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B Details from the Simulations

B.1 Estimation

The model described in the main text captures the impact of a conditional cash transfer on children’s
health outcomes and the market for a perishable protein source in a remote village in the Philippines.
It is designed based on the results in Filmer et al. (2023).

There are 10 coe!cients of the model ω =
[
ωd00 ωd01 ωdw ωdp ωs0 ωsp ωy00 ωy01 ωyd ωyw

]→
.

The model is estimated to match the following 10 moments from the subsample of remote villages
in Filmer et al. (2023). These moments are computed using data files found in the replication
package for the paper, see Filmer et al. (2021).

• The average demand for eggs per week among eligible and ineligible children in control villages
(µ̂d

elig, µ̂
d
inelig).

• The average height-for-age Z-score among eligible and ineligible children in control villages
(µ̂y

elig, µ̂
y
inelig).

• The average price of eggs in treated and control villages (p̂0 and p̂1). The elasticity of demand
for individuals in control villages in the model matches the elasticity of egg demand cited,
although not directly estimated in Filmer et al. (2023) (εegg).

• The e”ect of the treatment on eligible children on height-for-age Z-score and eggs per week
(ϑ̂yelig, ϑ̂

d
elig), where treatment e”ects are defined as the di”erences-in-means for ineligible chil-

dren in treated versus control villages.

• The ratio of treatment e”ects on height-for-age Z-score and eggs-per-week demand for inel-
igible children (ϖ̂ = ϑ̂yinelig/ϑ̂

d
inelig)

12. Again, treatment e”ects are defined as the di”erences-
in-means for ineligible children in treated versus control villages.

We use these moments to estimate the model. The randomization of treatment makes estimating
coe!cients on treatments straightforward, because the errors in the demand equation are indepen-
dent of Wh(i). Under the assumptions in Filmer et al. (2023), the randomization of treatment also
provides enough variation to estimate coe!cients on prices in a linear demand and supply model.
The coe!cient on price in the demand model is provided directly by the elasticity of demand taken
from the literature in Filmer et al. (2023). Given the demand elasticity, and under the assumption
that Wh(i) does not enter into the supply equation, then the change in prices in treated in and
control villages provides an estimate for the supply elasticity under the market-clearing condition.
The authors argue that treatments do not a”ect supply meaningfully, because most eggs sold in
small villages are produced outside each village. Formally, each parameter has an estimator, which
is a simple function of the moments.

12It is possible to estimate the model by matching the treatment e!ects on outcomes and demand directly for
ineligible children, rather than their ratio. This would avoid using the elasticity of egg demand, which is taken from
the literature rather than estimated from the data. However, the sample size of ineligible children in remote villages
is small, so estimating the model to match these individual moments, which are imprecisely estimated, rather than
their ratio, leads to an implied elasticity that does not seem reasonable.
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ω̂d00 = µ̂d
inelig → ω̂dp · p̂

0, ω̂d01 = µ̂d
elig → ω̂dp · p̂

0,

ω̂dp =
εegg

1.01 · p̂0
·
1

n

n∑

i=1

(Eiµ̂
d
elig + (1→ Ei)µ̂

d
inelig), ω̂dw = ϑ̂delig → ω̂dp(p̂1 → p̂0),

ω̂sp =

(
1

n

n∑

i=1

Eiϑ̂
d
elig +

1

n

n∑

i=1

(1→ Ei)(p̂
1
→ p̂0)ω̂dp

)/
(p̂1 → p̂0)

ω̂s0 =
1

n

n∑

i=1

(Eiµ̂
d
elig + (1→ Ei)µ̂

d
inelig)→ ω̂spp̂0,

ω̂yd =
ϑ̂yinelig
ϑ̂dinelig

, ω̂yw = ϑ̂yelig → ω̂ydϑ̂
d
inelig,

ω̂y00 = µ̂y
inelig → ω̂ydµ̂

d
inelig, ω̂y01 = µ̂y

elig → ω̂ydµ̂
d
inelig.

The moments used for estimating the model and the corresponding parameter estimates are
described in Table 3.

Estimated Moments from Filmer et al. (2023)

µ̂d
elig µ̂d

inelig µ̂y
elig µ̂y

inelig p̂0 p̂1 εegg ϑ̂yelig ϑ̂delig
ω̂yinelig

ω̂dinelig

1.6 2.2 -2.47 -1.44 6.07 6.26 -1.3 0.32 0.12 1.85

Estimated Parameters

ω̂d00 ω̂d01 ω̂dw ω̂dp ω̂s0 ω̂sp ω̂y00 ω̂y01 ω̂yd ω̂yw

4.49 3.89 0.19 -0.38 -0.21 0.33 -5.51 -5.43 1.85 0.1

Table 3: Estimation of the Model in Section 3

Last, for simulating data from the model, Ci and h(i) are determined by random draws from
the empirical distribution of households with children between 0 and 14 (who are in eligible for the
transfer if they meet a proxy means test) from the baseline survey in Filmer et al. (2023). Ei is
drawn randomly to match the average percentage of eligible households in remote villages. The
household and individual-level error terms in the demand equation are independent and mean-zero
normally distributed variables with a standard deviation of 1/3rd. Similarly, the household level
error terms in the outcome equation are independent and mean-zero normally distributed variables
with a standard deviation of 1/3rd and the individual-level error terms have standard deviation of
1.

B.2 Adding Heterogeneity

The model in Section 5.1 is augmented to add some additional heterogeneity. For each household,
a set of covariates Xh ↑ N (0, 1)10 is drawn. Households now have type ϱh ↓ {A,B,C,D}. House-
holds of type ϱh = A have data generated by the model in the previous section. In response to
the treatment, they increase their purchase of a perishable protein source, and children’s health
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outcomes are improved on average.

DA
i (Wh, p) = ωd01 · Eh(i) + ωd00(1→ Eh(i)) + ωdwWh(i)Eh(i) + ωdp · p+ ςd,h(i) + φd,i(Wi)

Y A
i (Wh(i), p) = ωy01Eh(i) + ωy00(1→ Eh(i)) + ωydD

A
i (Wh(i), p) + ωywWh(i)Eh(i) + ςy,h(i) + φyi(Wi)

For the other three types, treatment e”ects are distinct from Type A. Households of type ϱh = B
increase their consumption of a perishable protein source and purchase a more expensive non-
perishable protein source (such as canned fish). We assume for this second type of good, because it
is non-perishable, supply is much more elastic and equilibrium e”ects are negligible. So, for these
households, the data generating process is as follows:

DB
i (Wh, p) = DA

i (Wh, p) + 0.75ωd01 · Eh(i) ·Wh(i)

Y B
i (Wh(i), p) = ωy01Eh(i) + ωy00(1→ Eh(i)) + ωydD

A
i (Wh(i), p) + (ωyw + 0.2)Wh(i)Eh(i) + ςy,h(i) + φyi(Wi)

For households of type ϱh = C, the cash transfer does not have its intended positive e”ect. In
response to the cash transfer, an increased ability of parents to a”ord addictive goods (such as
cigarettes, or alcohol) leads to a decrease in the purchase of perishable protein, which has a large
negative e”ect on children’s health. Let Childi be an indicator if individual i is under 5 years of
age.

DC
i (Wh, p) = ωd01 · Eh(i)(1→ 0.75Wh(i)Childi) + ωd00(1→ Eh(i)) + ωdp · p+ ςd,h(i) + φd,i(Wi)

Y C
i (Wh(i), p) = ωy01Eh(i) + ωy00(1→ Eh(i)) + ωydDi(Wh(i), p) + ωywWh(i)Eh(i) + ςy,h(i) + φyi(Wi)

For households of type ϱh = D, there is an increase in food consumption of adults, but not of
children.

DD
i (Wh, p) = ωd01 · Eh(i) + ωd00(1→ Eh(i)) + ωdp · p+ ςd,h(i) + 1.5ωdwWh(i)Eh(i)(1→ Childi) + φd,i(Wi)

Y D
i (Wh(i), p) = ωy01Eh(i) + ωy00(1→ Eh(i)) + ωydDi(Wh(i), p) + 3 · ωywWh(i)Eh(i) + ςy,h(i) + φyi(Wi)

The household type is correlated with observed covariates as follows. The score for each house-
hold type is:

UhA = 1 +X2h → 0.5X3h + ςhA,

UhB = X1h + ςhB,

UhC = →1 +X3h + ςhC ,

UhD = X4h + ςhD,

where each of the noise terms are drawn from a Type I extreme value distribution. ϱh =
arg max

T↑{A,B,C,D}
UhT . The coe!cients of the model are the same as in Table 3. In the simulation,

44% of the households are Type A, 22% are type B, 22% are Type D, and 12% are Type C. Demand
and outcomes are aggregated by household as in Equation (39).
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C Concentration Bounds

Consider a triangular array of random functions Fin(p) with i = 1, . . . , n, n = 1, 2, . . . and p ↓ RJ .
Suppose that Fin(·) with i = 1, . . . , n are independent and identically distributed, and let fn(p) =
E [Fin(p)]. We say that the sample average of the Fin(·) is asymptotically equicontinuous at p↓ if,
for any sequence ↼n ↔ 0, we have

sup
↔p↗p→↔↘εn

∣∣∣∣∣
1

n

n∑

i=1

(Fin(p)→ Fin(p
↓)→ (fn(p)→ fn(p

↓)))

∣∣∣∣∣ = op

(
1
↗
n

)
. (79)

The motivation behind establishing asymptotic equicontinuity expansions is that we may often be
able to assume that the expected function fn(p) is di”erentiable even when the Fin(p) themselves are
not (e.g., if the Fin(p) capture choices regarding supply and demand that may vary discontinuously
in prices). Asymptotic equicontinuity then allows us to approximate sample averages of Fin(p) by
Taylor expanding fn(p).

The goal of this section is to establish asymptotic equicontinuity for a number of function classes
used throughout the proofs. Our argument relies on technical tools from empirical process theory
that go beyond what’s used elsewhere in the paper, and here we will only give brief references to
the results needed to establish our desired claims. Section 2 of van der Vaart & Wellner (1996)
provides an excellent introduction and reference to the tools underlying the arguments made here.

Our approach to establishing asymptotic equicontinuity of relevant quantities in our marketplace
model starts by bounding the bracketing number of approximately monotone functions. Let Fin :
RJ

↔ R be random functions drawn i.i.d. from a distribution Qn, and let S ↘ RJ be the set
of possible market equilibrium prices. We are interested in a bracket for the function class Fn =
{Fin(·) ↔ Fin(p) : p ↓ S}. For any pair p↗, p+ in RJ , we define a bracket as

[p↗, p+] = {p ↓ S : Fin(p↗) ≃ Fin(p) ≃ Fin(p+) for all Fin(·)} . (80)

We define the square of the L2(Qn)-length of the bracket as d2Qn
(p↗, p+) = EQn

[
(Fin(p↗)→ Fin(p+))2

]
,

and the ς-bracketing number of Fn under Qn as

N[](ς, Fn, L2(Qn)) = inf

{
K : S ⇐

K⋃

k=1

[p↗(k), p+(k)] with dQn (p↗(k), p+(k)) ⇒ ς for all k

}
.

(81)
The following result bounds the bracketing number of functions that are approximately monotone
and weakly continuous in the sense of Assumption 4.

Lemma 5. Consider a class of random functions Fin : RJ
↔ R with Fin ↓ Gn almost surely, and

S is a compact subset of RJ
. Let Fn = {Fin(·) ↔ Fin(p) : p ↓ S}. Suppose that, for all p ↓ S,

ς ⇒ 1 and ⇑↼⇑
2
⇒ Cς, we have

Fin(p→ ςej) ≃ Fin(p+ ↼) ≃ Fin(p+ ςej). (82)

Suppose also that the Fin have a distribution Qn under which

EQn

[(
Fin(p)→ Fin(p

≃)
)2

⇒ L
p→ p≃


2
for all p, p≃ ↓ RJ . (83)

Then, there exists ω(S, C, L) depending only on the geometry of S and the constants given above
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such that, for all ς ⇒ 1,
N[](ς, Fn, L2(Qn)) ⇒ ω(S, C, L) ς↗2J . (84)

Proof. Let Bε(p) = {p≃ ↓ S : ⇑p≃ → p⇑
2
⇒ ↼}. By (82), we have

BCϑ(p) ⇐ [p→ ϱej , p+ ϱej ].

Meanwhile, by (83) we have d2Qn
(p→ ϱej , p+ ϱej) ⇒ 2Lϱ, and so dQn (p→ ϱej , p+ ϱej) ⇒ ς if

ϱ = ς2/(2L). These two facts together imply that

N[](ς, Fn, L2(Qn)) ⇒ inf

{
K : S ⇐

K⋃

k=1

BC(ϖ2/(2L))(pk) with pk ↓ RJ

}
,

where the right-hand side quantity is the C(ς2/(2L))-covering number of S under the usual norm
⇑.⇑

2
. For ς ⇒ 1 , this quantity can be further be bounded as (Polyanskiy & Wu 2024, Theorem

27.3)

inf

{
K : S ⇐

K⋃

k=1

BC(ϖ2/(2L))(pk) with pk ↓ RJ

}

⇒ 3J
(
C

(
ς2

2L

))↗J vol
(
conv

(
S ⇓BC/(2L)

))

vol (B1)
,

(85)

where Br denotes the radius-r ball in RJ centered at 0, A ⇓ B = {a+ b : a ↓ A, b ↓ B}, conv(.)
denotes the convex hull of a set and vol(.) denotes the volume of a set. The scaling in (85) establishes
the desired claim.

Lemma 6. We say that a random function Fin is ϱ-subgaussian over S if there exists a constant

C such that, for all n ≃ 1 and t > 0, that

P

sup
p↑S

∣∣∣∣∣
1

n

n∑

i=1

Fin(p)→ f(p)

∣∣∣∣∣ >
t

↗
n


⇒ Ctϑe↗2t2 . (86)

Under Assumptions 4, 5 and 6, let Ui be random price perturbations with E [Ui] = 0 and |Ui| ⇒ hn
almost surely for some sequence hn ↔ 0. Suppose furthermore that Wi is Bernoulli-randomized as

in Design 1. Then, the following random functions are ϱ-subgaussian:

• Zi(w, p+ Ui) for w = 0, 1.

• Zi(Wi, p+ Ui) and (Wi/ϖi → (1→Wi)/(1→ ϖi))Zi(Wi, p+ Ui).

• Yi(w, p+ Ui) for w = 0, 1.

• Yi(Wi, p+ Ui) and (Wi/ϖi → (1→Wi)/(1→ ϖi))Yi(Wi, p+ Ui).

Proof. For Zi(w, p+Ui) and Zi(Wi, p+Ui), we can use the bracketing bounds in Lemma 18, which
imply N[](ς,Fn, L2(Qn)) ⇒ (K/ς)ϑ , for ϱ = 2J , and Fn is constructed by varying Zi(w, p + Ui)
or Zi(Wi, p + Ui) over p ↓ S. The tail bound follows from Theorem 2.14.9 of van der Vaart &
Wellner (1996), given boundedness of the net demand functions and the polynomial bound on the
ς-bracketing number. The result for Wi/ϖi Zi(Wi, p + Ui), (1 → Wi)/(1 → ϖi)Zi(Wi, p + Ui) and
their di”erences follows by the same argument because Wi/ϖi and (1 → Wi)/(1 → ϖi) are positive
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and bounded by ε↗1, and thus these functions satisfy the conditions of Lemma 18 with a constant
L/ε in (83).

For outcomes, we have the decomposition Yi(w, p) = Hi(w, p) + ↽(#i(w), Zi(w, p), p). We first
work with Hi(w, p). Note that bracketing bounds for Lipschitz function classes are standard; see,
e.g., Section 2.7.4 of van der Vaart & Wellner (1996). Adapting these results to our setting, we let
Fi(w, p) = Hi(w, p) + c and F = {Fi(w, ·) ↔ Fi(w, p) : p ↓ S}.

By the Lipschitz property, for any p ↓ RJ ,


(p≃, 0) :

p→ p≃

2
⇒ ς


⇒ [(p, →Mς), (p, +Mς)],

and dP ((p, →Mς), (p, Mς)) ⇒ 2Mς for any distribution Q over the functions Hi(w, p).
Thus, using notation from Lemma 18,

N[](ς, F , L2(Q)) ⇒ inf

{
K : S ⇐

K⋃

k=1

Bϖ/(2M)(pk) with pk ↓ RJ

}
, (87)

which is in turn O(ς↗J) by the same argument as used in (85). This bracketing bound can be
applied to Hi(w, p+ Ui), Hi(Wi, p+ Ui), etc., thus enabling us to again apply Theorem 2.14.9 of
van der Vaart & Wellner (1996).

For the second component of the outcome function, it is useful to use a covering number bound
rather than a bracketing number bound. For a function class Fn, we can define the ς-covering
number of Fn under a distribution Qn as N(ς,Fn, L2(Qn)). This is defined as the minimum
number of balls of radius ς in L2(Qn) norm required to cover Fn. ς-covering numbers are bounded
by 2ς-bracketing numbers, as shown in Section 2.1.1 of van der Vaart & Wellner (1996). Theorem
2.14.9 of van der Vaart & Wellner (1996) provides a tail bound as in the Lemma statement for
function classes with

sup
Qn

N(ς,Fn, L2(Qn)) ⇒

(
K

ς

)ϑ

for constants K, ϱ > 0. It remains to provide such a bound for the class {Yi(·) ↔ Yi(w, p) : p ↓ S}.
Let Gin = ⇀(Fi1n, . . . , FiMn) be a composition of M random functions, drawn from distribution

Qn. Let Gn = {⇀(Fi1n(·), . . . , FiMn(·)) ↔ ⇀(Fi1n(p), . . . , FiMn(p)) : p ↓ S}. and Fmn = {Fimn(·) ↔
Fimn(p) : p ↓ S}. Lemma A.6 of Chernozhukov et al. (2014) indicates that as long as ⇀(·) is
Lipschitz in each of its M arguments, then if there is a polynomial bound on the ς-covering number
of Fmn for m ↓ {1, . . . ,M}, there is also a polynomial bound on the ς-covering number of G. Recall
that a ς-covering number is bounded by a 2ς-bracketing number and our bracketing numbers do
not depend on Qn. We can now apply the composition result from Chernozhukov et al. (2014) to
finish the proof for Yi(w, p), since we already showed that Hi(w, p) has the right kind of bound on
the bracketing number of its function class, ↽(·) is Lipschitz in each of its arguments, and each of
its arguments are functions of p that have a polynomial bound on their ς-covering numbers.

Lemma 7. For n = 1, 2, . . ., let Fin(p) be IID random functions that are ϱ-subgaussian and weakly

continuous, and whose covariances converge pointwise to a finite limit $,

lim
n⇐⇒

Cov
[
Fin(p), Fin(p

≃)
]
= $(p, p≃) for all p, p≃. (88)

Then, averages of that function are asymptotically equicontinuous, i.e., they satisfy (79) at all
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p ↓ S. Furthermore, the residuals in the asymptotic equicontinuty expansion,

Rn = sup

{∣∣∣∣∣
1

n

n∑

i=1

(Fin(p)→ Fin(p
↓)→ (fn(p)→ fn(p

↓)))

∣∣∣∣∣ : ⇑p→ p↓⇑ ⇒ ↼n, p ↓ S

}
(89)

satisfy lim supn⇐⇒ nE
[
R2

n

]
= 0. In particular, under the assumptions of Lemma 19, averages of

the following random functions are asymptotically equicontinuous and have residuals in the asymp-

totic equicontinuity expansion meeting the above condition:

• Zi(w, p+ Ui) for w = 0, 1.

• Zi(Wi, p+ Ui) and (Wi/ϖi → (1→Wi)/(1→ ϖi))Zi(Wi, p+ Ui).

• Yi(w, p+ Ui) for w = 0, 1.

• Yi(Wi, p+ Ui) and (Wi/ϖi → (1→Wi)/(1→ ϖi))Yi(Wi, p+ Ui).

Proof. Let Qn define a distribution over random functions Fin(p), for any of the random functions
listed in the Lemma, and define the function class Fn = {Fin(·) ↔ Fin(p) : p ↓ S}. Theorems
2.11.1 and Theorem 2.11.9 van der Vaart & Wellner (1996) imply weak convergence of the empirical
process

1
↗
n

n∑

i=1

(
Fin(p)→ fn(p)→ Fin(p

≃)→ fn(p
≃)
)

to a Gaussian process indexed by p when for each n, the ς-bracketing number or ς-covering number
of Fn under Qn is bounded by (K/ς)V for all 0 < ς < K, for finite constants K,V > 0. Then,
asymptotic equicontinuity follows from weak continuity, i.e. that for each p ↓ S and p≃ ↓ S,
E[(Fin(p)→Fin(p≃))2] is continuous in p. Weak continuity implies that the limiting Gaussian process
has continuous sample paths.

To verify the 2nd-moment bounds on the residuals in the expansions, we first note that

Rn = sup
↔p↗p→↔↘εn

∣∣∣∣∣
1

n

n∑

i=1

(Fin(p)→ Fin(p
↓)→ (fn(p)→ fn(p

↓)))

∣∣∣∣∣

⇒ 2 sup
p↑S

∣∣∣∣∣
1

n

n∑

i=1

(Fin(p)→ fn(p))

∣∣∣∣∣ ,

which has a rapidly decaying tail by Lemma 19. Thus, in particular,

lim sup
n⇐⇒

n2 E
[
R4

n

]
< ⇔.

Now, pick any c > 0. By asymptotic equicontinuity, lim sup
n⇐⇒

P [|Rn| > c/
↗
n] = 0. Furthermore

lim sup
n⇐⇒

nE
[
R2

n

]
= lim sup

n⇐⇒
nE

[
1
(

|Rn| ⇒ c/
↗
n
)

R2

n

]
+ nE

[
1
(

|Rn| > c/
↗
n
)

R2

n

]

⇒ c2 + lim sup
n⇐⇒


P
[
|Rn| > c/

↗
n
]

n2 E [R4
n]

⇒ c2 + lim sup
n⇐⇒


P
[
|Rn| > c/

↗
n
]
lim sup
n⇐⇒


n2 E [R4

n]

= c2,
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where for the second inequality we used Cauchy-Schwarz. Since we have shown that 0 ⇒ lim supn⇐⇒ nE
[
R2

n

]
⇒

⇁ for any ⇁ > 0, we see that in fact lim supn⇐⇒ nE
[
R2

n

]
= 0.

For all of the random functions listed, weak continuity holds by Assumption 5 and 6, and
Lemma 19 provides the required subgaussian condition. A final check is htat

lim
n⇐⇒

Cov
[
Zij(w, p+ Ui), Zij(w, p

≃ + Ui)
]
= Cov

[
Zij(w, p), Zij(w, p

≃)
]
, (90)

which is finite, and the same holds for Yi(w, p+ Ui) and Yi(Wi, p+ Ui).

D Additional Results and Extensions

D.1 Consistency of Estimated Targeting Rule

When the optimal rule is deterministic and unique, it has the form φ↓(Xi) = (ϑ↓
CADE

(Xi) ≃

c↓ϑ↓,z
CADE

(Xi)). By Theorem 13, we can write the optimal rule as the unique solution to the following
J-dimensional moment condition, where ϑ↓ represents the vector of functions that concatenates
ϑ↓
CADE

(Xi) and ϑ↓,z
CADE

(Xi) and ϑ is some bounded function with the same domain and codomain.

G(c↓; ϑ↓) = 0, where G(c; ϑ) = E
[

(ϑ(Xi) ≃ c→ϑ z(Xi))→ ϖ(Xi)

ϑ z(Xi)



c↓ is finite, so we can specify a ball in RJ such that the distance from c↓ to the surface of
this ball is at least M . Specify such a ball as BM . We can estimate the optimal rule by solving
the following J-dimensional score condition. The conditional average direct e”ects are nuisance
functions, since they need to be estimated, where ϑ̂ is some estimate of the population conditional
average treatment e”ects on outcomes and net demand:

ĉ ↓ {c ↓ RJ : Ĝn(c; ϑ̂) = op(1)},

Ĝn(c; ϑ̂) =
1

n

n∑

i=1

( (ϑ̂(Xi) ≃ c→ϑ̂ z(Xi)→ ϖ(Xi))ϑ̂
z(Xi).

The proof of Proposition 21 shows that the optimal-equilibrium neutral rule is the unique (and
well-separated) solution to the J population constraints defined by G(·). Then, the consistency of
the estimated rule follows from uniform convergence of the empirical constraint functions to the
population constraint functions.

Proposition 4. For every v ↓ SJ↗1
and b ↓ R+

, where SJ↗1
is the unit sphere in RJ

, assume

that the random variable ϑ↓CADE(Xi) → b · v→ϑ z,↓CADE(Xi) has uniformly bounded density, and for

every v ↓ SJ↗1
that v→ϑ z,↓CADE(Xi) has uniformly bounded density. In addition, assume that the

covariance matrix of ϑ↓,zCADE(Xi) is positive definite, and that Ĝn(ĉ; ϑ̂) = op(1). Finally, assume that

ϑ̂ : X ↔ R and ϑ̂ z : X ↔ R are functions that are uniformly bounded and are consistent estimators

of the population conditional average treatment e!ects in the following sense:

ET [(ϑ̂(Xi)→ ϑ↓CADE(Xi))
2] = op(1),

ET [||ϑ̂
z
j (Xi)→ ϑ↓,zj,CADE(Xi))||

2

2] = op(1),
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where ET [·] is the expectation over a random sample of test data, conditional on the training data

used for estimation.

Then, the estimated targeting rule is consistent for the optimal equilibrium-stable targeting rule

in the population,

ĉ = c↓ + op(1).

First, we use a change of variables to make the parameter space compact. For every c ↓ RJ , we
can write c = f(a) · v, where v = c/||c||2 ↓ SJ↗1 and a = f↗1(||c||2) ↓ [0, 1) for some continuous
and strictly monotonic function f : [0, 1] ↔ [0,+⇔] with f(0) = 0 and f(1) = ⇔. For this proof,
it will be useful to characterize properties of the population constraint function over the extended
(and compact) space of a ↓ [0, 1], even though the optimal rule, and all of the estimated rules are
found within a ↓ [0, 1). For a more compact notation define ω as the vector combining v and a,
where ω ↓ %, and % = SJ↗1

↖ [0, 1]. Let

φ(Xi; ω, ϑ) =

{
(ϑ(Xi) > f(a)v→ϑ z(Xi)), 0 ⇒ a < 1,

(0 > v→ϑ z(Xi)), a = 1.

Now we can define the population and empirical constraint at a given treatment rule and for a
given set of conditional mean functions:

G(ω; ϑ) = ET

[
φ(Xi; ω, ϑ)→ ϖ(Xi)


ϑ z(Xi)


, Gn(ω

↓; ϑ) =
1

n

n∑

i=1


φ(Xi; ω, ϑ)→ ϖ(Xi)


ϑ z(Xi).

Any estimated treatment rule, characterized by ω̂, approximately satisfies the empirical constraint
with conditional average treatment e”ects estimated by data-splitting, so that Gn(ω̂; ϑ̂) = op(1).

Under our assumptions, Theorem 13 indicates that there is a unique and deterministic rule in
the population characterized by G(ω↓; ϑ↓) = 0, where ϑ↓ collects ϑ↓

CADE
(Xi) and ϑ↓,z

CADE
(Xi) and ω↓

collects a↓ and v↓. It is deterministic because the set {x ↓ X : ϑ↓
CADE

(x) = f(a↓) · v↓→ϑ z,↓
CADE

(x)}
has measure 0. By Theorem 13, any optimal equilibrum-neutral rule that is deterministic has the
structure (ϑ↓

CADE
(x) > f(a↓)v↓,→ϑ z,↓

CADE
(x)). Since the covariance matrix of ϑ↓,z

CADE
(Xi) is positive

definite, there can be only one such rule that meets the population constraints (this rules out label
swapping between two goods in the market, for example).

Next, we want to show that each element of G(ω; ϑ↓) is a continuous function in ω for all ω ↓ %.
Choose some a0, v0 and arbitrary j ↓ {1, . . . , J}. For some sequence ωn, where ωn ↔ ω0 = (a0, v0),
by the boundedness of ϑ z(Xi), there is some finite M such that

|Gj(ωn; ϑ
↓)→Gj(ω0; ϑ

↓)| ⇒ P (φ(Xi; ωn, ϑ
↓) ↙= φ(Xi; ω0, ϑ

↓))M

= O(||ωn → ω0||2)

= o(1)

The first step is by Lemma 22. This proves that when a = 1, then G(ω; ϑ↓) is continuous in ω. Since
G(ω; ϑ) is a continuous function in ω, ω̂ is also in a compact space, and ω↓ is the unique solution to
G(ω↓; ϑ↓) = 0, then we know that if ⇁ > 0, then sup

ϱ:||ϱ↗ϱ→||2>ς
||G(ω)||2 > 0. The final step is to show

uniform consistency:

sup
ϱ↑!

|Ĝn(ω; ϑ̂)→G(ω; ϑ↓)| = op(1).
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It will be useful to make the following decomposition:

|Ĝn(ω; ϑ̂)→ g(ω; ϑ)| ⇒ |Gn(ω; ϑ̂)→G(ω; ϑ̂)|+ |G(ω; ϑ̂)→G(ω; ϑ↓)|. (91)

For the first term of (91), we write the empirical average using data-splitting, where Ik are the
indexes of data in split k, and ϑ̂k(i)(Xi) are conditional average treatment e”ects estimated on data
that is not in Ik. We drop the CADE subscripts here to keep the notation more manageable. Then,
by treating ϑ̂k as fixed within each split, we use tail bounds for empirical processes indexed by
VC-classes. The details are as follows:

sup
ϱ↑!

|Gn(ω; ϑ̂)→G(ω; ϑ̂)|

= sup
ϱ↑!

∣∣∣∣∣
1

n

n∑

i=1

(φ(Xi; ω, ϑ̂)→ ϖ(Xi))ϑ̂
z(Xi)→ ET [(φ(Xi; ω, ϑ̂)→ ϖ(Xi))ϑ̂

z(Xi)]

∣∣∣∣∣

= sup
ϱ↑!

∣∣∣∣∣∣

K∑

k=1

nk/n
1

nk

∑

i↑Ik

(φ(Xi; ω, ϑ̂
k(i))→ ϖ(Xi))ϑ̂

k(i),z(Xi)→ ET [(φ(Xi; ω, ϑ̂
k(i))→ ϖ(Xi))ϑ̂

k(i),z(Xi)]

∣∣∣∣∣∣

⇒

K∑

i=1

nk

n
sup
ϱ↑!

|Ank(ω)|

(1)

= op(1)

Within each split, we can treat ϑ̂k as fixed. F = { (ϑ(Xi) ≃ f(a)v→ϑ z(Xi))ϑ z(Xi) : a ↓

[0, 1], v ↓ SJ↗1
} for a fixed and uniformly bounded ϑ(Xi) is a VC-class multiplied by a bounded

random variable. Then, the tail bound for empirical processes indexed by VC-classes (e.g. Theorem
2.6.7 of van der Vaart & Wellner (1996)) gives a tail bound for supϱ↑! |Ank(ω)| that does not depend
on a given realization of ϑ̂ . This implies lim

n⇐⇒
Pr(sup

ϱ↑!
|Ank| > t) = 0 for any t > 0.

To handle the second term in (91),

sup
ϱ↑!

|G(ω; ϑ̂)→G(ω; ϑ↓)| = sup
ϱ↑!

|ET [(φ(Xi; ω, ϑ̂)→ ϖ(Xi))ϑ̂
z(Xi)]→ ET [(φ(Xi; ω, ϑ

↓)→ ϖ(Xi))ϑ
↓,z(Xi)]|

⇒


ET [(ϑ̂ z(Xi)→ ϑ↓,z(Xi))2] + sup

ϱ↑!
M


ET [(φ(Xi; ω, ϑ̂)→ φ(Xi; ω, ϑ↓))2]

⇒ op(1) + sup
ϱ↑!

M

P (φ(Xi; ω, ϑ̂) ↙= φ(Xi; ω, ϑ↓))

(1)

= op(1) +O(||ϑ̂ z(Xi)→ ϑ↓,z(Xi)||2 + |ϑ↓(Xi)→ ϑ̂(Xi)|)

= op(1)

where M is finite since net demand is bounded, (1) is from Lemma 22 and the final step is from
the assumption on the mean-square convergence of the nuisance functions. We have now shown
that sup

ϱ↑!
|Ĝn(ω; ϑ̂)→G(ω; ϑ↓)| = op(1).

Now, that we have proved that the unique population treatment rule is well-separated and
that the sample constraints converge uniformly to the population constraints, following Theorem
5.9 of van der Vaart (1998), we have consistency of ω̂ to ω↓. The details follow. Since ω̂ satisfies
the empirical constraints, then ||Gn(ω̂; ϑ̂)||2 ⇒ ||Gn(ω↓; ϑ↓)||2 + op(1). By the convergence of the

empirical constraints in the RHS, ||Gn(ω̂; ϑ̂)||2 ⇒ ||G(ω↓; ϑ↓)||2 + op(1). Adding and subtracting
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||G(ω̂; ϑ↓)||2, we have:

||G(ω̂; ϑ↓)||2 → ||Gn(ω̂; ϑ̂)||2 ≃ ||G(ω̂; ϑ↓)||2 → ||G(ω↓; ϑ↓)||2 → op(1)

||G(ω̂; ϑ↓)||2 → ||G(ω↓; ϑ↓)||2 ⇒ sup
ϱ↑!

||G(ω; ϑ↓)||2 → ||Gn(ω; ϑ̂)||2

||G(ω̂; ϑ↓)||2 ⇒ sup
ϱ↑!

||G(ω; ϑ↓)→Gn(ω; ϑ̂)||2

||G(ω̂; ϑ↓)||2 ⇒ op(1)

Since ω↓ is well-separated, then for any ⇁ > 0, for any ω such that ||ω→ω↓|| > ⇁, then ||G(ω)||2 > ε.
So, for any ⇁ > 0, P (||ω̂n→ω↓|| > ⇁) ⇒ P (||G(ω̂; ϑ↓)||2 > ε) ↔p 0. Since ω̂ is just a re-parameterization
of ĉ, then we have shown that ĉ = c↓ + op(1).

Lemma 8. Under the Assumptions (and notation) of Proposition 21,

P (φ(Xi; ωn, ϑ
↓) ↙= φ(Xi; ω0, ϑ

↓)) = O(||ωn → ω0||2),

sup
ϱ↑!

P (φ(Xi; ω, ϑ̂) ↙= φ(Xi; ω, ϑ
↓)) = O(||ϑ̂ z(Xi)→ ϑ↓,z(Xi)||2 + |ϑ↓(Xi)→ ϑ̂(Xi)|).

Proof. For P (φ(Xi; ωn, ϑ↓) ↙= φ(Xi; ω0, ϑ↓)) we divide into two cases. In the first case, a0 < 1. We
can choose large enough n (to ensure that an ↙= 1) so that

P (φ(Xi; ωn, ϑ
↓) ↙= φ(Xi; ω0; ϑ

↓))

= P (min{f(a0)v
→
0 ϑ

↓,z(Xi), f(an)v
→
n ϑ

↓,z(Xi)} < ϑ↓(Xi) < max{f(a0)v
→
0 ϑ

↓,z(Xi), f(an)v
→
n ϑ

↓,z(Xi)})

⇒ P

|ϑ↓(Xi)→ f(a0)v

→
0 ϑ

↓,z(Xi)| < |(f(an)vn → f(a0)v0)ϑ
↓,z(Xi)|



⇒ P

|ϑ↓(Xi)→ f(a0)v

→
0 ϑ

↓,z(Xi)| < |f(an)vn → f(a0)v0|M


⇒ C||ωn → ω0||2,

for finite C, where M is finite since net demand is bounded. The last step is because ϑ↓(Xi)→
av→ϑ↓,z(Xi) has bounded density, so its distribution function is Lipschitz, and f(·) is continuous.
Next, for a0 = 1, we can prove something similar. We can choose large enough (to ensure that
an ↙= 0) so that

P (φ(Xi; ωn, ϑ
↓) ↙= φ(Xi; ω0; ϑ

↓))

= P (min{0, (v→0 → v→n )ϑ
↓,z(Xi) + ϑ↓(Xi)/an} < v→0 ϑ

↓,z(Xi) < max{0, (v→0 → v→n )ϑ
↓,z(Xi) + ϑ↓(Xi)/an})

⇒ P

|v→0 ϑ

↓,z(Xi)| < |(v→0 → v→n )ϑ
↓,z(Xi) + ϑ↓(Xi)/f(an)|)

⇒ P

|v→0 ϑ

↓,z(Xi)| < |(v→0 → v→n )M +M/f(an)|)

⇒ C||ωn → ω0||2

for some finite C, where M is finite by boundedness of outcomes and net demand. The last
step is because v→ϑ↓,z(Xi) has bounded density, so its distribution function is Lipschitz, and f(·)
is continuous.

For the second part of the Lemma, also split into two cases. First, when 0 ⇒ f(a) ⇒ 2 (denote
the product of this restricted space for a and SJ↗1 as %+), let bn = av→(ϑ̂ z(Xi) → ϑ↓,z(Xi)) +
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ϑ↓(Xi)→ ϑ̂(Xi).

sup
ϱ↑!+

P (φ(Xi; ω, ϑ̂) ↙= φ(Xi; ω, ϑ
↓))

= P (min{bn, 0} < ϑ↓(Xi)→ f(a)v→ϑ↓,z(Xi) < max{bn, 0})

⇒ sup
ϱ↑!+

P (|ϑ↓(Xi)→ f(a)v→ϑ↓,z(Xi)| ⇒ |f(a)v→(ϑ̂ z(Xi)→ ϑ↓,z(Xi)) + ϑ↓(Xi)→ ϑ̂(Xi)|)

⇒ sup
ϱ↑!+

P (|ϑ↓(Xi)→ f(a)v→ϑ↓,z(Xi)| ⇒ 2||ϑ̂ z(Xi)→ ϑ↓,z(Xi)||2 + |ϑ↓(Xi)→ ϑ̂(Xi)|)

= O(||ϑ̂ z(Xi)→ ϑ↓,z(Xi)||2 + |ϑ↓(Xi)→ ϑ̂(Xi)|)

(1) is because ϑ↓(Xi)→ av→ϑ↓,z(Xi) has a density uniformly bounded over a and v. This means
that the distribution function of ϑ↓(Xi)→ av→ϑ↓,z(Xi), which we can call F (t) is Lipschitz in t, so

F (2||ϑ̂ z(Xi)→ϑ↓,z(Xi)||2+ |ϑ↓(Xi)→ ϑ̂(Xi)|)→F (0) ⇒ 2M ||ϑ̂ z(Xi)→ϑ↓,z(Xi)||2+M |ϑ↓(Xi)→ ϑ̂(Xi)|,

whereM does not depend on a or v. When a ≃ 2, we can argue similarly, where we use %↗ to denote
the product of this restricted space and SJ↗1. Let cn = v→(ϑ↓,z(Xi)→ ϑ̂↓,z(Xi)) + 1/f(a)(ϑ̂↓(Xi)→
ϑ↓(Xi)).

sup
ϱ↑!↑

P (φ(Xi; ω, ϑ̂) ↙= φ(Xi; ω, ϑ
↓))

= P (min{cn, 0} < av→ϑ↓,z(Xi)→ 1/aϑ↓(Xi) < max{cn, 0})

⇒ sup
ϱ↑!↑

P (v→ϑ↓,z(Xi)→ (1/f(a))ϑ↓(Xi) ⇒ ||ϑ̂ z(Xi)→ ϑ↓,z(Xi)||2 + |ϑ↓(Xi)→ ϑ̂(Xi)|)

⇒ O(||ϑ̂ z(Xi)→ ϑ↓,z(Xi)||2 + |ϑ↓(Xi)→ ϑ̂(Xi)|)

Where for the last step this is because under our assumptions, for any f(a) ↓ [2,⇔] the density of
v→ϑ↓,z(Xi)→ 1/f(a)ϑ↓(Xi) is uniformly bounded (the bound does not depend on v or a).

D.2 Market-Clearing

Proposition 5. Single-Good Market. In a market with J = 1 goods, assume that outcomes and

net demand functions are bounded, and for all p ↓ S and w ↓ {0, 1}, P(Zi(w, p) is continuous at p) =
1 and P(Yi(w, p) is continuous at p) = 1. In addition, assume that

• E[Zi(w, 0)] > 0 and there exists a finite b > 0 such that E[Zi(w, b)] < 0 for w ↓ {0, 1}.

• With probability 1, Zi(w, p) is monotonically non-increasing in p for w ↓ {0, 1}.

Let Zn(w, p) = 1

n

n
i=1

Zi(wi, p) and Pn(w) = argmin
p

|Zn(w, p)| for w ↓ {0, 1}n. In cases where

there are multiple minimizers, choose one by some deterministic rule.

Then, Assumption 2 holds, with Ui = 0. That is, there exist a sequence an with lim
n⇐⇒

an
↗
n = 0

and a constant c > 0 such that, given any treatment vector w ↓ {0, 1}n,

Sw =

{
p ↓ RJ :


1

n

n∑

i=1

Zi(wi, p)


2

⇒ an

}
. (92)
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is non-empty with probability 1→ e↗c1n. And Pn(w) ↓ Sw when it is non-empty.

Proof. Denote by En the event that the realized Zn(w, p) crosses zero during the interval (0→s, b+s):

En = {Zn(0) > 0, and Zn(b) < 0}, (93)

and denote by En the indicator variable for En: En = I(En).
Suppose that En = 1. Here, either Zn(Pn) = 0, or |Zn(Pn)| ↙= 0, and we will focus on the

latter case. Suppose |Zn(Pn)| ↙= 0. Because we condition on En = 1, we have that Zn(0) > 0 and
Zn(b) < 0. Since Pn is chosen to be a minimizer of |Zn(p)|, the only possibility is that the function
Zn(·) crosses zero at a point of discontinuity, P ≃, that is, Zn(p̃) < 0 for all p̃ > P ≃, and Zn(p̄) > 0
for all p̄ < P ≃.

We have assumed that P(Zi(Wi, ·) is discontinuous at p) = 0 for any p > 0, the Zi’s are drawn
independently, and by the boundedness assumption they are bounded in magnitude by M . These
facts further imply that with probability one, any jump in Zn(·) cannot exceed magnitude M/n,
for otherwise it would have required at least two separate Zi to have a point of discontinuity at the
same exact location. Formally, conditional on En = 1, we have that with probability one:

|Zn(Pn)| ⇒ | lim
p⇑P ↓

Zn(p)→ lim
p⇓P ↓

Zn(p)| ⇒ M/n, (94)

Choosing an = M/n, we note that lim
n⇐⇒

an
↗
n = 0, and that we have that the specified Pn(w) ↓

Sw whenever Sw is non-empty. It is non-empty whenever En = 1, so to finish the proof we now
check the probability that En = 1.

If En = 0, there are four possible cases. The first two cases are Zn(0) = 0 or Zn(b) = 0, in
which case Zn(Pn) = 0. The last two are Zn(p) > 0 for all p ↓ S, or Zn(p) < 0 for all p ↓ S,
in which case Zn(Pn) ⇒ c1 for some constant c1 > 0, since each net demand function is bounded.
Note that c1 is not less than the specified an, so to verify the proposition we need that P(En = 0)
is exponentially small. To bound P(En = 0),

P(En = 0) ⇒ P(Zn(0) ⇒ 0) + P(Zn(b) ≃ 0)

= P(Zn(0)→ E[Zn(0)] ⇒ →E[Zn(0)]) + P(Zn(b)→ E[Zn(b)] ≃ →E[Zn(b)])

⇒ P(|Zn(0)→ E[Zn(0)]| ≃ E[Zn(0)]) + P(|Zn(b)→ E[Zn(b)]| ≃ →E[Zn(b)])

⇒ P(|Zn(0)→ E[Zn(0)]| ≃ ς) + P(|Zn(b)→ E[Zn(b)]| ≃ ς),

for ς = min{E[Zn(0),→E[Zn(c)]} > 0. We can now use Hoe”ding’s inequality, and obtain that for
any n and ς > 0,

P(En = 0) ⇒ 2 · exp

(
→2nς2

4c2
1

)
,

= 2 · exp

(
→nς2

2c2
1

)
. (95)

We have now verified that Sw is non-empty with probability 1 → e↗c1n, for some c1 > 0, which
completes the proof.
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D.3 Tighter Conservative Bound for ω̄2

D

First, introduce the notation ai(1) = ⇁i(1)→ϖ&i(1, p↓φ), and ai(0) = ⇁i(0)+ (1→ϖ)&i(0, p↓φ). Under
the augmented randomized experiment, an estimator is available for the following variance.

σ̃2

D = E

(1→ ϖ)

ϖ
a2i (1) +

ϖ

1→ ϖ
a2i (0) + 2E[ai(1)2]1/2E[ai(0)2]1/2


.

In an extension of the classical results in Neyman (1923), and described in detail in Section 2.1 of
Aronow et al. (2014), we can show that this variance σ̃2

D is conservative for σ̄2

D and is tighter than
σ2

D.

σ2

D = E
(

Wiςi(1)

ϖ
→

(1→Wi)ςi(0)

1→ ϖ
→&i(Wi, p

↓
φ)

)2

,

= E
(

Wiai(1)

ϖ
→

(1→Wi)ai(0)

1→ ϖ

)2

,

= E

ai(1)2

ϖ


+ E


ai(0)2

1→ ϖ


,

= E
(

(1→ ϖ)a2i (1)

ϖ
+

ϖa2i (0)

1→ ϖ
+ a2i (1) + a2i (0)

)
,

≃ E
(

(1→ ϖ)a2i (1)

ϖ
+

ϖa2i (0)

1→ ϖ
+ 2E[ai(1)2]1/2E[ai(0)2]1/2

)
,

= σ̃2

D,

where the inequality is from the AM-GM inequality. Additionally, to show this is conservative for
σ̄2

D

σ̄2

D = ϖ (1→ ϖ)E
(

ςi(1)

ϖ
+

ςi(0)

1→ ϖ
→ (&i(1, p

↓
φ)→&i(0, p

↓
φ))

)2

,

= ϖ (1→ ϖ)E
(

ai(1)

ϖ
+

ai(0)

1→ ϖ

)2

,

= E

(1→ ϖ)a2i (1)

ϖ
+

ϖa2i (0)

1→ ϖ
+ 2ai(1)ai(0)


,

⇒ E

(1→ ϖ)a2i (1)

ϖ
+

ϖa2i (0)

1→ ϖ
+ 2


E[a2i (1)]E[a2i (0)]


,

= σ̃2

D,

where the inequality is from the Cauchy-Schwarz inequality.

D.4 Convergence Rate of εAIE to ε ↓AIE

In this section, we provide a simple example where Zi(w, p) and Yi(w, p) are di”erentiable in p. In

this example, the asymptotic representation of ϑAIE → ϑ↓
AIE

depends on 1

n

n
i=1

∝pYi(w, p) → y(w, p),

and it is straightforward to extend this example so that it also depends on the concentration
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of 1

n

n
i=1

∝pZi(w, p) around its expected derivative. This suggests that it is not possible to get
↗
n converge of ϑAIE to ϑ↓

AIE
under Assumption 6, which allows for discontinuous individual-level

demand and outcome functions.
Define bounded random variables (Yi(1), Yi(0), Zi(1),βi) that are sampled IID from some dis-

tribution. Zi(0) = 0 always. This distribution is such that E[Zi(1)] = z(1), E[Yi(1) → Yi(0)] =
y(1) → y(0)] and E[βi] = β. Wi is drawn IID from Bernoulli(ϖ). The rest of the data-generating
process is:

Zi(w, p) = ω0 → p+ Zi(Wi), Yi(w, p) = →βiWip+ Yi(Wi).

In this model, p↓φ = ω0 + ϖ · z(1). The population AIE is

ϑ↓AIE = →ϖ · β · z(1).

This model implies that Pn(Wi = 1;W↗i) → Pn(Wi = 0;W↗i) = 1

nZi(1) and Yj(Wj , Pn(Wj =
1;W↗i)→ Yj(Wj , Pn(Wj = 0;W↗i) = →βjWj ·

1

nZi(1).
This implies that ϑAIE in this model is:

ϑAIE =
1

n

n∑

i=1

∑

j ⇔=i

ϖ · βj
1

n
(Zi(1)→ Zi(0))

=
1

n

n∑

i=1

Zi(1)
1

n

n∑

j=1

ϖ · βj

= ϑ↓AIE +
1

n

n∑

i=1

Zi(1)
1

n

n∑

j=1

ϖ · (βj → β) +
1

n

n∑

i=1

(Zi(1)→ Zi(0))→ z(1)→ z(0))ϖ · β

(1)

= ϑ↓AIE + z(1)
1

n

n∑

j=1

ϖ · (βj → β) +
1

n

n∑

i=1

(Zi(1)→ z(1))ϖ · β + op(n
↗1/2).

The last line is by the application of the LLN and recognizing that the CLT applies to the term
1

n

n
j=1

ϖ·(βj→β). In this case there is
↗
n convergence of ϑAIE to ϑ↓

AIE
, but the distribution depends on

the variance of ∝pYj(1, p↓φ). In a more general derivation with non-di”erentiable Yi, the analogous
term would not converge at a

↗
n rate, so the scaling of ϑAIE to ϑ↓

AIE
will be slower than

↗
n under

the assumptions in the paper (just as the convergence of ϑ̂AIE to ϑ↓
AIE

is slower than
↗
n).

D.5 Observing a Sub-Sample of the Market

The estimators for ϑ↓
ADE

and ϑ↓
AIE

are unchanged when a sub-sample of the n agents in the finite-
sample market are observed rather than all of them. However, the expansion for ϑ̂ADE described
in Theorem 5 is a”ected slightly, which changes the asymptotic variance. This appendix provides
some detail on these claims which were made in the main text, under the assumptions of Theorem
5.

Let n be the size of the finite-sample market. Let M ↘ {1, . . . , n} index the m total number
of observations sampled without replacement from the finite-sample market. We assume that the
market price clears the finite-sample market, but we only observe Yj and Zj for j ↓ M. Let
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ŝ = 1

m


j↑M

Wj be the fraction of individuals treated in the sub-sample, t̂ = m
n be the fraction of

individuals observed, and ϖ̂ = 1

n

n
i=1

Wi be the fraction of individuals treated in the entire finite

market. We assume that for all agents that are not in M, then Wi = 0. The sub-sample is a fixed
fraction of the finite market, so that as n ↔ ⇔, ŝ ↔ s > 0, ϖ̂ ↔ ϖ > 0 and t̂ ↔ t > 0.

The estimators ϑ̂ADE and ϑ̂AIE are exactly the same as in the main text, except the observations
used are in M rather than in {1, . . . n}. Let hn remain the same as in the main text, where the
shrinkage rate of the price perturbations depend on n.

ϑ̂m, ADE =
1

m

∑

j↑M


WjYj
ŝ

→
(1→Wj)Yj

1→ ŝ



ϑ̂m, AIE = →▷̂→
1

m

∑

j↑M


WjZj

ŝ
→

(1→Wj)Zj

1→ ŝ


.

Let Y be the m-length vector of observed outcomes, U is the m ↖ J matrix of observed price
perturbations, and Z is the m↖ J matrix of observed net demand. Then, ▷̂ = (U→Z)(U→Y ).

The asymptotic expansion for ϑ̂m,AIE is unchanged, apart from depending on m rather than n,
since the variance of Pn → p↓φ does not impact the limiting distribution.

ϑ̂m,AIE = ϑ↓AIE →Q→
z

1
↗
mh2n

∑

j↑M
Ujφj(Wj) + op(1),

where φj(Wj) = Yj(Wj , p↓φ) → Zj(Wj , p↓φ)
→[◁↗1

z ]→◁y and Qz = ◁↗1
z ϑ↓,z

ADE
. The asymptotic variance

can still be estimated by σ̂I , where each component is estimated using the observed data only.
The asymptotic expansion for ϑ̂ADE is a”ected, since Pn → p↓φ does impact the asymptotic

expansion, and the finite sample market price depends on n rather than m.

ϑ̂m,ADE

(1)

= ϑ↓ADE +
1

n

n∑

i=1


(i ↓ M)

t̂

(
Wiςi(1)

ŝ
→

(1→Wi)ςi(0)

1→ ŝ

)
→&i(Wi, p

↓
φ)


+ op(n

↗0.5)

= ϑ↓ADE +
1

n

n∑

i=1


(i ↓ M)

t

(
Wiςi(1)

s
→

(1→Wi)ςi(0)

1→ s

)
→&i(Wi, p

↓
φ)


+ op(n

↗0.5)

(2)

= ϑ↓ADE +
1

n

n∑

i=1

(i ↓ M)

t

(
Wiςi(1)

s
→

(1→Wi)ςi(0)

1→ s
→ t&i(Wi, p

↓
φ)

)

→
1

n

n∑

i=1

(i /↓ M)&i(Wi, p
↓
φ) + op(n

↗0.5)

(1) comes from following the same steps as in the proof of Theorem 5. (2) comes from splitting up
the sum for observations in M and those not in M. As before ςi(w) = Yi(w, p↓φ)→ y(w, p↓φ).

The CLT now applies to this expansion:

↗
n(ϑ̂m,ADE → ϑ↓ADE) ′ N (0,σ2

t,D)

σ2

t,D =
1

t
E
(

Wiςi(1)

s
→

(1→Wi)ςi(0)

(1→ s)
→ t&i(Wi, p

↓
φ)

)2

+ (1→ t)E

[
&i(Wi, p

↓
φ)

2
]
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For inference on ϑ↓
ADE

using the sub-sample only, we can estimate each component of σ2

t,D using
only observations in M.

D.6 Alternative Estimator of AIE Variance

In analyzing the asymptotic properties of σ2

I in the proof of Theorem 7 in Appendix A.5, we dropped
a term that was asymptotically negligible, which was

↗
nhn(◁y◁↗1

z (ϑ̂ z
ADE

→ ϑ↓,z
ADE

)).
σ̃2

I adds a plug-in estimator for the second term, including an estimator for the variance of ϑ̂ z
ADE

.

σ̃2

I = σ̂2

I + h2n▷̂
→σ̂2

z,Dε̂, where σ̂2

z,D = 1

n

n
i=1

BiB≃
i and the J ↖ 1 vector B̂i =

Wiϖ̂zi (1)
φ̂ →

(1↗Wi)ϖ̂zi (0)
1↗φ̂ →

[◁̂z1→ ◁̂z0]→◁̂↗1
z Zi. ςzi (1) = Zi→

1

nw


i:Wi=w

Zi. Last, the J↖J matrix ◁̂zw for w ↓ {0, 1} are estimated

from regressions of Zi on Ui using only observations such that Wi = w. We found in simulations
that this second-order correction leads to better coverage properties at smaller sample sizes.
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