trends is well described by the MPH assumption,

and that the baseline hazard is fairly flat. On the other hand, we conclude that MPH

assumption is not a good description of the dynamics of price reversals. One possible reason

is that temporary changes might have fixed duration, which does not fit into the MPH

framework.

Based on these findings, we believe distinguishing price trends from price reversals is

useful in this data. The baseline hazard for two consecutive price increases is decreasing

until week 6, which covers a substantial amount of price changes: 76.8 percent of complete
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spells which start after a price increase last at most 6 weeks (among complete spells which

start and end with a price increase, 76.7 percent last at most 6 weeks). During first 6 weeks,

the baseline hazard drops by almost 50 percent and then is then flat until week 45. There

is a pronounced spike at around one year, consistent with Taylor-type pricing. The baseline

hazard for two consecutive price decreases is mildly decreasing over the examined range.

E Mixture Hazard

We provide proof of Proposition 4 and show how we compute mixture hazard at
¯
T in the

model with competing risks.

E.1 Mixture Hazard Proofs

Proof of Proposition 4. Take an entity i with measured durations ζ i = (ζ i0, ζ
i
1, . . . , ζ

i
Ki)

and hence censoring time ci =
∑Ki

j=0 ζ
i
j − 1. Let zi = {zi1, . . . , zici} be a vector of length ci

with the following elements:

zis =

ζ ik for s =
∑k−1

j=0 ζ
i
j and k = 1, . . . , Ki

0 otherwise.

zis encodes the measured duration of any spell that starts s periods into the observation

window for the entity, with zeros in any period when a new spell does not start.

We first claim that for any product i and any duration t = 1, . . . , T̄ + 1,

Ki∑
j=1

1ζij≥t,cij≥T̄ =
ci−T̄∑
s=1

1zis≥t,

where we understand that the left hand side evaluates to 0 when ci ≤ T̄ . The left-hand sum

counts the number of spells (except the initial left-censored one) with duration at least t and

residual censoring time at least T̄ . The right-hand sum counts the same spells by dropping

all those that start after ci − T̄ , when the residual censoring time would be less than T̄ .

Next, we compute the expected value of
∑ci−T̄

s=1 1zis≥t for any t = 1, . . . , T̄ +1 conditional

on ci and Φi. Here we use the assumption that initial duration is drawn from the stationary

distribution. This implies that with probability ω1(Φ
i), a spell ends in any period s ≥ 1, in

which case zis > 0, while otherwise zis = 1zis≥t = 0. If the spell does not end, the probability

that the measured duration of the spell is at least t is given by the type-specific survival

function Φi
t−1. This uses the fact that right censoring is not an issue for t ≤ T̄ + 1 and
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s ≤ ci − T̄ .

Putting this together, in any period s ∈ {1, . . . , ci − T̄}, the expected value of 1zis≥t

conditional on ci and Φi is Φi
t−1ω1(Φ

i). It follows that

E

 Ki∑
j=1

1ζij≥t,cij≥T̄

∣∣∣∣ci,Φi

 = E

ci−T̄∑
s=1

1zis≥t

∣∣∣∣ci,Φi


=

(ci − T̄ )Φi
t−1ω1(Φ

i) if ci > T̄

0 if ci ≤ T̄.

Now condition only on Φi. Using the conditional distribution of c given Φ we get

E

[
c

c− T̄

K∑
j=1

1ζj≥t,cj≥T̄

∣∣∣∣Φi

]
=

 ∞∑
c=T̄+1

cqc(Φ
i)

Φi
t−1ω1(Φ

i).

Finally, integrating across Φ using the distribution F , we get

E

[
c

c− T̄

K∑
j=1

1ζj≥t,cj≥T̄

]
=

∫  ∞∑
c=T̄+1

cqc(Φ)

Φt−1ω1(Φ)dF (Φ) (O.19)

for all t = 1, . . . , T̄ + 1.

For any t = 1, . . . , T̄ , this implies

E

[
c

c− T̄

K∑
j=1

1ζj≥t+1,cj≥T̄

]
=

∫  ∞∑
c=T̄+1

cqc(Φ)

Φtω1(Φ)dF (Φ).

We can then take first differences for any such t to get

E

[
c

c− T̄

K∑
j=1

1ζj=t,cj≥T̄

]
=

∫  ∞∑
c=T̄+1

cqc(Φ)

 (Φt−1 − Φt)ω1(Φ)dF (Φ). (O.20)

Then using equations (12), (O.19) and (O.20), it follows immediately that E
[
f
[H]

t,T̄
(ζ;H)

]
= 0

for t = 1, . . . , T̄ if and only if Ht = Hf
t defined in equation (11), proving the first result.

Now assume Φ and c are independent, so qc(Φ) = qc for all c and Φ. Then a similar logic
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to the derivation of equation (O.19) implies

E

[
K∑
j=1

1ζj≥t,cj≥T̄

]
=

 ∞∑
c=T̄+1

(c− T̄ )qc

∫ Φt−1ω1(Φ)dF (Φ).

And a similar logic to the derivation of equation (O.20) implies

E

[
K∑
j=1

1ζj=t,cj≥T̄

]
=

 ∞∑
c=T̄+1

(c− T̄ )qc

∫ (Φt−1 − Φt)ω1(Φ)dF (Φ).

Combining these with equation (13), we get that E
[
f
[HI]

t,T̄
(ζ;H)

]
= 0 for t = 1, . . . , T̄ if and

only if

Ht =

∫
(Φt−1 − Φt)ω1(Φ)dF (Φ)∫

Φt−1ω1(Φ)dF (Φ)
.

Since qc(Φ) = qc implies c̄(Φ) = c̄, this is equal to H∗
t in equation (10), proving the second

result.

E.2 Mixture Hazard with Competing Risks and Observables

In several applications, it is useful to estimate the mixture hazard associated with risk r and

observable characteristic x at duration
¯
T , Hx,r

¯
T . We use the following formula

0 =
I∑

i=1

K∑
j=1

(
Ĥx,r

¯
T 1ζij≥t,χi

j=x − 1ζij=t,ρij=r,χi
j=x

)
, (O.21)

where i = 1, . . . I indexes the products. In words, the mixture hazard at duration
¯
T as-

sociated with risk r and observable characteristic x is given by the ratio of the spells with

characteristic x which ended at duration
¯
T due to risk r, and the number of all spells with

characteristic x lasting at least
¯
T . This is analogous to the formula (12) for the mixture

hazard when the type and censoring time are independent, with the exception that we select

spells which ended due to risk r. Note that since we are interested in estimating mixture

hazard at just one duration,
¯
T , there is not need to condition on the censoring time exceeding

a certain number.
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E.3 Moments of the Frailty Distribution

We use insights from Section E.1 to prove that the moment conditions for the first three

moments of the frailty distribution, which we use in Section B.3, have the expected value of

zero.

Consider first equation (O.14). To see that E
[
f
[µ1]

T̄
(ζ;µ, b)

]
= 0, we use equations (O.19)

and (O.20). We use equation (O.19) and set t =
¯
T to find an expression for the expected

value of the second term in f
[µ1]

T̄
:

E

[
c

c− T̄

K∑
j=1

1ζj≥
¯
T,cj≥T̄

]
=

∫  ∞∑
c=T̄+1

cqc(Φ)

Φ
¯
T−1ω1(Φ)dF (Φ)

=

∫
wf

¯
T (Φ)dF (Φ)

where we used that Φ
¯
T−1 = 1 because bt = 0 for t <

¯
T .

In the next step, use equation (O.20) with t =
¯
T to find the expected value of the first

term of f
[µ1]

T̄
:

E

[
c

c− T̄

K∑
j=1

1ζj=
¯
T,cj≥T̄

]
=

∫  ∞∑
c=T̄+1

cqc(Φ)

 (Φ
¯
T−1 − Φ

¯
T )ω1(Φ)dF (Φ)

=

∫  ∞∑
c=T̄+1

cqc(Φ)

 θ(Φ)b
¯
TΦ

¯
T−1ω1(Φ)dF (Φ)

= b
¯
T

∫
θ(Φ)wf

¯
T (Φ)dF (Φ),

where θ(Φ) is the type, as defined in Section 4.5.

Since

µ1 =

∫
θ(Φ)dF f

¯
T =

∫
θ(Φ)wf

¯
T (Φ)dF (Φ)∫

wf

¯
T (Φ)dF (Φ)

,

the result follows. The proof that E
[
f
[µ2]

T̄
(ζ;µ, b)

]
= 0 in equation (O.15) and E

[
f
[µ3]

T̄
(ζ;µ, b)

]
=

0 in equation (O.16) is similar and so we omit it.

F GMM Estimation

We provide additional details on the GMM estimation.
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F.1 GMM Estimator

We start with the GMM estimator for the baseline hazard. Proposition 2 gives us one

moment condition for the choice t1, t2 such that
¯
T ≤ t1 < t2 ≤ T̄ :

E
[
f
[b]
t1,t2(ζ; b)

]
= 0.

Let Y (
¯
T, T̄ ) = {(t1, t2) :

¯
T ≤ t1 < t2 ≤ T̄}. Denoting T = T̄−

¯
T , this set hasM = T (T+1)/2

elements which we index with m and refer to it as ym = (ym1 , ym2). Let f
[b](ζ; b) be a vector

function with mth element corresponding to the choice ym ∈ Y (
¯
T, T̄ ), given by f

[b]
ym1 ,ym2

(ζ; b).

Since the baseline hazard is identified up to scale, we choose one normalization. We

choose T0 ∈ {
¯
T, . . . T̄} to be the shortest duration such that there exists a product i with

at least two spells and measured complete duration of one of its spells equal to T0, K
i ≥ 2,

and 1 ≤ j < k ≤ Ki such that ζ ij = T0, ζ
i
k = t for any t ∈ {T0, . . . T̄}.22 Without loss of

generality, we normalize bT0 = 1.

Let b·/T0 be the vector b without its component bT0 , that is, b·/T0 = (b
¯
T , . . . bT0−1, bT0+1, . . . bT̄ ).

Linearity of f
[b]
t1,t2(ζ; b) and normalization of bT0 implies that we can write

f [b](ζ; b) = U [b](ζ)b·/T0 − V [b](ζ),

where U [b] is M × T matrix, and V [b](ζ) is a vector of length M . With this notation, we can

write

E
[
U [b](ζ)

]
b·/T0 − E

[
V [b](ζ)

]
= 0. (O.22)

We now discuss GMM estimator for the mixture hazard. Proposition 4 gives us one

moment condition for each
¯
T ≤ t ≤ T̄ . Define f

[H]

T̄
as a vector function, with mth element

given by f
[H]

m+
¯
T−1,T̄

(ζ;H T̄ ) for m = 1, . . . , T + 1. Since equation (12) is linear in H T̄ , we can

write f
[H]

m+
¯
T−1,T̄

(ζ;H T̄ ) = U [H]H T̄ −V [H], where U [H] is a (T +1)× (T +1) matrix and V [H] is

a (T +1)× 1 vector. With this notation, the moment condition from Proposition 4 becomes

E
[
U [H](ζ)

]
H T̄ − E

[
V [H](ζ)

]
= 0. (O.23)

We stack these moment conditions for b and H T̄ . Define

β =

(
b·/T0

H T̄

)
, f(ζ; β) =

(
f [b](ζ; b)

f
[H]

T̄
(ζ;H T̄ )

)
, U =

(
U [b] 0

0 U [H]

)
, V =

(
V [b]

V [H]

)
.

22If there is no product with at least two spells and a complete duration t, then we estimate b̂t = 0 and
so we cannot use it for normalization.
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Then the moment conditions are

E [U(ζ)] β − E [V (ζ)] = 0. (O.24)

To estimate the model, we replace expected values with sample means. In particular,

indexing the products with i = 1, . . . I, we have

UI ≡
1

I

I∑
i=1

U(ζ i), VI ≡
1

I

I∑
i=1

V (ζ i).

The sample analog of (O.24) is UIβ − VI = 0. For a given positive-definite (M + T + 1) ×
(M + T + 1) weighting matrix W , the estimator β̂ ∈ R2T+1

+ solves

β̂ = arg min
β∈R2T+1

+

(UIβ − VI)
′W (UIβ − VI) .

This is a linear-quadratic maximization problem and its solution is known in closed-form,

β̂ = (U ′
I (W +W ′)UI)

−1
U ′
I (W +W ′)VI .

In practice, we use the identity matrix as a weighting matrix to estimate the parameters.

To construct the J-statistic, we estimate the variance-covariance matrix as discussed in the

next section.

Results in Newey and McFadden (1994) imply that this GMM estimator using the mo-

ment conditions in Proposition 2 and 4 is consistent without any additional assumptions.23

In particular, we do not need to impose that the space of possible parameters β is compact

since our estimator is linear.

F.2 Clustered Standard Errors and J-test

Recall that the GMM formula for the variance-covariance matrix of the parameter vector β

is

V AR ≡ 1

I
(F ′WF )−1F ′WΩW ′F (F ′W ′F )−1, (O.25)

23Theorem 2.7 states conditions for consistency of estimators without compactness. Example 1.2 on page
2134 then shows that these conditions are satisfied for the linear GMM estimators.
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where F is the score matrix F ≡ E[∇βf ] and Ω = E[ff ′]. To get an estimate of the

variance-covariance matrix, we replace F and Ω with its sample analogs FI and ΩI :

FI ≡
1

I

I∑
i=1

∇βf(ζ
i; β̂) = UI , ΩI ≡

1

I

I∑
i=1

f(ζ i; β̂)f(ζ i; β̂)′,

where β̂ is a GMM estimate of β.

To implement one-way clustering, we follow Cameron, Gelbach, and Miller (2011). For-

mula (O.25) still applies but with cluster-robust sample analog of Ω. Let Q denote the

number of clusters indexed by q = 1, . . . ,Q. If a product i belongs to cluster q, we say

1i∈q = 1. Define f̄q as the sum of the moment conditions across products in cluster q,

f̄q =
I∑

i=1

f(ζ i; β̂)1i∈q.

Then

Ω
[cluster]
I =

Q
Q− 1

I − 1

I − (2T + 1)

1

I

Q∑
q=1

f̄qf̄
′
q, (O.26)

where 2T+1 is the number of parameters. The term Q
Q−1

I−1
I−(2T+1)

is adjustment for the degrees

of freedom; without this adjustment, the clustered standard errors are biased downwards.

We obtain the variance-covariance matrix by substituting Ω
[cluster]
I into equation (O.25).

Finally, we use the variance-covariance matrix to compute the J-statistic

J = I

(
1

I

I∑
i=1

f(ζ i; β̂)

)′

Ω
[cluster]
I

−1

(
1

I

I∑
i=1

f(ζ i; β̂)

)
, (O.27)

which, under the null hypothesis that the model is correctly specified, is distributed χ2
M−T .

F.3 Practical Consideration

It is known that in practice matrix ΩI (or Ω
[cluster]
I ) can be badly scaled, especially with a

large number of moments as we have. This is not necessarily an issue for estimating of the

variance-covariance matrix V AR but is for the J-test which requires inverting the matrix ΩI

(or Ω
[cluster]
I ).

Moreover, in our application, ΩI has some negative eigenvalues. This is a result of

numerical imprecisions; matrix ΩI as well Ω
[cluster]
I is positive semidefinite in any sample by

construction.

We address both of these issues in one step, following Cameron, Gelbach, and Miller
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(2011) and Politis (2011). We construct matrix ΩI , compute its eigenvalues and replace

eigenvalues which are either negative or close to zero in absolute term with a small positive

number ε to construct Ω+
I , a positive definite matrix. Specifically, we write ΩI = AΛA′,

where Λ = Diag(λ1, . . . , λK) are the eigenvalues of ΩI , and A is a matrix of eigenvectors.

We define λ+j = max(ε, λj) and Λ+ = Diag(λ+1 , . . . , λ
+
K). We then construct Ω+

I = AΛ+A′.

We need to balance two forces when choosing ε. It has to be small enough so that it does

not affect results as the sample size grows, and at the same time, it has to be big enough to

address the problem of ill-conditioned matrix. Politis (2011) suggests to choose ε = I−a for

a ∈ [1, 2]; we follow this suggestion and choose a = 1.5.

We find that ΩI with no clustering and Ω
[cluster]
I with one-way clustering, have a small

share of negative eigenvalues, less than 2.5 percent, and that they are small in absolute value,

of the order of 10−13. This gives us confidence that these are indeed numerical imprecisions

which we correct with the above described procedure.

G Proofs for the Price Plans Model

It is useful to state the following two lemmas.

Lemma 2 For all integers N ≥ 1 and numbers n, n′ ∈ {1, 2, . . . , N},

N∑
j=1

sin

(
n

N + 1
jπ

)
sin

(
n′

N + 1
jπ

)
=

N+1
2

if n = n′

0 otherwise.

Lemma 3 For integers N ≥ 2 and 1 ≤ k ≤ N ,

N∑
n=1

sin

(
n

N + 1
kπ

)
=

0 if k is even

cot
(

kπ
2(N+1)

)
if k is odd.

The proofs are in Supplemental Appendix L.

Proof of Proposition 6. We proceed in several steps. First, we can easily verify that a

function of the form λtφ(x) with φ(x) = sin( x
α
+ β), for some constants α, β solves equation

(O.17) in the interior if λ = 1
2

(
1 + cos(∆

α
)
)
by just plugging it into equation (O.17) and

simplifying using sin(x±∆
α

+ β) = sin( x
α
+ β) cos(∆

α
)± cos( x

α
+ β) sin(∆

α
). Second, we impose

that the solution satisfies the boundary conditions, which gives us two conditions

sin

(
x̄

α
+ β +

∆

α

)
= 0, sin

(
¯
x

α
+ β − ∆

α

)
= 0.
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These conditions hold for any integer j = 1, 2, . . . for which

x̄

α
+ β +

∆

α
= jπ, ¯

x

α
+ β − ∆

α
= 0.

For given j, we thus obtain (αj, βj) as a solution this system, and plug it into φ(x) using

xn =
¯
x + (n − 1)∆ and x̄ =

¯
x + (N − 1)∆ to obtain φj(xn) = sin( n

N+1
jπ). Next, we plug

the solution for α into the expression for λ to obtain λj =
1
2

(
1 + cos( 1

N+1
jπ)
)
.

We note that for each n we can regard φn = {φj(xn)}Nj=1 as an N dimensional vector.

Lemma 2 implies that the set of vectors {φn} for n = 1, 2, . . . , N are orthogonal with each

other. Since the law of motion is linear, the solution mt(x) can be expressed as a linear

combination of these solutions, with weights γj. We choose γj such that mt(x) satisfies the

initial condition m0(x). Again using Lemma 2, this means

γj =
⟨φj,m0⟩
⟨φj, φj⟩

=
2

N + 1

N∑
n=1

sin

(
n

N + 1
jπ

)
m0(xn) =

2

N + 1
sin

(
n0

N + 1
jπ

)
.

Proof of Proposition 7. Since m0(x̄) = 0 if n0 < N and m0(
¯
x) = 0 if n > 1, we obtain

immediately from its definition that h0 = 0 if 1 < n0 < N .

We next analyze the limit of ht. It is useful to write ht using the survival function as

ht =
St − St+1

St

=
N∑
j=1

(1− λj)wj,t

wj,t =
λtjγj

∑N
n=1 sin

(
n

N+1
jπ
)∑N

k=1 λ
t
kγk
∑N

n=1 sin
(

n
N+1

kπ
) .

Since 1 > λ1 > λ2 > . . . λN > 0, it follows that limt→∞w1,t = 1 while limt→∞wj,t = 0 for

j > 1, and hence limt→∞ ht = 1− λ1.

We next analyze the shape of ht for large t. We first observe that w1,t > 0 for all t, and,

following Lemma 3, wj,t = 0 for j even. This implies that the behavior of ht for large t is

governed by λ1 and λ3, with ht ≈ (1 − λ1)w1,t + (1 − λ3)(1 − w1,t). We are interested in

whether this is bigger or smaller than the asymptotic hazard 1− λ1.
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To answer this, we look at w1,t, which for large t is also determined by λ1 and λ3:

w1,t ≈
λt1γ1

∑N
n=1 sin

(
n

N+1
π
)

λt1γ1
∑N

n=1 sin
(

n
N+1

π
)
+ λt3γ3

∑N
n=1 sin

(
n

N+1
3π
)

=
λt1γ1 cot

(
π

2(N+1)

)
λt1γ1 cot

(
π

2(N+1)

)
+ λt3γ3 cot

(
3π

2(N+1)

) ,
where the equation uses Lemma 3. Note that for N ≥ 3, cot

(
π

2(N+1)

)
> cot

(
3π

2(N+1)

)
> 0.

Additionally, we know from Proposition 6 that γ1 =
2

N+1
sin
(

n0

N+1
π
)
, which is positive for all

n0 ∈ {1, 2, . . . , N}. Thus the asymptotic behavior of w1,t depends on γ3 =
2

N+1
sin
(

3n0

N+1
π
)
:

� if n0 < N+1
3

or n0 > 2(N+1)
3

, γ3 > 0, and so w1,t < 1 for all large t. Since ht ≈
(1−λ1)w1,t+(1−λ3)(1−w1,t) for large t, it follows that ht > 1−λ1, and so the hazard

converges to its asymptote from above.

� if N+1
3

< n0 <
2(N+1)

3
, γ3 < 0, and so w1,t > 1 for all large t. Again, ht ≈ (1−λ1)w1,t+

(1 − λ3)(1 − w1,t) implies ht < 1 − λ1 for large t, and so the hazard converges to its

asymptote from below.

Finally, we can have n0 =
N+1
3

or n0 =
2(N+1)

3
, in which case γ3 = w3,t = 0 for all t. Note that

since n0 is an integer, these cases requireN ≥ 5. In this case, we have cot
(

5π
2(N+1)

)
> 0 as well,

and so the asymptotic slope of w1,t depends on the sign of γ5. It is straightforward to verify

that γ5 < 0 whenever γ3 = 0, and so again w1,t > 1. Now ht ≈ (1−λ1)w1,t+(1−λ5)(1−w1,t)

implies ht < 1− λ1 for large t, which means that in this borderline case, the hazard is again

converging to its asymptote from below.

Finally, denote T (xn) the expected time to hitting either barrier if the current state is

xn. Then for xn ∈ {
¯
x+∆, . . . , x̄−∆} it holds

T (xn) = 1 +
1

4
T (xn+1) +

1

4
T (xn−1) +

1

2
T (xn),

with T (
¯
x) = 1+ 1

4
T (

¯
x+∆)+ 1

2
T (

¯
x) and T (x̄) = 1+ 1

4
T (x̄−∆)+ 1

2
T (x̄). This is a second-order

difference equation and it can be verified that its solution is given by T (xn) = 2n(N+1−n).

Proof of Proposition 8. We focus on analyzing h¯
x
t . The analysis of hx̄t is symmetric.

Using the derived formulae, we can write

h¯
x
t =

1

4

mt(
¯
x)

St

=
1

4

∑N
k=1 λ

t
kγk sin

(
1

N+1
kπ
)∑N

n=1

∑N
k=1 λ

t
kγk sin

(
n

N+1
kπ
) =

1

4

∑N
k=1 λ

t
kyk∑N

k=1 λ
t
kzk
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where weights yk and zk are defined as

yk ≡ γk sin

(
1

N + 1
kπ

)
, zk ≡ γk

N∑
n=1

sin

(
n

N + 1
kπ

)
.

Since 1 > λ1 > λ2 > . . . λN > 0, it follows that limt→∞ h¯
x
t = 1

4
y1
z1
. Moreover, using Lemma 3,

we get z1 = γ1 cot(π/(2(N + 1))), which implies 1
4
y1
z1

= 1
2
(1− λ1). Thus half the asymptotic

hazard comes at the lower bound.

At large t, h¯
x
t is shaped by the largest roots. Note that Lemma 3 implies that zk = 0 for

k even, and so we can write

h¯
x
t ≈ 1

4

λt1y1 + λt2y2
λt1z1

=
1

4

(
y1
z1

+
λt2
λt1

y2
z1

)
.

Observe that z1 = γ1 cot(π/(2(N + 1))) > 0. Hence, if y2 < 0, then h¯
x
t converges to

its asymptote from below. Since by definition y2 = γ2 sin
(

2π
N+1

)
, y2 < 0 if and only if

γ2 ≡ 2
N+1

sin
(

n0

N+1
2π
)
< 0. Equivalently, if n0 >

N+1
2

, the hazard converges to its limit from

below. Conversely, if that n0 <
N+1
2

, the hazard h¯
x
t converges to its limit from above.

Finally, it remains to analyze the case of n0 =
N+1
2

, which implies y2 = 0. For large t,

h¯
x
t ≈ 1

4

λt1y1 + λt3y3
λt1z1 + λt3z3

.

Some algebra yields that, for z1 > 0, z3 < 0, z1 + z3 > 0,

λt1y1 + λt3y3
λt1z1 + λt3z3

<
y1
z1

⇔ y1
z1
<
y3
z3
,

and so h¯
x
t converges to its limit 1

4
y1
z1

from below.

We next verify that these conditions hold in our case. For n0 = N+1
2

, we have γ1 =
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2/(N + 1) and γ3 = −2/(N + 1). Using Lemma 3, we have

z1 =
2

N + 1
cot

(
π

2(N + 1)

)
> 0

z3 = − 2

N + 1
cot

(
3π

2(N + 1)

)
< 0

z1 + z3 =
2

N + 1

(
cot

(
π

2(N + 1)

)
− cot

(
3π

2(N + 1)

))
> 0

y1
z1

=
sin
(

π
(N+1)

)
cot
(

π
2(N+1)

) =
sin
(

π
(N+1)

)
sin
(

π
2(N+1)

)
cos
(

π
2(N+1)

) = 2 sin2

(
π

2(N + 1)

)
.

where in the last row we used that sin(2x) = 2 sin(x) cos(x). Similar steps lead to

y3
z3

= 2 sin2

(
3π

2(N + 1)

)
,

and hence indeed

y1
z1

= 2 sin2

(
π

2(N + 1)

)
< 2 sin2

(
3π

2(N + 1)

)
=
y3
z3
.

H Additional Empirical Results

H.1 IRI Data by Category

We provide summary statistics for the IRI sample used in estimation. Table 3 summarizes

the number of price spells by product category in the IRI data.

H.2 Test of Ergodic Distribution of In-Progress Duration

To estimate the mixture hazard, we assume that when we first observe a product, the

duration of the in-progress spell is a random draw from the stationary duration distribution

for that product. This assumption has a testable implication: conditional on censoring time,

the share of products changing its price in any week should be constant. We implement a

test in the following way. For all products with censoring time c, we compute the fraction

of price changes that occur by week t since the start of the in-progress spell; we call it

Fc(
t
c
). We then average the cumulative distribution function Fc across all c > T̄ , using the
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number of products with number of percentiles of ζ ij
≥ 1 spell ≥ 2 spells pairs 50th 90th

Yoghurt 1,402,766 1,155,766 98,999,368 3 10
Carb. Beverage 1,819,607 1,321,762 90,836,025 3 8
Salty Snack 2,481,250 1,670,539 72,485,278 3 9
Frozen Dinner 2,272,888 1,693,017 70,495,598 3 8
Cold Cereal 1,429,028 1,038,096 56,080,465 4 12
Beer 701,604 470,815 37,454,496 3 11
Milk 549,261 426,316 34,036,391 4 14
Soup 1,286,921 897,080 33,873,770 4 14
Spaghetti Sauce 501,088 353,379 25,015,292 3 11
Frozen Pizza 711,065 519,293 24,984,150 3 8
Margarine 244,844 204,293 23,833,374 4 13
Hot Dog 213,598 172,031 19,603,427 3 9
Coffee 793,004 455,555 13,969,362 3 10
Toilet Tissue 412,746 312,604 10,791,034 3 11
Laundry Det. 804,837 489,482 9,993,575 3 9
Facial Tissue 250,134 185,450 9,557,189 3 11
Peanut Butter 203,380 150,692 9,255,148 4 13
Mayonnaise 186,392 136,585 7,992,048 4 14
Mus. & Ketchup 217,559 143,485 7,659,886 4 16
Paper Towel 340,032 252,339 6,939,886 3 13
HH Cleaners 413,061 232,276 5,959,387 4 11
Toothpaste 716,457 322,194 4,615,305 3 8
Shampoo 1,134,428 352,570 2,483,449 3 7
Diapers 602,164 247,864 1,918,554 3 7
Sugar Sub. 94,528 56,644 1,818,682 4 17
Deodorant 972,970 291,558 1,633,620 3 6
Toothbrush 512,729 178,488 1,097,352 3 7
Blades 297,314 114,407 1,076,134 3 10
Photo 65,503 28,187 358,959 3 8
Razors 86,391 26,001 102,574 2 6
Total 21,717,549 13,898,768 684,919,778 3 10

Table 3: Descriptive statistics by product category, IRI data. For this table, we consider
only spells j ≥ 1 with ζ ij ≥ ¯

T = 2. The first column shows the number of products with at
least one spell longer than

¯
T . The second column reports the number of products with at

least two such spells. The third column reports the number of pairs where both are longer
than

¯
T . The last two columns show the median and 90th percentile value of the censored

spell length.
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Figure 10: Empirical density of times when products change prices, measured from the start
of an in-progress spell, pooled IRI data.

number of products with the corresponding value of c as weights. Figure 10 shows that

the corresponding empirical density lies within five percent of a uniform density. It is close

enough to uniform that we think the stationary mixture assumption is an empirically useful

starting point.

H.3 Correlation between Spells

We compute correlation between two spells within narrowly defined categories to understand

the extent of unobserved heterogeneity in such categories. As in our main sample, we select

the longest cycle for each product. We drop spells lasting one week, and then keep first two

spells of each product. Out of these products, we keep only those with two completed spells

shorter than 30 weeks, and censoring time (minus the sum of one-week spells) at least 60

weeks. This guarantees that we can observe two completed spells of less than 30 weeks for

each selected product.

We then compute correlation between the two spells within narrowly defined cells of

products, which is a cross between good category (30 categories) and a retail chain (163

chains). This gives us 4,890 potential cells. There are 2,041 cells with at least 100 products

in it. We find that the median (mean) correlation within all cells is 0.13 (0.13).

28



H.4 Sensitivity of Results to the Choice of
¯
T and T̄

The choice of
¯
T and T̄ is guided by the nature of our data. We choose

¯
T = 2 to exclude

spurious price spells lasting 1 week from our analysis, as explained in the main text. The

choice of T̄ has to balance two forces. On the one hand, we want to choose a large value

for T̄ to learn about the baseline hazard at long durations. On the other hand, the number

of spells longer than T̄ decreases quickly with T̄ . Indeed, Table 3 shows that depending on

the product category, the median spell duration is 2–4 weeks and the 90th percentile varies

between 6 and 17 weeks. This means that data are thin at durations longer than half a year.

While this does not constitute a problem for estimating the baseline hazard—smaller sample

size will be reflected in larger standard errors—the choice of T̄ affects our estimates of the

mixture hazard at all durations because we condition on c ≥ T̄ . Balancing these forces,

we choose T̄ = 60 weeks, a little over a year, because there is an interesting pattern in the

hazard at 52 weeks. Figure 11 shows estimates beyond 60 weeks. The estimates are noisy

but follow the same trend from before T̄ = 60 so our main results are for T̄ = 60.

We next examine the sensitivity of our results to the choice of
¯
T and T̄ . This allows us

to see if there is a systematic failure of the MPH assumption. The idea is the following.

Suppose we want to learn about the relative baseline hazards at duration 10 and 20, b10/b20.

The MPH model admits several ways of recovering the ratio. We can directly recover the

ratio b10/b20 from equation (4) by choosing t1 = 10 and t2 = 20. But there are other options

which use information on spells at other durations. Specifically, we can use this moment

condition to recover b10/bt and b20/bt for some t ̸= 10, 20, and combine them to find b10/b20.

Our estimator uses all such conditions. If it is the case that the MPH model is not correctly

specified at t, then including t into estimation will affect the relative hazards b10/b20.

Let bt(
¯
T, T̄ ) denote the GMM estimate of the baseline hazard at duration t ∈ {

¯
T, . . . , T̄}

using some values
¯
T and T̄ . We first fix T̄ = 60 and estimate the model for different values

of
¯
T = 2, 3, . . . , 10. To help visualize the impact of

¯
T on the shape of the baseline hazard,

we normalize b2(2, 60) = 1 and then recursively set b
¯
T (
¯
T, 60) = b

¯
T (
¯
T − 1, 60) for

¯
T > 2. If

the model is correctly specified for t ∈ {
¯
T, . . . , T̄}, we should find that bt(

¯
T, T̄ ) = bt(

¯
T ′, T̄ )

for all
¯
T <

¯
T ′ < t ≤ T̄ . Substantial deviations from this indicate systematic violations of the

MPH assumption. The left panel of Figure 11 shows the results for the benchmark model.

The choice of
¯
T affects the estimate of the baseline hazard in the benchmark model. This is

in line with the fact that we reject the model using the J-test.

To analyze the role of T̄ , we fix
¯
T = 2 and estimate the model for T̄ ∈ {10, 20, . . . , 90}.

We now normalize b2(2, T̄ ) = 1 for each value of T̄ . The right panel of Figure 11 shows that

the choice of T̄ does not affect the estimates.

Finally, we offer one additional justification for our choice of
¯
T . An implication of any
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Figure 11: Baseline hazard for pooled IRI data, log scale, estimated using different values of

¯
T ∈ {2, . . . , 10} and T̄ = 60 in the left panel, and using different values for T̄ ∈ {10, 20, . . . 90}
and

¯
T = 2 in the right panel.

mixture model where each product has two independent spell durations from its type-specific

distribution, and of the MPH model in particular, is that the correlation of the completed

duration of two spells for a given product is non-negative, and strictly positive when there

is heterogeneity in mean duration. To understand why, note that conditional on a product’s

type, the cross-spell correlation of duration is zero by assumption. But with heterogeneity,

the correlation captures differences in the type-specific means and is generally positive.

Inspired by this, we measure the autocorrelation of the duration of price spells in the

data. To avoid introducing bias due to censoring, we select products with at least 60 weeks

of censoring time and first two completed spells shorter than 30 weeks. This guarantees that

a product is in the dataset for long enough to us to observe two completed spells shorter

than 30 weeks. If we include all spells, including one-week spells, we find a correlation of

0.0032 when duration is measured in levels, and -0.0321 when duration is measured in logs.

This suggests that the data are unlikely to come from a mixture model. But once we exclude

spells lasting one week, the correlation increases to 0.176 in levels and 0.176 when measured

in logs. That is, once we exclude one-week spells, the correlation is positive, which further

justifies our decision to exclude one week spells.

H.5 Robustness to Iterated GMM

Our model is over-identified, with many more moment conditions than parameters. In such

situations, iterated GMM might perform better than 1-step or 2-step GMM. We implement

iterated GMM as follows. We estimate baseline hazard b using identity matrix as a weight-

ing matrix in our GMM estimation and denote this estimate b̂(1). Using b̂(1), we estimate
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Figure 12: Robustness results for the baseline hazard for pooled IRI data, log scale. Solid
line represents estimates after i = 1 iteration, dashed line after i = 2 iterations and dotted
after i = 10 iterations. The baseline hazard is normalized to equal the mixture hazard at
duration 2 weeks.

variance-covariance matrix Ω using (O.26), denoting it Ω̂(1). In the next step, we estimate

b using Ω̂−1
(1) as a weighting matrix to obtain b̂(2). That is, in the ith iteration, we Ω̂−1

(i−1) to

obtain b̂(i), and then b̂(i) to estimate Ω̂(i).

Figure 12 shows the results for the baseline hazard for the IRI data. We depict estimates

for i = 1, i = 2 and i = 10. We conclude that the estimates are robust to the method we

use.

I Maximum Likelihood Estimators

The usual approach to estimating the MPH model is via maximum likelihood for the continu-

ous time model. Formulating the likelihood requires an assumption on the frailty distribution

and taking a stance on whether the data are measured in continuous or discrete time. In this

section, we investigate the role of frailty distribution and timing assumption on estimates of

the baseline hazard.

We formulate the MPH model in continuous time and write down the likelihood function

under two different timing assumptions. First, we assume that the data are generating by

a continuous time model but durations are measured only in discrete times; we call this

model Continuous Time with Discrete Measurement (CT-DM). Second, we assume that

durations are measured exactly in continuous time; we call this model Continuous Time

with Continuous Measurement (CT-CM).

Initially, we assume that the frailty distribution is gamma with mean m and variance v,
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a convenient assumption as it allows us to integrate out the frailty distribution analytically

and obtain a simpler expression for the likelihood function. We later relax this assumption

by assuming that the frailty distribution is a mixture of several gamma distributions.

We make two simplifying assumptions when formulating likelihoods for CT-DM and CT-

CM models. First, in line with the literature, we assume that censoring time c is independent

of product’s types θ. Second, we use at most two spells per product which allows us to

represent the data in a simple way. For each combination of durations (t1, t2), with t1 ≥ 1

and t2 ≥ 0, it is enough to store the number of products with these measured durations and

the share of these with the right-censored first and/or second spell. Due to this simplification,

maximizing the likelihood is very fast but we are aware of the fact that usefulness of this

trick disappears in a general setup where different products have a different number of spells.

Finally, we estimate the CT-CM model using all spells using Stata’s built-in procedure

streg, and compare it to the baseline hazard estimated using our GMM estimator.

I.1 Continuous Time with Discrete Measurement

We formulate a continuous time MPH model with discrete time measurement (CT-DM),

which is correctly specified in real-world data where durations are rounded up to the next

integer values. We assume each product has a type θ drawn from a Gamma distribution with

mean m and variance v, though we later consider an extension to the case where the frailty

distribution is a mixture of Gamma distributions. A censoring time c ∈ R+ is drawn from a

continuous distribution, with Q̄1
c denoting the probability that censoring time following the

first price change is at least c− 1 periods. In contrast to our GMM estimates of the discrete

time model, we impose that c and θ are independent random variables, and so Q̄1
c does not

depend on θ.

In the continuous time MPH model, the probability that a spell lasts at least t for a

product with type θ is e−θ
∫ t
0 b(s)ds, for all t ≥ 0. With discrete measurement, we assume that

the measured duration is always rounded up to the next integer. That is, for t = 1, 2, . . . ,

the probability that measured duration is at least t is e−
∫ t−1
0 θb(s)ds.

In the CT-DM model, there is no hope of recovering the baseline hazard at all real

durations, since we only observe integer outcomes. Instead, for any t = 1, 2, . . . , define

bt ≡
∫ t

t−1
b(s)ds. Additionally, for notational convenience, we continue to assume b0 = 0.

Our objective is to recover b ≡ {b1, . . . , bT̄ , bT̄+1}, where sparsity of data lead us to impose

bt = bT̄+1 for all t ≥ T̄ + 1. It is also useful to define the integrated hazard zt ≡
∑t

s=0 bs =∫ t

0
b(s)ds, so the probability that measured duration of a spell is at least t = 1, 2, . . . for a

type θ product is e−θzt−1 .
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We formulate the likelihood function for the case where we observe two spells per product.

For a typical product i, we observe (ci, di1, d
i
2, ζ

i
1, ζ

i
2) where ci is residual censoring time for

the first spell after a left-censored spell, ζ ij is the measured duration of jth spell and dij equals

one if jth spell is censored. If the first spell right-censored (and hence the second spell is not

observed), we code the duration of the second spell as ζ i2 = 0 and di2 = 1.

Following the analysis of single spell data in Meyer (1990), we write the likelihood of

different outcomes. First, we may observe two completed spells, ζ i1 = t1 ∈ {1, 2, . . . },
ζ i2 = t2 ∈ {1, 2, . . . }, and di1 = di2 = 0. The probability of this event is

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
=

Q̄1
t1+t2

∫ ∞

0

e−θ(zt1−1+zt2−1)(1− e−θbt1 )(1− e−θbt2 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

The integrand is equal to the probability that the censoring time exceeds t1+t2, multiplied by

the probability that the uncensored durations (τ i1, τ
i
2) are exactly (t1, t2) given θ, multiplied

by the density of a Gamma distribution with mean m and variance v, where we use Γ to

denote the gamma function. We integrate this expression to get

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
= Q̄1

t1+t2
fCT−DM
0 (t1, t2; z,m, v)

where

fCT−DM
0 (t1, t2; z,m, v) ≡

(
1 +

v

m
(zt1−1 + zt2−1)

)−m2

v −
(
1 +

v

m
(zt1 + zt2−1)

)−m2

v

−
(
1 +

v

m
(zt1−1 + zt2)

)−m2

v
+
(
1 +

v

m
(zt1 + zt2)

)−m2

v
.

We note the explicit dependence of this function on the integrated hazard z = {z1, z2, . . . },
as well as the mean and variance of the frailty distribution.

Second, we may observe a completed spell followed by a censored spell, ζ i1 = t1 ∈
{1, 2, . . . }, ζ i2 = t2 ∈ {0, 1, . . . }, di1 = 0, di2 = 1. The probability of this event is

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
=

(
Q̄1

t1+t2
− Q̄1

t1+t2+1

) ∫ ∞

0

e−θ(zt1−1+zt2 )(1− e−θbt1 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is exactly t1 + t2, c
i = t1 + t2 multiplied by
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the probability that τ i1 = t1 and τ i2 > t2. Again, solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
=
(
Q̄1

t1+t2
− Q̄1

t1+t2+1

)
fCT−DM
1 (t1, t2; z,m, v)

where

fCT−DM
1 (t1, t2; z,m, v) ≡

(
1 +

v

m
(zt1−1 + zt2)

)−m2

v −
(
1 +

v

m
(zt1 + zt2)

)−m2

v
.

Finally, we may observe a single censored spell, ζ i1 = t1 ∈ {1, 2, . . . } and di1 = di2 = 1.

The probability of this event is

E
[
1ζi1=t1,di1=1

]
=
(
Q̄1

t1
− Q̄1

t1+1

) ∫ ∞

0

e−θzt1
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the probability that the censoring time is t1, c
i = t1, multiplied by the probability

that τ i1 > t1. Solve the integral to get

E
[
1ζi1=t1,di1=1

]
=
(
Q̄1

t1
− Q̄1

t1+1

)
fCT−DM
2 (t1, 0; z,m, v)

where

fCT−DM
2 (t1, 0; z,m, v) ≡

(
1 +

v

m
zt1

)−m2

v
.

We can use the probability of these three events to compute the log-likelihood. We treat

Q̄1
c as a nuisance parameter and take advantage of the fact that each of the probabilities is

multiplicatively separable in the terms involving Q̄1
c to get

LCT−DM =
1

N

N∑
i=1

log fCT−DM
di1+di2

(ζ i1, ζ
i
2; z,m, v). (O.28)

By definition, z0 = 0 and we normalize m = 1.24 Given data, we can search for values of z

and v to maximize this likelihood, subject to the constraint zt+1 − zt = bT+1 for t ≥ T . We

then first difference the integrated hazard zt to recover the baseline hazard, bt = zt − zt−1.

It is straightforward to extend this analysis to the case where the frailty is a mixture of

K gamma distributions. Let {mk, vk, wk} denote the mean, variance, and weight on each

24The likelihood is unaffected by doubling m, quadrupling v, and halving z.
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distribution. Then the likelihood is

LCT−DM =
1

N

N∑
i=1

log

(
K∑
k=1

wkf
CT−DM
di1+di2

(ζ i1, ζ
i
2; z,mk, vk)

)
. (O.29)

We again impose z0 = 0 and fix
∑K

k=1wk = 1 and mk, vk, and wk all nonnegative to have

a mixture model. We also normalize
∑K

k=1wkmk = 1. We then search for values of z and

distributional parameters which maximize the likelihood for fixed K.

An interesting and open question is whether this model is identified. We are unaware of

any existing results on identification of continuous time models with discrete measurement

and repeat spells.25 Conversely, we are unaware of any examples that illustrate a failure of

identification. Here we give one such example when data are censored, finding two different

CT-DM models with non-trivially different baseline hazards that generate the same data.

Model I has a Gamma-distributed frailty with mean m = 1, variance v = 1 and baseline

hazards b1 =
∫ 1

0
b(s)ds = 1, b2 =

∫ 2

1
b(s)ds = 0.5, implying b2/b1 = 0.5. Model II has a

two-type distribution, with θ1 = 0.2819, θ2 = 1.7950, shares dG(θ1) = 0.5254 and dG(θ2) =

1 − dG(θ1), and baseline hazards b1 =
∫ 1

0
b(s)ds = 0.9071 and b2 =

∫ 2

1
b(s)ds = 0.4495,

implying b2/b1 = 0.4955. We assume our dataset is censored so that we observe all products

for exactly three periods.

Let Φt1,t2 denote the survival function as in equation (3), and let zt be the integrated

hazard defined before as zt =
∑t

s=0 bs. For model I, the survival function is

ΦI
t1,t2

=

∫ ∞

0

e−θ(zt1+zt2 )
e−θ

Γ(1)
dθ =

1

1 + zt1 + zt2
,

where the second term in the integral is the density of the Gamma distribution with m =

1, v = 1. For model II, we have

ΦII
t1,t2

= e−θ1(zt1+zt2 )dG(θ1) + e−θ2(zt1+zt2 )dG(θ2).

With censoring time equal to three periods, we can measure Φ1,0, Φ2,0, Φ1,1, and Φ2,1 (but

not Φ2,2). It is easy to verify that for both processes Φ1,0 = 0.5, Φ2,0 = 0.4, Φ1,1 = 0.3333,

and Φ2,1 = 0.2857.

To summarize, we have found two different CT-DM models which explain the same data.

The two models have non-trivially different baseline hazards, in the sense that b2/b1 is not

25Ridder (1990), Brinch (2011), Abbring and Ridder (2015) study identification of the continuous time
MPHmodel, or the less restrictive Generalized Accelerated Failure-Time model, with time-aggregated records
and single-spell data. As in Elbers and Ridder (1982) and Heckman and Singer (1984), identification comes
from observable characteristics which affect the hazard function.
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the same, which shows lack of identification of both the frailty distribution and the baseline

hazard. This raises a concern that maximum likelihood estimates of the CT-DM model may

depend on the assumed functional form of the frailty distribution. Perhaps for this reason,

we are unaware of any attempts to estimate the CT-DM model using repeated spell data.

I.2 Continuous Time with Continuous Measurement

We next turn to the continuous time model with continuous time measurement (CT-CM). As

in CT-DM, we assume each product has a censoring time c ∈ R+ with continuous counter-

CDF Q̄1
c and density q̄1c , and a type θ drawn from a Gamma distribution with mean m and

variance v. We later consider an extension to the case where the frailty distribution is a

mixture of Gamma distributions. We again impose that c and θ are independent random

variables.

For any t ∈ R+, the probability that the true duration of a spell is at least t for a product

with type θ is e−θz(t) for all t ≥ 0, where z(t) ≡
∫ t

0
b(s)ds. As usual, measured durations

may be censored, but here we assume that we can measure the exact duration or censoring

time for each spell.

For a typical product i, we observe the vector (ci, di1, d
i
2, ζ

i
1, ζ

i
2). Under the assumption

of the Gamma frailty distribution with mean m and variance v, we can write down the

likelihood of different outcomes. First, we may observe two completed spells, ζ i1 = t1 ≥ 0,

ζ i2 = t2 ≥ 0, and di1 = di2 = 0. The density of this event is

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
= Q̄1

t1+t2
b(t1)b(t2)

∫ ∞

0

θ2e−θ(zt1+zt2 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ,

where Γ is the gamma function. The integrand is equal to the probability that the censoring

time exceeds t1 + t2, multiplied by the density that the uncensored durations (τ i1, τ
i
2) are

exactly (t1, t2) given θ, multiplied by the density of a Gamma distribution with mean m and

variance v. We then solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=di2=0

]
= Q̄1

t1+t2
fCT−CM
0 (t1, t2; z,m, v)

where

fCT−CM
0 (t1, t2; z,m, v) ≡ b(t1)b(t2)

(
m2 + v

) (
1 +

v

m
(z(t1) + z(t2))

)−2−m2

v
.

Second, we may observe a completed spell followed by a censored spell, ζ i1 = t1 ≥ 0,
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ζ i2 = t2 ≥ 0, di1 = 0, di2 = 1. The density of this event is

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
= q̄1t1+t2

b(t1)

∫ ∞

0

θe−θ(zt1+zt2 )
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the density that the censoring time is exactly t1 + t2, c
i = t1 + t2 multiplied by the

density that τ i1 = t1 and τ i2 > t2. Again, solve the integral to get

E
[
1ζi1=t1,ζi2=t2,di1=0,di2=1

]
= q̄1t1+t2

fCT−CM
1 (t1, t2; z,m, v)

where

fCT−CM
1 (t1, t2; z,m, v) ≡ b(t1)m

(
1 +

v

m
(z(t1) + z(t2))

)−1−m2

v
.

Finally, we may observe a single censored spell, ζ i1 = t1 ≥ 0 and di1 = di2 = 1. The density

of this event is

E
[
1ζi1=t1,di1=1

]
= q̄1t1

∫ ∞

0

e−θzt1
e−

mθ
v

(
mθ
v

)m2

v

θΓ(m2/v)
dθ.

This is the density that the censoring time is t1, c
i = t1, multiplied by the probability that

τ i1 > t1. Solve the integral to get

E
[
1ζi1=t1,di1=1

]
= q̄1t1f

CT−CM
2 (t1, 0; z,m, v)

where

fCT−CM
2 (t1, 0; z,m, v) ≡

(
1 +

v

m
zt1

)−m2

v
.

As in the CT-DM model, we use the density of these three events to compute the log-

likelihood, taking advantage of the fact that each of the probabilities is multiplicatively

separable in the terms involving Q̄1
c and q̄

1
c , allowing us to treat them as nuisance parameters.

The part of the likelihood that we are interested in is

LCT−CM =
1

N

N∑
i=1

log fCT−CM
di1+di2

(ζ i1, ζ
i
2; z,m, v). (O.30)

As usual, we normalize m = 1.

It is again straightforward to extend this analysis to the case where the frailty is a mixture

of K gamma distributions. Let {mk, vk, wk} denote the mean, variance, and weight on each
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distribution. Then the likelihood is

LCT−CM =
1

N

N∑
i=1

log

(
K∑
k=1

wkf
CT−CM
di1+di2

(ζ i1, ζ
i
2; z,mk, vk)

)
. (O.31)

We again impose
∑K

k=1wk = 1 and mk, vk, and wk all nonnegative to have a mixture model.

We also normalize
∑K

k=1wkmk = 1.

Given any finite dataset, we need to impose some restrictions on the baseline hazard in

order to maximize either likelihood (O.30) or (O.31). We assume that the baseline hazard

is piecewise constant between integer values and so z is piecewise linear.

I.3 Results

We use IRI pooled sample data where we use the first two spells per product. We emphasize

that all durations in this data set are coded to equal an integer. We then estimate three

models. The first is the CT-DM model. We are unaware of previous attempts to estimate

this model using repeated spell data. The second is the CT-CM model, which ignores

the fact that durations are coded to integer values. Gagliarducci (2005) and Nakamura

and Steinsson (2008) use this model to examine labor market data and price stickiness,

respectively. The third is our discrete time model with discrete measurement (DT-DM)

using our GMM estimator. For the CT-CM and CT-DM models we assume that the frailty

distribution is either gamma or a mixture of gammas.

The right panel of Figure 13 shows the results. The hazards are normalized to be equal 1

at duration of 2 weeks. The blue line shows the baseline hazard estimated from the discrete

time model with discrete measurement (DT-DM) using GMM. The other solid lines show ML

estimates for the continuous time model, either with discrete measurement CT-DM(1) (black

line) or continuous time measurement CT-CM(1) (green line). The CT-DM(1) model, which

properly takes into account time aggregation, gives an estimate basically identical to our DT-

DM model. The CT-CM(1) baseline hazard is much lower, recovering little heterogeneity.

In general, CT-DM and DT-DM models are not the same and so we should not expect them

to deliver the same estimates. There is, however, an important special case when they are,

which is when the baseline hazard is constant.

Heckman and Singer (1984) pointed out that imposing a specific distribution for the ML

estimation can bias the estimates of the baseline hazard. We investigate whether misspecifi-

cation of the frailty distribution can explain the difference between CT-CM(1) and DT-DM.

We cannot formulate the likelihood without choosing a frailty distribution but we can choose

a more flexible distribution than a single gamma, for example a mixture of several gamma
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Figure 13: Baseline hazard estimated using different methods with IRI data, log scale. The
green lines correspond to continuous time with continuous time measurement (CT-CM), the
black lines correspond to the continuous time, discrete measurement (CT-DM) model. The
blue line is the discrete time model with discrete measurement (DT-DM). The left panel
uses two spells per product, the right panel uses all spells. For the CT estimates in the
left panel, we assume that the frailty distribution is either a single gamma (solid line) or
a mixture of two gammas (dashed line). For the CT model in the right panel we assume
that the frailty distribution is gamma, but the estimator uses a full set of duration dummy
variables to overcome this assumption.

distributions. In the CT-CM model, we could not find the second gamma distribution and

hence the estimates of CT-CM(1) and CT-CM(2) are identical. In the CT-DM model,

modeling the frailty as a mixture of distributions does not affect the baseline hazard and

CT-DM(1) and CT-DM(2) are very close. We therefore conclude that in this case, imposing

a specific functional form on the frailty distribution does not affect results.

Our conclusion from this exercise is that the most important factor explaining the differ-

ence between the CT-CM and DT-DM model is the failure of CT-CM to deal with discrete

data.

Stata has a built-in command for parametric estimation of the MPH model with multiple

spells (streg) and observable characteristics. Even though it is necessary to specify frailty

distribution as well as the functional form of the baseline hazard, one can use a full set of

dummy variables for duration to “over-ride” the parametric form of the baseline hazard and

estimate it flexibly. This is the estimation method employed by Nakamura and Steinsson

(2008). Since we are interested in estimating hazards up to duration T̄ , we have only one
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dummy variable for spells longer than T̄ . This dummy is equal to 1 if the measured duration

exceeds T̄ + 1 and zero otherwise. We find that when we use two spells per product, the

maximum likelihood estimates in Stata coincide with the CT-CM model estimates with one

gamma distribution. We use Stata to estimate the baseline hazard using all spells (not only

first two spells per product).

The left panel of Figure 13 compares estimates from Stata with ours for the baseline

MPH model from Section 6. The baseline hazard estimated using maximum likelihood is

somewhat steeper than the one estimated using GMM, which is the result of the failure

of CT-CM to account for time-aggregated data. Using more spells per product helps to

overcome this misspecfication, since the difference between CT-CM and DT-DM is much

smaller.

I.4 Advantages of GMM

In closing, we note that there are several advantages to using the GMM estimator we de-

veloped over maximum likelihood. First, our estimator does not require us to specify the

frailty distribution. Second, it is linear in b and hence is very simple and fast to solve. Third,

Proposition 2 establishes that we find a global optimum. In contrast, the log-likelihood is

non-linear in b and finding its maximum can be slow.26 Importantly, there is no guarantee

that maximum likelihood finds a global maximum. Fourth, our model formulated in discrete

time is identified even with censored data, while an example in Supplemental Appendix I.1

illustrates that the time-aggregated continuous-time model may not be identified. Finally, we

showed that our method is easily extended to a competing risks framework with spell-specific

observable characteristics. We can handle these even if the proportional hazard assumption

only holds for some risks and some observables. This was central to the explorations of price

plans in section 8.. This set of assumptions has proven to be extremely hard to handle in

the maximum likelihood framework. For example, Fougere, Le Bihan, and Sevestre (2007)

try to estimate a CT-DM competing risks model without unobserved heterogeneity but say

on page 260 that “. . . convergence of the maximum likelihood procedure is very difficult to

reach.”

26Using our pooled IRI sample, it took 15 hours to estimate the baseline hazard using the ML method
in Stata on a computer with 256GB memory. It took 70 minutes to estimate it (including standard errors)
using GMM. A computer with 60GB memory failed to deliver ML estimates but produced GMM estimates.
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J Baseline Hazards for Product Categories

Here we present our results by product category. Figure 14 shows the baseline and mixture

hazards and Figure 15 shows the average type estimated using the GMM conditions for the

MPH model. Figures 16 and 17 show the baseline hazard for price trends, b++ and b−−

respectively, estimated using the GMM conditions for the competing risks model of price

trends and price reversals with observable characteristics, developed in Section D.

K Additional Figures for Price Plan Hazards

We estimate the unconditional and conditional hazards of changing plans, and the conditional

hazard of changing a price within the plan, using the Online Micro Price Data. Figure 18

shows estimates of the three baseline hazards. We observe that the unconditional hazard

of switching to a new plan is mildly increasing, while the conditional hazards are flat or

declining.
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Figure 14: Mixture and baseline hazards for individual product categories, IRI data, log
scale. Product categories are sorted by the number of spell pairs.
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Figure 15: Average type for individual product categories, IRI data, log scale. Product
categories are sorted by the number of spell pairs.
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Figure 16: Baseline hazard b++ in the model with price trends and price reversals for indi-
vidual product categories, IRI data, log scale. Product categories are sorted by the number
of spell pairs.
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Figure 17: Baseline hazard b−− in the model with price trends and price reversals for indi-
vidual product categories, IRI data, log scale. Product categories are sorted by the number
of spell pairs.
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Figure 18: Baseline hazard of changing a price within a plan and between plans for Online
Micro Price Data, starting at high and low price of a plan, using daily and weekly data, log
scale. The top row shows daily data, the bottom row weekly data. The green line shows
the within-plan hazard (part of competing risks), the brown lines shows the hazard to a new
plan (competing risks); both are conditional. The blue line shows the unconditional hazard
of choosing a new plan.
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L Trigonometric Simplifications

Proof of Lemma 2. We start with the product-to-sum identity for sine functions,

sin(A) sin(B) = 1
2

(
cos(A−B)− cos(A+B)

)
. Applying this to our expression, we get:

sin

(
n

N + 1
jπ

)
sin

(
n′

N + 1
jπ

)
=

1

2

(
cos

(
n− n′

N + 1
jπ

)
− cos

(
n+ n′

N + 1
jπ

))
Next we sum this expression over j from 1 to N :

N∑
j=1

sin

(
n

N + 1
jπ

)
sin

(
n′

N + 1
jπ

)
=

1

2

(
N∑
j=1

cos

(
n− n′

N + 1
jπ

)
−

N∑
j=1

cos

(
n+ n′

N + 1
jπ

))
(O.32)

We next prove a preliminary result by applying Lagrange’s trigonometric identity:

N∑
j=1

cos(jθ) = −1

2
+

sin((N + 1
2
)θ)

2 sin( θ
2
)

,

which holds whenever θ that is not a multiple of 2π (so sin(θ) ̸= 0).

Fix an integer k with −2N ≤ k < 0 or 0 < k ≤ 2N , so k/(2(N + 1)) is not an integer.

Then

N∑
j=1

cos

(
kjπ

N + 1

)
= −1

2
+

sin
( (2N+1)kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) = −1

2
+

sin
(
kπ − kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) = −1 + (−1)k

2
, (O.33)

where the first equation is Lagrange’s trigonometric identity; the second equation breaks

the term inside the numerator into two pieces and applies the definition of α to one of

them; and the third uses the fact that sin(kπ − απ) = sin(απ) if k is an odd integer and

sin(kπ − απ) = − sin(απ) if k is an even integer.

We use equation (O.33) to evaluate the two summations in equation (O.32), considering

two cases separately.

Inequality: n ̸= n′. First let k = n− n′ and then let k = n+ n′. Since n, n′ ∈ {1, . . . , N}
and n ̸= n′, this satisfies the restrictions that −2N ≤ k < 0 or 0 < k ≤ 2N . Equation (O.33)

implies

N∑
j=1

cos

(
n− n′

N + 1
jπ

)
= −1 + (−1)n−n′

2
and

N∑
j=1

cos

(
n+ n′

N + 1
jπ

)
= −1 + (−1)n+n′

2
.
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Thus when n ̸= n′,

1

2

(
N∑
j=1

cos

(
n− n′

N + 1
jπ

)
−

N∑
j=1

cos

(
n+ n′

N + 1
jπ

))

=
1

2

((
−1 + (−1)n−n′

2

)
−
(
−1 + (−1)n+n′

2

))
=

(−1)n−n′

4

(
−1 + (−1)2n

′
)
= 0,

where the last equation uses (−1)2n
′
= 1 since n′ is an integer.

Equality: n = n′. When k = n − n′ = 0, we cannot apply equation (O.33), which holds

only for non-integer k. Instead, we evaluate it directly:

N∑
j=1

cos

(
n− n

N + 1
jπ

)
= N,

where we use cos(0) = 1. For k = n + n′ = 2n ∈ {2, . . . , 2N}, we apply equation (O.33)

directly:
N∑
j=1

cos

(
2n

N + 1
jπ

)
= −1 + (−1)2n

2
= −1,

where the last equation uses (−1)2n = 1. Thus when n = n′,

1

2

(
N∑
j=1

cos

(
n− n′

N + 1
jπ

)
−

N∑
j=1

cos

(
n+ n′

N + 1
jπ

))
=

1

2
(N − (−1)) =

N + 1

2
.

This completes the proof.

Proof of Lemma 3. We use the other Lagrange trigonometric identity:

N∑
n=1

sin(nθ) =
cos( θ

2
)− cos( (2N+1)θ

2
)

2 sin( θ
2
)

.

Setting θ = kπ/(N + 1), we apply this to our expression:

N∑
n=1

sin

(
n

N + 1
kπ

)
=

cos
(

kπ
2(N+1)

)
− cos

(
(2N+1)kπ
2(N+1)

)
2 sin

(
kπ

2(N+1)

) =
cos
(

kπ
2(N+1)

)
− cos

(
kπ − kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) ,

where the second equation algebraically manipulates the second term in the numerator. Now
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if k is even, cos(kπ − α) = cos(−α) = cos(α) for all α. Thus when k is even we have

N∑
n=1

sin

(
n

N + 1
kπ

)
=

cos
(

kπ
2(N+1)

)
− cos

(
kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) = 0.

In contrast, k is odd, cos(kπ−α) = − cos(−α) = − cos(α) for all α. Thus when k is odd we

have
N∑

n=1

sin

(
n

N + 1
kπ

)
=

cos
(

kπ
2(N+1)

)
+ cos

(
kπ

2(N+1)

)
2 sin

(
kπ

2(N+1)

) = cot

(
kπ

2(N + 1)

)
.

This completes the proof.
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