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B Details from the Simulations

B.1 Estimation

The model described in the main text captures the impact of a conditional cash transfer on children’s
health outcomes and the market for a perishable protein source in a remote village in the Philippines.
It is designed based on the results in Filmer et al. (2023).

There are 10 coefficients of the model 8 = [9(100 0a01 Oaw Oap Os0 Osp Byoo Oyo1 Oya Oy
The model is estimated to match the following 10 moments from the subsample of remote villages
in Filmer et al. (2023). These moments are computed using data files found in the replication
package for the paper, see Filmer et al. (2021).

]T

e The average demand for eggs per week among eligible and ineligible children in control villages
(ig> Bineig)

e The average height-for-age Z-score among eligible and ineligible children in control villages
(Betig: Rinetig)-

e The average price of eggs in treated and control villages (p° and p'). The elasticity of demand
for individuals in control villages in the model matches the elasticity of egg demand cited,
although not directly estimated in Filmer et al. (2023) (7egq)-

e The effect of the treatment on eligible children on height-for-age Z-score and eggs per week
(72 - 74, 4)» where treatment effects are defined as the differences-in-means for ineligible chil-
dren in treated versus control villages.

e The ratio of treatment effects on height-for-age Z-score and eggs-per-week demand for inel-
igible children (7 = 77 . g #d 9)12. Again, treatment effects are defined as the differences-
in-means for ineligible children in treated versus control villages.

We use these moments to estimate the model. The randomization of treatment makes estimating
coefficients on treatments straightforward, because the errors in the demand equation are indepen-
dent of W;). Under the assumptions in Filmer et al. (2023), the randomization of treatment also
provides enough variation to estimate coefficients on prices in a linear demand and supply model.
The coefficient on price in the demand model is provided directly by the elasticity of demand taken
from the literature in Filmer et al. (2023). Given the demand elasticity, and under the assumption
that Wj,;) does not enter into the supply equation, then the change in prices in treated in and
control villages provides an estimate for the supply elasticity under the market-clearing condition.
The authors argue that treatments do not affect supply meaningfully, because most eggs sold in
small villages are produced outside each village. Formally, each parameter has an estimator, which
is a simple function of the moments.

12Tt is possible to estimate the model by matching the treatment effects on outcomes and demand directly for
ineligible children, rather than their ratio. This would avoid using the elasticity of egg demand, which is taken from
the literature rather than estimated from the data. However, the sample size of ineligible children in remote villages
is small, so estimating the model to match these individual moments, which are imprecisely estimated, rather than
their ratio, leads to an implied elasticity that does not seem reasonable.
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The moments used for estimating the model and the corresponding parameter estimates are
described in Table 3.

Estimated Moments from Filmer et al. (2023)

~d ~d ~Y ~Y ~0 ~1 y d 7A—inelig
'uelig Ninelig Nelig luinelig p p Tegg elzg ellg ~d

inelig

1.6 2.2 -247 -144  6.07 6.26 -1.3 032 0.12 185

Estimated Parameters

~

Oa00  Oao1 Odw  Oap B0 Op  Oyoo  Oyo1  Oya

>

yw

4.49 3.89 0.19 -038 -0.21 033 -5.51 -543 1.85 0.1

Table 3: Estimation of the Model in Section 3

Last, for simulating data from the model, C; and h(i) are determined by random draws from
the empirical distribution of households with children between 0 and 14 (who are in eligible for the
transfer if they meet a proxy means test) from the baseline survey in Filmer et al. (2023). E; is
drawn randomly to match the average percentage of eligible households in remote villages. The
household and individual-level error terms in the demand equation are independent and mean-zero
normally distributed variables with a standard deviation of 1/3rd. Similarly, the household level
error terms in the outcome equation are independent and mean-zero normally distributed variables
with a standard deviation of 1/3rd and the individual-level error terms have standard deviation of
1.

B.2 Adding Heterogeneity

The model in Section 5.1 is augmented to add some additional heterogeneity. For each household,
a set of covariates X;, ~ N(0,1)'° is drawn. Households now have type ¢, € {4, B,C, D}. House-
holds of type (,, = A have data generated by the model in the previous section. In response to
the treatment, they increase their purchase of a perishable protein source, and children’s health
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outcomes are improved on average.

DWW, p) = bao01 * Engiy + 0a00(1 — Engy) + OawWiiiyEngiy + Oap - 0+ €any + vai(Ws)

YA Wiy p) = 0401 Engiy + 0y00(1 — Engiy) + 03aDi* (Wiay, p) + Oy Wiy Engiy + €y + vyi(W3)
For the other three types, treatment effects are distinct from Type A. Households of type (, = B
increase their consumption of a perishable protein source and purchase a more expensive non-
perishable protein source (such as canned fish). We assume for this second type of good, because it

is non-perishable, supply is much more elastic and equilibrium effects are negligible. So, for these
households, the data generating process is as follows:

DE(Wy,p) = D (Wi, p) + 0.750401 - Epgy - W)

YiB<Wh(i)7p) = 0401 En(i) + Oyoo(1 — Engsy) + 9ydD§4(Wh(i),p) + (Oyw + 0.2)Wyi) Engy + €y n(s) + Vi (W)
For households of type ¢, = C, the cash transfer does not have its intended positive effect. In

response to the cash transfer, an increased ability of parents to afford addictive goods (such as

cigarettes, or alcohol) leads to a decrease in the purchase of perishable protein, which has a large

negative effect on children’s health. Let Child; be an indicator if individual ¢ is under 5 years of
age.

DY (Wi, p) = 0ao1 + Eniy (1 — 0.75WiiyChildy) + 8a00(1 — Engiy) + Oap - P+ Eani) + vai(Wi)
Y€ Wiy, ) = 0401 Eniy + 0y00(1 — Eniy) + 0yaDi(Wiiys P) + Oy Wiy Engiy + €y ny + Vi (W5)

For households of type (;, = D, there is an increase in food consumption of adults, but not of
children.

DP (Wi, p) = 0401 - Engiy + 0a00(1 — Engiy) + 0ap -+ €angiy + 15040 Wiy Engiy (1 — Child,) + vg: (W)
Y2 Wiy, p) = Oyo1Enq) + Oy00(1 — Epgiy) + 0yaDi( Wiy p) + 3 - Oy Wi Eniy + €y i) + vyi (W)

The household type is correlated with observed covariates as follows. The score for each house-
hold type is:

Una =1+ Xop — 0.5X3;, + €pa,
Unp = X1n + €nB,

Unc = =1+ X3 + enc,

Unp = Xan + €np,

where each of the noise terms are drawn from a Type I extreme value distribution. ( =

arg  max Upr. The coefficients of the model are the same as in Table 3. In the simulation,
Te{A,B,C,D}

44% of the households are Type A, 22% are type B, 22% are Type D, and 12% are Type C. Demand
and outcomes are aggregated by household as in Equation (39).
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C Concentration Bounds

Consider a triangular array of random functions Fj,(p) withi =1, ...,n,n=1,2,...and p € R’.
Suppose that Fy,(-) with ¢ =1, ..., n are independent and identically distributed, and let f,(p) =
E [Fi(p)]. We say that the sample average of the Fj,(-) is asymptotically equicontinuous at p* if,
for any sequence §,, — 0, we have

wp |23 (Fonlp) — Finle") — (fulp) - fn(p*)))| o () (79)

lp—p*l|<sn | P 3 vn

7

The motivation behind establishing asymptotic equicontinuity expansions is that we may often be
able to assume that the expected function f,,(p) is differentiable even when the Fj, (p) themselves are
not (e.g., if the Fj,(p) capture choices regarding supply and demand that may vary discontinuously
in prices). Asymptotic equicontinuity then allows us to approximate sample averages of Fj,(p) by
Taylor expanding f,(p).

The goal of this section is to establish asymptotic equicontinuity for a number of function classes
used throughout the proofs. Our argument relies on technical tools from empirical process theory
that go beyond what’s used elsewhere in the paper, and here we will only give brief references to
the results needed to establish our desired claims. Section 2 of van der Vaart & Wellner (1996)
provides an excellent introduction and reference to the tools underlying the arguments made here.

Our approach to establishing asymptotic equicontinuity of relevant quantities in our marketplace
model starts by bounding the bracketing number of approximately monotone functions. Let Fj, :
R’ — R be random functions drawn i.i.d. from a distribution Q,, and let S C R’ be the set
of possible market equilibrium prices. We are interested in a bracket for the function class F,, =
{F;,(-) = Fy(p) : p € S}. For any pair p_, p; in R/, we define a bracket as

[p—, p+] ={p € S : Fin(p-) = Fin(p) = Fin(p+) for all Fin(-)}. (80)

We define the square of the Ly (Q),)-length of the bracket as dén (p—, p+) =Eq, [(Fin(p=) — Fin(p4))?],
and the e-bracketing number of F,, under Q,, as

K
Ny(e, Fn, L2(Qn)) = inf {K : S C U [p—(k), p+ (k)] with dg,, (p—(k), p+(k)) < ¢ for all k} .
k=1
(81)
The following result bounds the bracketing number of functions that are approximately monotone
and weakly continuous in the sense of Assumption 4.

Lemma 5. Consider a class of random functions Fy, : R — R with F;, € G, almost surely, and
S is a compact subset of R?. Let F,, = {Fin(-) = Fin(p) : p € S}. Suppose that, for all p € S,
e <1 and ||6]|, < Ce, we have
Fm(p—%j) ZEn(p+5) ZFm(p‘Féej)- (82)
Suppose also that the F;, have a distribution Q. under which
2
Eq, [(Fi (p) — Fin(p)) ] < L|p—7|, forallp, p € R’ (83)

Then, there exists 0(S, C, L) depending only on the geometry of S and the constants given above

52



such that, for all e <1,
N[] (57 Fas LQ(QH)) < 9(87 C, L) e (84)

Proof. Let Bs(p) ={p' € S : ||p’ — pll, < d}. By (82), we have

Bee(p) € [p —Cey, p+ Cejl.

Meanwhile, by (83) we have d%n (p—Cej, p+Cej) < 2L¢, and so dg, (p —Cej, p+Cej) < e if
¢ =¢%/(2L). These two facts together imply that

K
Ny(e, Fns La(Qyn)) < inf {K :8 € | Beeryary (pr) with py € RJ} :
k=1

where the right-hand side quantity is the C'(¢2/(2L))-covering number of S under the usual norm
||.|l5. For e < 1, this quantity can be further be bounded as (Polyanskiy & Wu 2024, Theorem
27.3)

K
inf {K : S C U BC(52/(2L))<pk) with pg € RJ}
k=1

<3’ (c (52 ))J vol (conv (S * Byar)))

2L vol (By) ’

(85)

where B, denotes the radius-r ball in R/ centered at 0, A+ B = {a+b:a € A, b€ B}, conv(.)
denotes the convex hull of a set and vol(.) denotes the volume of a set. The scaling in (85) establishes
the desired claim. O

Lemma 6. We say that a random function Fj, is (-subgaussian over S if there exists a constant

C' such that, for allm > 1 and t > 0, that

t
> % S CtCG_ZtQ. (86)

Under Assumptions 4, 5 and 6, let U; be random price perturbations with E [U;] =0 and |U;| < hy,
almost surely for some sequence hy, — 0. Suppose furthermore that W; is Bernoulli-randomized as
in Design 1. Then, the following random functions are (-subgaussian:

o Zi(w, p+U;) forw=0, 1.
o Zi(Wi, p+Us) and (Wi/mi — (1 — W) /(1 — 7)) Z:(Wi, p+ Us).
e Yi(w, p+U;) forw=0, 1.
o Yi(Wi, p+U;) and (Wi/m;i — (1 = Wy)/(1 — m))Y;(Wi, p+ Us).

Proof. For Z;(w, p+U;) and Z;(W;, p+U;), we can use the bracketing bounds in Lemma 18, which
imply Nj(e, Fn, L2(Qn)) < (K/e)S, for ¢ = 2J, and F, is constructed by varying Z;(w, p + U;)
or Z;(Wi, p+ U;) over p € S. The tail bound follows from Theorem 2.14.9 of van der Vaart &
Wellner (1996), given boundedness of the net demand functions and the polynomial bound on the
e-bracketing number. The result for W;/m; Z;(W;, p + Us), (1 — W;)/(1 — m) Zi(Wi, p + U;) and
their differences follows by the same argument because W;/m; and (1 — W;)/(1 — m;) are positive
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and bounded by 7!

L/n in (83).

For outcomes, we have the decomposition Y;(w,p) = H;(w,p) + ¥(T;(w), Z;(w,p),p). We first
work with H;(w,p). Note that bracketing bounds for Lipschitz function classes are standard; see,
e.g., Section 2.7.4 of van der Vaart & Wellner (1996). Adapting these results to our setting, we let
Fi(w,p) = Hi(w,p) + c and F = {F;(w,-) = Fj(w,p) : p € S}.

By the Lipschitz property, for any p € R”,

, and thus these functions satisfy the conditions of Lemma 18 with a constant

{(@,0):|lp=p||, < e} <[p, —Me), (p, +Me)],

and dp((p, —Me), (p, Me)) < 2Me for any distribution @) over the functions H;(w, p).
Thus, using notation from Lemma 18,

K
Ny(e, F, L2(Q)) < inf {K : 8 C | Bejann(p) with pg € R‘]} : (87)
k=1

which is in turn O(¢~7) by the same argument as used in (85). This bracketing bound can be
applied to H;(w, p + U;), H;(W;, p+ U;), etc., thus enabling us to again apply Theorem 2.14.9 of
van der Vaart & Wellner (1996).

For the second component of the outcome function, it is useful to use a covering number bound
rather than a bracketing number bound. For a function class F,, we can define the e-covering
number of F,, under a distribution @, as N(e, F,, L2(Qy)). This is defined as the minimum
number of balls of radius € in L2(Q;,) norm required to cover F,,. e-covering numbers are bounded
by 2e-bracketing numbers, as shown in Section 2.1.1 of van der Vaart & Wellner (1996). Theorem
2.14.9 of van der Vaart & Wellner (1996) provides a tail bound as in the Lemma statement for
function classes with

sup N (e, Fp, L2(Qr)) < (I{j)c

for constants K, > 0. It remains to provide such a bound for the class {Y;(-) — Y;(w,p) : p € S}.

Let Gy, = ¢(Fin, - - -, Fipm) be a composition of M random functions, drawn from distribution
Qn- Let gn = {¢(R1n()a ERR 7F1Mn<)> — ¢(Filn(p)a s 7EMn(p)) ‘pE S} and an = {Emn() —
Fimn(p) : p € S}. Lemma A.6 of Chernozhukov et al. (2014) indicates that as long as ¢(-) is
Lipschitz in each of its M arguments, then if there is a polynomial bound on the e-covering number
of Frun for m € {1,..., M}, there is also a polynomial bound on the e-covering number of G. Recall
that a e-covering number is bounded by a 2e-bracketing number and our bracketing numbers do
not depend on @,. We can now apply the composition result from Chernozhukov et al. (2014) to
finish the proof for Y;(w,p), since we already showed that H;(w,p) has the right kind of bound on
the bracketing number of its function class, ¢(-) is Lipschitz in each of its arguments, and each of
its arguments are functions of p that have a polynomial bound on their e-covering numbers. O

Lemma 7. Forn =1, 2, ..., let Fy,(p) be IID random functions that are (-subgaussian and weakly
continuous, and whose covariances converge pointwise to a finite limit 33,

lim Cov [Fm(p), F; (p’)] =Y(p, p') for all p, p'. (88)

n—oo

Then, averages of that function are asymptotically equicontinuous, i.e., they satisfy (79) at all
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p € S. Furthermore, the residuals in the asymptotic equicontinuty expansion,

R, = sup{ %Z (Ein(p) — Fin(p*) — (fa(p) = fu®@))| : lp =" < 6n, P € S} (89)

=1

satisfy limsup,, ..o nE [R?J = 0. In particular, under the assumptions of Lemma 19, averages of
the following random functions are asymptotically equicontinuous and have residuals in the asymp-
totic equicontinuity expansion meeting the above condition:

o Zi(w, p+U;) forw=0, 1.
« Z(Wi, p+Us) and (Wi/mi — (1— W) /(1 = 7)) Zs(Wi, p+ Uy).
e Yi(w, p+U;) forw=0, 1.
o Yi(Wi, p+U;) and (Wi/mi — (1 = Wy)/(1 — m))Yi(Ws, p+ Us).

Proof. Let @, define a distribution over random functions Fj,(p), for any of the random functions
listed in the Lemma, and define the function class F,, = {Fin(-) = Fin(p) : p € S}. Theorems
2.11.1 and Theorem 2.11.9 van der Vaart & Wellner (1996) imply weak convergence of the empirical
process

\/15 > (Finlp) = fap) = Fin(0') — fu(0))
i=1

to a Gaussian process indexed by p when for each n, the e-bracketing number or e-covering number
of F,, under @, is bounded by (K/e)V for all 0 < e < K, for finite constants K,V > 0. Then,
asymptotic equicontinuity follows from weak continuity, i.e. that for each p € S and p’ € S,
E[(Ejn(p) — Fin(p'))?] is continuous in p. Weak continuity implies that the limiting Gaussian process
has continuous sample paths.

To verify the 2nd-moment bounds on the residuals in the expansions, we first note that

RnZH o ;Z(Fm(p)—Fm(p*)—(fn(p)—fn(p*)))‘
p—p*||<dn i=1
< 25p | =3 (Fulr) = o).

which has a rapidly decaying tail by Lemma 19. Thus, in particular,

limsupn®E [Rfl] < oo.

n—o0

Now, pick any ¢ > 0. By asymptotic equicontinuity, limsup P [|R,,| > ¢/y/n] = 0. Furthermore
n—oo

limsupnE [R2] = limsupnE [1 ({|R.| < ¢/vn}) RZ] + nE [1 ({|Rn| > ¢/v/n}) R2]
< & 4 limsup \/P [|Ra| > ¢/ V] /2 E [R]]
n—oo
< ¢ + lim sup \/P [|Rn| > ¢/+/n] limsup /n?E [R}]
n—oo

n—o0

= 62’
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where for the second inequality we used Cauchy-Schwarz. Since we have shown that 0 < limsup,,_,., nE [R?J <
e for any € > 0, we see that in fact limsup,,_,,,nE [Rﬂ = 0.

For all of the random functions listed, weak continuity holds by Assumption 5 and 6, and
Lemma 19 provides the required subgaussian condition. A final check is htat

lim Cov [Z;j(w, p+U;), Zij(w, p' + U;)] = Cov [Z;j(w, p), Zij(w, p')], (90)

n—o0

which is finite, and the same holds for Y;(w,p + U;) and Y;(W;,p + U;).

D Additional Results and Extensions

D.1 Consistency of Estimated Targeting Rule

When the optimal rule is deterministic and unique, it has the form v*(X;) = L(ripp(Xi) >
e ADE(X )). By Theorem 13, we can write the optimal rule as the unique solution to the following
J-dimensional moment condition, where 7* represents the vector of functions that concatenates
Téape(Xi) and 755 pE(X;) and 7 is some bounded function with the same domain and codomain.

G(c*7%) = 0, where G(e;7) = E [ (1(r(X) 2 T 7%(X0)) = (X)) )7*(X))|
¢* is finite, so we can specify a ball in R’ such that the distance from c¢* to the surface of
this ball is at least M. Specify such a ball as By;. We can estimate the optimal rule by solving
the following J-dimensional score condition. The conditional average direct effects are nuisance
functions, since they need to be estimated, where 7 is some estimate of the population conditional
average treatment effects on outcomes and net demand:

~

te{ceR’: G( #) =op(1)},

3\*—‘
oy
4
>
P
>
|
A
>
=
S
>

The proof of Proposition 21 shows that the optimal-equilibrium neutral rule is the unique (and
well-separated) solution to the J population constraints defined by G(-). Then, the consistency of
the estimated rule follows from uniform convergence of the empirical constraint functions to the
population constraint functions.

Proposition 4. For every v € S7=1 and b € RT, where S'~' is the unit sphere in R’, assume
that the random variable 75, pp(Xi) — b v 754 pp(Xi) has uniformly bounded density, and for
every v € 8771 that v TOADE( i) has uniformly bounded density. In addition, assume that the
covariance matriz of Ty pp(X;) is positive definite, and that Gn(67) = 0,(1). Finally, assume that
7: X >R and 77 : X = R are functions that are uniformly bounded and are consistent estimators
of the population conditional average treatment effects in the following sense:

Er[(7(X:) = 6app(Xi)?] = 0p(1),
B [||7(Xi) = 7 Capp(X)I3] = 0p(1),
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where Ep[-] is the expectation over a random sample of test data, conditional on the training data
used for estimation.
Then, the estimated targeting rule is consistent for the optimal equilibrium-stable targeting rule
in the population,
¢=c"+o0p(1).

First, we use a change of variables to make the parameter space compact. For every ¢ € R, we
can write ¢ = f(a) - v, where v = ¢/||c||2 € S/~ and a = f71(||¢|]2) € [0,1) for some continuous
and strictly monotonic function f : [0, 1] — [0,4o00] with f(0) = 0 and f(1) = co. For this proof,
it will be useful to characterize properties of the population constraint function over the extended
(and compact) space of a € [0, 1], even though the optimal rule, and all of the estimated rules are
found within a € [0,1). For a more compact notation define 6 as the vector combining v and a,
where 6 € ©, and © = S/~ x [0,1]. Let

1(r(X;) > fla)v'77(X;)), 0<a<1,
V(Xla 07 T) = T

1(0 > v ' 77(X3)), a=1.
Now we can define the population and empirical constraint at a given treatment rule and for a
given set of conditional mean functions:

G(0;7) = Er [(V(X,-; 0,7) — W(Xi))TZ(Xi)] L Gu(0rT) = % Zn: (V(Xi; 0,7) — W(XZ-))TZ(Xi).

=1

Any estimated treatment rule, characterized by é, approximately satisfies the empirical constraint
with conditional average treatment effects estimated by data-splitting, so that G, (0;7) = op(1).

Under our assumptions, Theorem 13 indicates that there is a unique and deterministic rule in
the population characterized by G(6*;7*) = 0, where 7 collects 7¢i p(X;) and 785 pg(Xi) and 6*
collects a* and v*. It is deterministic because the set {z € X : 78 pp(®) = f(a*) - v*  TGrpe(2)}
has measure 0. By Theorem 13, any optimal equilibrum-neutral rule that is deterministic has the
structure 1(7&,pp(z) > f(a*)v* T 7& pgp(2)). Since the covariance matrix of 7555 (X;) is positive
definite, there can be only one such rule that meets the population constraints (this rules out label
swapping between two goods in the market, for example).

Next, we want to show that each element of G(;7*) is a continuous function in 6 for all § € O.
Choose some ap, vy and arbitrary j € {1,...,J}. For some sequence 0,,, where 6,, — 6y = (ag, vo),
by the boundedness of 7%(X;), there is some finite M such that

|G (On;7°) — G (005 77)| <

The first step is by Lemma 22. This proves that when a = 1, then G(6; 7*) is continuous in €. Since
G(0;7) is a continuous function in 6, # is also in a compact space, and #* is the unique solution to

G(0*;7*) = 0, then we know that if ¢ > 0, then ~ sup  ||G(0)||2 > 0. The final step is to show
0:]|0—0*||2>€
uniform consistency:

sup |G (0;7) — G(60;7%)| = 0p(1).
0cO
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It will be useful to make the following decomposition:
|Ga(0;7) — g(0;7)| < |Ga(6;7) = G(O; 7)| + |G (6; 7) — G(6; 7). (91)

For the first term of (91), we write the empirical average using data-splitting, where Ij are the
indexes of data in split k, and %k(i)(Xi) are conditional average treatment effects estimated on data
that is not in I,. We drop the CADE subscripts here to keep the notation more manageable. Then,
by treating 7* as fixed within each split, we use tail bounds for empirical processes indexed by
VC-classes. The details are as follows:

sup |G (0;7) — G(0;7)|
0cO

=sup| - Z (X3;0,7) — m(X))7*(X:) — Ep[(v(Xy;0,7) — n(X:))7%(X3)]

= sup an/n* D WX 0,749) — (X)) (Xy) — Br[(v(Xi; 0, #41) — m(X,))#H02 (X5)]

) e

<3 4, (0)

i1 1V 0ee
(1
= op(1)

Within each split, we can treat 7% as fixed. F = {1(7(X;) > f(a)v'7*(X;))7%(X;) : a €
[0,1],v € S7~!} for a fixed and uniformly bounded 7(X;) is a VC-class multiplied by a bounded
random variable. Then, the tail bound for empirical processes indexed by VC-classes (e.g. Theorem
2.6.7 of van der Vaart & Wellner (1996)) gives a tail bound for supycg |Ank(0)| that does not depend
on a given realization of 7. This implies lim Pr(sup |A,x| > t) = 0 for any ¢ > 0.

n—o0 PcO

~

To handle the second term in (91),

sup G(0;7) — G(0;77)| = sup [Er[(v(Xi50,7) — m(X3))7*(Xo)] — Ep[(v(Xi; 0, 77) — m(X3))75%(X5)]]

< VEr[(72(X;) — 7(X;))?] + sup MV/Er[(v(X;30,7) — v(Xi; 6,7%))]

0cO
< 0p(1) + sup M VPW(Xi;0,7) # v(Xi;0,7%))
W 0,(1) + O(||7*(Xi) — 75(X2) |2 + |7 (X3) — #(X,)])

= op(1)

where M is finite since net demand is bounded, (1) is from Lemma 22 and the final step is from
the assumption on the mean-square convergence of the nuisance functions. We have now shown

that sup |G (6;7) — G(6;7%)| = 0p(1).
0cO

Now, that we have proved that the unique population treatment rule is well-separated and
that the sample constraints converge uniformly to the population constraints, following Theorem
5.9 of van der Vaart (1998), we have consistency of 6 to 0*. The details follow. Since § satisfies
the empirical constraints, then ||G,,(8;7)||2 < |[|Gn(6*;7%)|]2 + 0,(1). By the convergence of the
empirical constraints in the RHS, ||G(8;7)|l2 < [|G(6*;7)||2 + 0p(1). Adding and subtracting
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|G(8;7)||2, we have:

GO 7|2 = [|Ga(8; 7|2 = |G (05 77) ]2 = [|G(E"5 7)][2 — 0p(1)
|G (O 77) ]2 = [[G(O75 772 < Sup G0 77) ]2 = |G (6;7)]]2

1G(6;7)]]2 < sup||G(6;7*) — G (6: 7)] ]2
0cO
NG (6;7%)]2 < 0p(1)

Since 6" is well-separated, then for any € > 0, for any ¢ such that [|0—67|| > ¢, then [|G(6)||2 > 7.
So, for any € > 0, P(||0,—6*|| > €) < P(]|G(6;7*)||2 > ) — 0. Since @ is just a re-parameterization
of ¢, then we have shown that ¢ = c¢* + 0,(1).

Lemma 8. Under the Assumptions (and notation) of Proposition 21,

P(v(Xi; 0n,77) # v(Xi600,77)) = O([|0n — boll2),

glelpp( v(Xi;0,7) # v(Xi;0,77)) = O(||77(X3) = 7%(X)[|2 + |77(Xi) — 7(Xi)]).

Proof. For P(v(Xi;0,,7) # v(X;:00,7%)) we divide into two cases. In the first case, ag < 1. We
can choose large enough n (to ensure that a, # 1) so that

Pu(Xi; O, ) 7 v(Xi;00;77))

= P(min{f(ao)vy 7*(Xy), f(an)v, 7*(Xi)} < 7°(X;) < max{f(ao)vg 7°*(Xy), f(an)vy 7%(Xi)})
< P(I7*(X) — Flan)eg 7 (X)] < |(F(@n)vn — Fao)uo)r™* (X))

< P(|7(X0) = flao)g ™*(X0)| < [f(an)vn — f(a0)uol M)

< C|0n — o2,

for finite C, where M is finite since net demand is bounded. The last step is because 7*(X;) —

av 7%(X;) has bounded density, so its distribution function is Lipschitz, and f(-) is continuous.

Next, for ap = 1, we can prove something similar. We can choose large enough (to ensure that
an, # 0) so that

P(v(Xi;0p, ") # v(X4;600; 7))

= P(min{O0, (vg— — ) (X)) +7(XG) Jan} < vT *#(X;) < max{0, (v(—)r - UI)T*’Z(Xi) +7°(X5)/an})
< p(va (X)) < [(vg — o) T(X3) + 7(X0)/ fan)])

< P(va “2(X0)| < |(vg — v )M + M/ f(an)|)

< C|0n — bo|2

for some finite C', where M is finite by boundedness of outcomes and net demand. The last

step is because v 7%%(X;) has bounded density, so its distribution function is Lipschitz, and f(-)
is continuous.
For the second part of the Lemma, also split into two cases. First, when 0 < f(a) < 2 (denote

the product of this restricted space for a and S7/~! as ©1), let b, = av' (7%(X;) — 7%(X;)) +
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(X;) — #(X3).

sup P(v(X;;0,7) # v(Xi;0,77))
fcO+

= P(min{b,, 0} < 7%(X;) — f(a)v' 7"*(X;) < max{b,,0})

< Sup. P(|7*(X:) = f(a)o" 7%(X3)| < |f(a)o" (F*(X3) = 7%(X0)) + 77 (Xy) — 7(X3)])

< swp P(r"(X0) = f(a)oTr"* (X)) < 217°(X0) = 750 2 + 17°(06) = 7(X)

= O([[77(Xi) — 7% (Xi)ll2 + [ (Xi) — 7(X3)])

(1) is because 7*(X;) — av ' 7%%(X;) has a density uniformly bounded over a and v. This means
that the distribution function of 7*(X;) — av7%%(X;), which we can call F(t) is Lipschitz in ¢, so

F2[|75(X;) =755 (Xo)[|o + |77 (X)) = 7(X3)|) = F(0) < 2M|[77(X3) —75%(Xo)|[2 + M |77 (X;) = 7(X3) ],

where M does not depend on a or v. When a > 2, we can argue similarly, where we use ©~ to denote
the product of this restricted space and S7~1. Let ¢, = v (7%%(X;) — 7%%(X;)) + 1/f(a) (7*(X;) —

sup P(v(Xy;0,7) # v(Xi;6,77))
0cO—

= P(min{c,,0} < av' 79%(X;) — 1/a7*(X;) < max{c,,0})
< sup P(o' 7%(X;) — (1/f(a))m* (Xa) < ||7(X3) — 7% (Xo)ll2 + [7*(X3) — 7(X3)])

0O~

< O(|I7(Xe) = 755 (X)l2 + [77(Xi) — 7(X3)])

Where for the last step this is because under our assumptions, for any f(a) € [2, 00| the density of

vT7%(X;) — 1/ f(a)T*(X;) is uniformly bounded (the bound does not depend on v or a). O

D.2 Market-Clearing

Proposition 5. Single-Good Market. In a market with J = 1 goods, assume that outcomes and
net demand functions are bounded, and for allp € S andw € {0,1}, P(Z;(w, p) is continuous at p) =
1 and P(Y;(w,p) is continuous at p) = 1. In addition, assume that

o E[Z;(w,0)] >0 and there exists a finite b > 0 such that E[Z;(w,b)] <0 for w € {0,1}.
o With probability 1, Z;(w,p) is monotonically non-increasing in p for w € {0,1}.

n
Let Zn(w,p) = £ 3 Z;(w;,p) and Py(w) = argmin |Z,(w, p)| for w € {0,1}". In cases where
= P

there are multiple n;mimizers, choose one by some deterministic rule.
Then, Assumption 2 holds, with U; = 0. That is, there exist a sequence a, with lim a, /n =0
n—oo

and a constant ¢ > 0 such that, given any treatment vector w € {0, 1}",

1
Sw = {pGRJi HHZZi(wi,p) San} (92)
=1 2
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is non-empty with probability 1 — e~ “". And P,(w) € Sw when it is non-empty.
Proof. Denote by &, the event that the realized Z,,(w, p) crosses zero during the interval (0—s, b+s):
En =1{Z,(0) >0, and Z,(b) < 0}, (93)

and denote by FE,, the indicator variable for &,: E, =I(&,).

Suppose that E, = 1. Here, either Z,(P,) = 0, or |Z,(P,)| # 0, and we will focus on the
latter case. Suppose |Z,(F,)| # 0. Because we condition on E,, = 1, we have that Z,(0) > 0 and
Zn(b) < 0. Since P, is chosen to be a minimizer of | Z,(p)|, the only possibility is that the function
Zn(+) crosses zero at a point of discontinuity, P’, that is, Z,(p) < 0 for all p > P’, and Z,(p) > 0
for all p < P'.

We have assumed that P(Z;(W;, -) is discontinuous at p) = 0 for any p > 0, the Z;’s are drawn
independently, and by the boundedness assumption they are bounded in magnitude by M. These
facts further imply that with probability one, any jump in Z,(-) cannot exceed magnitude M /n,
for otherwise it would have required at least two separate Z; to have a point of discontinuity at the
same exact location. Formally, conditional on F, = 1, we have that with probability one:

1Z0(Po)| < | lim Za(p) — lim Z,(p)| < M/n, (94)
ptP’ pP’

Choosing a, = M /n, we note that lim a,+/n = 0, and that we have that the specified P, (w) €
n—oo

Sw whenever S, is non-empty. It is non-empty whenever E,, = 1, so to finish the proof we now
check the probability that E, = 1.

If E, = 0, there are four possible cases. The first two cases are Z,(0) = 0 or Z,(b) = 0, in
which case Z,(P,) = 0. The last two are Z,(p) > 0 for all p € S, or Z,(p) < 0 for all p € S,
in which case Z,(P,) < ¢; for some constant ¢; > 0, since each net demand function is bounded.
Note that ¢; is not less than the specified ay, so to verify the proposition we need that P(E, = 0)
is exponentially small. To bound P(E,, = 0),

P(E, =0) <P(Z,(0) <0)+P(Z,(b) >0)
= P(2(0) = E[Zn(0)] < —E[Z,(0)]) +P(Zn(b) — E[Zn(b)] = —E[Z(b)])
< P(|2,(0) — E[Zn(0)]] = E[Zn(0)]) + P(|Z0(b) — E[Zn(b)]| = —E[Z (b))
< P(|Z,(0) — E[Zn(0)]] = €) + P(|Zn(b) — E[Zn(b)]] = &),

for ¢ = min{E[Z,(0), —E[Z,(c)]} > 0. We can now use Hoeffding’s inequality, and obtain that for
any n and € > 0,

—2ne?
P(ERZO)SQeXp< 46% )7

—ne?
:2~exp< 5.2 ) (95)

1

We have now verified that Sy, is non-empty with probability 1 — e~“"™ for some ¢; > 0, which

completes the proof.
O
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D.3 Tighter Conservative Bound for 5%

First, introduce the notation a;(1) = ¢;(1) — wA;(1,p%), and a;(0) = €(0) + (1 —7)A;(0, p%). Under
the augmented randomized experiment, an estimator is available for the following variance.

a2(0) + QE[ai(l)Q]1/2E[ai(0)2}1/2} .

In an extension of the classical results in Neyman (1923), and described in detail in Section 2.1 of

Aronow et al. (2014), we can show that this variance 6% is conservative for %, and is tighter than

2
0p-

2 (Wia(l) (L= W)s(0) Ai(Ww;))?] |

T 1—m

) (Wz‘ai(l) - Wi)ai(0)>2

9

—E :ai(l)j] +E H(;)Q]W
e (Ut 20 )],

(L= ma2(1) | 7ad(0) |
>1:%’< DDy 20 Bl a0 )|

where the inequality is from the AM-GM inequality. Additionally, to show this is conservative for

where the inequality is from the Cauchy-Schwarz inequality.

D.4 Convergence Rate of To1g to Thg

In this section, we provide a simple example where Z;(w, p) and Y;(w, p) are differentiable in p. In
this example, the asymptotic representation of Tatr — 74;p depends on - Z V,Yi(w,p) — y(w,p),

and it is straightforward to extend this example so that it also depends on the concentration
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n
of % > VpZi(w,p) around its expected derivative. This suggests that it is not possible to get
i=1

Vv/n converge of Targ to Tx;p under Assumption 6, which allows for discontinuous individual-level
demand and outcome functions.

Define bounded random variables (Y;(1),Y;(0), Z;(1), 8;) that are sampled IID from some dis-
tribution. Z;(0) = 0 always. This distribution is such that E[Z;(1)] = z(1), E[Y;(1) — Y;(0)] =
y(1) —y(0)] and E[B;] = . W; is drawn IID from Bernoulli(w). The rest of the data-generating
process is:

Zi(w,p) =00 — p+ Zi(Wy), Yi(w,p) = =BiWip + Yi(W;).
In this model, pX = 6y + 7 - 2(1). The population AIE is
Taie = —7 B 2(1).
This model implies that P,(W; = 1;,W_;) — B, (W; = 0;W_;) = %Zi(l) and Y;(W;, P,(W; =

LW_) = Y;(W;, Po(W; = 0; W_y) = —8;W; - 2 Z;(1).
This implies that Ta1g in this model is:

TAIE = %ZZW : Bj%(zi(l) = Z(0))

i=1 j#i

= iz;Zi(l)iz;W - B
1= j=

= TRt S A1) S (8- )+ S (1) — Zi(0) — 2(1) — (0 5
i=1 j=1 i=1
Qrie 202 S (85— )+ - D (Zi(1) — () B+ 0pn ™).
j=1 i=1

The last line is by the application of the LLN and recognizing that the CLT applies to the term
n
% 231 7-(Bj—0B). In this case there is /n convergence of Ta1g to 73, but the distribution depends on
j:
the variance of V,Y;(1,p%). In a more general derivation with non-differentiable Y;, the analogous
term would not converge at a /n rate, so the scaling of Ta1g to 75 will be slower than y/n under
the assumptions in the paper (just as the convergence of 7o1g to 7x is slower than /n).

D.5 Observing a Sub-Sample of the Market

The estimators for 7 and 73y are unchanged when a sub-sample of the n agents in the finite-
sample market are observed rather than all of them. However, the expansion for 7apg described
in Theorem 5 is affected slightly, which changes the asymptotic variance. This appendix provides
some detail on these claims which were made in the main text, under the assumptions of Theorem
5.

Let n be the size of the finite-sample market. Let M C {1,...,n} index the m total number
of observations sampled without replacement from the finite-sample market. We assume that the
market price clears the finite-sample market, but we only observe Y; and Z; for j € M. Let
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— > W; be the fraction of individuals treated in the sub-sample, t= - be the fraction of
JjeEM
n
individuals observed, and 7 = % > W, be the fraction of individuals treated in the entire finite

>
Il

market. We assume that for all agzerits that are not in M, then W; = 0. The sub-sample is a fixed
fraction of the finite market, so that asn — 0o, § > s >0, 7 — 7 >0 and { — ¢t > 0.

The estimators 7apg and 7a1g are exactly the same as in the main text, except the observations
used are in M rather than in {1,...n}. Let h, remain the same as in the main text, where the

shrinkage rate of the price perturbations depend on n.

Ly {Wm G —ij]

Tm, ADE = —
m

, s 1-—35
JEM
R Tl W.Z; 1-W.)Z;
Tm7AIE:_7TZ[ ;]—( 1_2 J]-
JEM

Let Y be the m-length vector of observed outcomes, U is the m x J matrix of observed price
perturbations, and Z is the m x J matrix of observed net demand. Then, ¥ = (U Z)(U'Y).

The asymptotic expansion for 7, A1 is unchanged, apart from depending on m rather than n,
since the variance of P, — p} does not impact the limiting distribution.

Tm,AIE = TAIE — \th Z Ujvi(W;) + op(1),

JEM

1._*%,2

where v;(W;) = Y;(W;,pt) — Z;(W;,p5) T[€51 7€, and Q, = & 17 The asymptotic variance
can still be estimated by 67, where each component is estimated using the observed data only.

The asymptotic expansion for 7apg is affected, since P, — pi does impact the asymptotic
expansion, and the finite sample market price depends on n rather than m.

LS [ﬂ(z’ eM) (Wieiu) - Wna(m) N p;)] N

Tm,ADE = TADE 7 8 1—35
=1
’LEM Wiei(l 1—W;)e;(0 % _
=TApe + = Z[ < S( ) | 1)5 ( )> —Az‘(Wz’an)] +0p(n~0?)

2) 1 ieM W;ei(1l 1—W;)e;(0 %
) o L3210 >( ZURRCESCEORN)
=1

- *Z A (Wi i) + op(n %)

(1) comes from following the same steps as in the proof of Theorem 5. (2) comes from splitting up
the sum for observations in M and those not in M. As before ¢;(w) = Y;(w, p%) — y(w, p%).
The CLT now applies to this expansion:

V1 (7im,ADE — Tapr) = N (0, Ut%D)
2 _ g [(Wm(l) OO gy ,p;)f

7D = % s (1—ys)

+ (1 - tE [A:(W;, p5)?)
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For inference on 73 using the sub-sample only, we can estimate each component of 02 p using
only observations in M.

D.6 Alternative Estimator of AIE Variance

In analyzing the asymptotic properties of a? in the proof of Theorem 7 in Appendix A.5, we dropped
a term that was asymptotically negligible, which was v/nh, (£, (Fipg — TaDE))-
&% adds a plug-in estimator for the second term, including an estimator for the variance of 75 .
Wigi(1)  (A=-Wyez(0)
™

1—7

n ~
57 =67+ h24 762 )4, where 62, = L 3~ B; B! and the J x 1 vector B; =
’ ’ i=1

(€ —fzo]Téngi. ef(1) = Z;— n%, > Z,. Last, the J x J matrix £ forw e {0,1} are estimated
1W2=w
from regressions of Z; on U; using only observations such that W; = w. We found in simulations

that this second-order correction leads to better coverage properties at smaller sample sizes.
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