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Appendix C Alternative definition of the informational effect

Consider an alternative definition of the strength of the informational effect in (A.45).
Lemma A.2∗ implies that thus defined strength of the informational effect is decreasing in p0.

Lemma A.2∗. Given a prior belief p0 > p̄ and threshold p† ∈ (p, p̄), the strength of the informational effect
(A.45) is equal to
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Proof. Similar to (A.49), we calculate:
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which implies (C.1).

Lemma A.3∗ implies that the statement of Lemma A.3 holds for the alternative definition of the
strength of the informational effect (A.45), and so, Theorem 5 follows.

Lemma A.3∗. Consider any parameter z of the model (except the discount rate r). If the competing firms’
equilibrium research intensity x∗(p) increases in z for all p ∈ (p, p̄), then for any prior belief p0 > p̄ and
threshold p† ∈ (p, p̄), (C.1) decreases in z.

Proof. The proof is analogous to the proof of Lemma A.3.

Appendix D Comparative statics in the green region

Theorem D.1. Suppose that

c ≤
(λ+φ − 1)π

r
. (D.1)

Then, the strength of the appropriability effect decreases in λ and increases in φ. The strength of the
informational effect decreases in λ and in φ.

Proof. This case corresponds to case 3 in Proposition 2 and case 3b in Proposition 4. Hence, the differ-
ence from case (B) of Theorem 5 is only in the stopping threshold p̌ for the merged entity — it is now
defined in (9). Since the expressions for thresholds p̄ and p do not change, the comparative statics of
the strength of the informational effect is the same as in case (B) of Theorem 5.

The strength of the appropriability effect is given in (A.47). Substituting p̌ from (9) and p from
(23) and differentiating (A.47) with respect to λ yields
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while differentiating (A.47) with respect to φ yields
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Appendix E Consumer surplus

In this section, we derive consumer surplus — which is identical to consumer welfare in our parametriza-
tion — using the Stackelberg game with differentiated products presented in Appendix B.1

E.1 Flow consumer surplus

One innovation

Demand p(q) =Q− q corresponds to consumer surplus
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2
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=
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2
. (E.3)

When the firm chooses q =Q/2, consumer surplus (E.3) becomes

CS1 =
Q2

8
. (E.4)

Two innovations

Demand pi(q1, q2) =Q− qi − θq−i corresponds to consumer surplus
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When the firms choose q1 and q2 according to (B.2) and (B.3), consumer surplus (E.5) becomes
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Comparison

Consumers always benefit from the additional innovation:

CS2 > CS1, (E.7)

1The linear demand system in Appendix B is derived from the quadratic utility function:
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1
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�

q2
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2

�

, (E.1)

where m is the consumption of the outside good with its price normalized to 1. Maximizing this utility subject to
the budget constraint m+ p1q1 + p2q2 ≤ I is equivalent to maximizing

Q (q1 + q2)−
1
2

�

q2
1 + 2θq1q2 + q2

2

�

+ I − p1q1 − p2q2. (E.2)

Thus, the optimal consumer demand q1 and q2 is independent of income I whenever this income is sufficiently
large for an interior optimum. The absence of income effect implies that the consumer surplus is an exact measure
of consumer welfare.
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as (E.6) is greater than Q2/4, which in turn is greater than (E.4).

E.2 Cumulative consumer surplus

Consumer surplus for the merged entity

Lemma E.1 derives the consumer surplus in the second stage, i.e., after the first innovation arrives.

Lemma E.1. Suppose that the first innovation has been produced and the firms are merged. Then, the
consumer surplus is
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r
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r(2+ r)
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Proof. If (2) does not hold, then there will be no second innovation, and so consumer surplus is
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r
. (E.9)

If (2) holds, then the merged entity invests in research at full intensity X = 2 and the instantaneous
consumer surplus is
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By analogy with (A.2), the consumers’ expected discounted continuation payoff is (1− X dt−r dt)CS2M .
Hence, the overall consumer payoff is

CS2M =
�

CS1 + X
CS2

r

�

dt+(1− X dt−r dt)CS2M , (E.11)

which implies

CS2M =
CS1r + XCS2

r(X + r)
. (E.12)

Lemma E.2 derives the consumer surplus before the first innovation arrives, for any prior belief. We
assume that the prior belief is sufficiently high for research to take place, i.e., the prior belief is above
the stopping threshold.

Lemma E.2. Suppose that the firms are merged. Given a prior belief p0, the overall consumer surplus is

CSM = 0 (E.13)
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if (5) holds,
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Proof. By analogy with (A.6), the differential equation for the consumer surplus as a function of belief
is

0=
�
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�
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If X (p) = 0, then CSM (p) = 0. If X (p) = 2, then by analogy with (A.9),
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The constant of integration is pinned down by the boundary condition CSM (p̌) = 0, where p̌ is the
merged entity’s stopping threshold:

CSM (p) = p

�
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. (E.18)

Consumer surplus for the competing firms

Lemma E.3 derives the consumer surplus in the second stage for the competing firms setup.

Lemma E.3. Suppose that the first innovation has been produced and the firms compete. Then, the con-
sumer surplus is

CS2C =
CS1

r
if (10) holds, (E.19)

CS2C =
CS1r + CS2

r(1+ r)
if (12) holds, CS2C =

CS1r + 2CS2

r(2+ r)
if (14) holds. (E.20)

Proof. By analogy with Lemma E.1, if (10) holds, then there will be no second innovation, and so
consumer surplus is CS1/r. If (12) holds, then only the follower invests in research at full intensity,
and so the overall consumer payoff is equal to (E.12), with X = 1. If (14) holds, then both firms invest
in research at full intensity, which means that X = 2.

Lemma E.4 derives the consumer surplus before the first innovation arrives, assuming that the prior
belief is sufficiently high — that is, above threshold p̂ for case (17), and above threshold p̄ for case (19).
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Lemma E.4. Suppose that the firms compete. Given a prior belief p0, the overall consumer surplus is

CSC = 0 (E.21)
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if (14) holds.

Proof. The proof for cases (16) and (17) is analogous to the proof of Lemma E.2.
Suppose that (19) holds. The analog of (E.16) holds here:
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�
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�
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If p < p, then X (p) = 0 and so CSC(p) = 0. If p < p < p̄, then X (p) = 2x∗(p) and so
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The constant of integration is pinned down by the boundary condition CSC(p) = 0:

CSC(p) = CS2C
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If p > p̄, then X (p) = 2 and by analogy with (E.17),
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�
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+ C1

�
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p
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�

. (E.28)

The constant of integration is pinned down by continuity of CSC(p) at p = p̄:
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�
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Appendix F Relaxing the additive payoff assumption

F.1 Generalization

In this section we generalize the main model by relaxing the additive payoff assumption. We assume
that after the second innovation, the flow payoff of the merged entity is Γπ, where Γ satisfies (31).
Moreover, in the competing firms setup, if both innovations come from the same firm, this firm’s flow
payoff also becomes Γπ.

In the merged entity setup, the payoff generalization necessitates replacing the sum λ+φ in (2),
(3), (6), (8) and (9) with Γ in Propositions 1 and 2.

Proposition 2∗.

1. If (5) holds, then the merged entity does not undertake research.

2. If
(Γ − 1)π

r
< c <

π

r
, (F.1)

then the merged entity undertakes research at full intensity as long as its current belief p(t) is above
threshold p̌ defined in (7). Once an innovation arrives or the belief falls to p̌, the merged entity
completely aborts research efforts.

3. If

c ≤
(Γ − 1)π

r
, (F.2)

then the merged entity undertakes research at full intensity as long as its current belief p(t) is above
threshold

p̌ =
cr
π

2+ r
2Γ + r − 2rc/π

. (F.3)

Once the belief falls to p̌, the merged entity aborts research efforts. If an innovation arrives before
that, the merged entity undertakes research at full intensity until the second innovation arrives.

In the competing firms setup, in the second stage, a new case could now emerge. If Γ is sufficiently
high, while φ is sufficiently low, then only the leader has incentives to invest in the second innovation.
More specifically, Proposition 3 becomes
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Proposition 3∗.

1. If
max {φ, Γ − 1}

π

r
< c, (F.4)

then both firms abort research after the first innovation and the second innovation never arrives.
The potential follower’s and the leader’s expected payoffs are given in (11).

2. If
φπ

r
< c ≤

(Γ − 1)π
r

, (F.5)

then the leader undertakes research at full intensity until the second innovation arrives, while the
other firm aborts research after the leader produced the first innovation. The firms’ expected payoffs
are

VF = 0, VL =
π

r
+

1
1+ r

�

(Γ − 1)π
r
− c
�

. (F.6)

3. If
π

r

�

Γ − 1+
1−λ
1+ r

�

< c ≤
φπ

r
, (F.7)

then the follower undertakes research at full intensity until the second innovation arrives, while the
leader aborts research after producing the first innovation. The potential follower’s and the leader’s
expected payoffs are given in (13).

4. If

c ≤min
§

φ, Γ − 1+
1−λ
1+ r

ª

π

r
, (F.8)

then both the leader and the follower undertake research at full intensity until the second innovation
arrives. The potential follower’s and the leader’s expected payoffs are

VF =
1

2+ r

�

φπ

r
− c
�

, VL =
λ+ r
1+ r

π

r
+

1
2+ r

�

π

r

�
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1−λ
1+ r

�

− c
�

. (F.9)

Consequently, Proposition 4 becomes

Proposition 4∗.

1. If (16) holds, then neither firm undertakes research.

2. If
max {φ, Γ − 1}

π

r
< c <

π

r
, (F.10)

then the firms undertake research at full intensity as long as their current belief p(t) is above thresh-
old p̂ defined in (18). Once an innovation arrives or the belief falls to p̂, the firms completely abort
research efforts.

3. If
φπ

r
< c ≤

(Γ − 1)π
r

, (F.11)
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then the firms undertake research at full intensity as long as their current belief p(t) is above thresh-
old

p̂ =
cr
π

1+ r
Γ + r − rc/π

. (F.12)

Once the belief falls to p̂, the firms completely abort research efforts. Once an innovation arrives,
only the firm that produced the first innovation undertakes research at full intensity until the second
innovation arrives.

4. If (19) holds, then the firms undertake research at full intensity as long as their current belief p(t)
is above threshold p̄. Once the belief falls to p̄, the firms undertake research at intensity x1(t) =
x2(t) = x∗(p(t)), defined on p ∈ (p, p̄) as in (20). This intensity decreases over time, from 1 at
p(t) = p̄ to 0 at t → +∞. In the absence of innovation, the belief approaches threshold p at
t → +∞.

(a) If (F.7) holds, then once an innovation arrives, only the firm that did not innovate undertakes
research at full intensity until the second innovation arrives. Threshold p is defined in (21).
Threshold p̄ ∈ [p, 1) is defined as a unique solution to (22).

(b) If (F.8) holds, then once an innovation arrives, both firms undertake research at full intensity
until the second innovation arrives. Threshold p is defined as

p =
cr
π

�

λ+ r
1+ r

+
1

2+ r

�

Γ − 1+
1−λ
1+ r

−
cr
π

��−1

. (F.13)

Threshold p̄ ∈ [p, 1) is defined as a unique solution to (24).

Then, Theorems 1, 2 and 3 become

Theorem 1∗ (The merger has no impact on innovations). If

max {φ, Γ − 1}
π

r
< c, (F.14)

then the merger has no impact on the number and timing of innovations.

Theorem 2∗ (The merger has a positive impact on innovations). If

c <
(Γ − 1)π

r
, (F.15)

then the merger has an unambiguously positive impact: while it does not block the second innovation, it
increases the probability that the first innovation arrives. Moreover, if

φπ

r
< c <

(Γ − 1)π
r

, (F.16)

then the merger brings the second innovation forward in time, whereas if

c <min {φ, Γ − 1}
π

r
, (F.17)
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then the merger brings the first innovation forward in time.

Theorem 2∗ implies that the appropriability effect can operate alone, without the informational
effect. This occurs if (F.11) holds, so that in the competing firms setup, the second innovation always
comes from the same firm that produced the first innovation. In this case, although competition prompts
firms to abort research earlier in the first stage, it does not result in free-riding, since the discovery
that the research avenue is good is of no use to the potential follower, who finds it suboptimal to
continue research after the first innovation arrives.2 Moreover, since one of the competing firms does
not undertake R&D, it takes the competing firms longer to produce the second innovation, compared
to the merged entity which utilizes all its research intensity towards producing the second innovation.

Theorem 3∗ (The merger has an ambiguous impact on innovations). If

(Γ − 1)π
r

< c <
φπ

r
, (F.18)

then the merger blocks the second innovation but increases the probability that the first innovation arrives
and, moreover, brings it forward in time.

Theorem F.1 analyzes how the appropriability and informational effects change with Γ .

Theorem F.1. As Γ increases, the appropriability effect tends to strengthen if the merged entity introduces
the second innovation after the first, but may weaken if the merger blocks the second innovation:

1. If (F.16) holds, then the strength of the appropriability effect increases in Γ .

2. If (F.17) holds and3

Γ ≤ 2λ+
�p

2− 1
�

φ, (F.19)

then the strength of the appropriability effect increases in Γ .

3. If (F.18) holds, then the strength of the appropriability effect

(a) is independent of Γ if (F.7) holds;

(b) decreases in Γ if (F.8) holds.

Moreover, whenever present, the informational effect either weakens or is unaffected by Γ :

1. If (F.7) holds, then the strength of the informational effect is independent of Γ .

2. If (F.8) holds, then the strength of the informational effect decreases in Γ .

Proof. Suppose that (F.16) holds. Then, the strength of the appropriability effect is given by (A.47)
with the competing firms’ stopping threshold p = p̂ defined in (F.12) and the merged entity’s stopping
threshold p̌ defined in (F.3). Differentiating this expression with respect to Γ yields

2If (F.11) holds, then the merger increases the probability of the first innovation because threshold p̂ defined
in (F.12) is higher than threshold p̌ defined in (F.3): p̂− p̌ = cr2

π
Γ−1−cr/π

(Γ+r−rc/π)(2Γ+r−2rc/π) > 0.
3Condition (F.19) is rather mild and, for instance, holds for the parametrization from Appendix F.2 — see

(F.30).
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Suppose that (F.17) holds. Then, the strength of the appropriability effect is given by (A.47) with
the competing firms’ stopping threshold p defined in (F.13) and the merged entity’s stopping threshold
p̌ defined in (F.3). Differentiating this expression with respect to Γ yields

1− p0
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·
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2

3+ 2
p

2
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φ −
cr
π
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>0 by (F.17)

+
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·
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·
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·

�

p

1− p
+

p̌
p

2
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�

, (F.21)

which is positive if (F.19) holds.
Suppose that (F.18) holds. Then, the merged entity’s stopping threshold p̌ is defined in (7) and

thus independent of Γ . If (F.7) holds, then the competing firms’ stopping threshold p is defined in
(21) and thus also independent of Γ . Hence, if (F.7) holds, the strength of the appropriability effect is
independent of Γ . However, if (F.8) holds, then the competing firms’ stopping threshold p is defined in
(F.13), which is decreasing in Γ . Hence, if (F.8) holds, the strength of the appropriability effect decreases
in Γ .

By Lemma A.3, the comparative statics of the informational effect move in the opposite direction to
that of the equilibrium intensity x∗(p) on the free-riding region (p, p̄). If (F.7) holds, then thresholds p
and p̄ are given in (21) and (22), respectively. In this case, the threshold — and therefore x∗(p) defined
in (20) as well — are independent of Γ . Thus, if (F.7) holds, the strength of the informational effect is
independent of Γ . In contrast, if (F.8) holds, then thresholds p and p̄, defined in (F.13) and (24), vary
with Γ . By Lemma F.1, the equilibrium intensity x∗(p) increases in Γ , implying that the strength of the
informational effect decreases in Γ .

Lemma F.1. Given thresholds p defined in (F.13) and p̄ defined in (24), the equilibrium research intensity
x∗(p) defined in (20) increases in Γ .

Proof. By (A.50) and (A.51), the equilibrium research intensity x∗(p) defined in (20) decreases in p̄
and in p.

Clearly, threshold p defined in (F.13) decreases in Γ .
Threshold p̄ defined in (24) also decreases in Γ . Indeed, the right-hand side of (24) is independent

of both Γ and p̄. The left-hand side of (24) increases in p̄ by (A.52). Moreover, the left-hand side of
(24) depends on Γ only through p, which, by (F.13), decreases in Γ . Thus, since by (A.53) the left-hand
side of (24) decreases in p, it increases in Γ .

If the merged entity introduces the second innovation after the first, then an increase in Γ provides
it with additional incentives to pursue the first innovation because a higher Γ increases the profit from
common ownership of both innovations. While an increase in Γ has a similar impact on the competing
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firms, this impact is weaker than on the merged entity because even in the absence of competition,
producing the second innovation takes longer time and hence is more costly for a single firm, which
has only one unit of research intensity, than for the merged entity, which has two units of research
intensity. Thus, as Theorem F.1 states, as Γ increases, the merger brings about an ever higher increase
in the probability of the first innovation.

However, if the merger blocks the second innovation, an increase in Γ has no impact on the merged
entity’s profit. At the same time, a higher Γ increases the leader’s profit from common ownership of
both innovations. Hence, if the leader undertakes research to produce the second innovation — that
is, if (F.8) holds — as Γ increases, the competing firms produce the first innovation with ever higher
probability, while that probability for the merged entity remains unchanged. Thus, as Theorem F.1
states, the appropriability affect weakens with Γ .

The informational effect is present only if the potential follower, armed with the knowledge that
the research avenue is good, chooses to pursue the second innovation. If the leader does not compete
for the second innovation — i.e., if (F.7) holds — then no firm ever acquires both innovations, and
thus Γ has no impact on the competing firms’ incentives to free-ride. However, if both firms pursue the
second innovation — i.e., if (F.8) holds — then a higher Γ increases the leader’s payoff from the second
innovations without affecting the follower’s. Hence, a higher Γ makes the leader’s role more attractive,
thereby mitigating free-riding and, as Theorem F.1 states, weakening the informational effect.

F.2 Microfoundations for Γ

In this section, we extend Appendix B to express Γ as a function of the degree of substitutability
between the first and second innovations.

Two innovations from the same firm

When both products belong to a single firm facing demand pi(q1, q2) = Q − qi − θq−i, this firm
maximizes

max
q1≥0
q2≥0

q1p1(q1, q2) + q2p2(q1, q2) = q1 (Q− q1 − θq2) + q2 (Q− q2 − θq1) (F.22)

and thus chooses
q1 = q2 =

Q
2(1+ θ )

. (F.23)

Hence, the firm’s payoff is

Γπ=
2

1+ θ
Q2

4
. (F.24)

Interpretation of parameters

Since by (B.1) π=Q2/4, (F.24) implies that

Γ (θ ) =
2

1+ θ
. (F.25)

12



When products are independent (θ = 0), the single ownership of both innovations does not provide
any benefit and the profit equals twice the monopoly profit from each individual product:

Γ (0) = λ(0) +φ(0) = 2. (F.26)

As the degree of substitutability between the products, θ , increases, the profit from owning both inno-
vations decreases but less so than the joint profit of the competing firms:

λ′(θ ) +φ′(θ ) = −
2

(1+ θ )2
−
θ
�

(1− θ 2)(6− 2θ + θ 3) + 2
�

(1+ θ )2(2− θ 2)3
< −

2
(1+ θ )2

= Γ ′(θ )< 0. (F.27)

Results (F.26) and (F.27) justify restriction (31).
It is intuitive that for perfect substitutes (θ = 1), adding the second product does not change the

firm’s profit:
Γ (1) = 1. (F.28)

Note also that for this parametrization,

φ(θ )− (Γ (θ )− 1) =

�

14− θ 2
�

(1− θ )θ + 5θ 2(2+ θ )(1− θ )2 + 2θ

4 (2− θ 2)2 (1+ θ )
> 0 (F.29)

and

2λ(θ )+
�p

2− 1
�

φ(θ )−Γ (θ ) =

�p
2− 1
� �

2+ 20θ (1− θ )2 + 10
p

2θ (1− θ )3 +
�

2+ 3
p

2
�

(1− θ )5
�

4 (2− θ 2)2 (1+ θ )

+
1− θ

4 (2− θ 2)2 (1+ θ )

�

1+
10

3
p

2+ 4
+ 6θ (1− θ )2 + (1− θ )4

�

> 0. (F.30)

F.3 Consumer surplus

In this section, we extend Appendix E to derive consumer surplus in the presence of price effects.

Flow consumer surplus in the presence of two innovations

We differentiate two cases, when innovations come from different firms and when they come from
the same firm. To reflect the difference, we reserve notation CS2c for the flow consumer surplus in the
first case and CS2m for the second case. Surplus CS2 derived in (E.6) corresponds to the first case:

CS2c = CS2. (F.31)

For the second case, substituting (F.23) into consumer surplus (E.5) yields

CS2m =
Q2

4(1+ θ )
. (F.32)
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Comparison

If products are independent (θ = 0), then

CS2c(0) = CS2m(0) =
Q2

4
= 2CS1, (F.33)

so that each innovation brings the same surplus, irrespective of whether they come from the same or
different firms.

As θ increases, the second innovation brings less surplus if it comes from the same firm as the first
innovation:

CS′2m(θ ) = −
Q2

4(1+ θ )2
< 0. (F.34)

In contrast, if innovations come from different firms, competitive price reduction ensures that the sec-
ond innovation brings more surplus as θ increases:

CS′2c(θ ) =
θ 2
�

6(1− θ ) + θ 2
�

Q2

8(2− θ 2)3
> 0. (F.35)

If products are perfect substitutes (θ = 1), then the second innovation brings no surplus if it comes
from the same firm as the first innovation:

CS2m(1) =
Q2

8
= CS1. (F.36)

Results (F.33), (F.34), (F.35) and (F.36) imply that for any θ ∈ (0, 1) consumers benefit from more
innovations, and more so if these innovations come from different firms:

CS2c > CS2m > CS1. (F.37)

Consumer surplus for the merged entity

In light of Proposition 2∗, since the flow consumer surplus with two innovations from the merged
entity is equal to CS2m, Lemma E.2 generalizes as follows.

Lemma E.2∗. Suppose that the firms are merged. Given a prior belief p0, the overall consumer surplus is
(E.13) if (5) holds, (E.14) if (F.1) holds, and

CSM = p0

�

1−
�

p̌(1− p0)
(1− p̌)p0

�1+r/2� 2CS1r + 4CS2m

r(2+ r)2
with p̌ defined in (F.3) (F.38)

if (F.2) holds.

Consumer surplus for the competing firms

Lemma E.3 is generalizes as follows.
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Lemma E.3∗. Suppose that the first innovation has been produced and the firms compete. Then, the
consumer surplus is

CS2C =
CS1

r
if (F.4) holds, CS2C =

CS1r + CS2m

r(1+ r)
if (F.5) holds, (F.39)

CS2C =
CS1r + CS2c

r(1+ r)
if (F.7) holds, CS2C =

CS1r + CS2m + CS2c

r(2+ r)
if (F.8) holds. (F.40)

Proof. By analogy with Lemma E.1, if (F.4) holds, then there will be no second innovation, and so
consumer surplus is CS1/r. If (F.5) holds, then only the leader invests in research at full intensity, and
so the overall consumer payoff is equal to (E.12), with X = 1 and CS2 = CS2m. If (F.7) holds, then the
second innovation comes from the other firm, which means that CS2 has to be replaced with CS2c. If
(F.8) holds, then both firms invest in research at full intensity, which means the overall consumer payoff
is equal to (E.12), with X = 2 and CS2 replaced with (CS2m+CS2c)/2 since the second innovation may
come from either firm with equal probabilities.

As in Lemma E.4, in Lemma E.4∗ assumes that the prior belief is sufficiently high — that is, above
threshold p̂ for cases (F.10) and (F.11), and above threshold p̄ for case (19).

Lemma E.4∗. Suppose that the firms compete. Given a prior belief p0, the overall consumer surplus is
(E.21) if (16) holds, (E.22) if (F.10) holds,

CSC = p0

�

1−
�

p̂(1− p0)
(1− p̂)p0

�1+r/2� 2CS1r + 2CS2m

r(1+ r)(2+ r)
with p̂ defined in (F.12) (F.41)

if (F.11) holds,

CSC = p0






1+







p̄
∫

p

2+ r
2p̄(1− q)

exp



−

p̄
∫

q

r + 2sx∗(s)
2(1− s)sx∗(s)

ds



dq− 1







�

p̄(1− p0)
(1− p̄)p0

�1+r/2







×
2CS1r + 2CS2c

r(1+ r)(2+ r)
with x∗ defined in (20), p defined in (21), and p̄ defined in (22) (F.42)

if (F.7) holds,

CSC = p0






1+







p̄
∫

p

2+ r
2p̄(1− q)

exp



−

p̄
∫

q

r + 2sx∗(s)
2(1− s)sx∗(s)

ds



dq− 1







�

p̄(1− p0)
(1− p̄)p0

�1+r/2







×
2CS1r + 2CS2m + 2CS2c

r(2+ r)2
with x∗ defined in (20), p defined in (F.13), and p̄ defined in (24) (F.43)

if (F.8) holds.
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Appendix G Correlated avenues

G.1 Setup

So far, we have assumed that there is only one method of conducting research — that is, a single
research avenue. In this section, we extend our model to allow for two research avenues. Each firm
has access to one avenue only and is restricted to conducting research along that avenue — i.e., firm
i chooses intensity x i to allocate to avenue i. This assumption reflects technological specialization
and sunk investment in complementary assets, which constrain firms’ ability to flexibly reallocate R&D
efforts across different research methods.

Each research avenue is either good (capable of producing innovations) or bad (incapable of pro-
ducing innovations), and it is possible that both of them are good:

Pr

�

both avenues
are good

�

> 0, Pr

�

only avenue 1
is good

�

> 0, Pr

�

only avenue 2
is good

�

> 0. (G.1)

Let pi denote the firms’ common belief that avenue i is good, that is,

pi = Pr

�

only avenue i
is good

�

+ Pr

�

both avenues
are good

�

. (G.2)

To capture the correlation between the avenues, we denote

ξ=
Pr(both avenues are good)− p1p2

Pr(only avenue 1 is good) · Pr(only avenue 2 is good)
. (G.3)

By assumption (G.1), variable ξ is well-defined and must be greater than or equal to −1. The sign
of ξ coincides with the sign of the correlation between the avenues. Using ξ is handy because, in
contrast to the correlation, as shown in Mayskaya and Nikandrova (2024), prior to the arrival of the first
innovation, the expression for ξ in (G.3) remains constant regardless of the R&D investment strategy
of the firms.4

As in the single-avenue benchmark model, we assume that there can be, at most, two sequential
innovations in the market. The payoff assumptions also remain unchanged.

G.2 Merged entity

Stage 2: After the first innovation

Without loss of generality, suppose that the first innovation was produced by avenue 1.

Proposition G.1. If (2) holds, then merged entity continues research along both avenues at full intensity

4In contrast to ξ, the correlation between the avenues, Pr(both avenues are good)−p1 p2p
p1(1−p1)p2(1−p2)

, varies as the firms undertake

research to get the first innovation. In particular, as cumulative investment in each avenue grows, they eventually
become so pessimistic about both avenues that the correlation gets close to 0.
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until either the second innovation arrives or the merged entity’s belief p2 falls to

ˆ̌p =
c(1+ r)

c + (λ+φ − 1)π
. (G.4)

For beliefs p2 ≤ ˆ̌p, the merged entity undertakes research only along the first avenue until the second
innovation arrives. If (2) does not hold, then the merged entity immediately aborts research after producing
the first innovation. The merged entity’s expected payoff from the second stage is

VM (p2) =
π

r
+

2
2+ r

�

(λ+φ − 1)π
r

− c
�

−
c(1− p2)

(1+ r)(2+ r)

�

(λ+φ − 1)π
c

+ 2−
� ˆ̌p(1− p2)

p2(1− ˆ̌p)

�r+1�

(G.5)
if (2) holds and p2 > ˆ̌p, and

VM (p2) =
π

r
+

1
1+ r

max
§

(λ+φ − 1)π
r

− c, 0
ª

(G.6)

otherwise.

Proof. See Appendix G.5.1.

Stage 1: Before the first innovation

For the sake of simplicity, we focus on the symmetric prior: p1 = p2 ≡ p. As in the one-avenue
benchmark model, the stopping threshold is equal to c/VM . If (2) does not hold, then VM = π/r, and
so, the solution coincides with the one-avenue case. However, if (2) holds, VM depends on the stopping
threshold through the posterior belief after the arrival of the first innovation:

h≡ Pr (avenue i is good | avenue j is good) =
pboth

p
, (G.7)

where pboth is the probability that both avenues are good. For symmetric beliefs, the expression (G.3)
for ξ becomes

ξ=
pboth − p2

(p − pboth)
2 . (G.8)

Solving (G.7) and (G.8) for pboth and p yields

p =
h

1+ (1− h)2 ξ
. (G.9)

Hence, the conditional belief which corresponds to the stopping threshold solves

c =
ȟ

1+
�

1− ȟ
�2
ξ

VM

�

ȟ
�

. (G.10)
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As shown in Appendix G.5.1 in the proof of Proposition G.1, function VM (h) is weakly increasing. The
ratio (G.9) is also increasing:

∂

∂ h

�

h

1+ (1− h)2 ξ

�

=
h2 + (1+ ξ)
�

1− h2
�

�

1+ (1− h)2 ξ
�2 > 0. (G.11)

Hence, the right-hand side of (G.10) is increasing in ȟ ∈ (0,1) from 0 to VM (1). When (2) holds — or
equivalently, when (8) holds — VM (1) is greater than c, which means that (G.10) has a unique solution.

Proposition G.2.

1. If (5) holds, then the merged entity does not undertake research.

2. If (6) holds, then the merged entity undertakes research at full intensity along both avenues as long
as its current belief p(t) is above threshold p̌ defined in (7). Once an innovation arrives or the belief
falls to p̌, the merged entity completely aborts research efforts.

3. If (8) holds, then the merged entity undertakes research at full intensity along both avenues as long
as its current belief p(t) is above threshold

p̌ =
c

VM

�

ȟ
� , (G.12)

where ȟ ∈ (0, 1) is defined as a unique solution to (G.10). Once the belief falls to p̌, the merged entity
aborts research efforts. If an innovation arrives before that, the merged entity undertakes research
at full intensity along both avenues until either the second innovation arrives, or the belief about the
uncertain avenue drops to ˆ̌p defined in (G.4). In the latter case, the merged entity continues research
along the avenue that produced the first innovation until the second innovation arrives.

Proof. See Appendix G.5.2.

Formula (G.12) hides two cases, ȟ < ˆ̌p and ȟ > ˆ̌p. If ȟ < ˆ̌p, then VM

�

ȟ
�

is constant and defined
in (G.6). In this case, (G.12) gives an explicit expression for threshold p̌, and this expression does not
depend on ξ. If ȟ > ˆ̌p, then VM

�

ȟ
�

is increasing in ȟ and defined in (G.5). In this case, p̌ defined in
(G.12) varies with ξ together with ȟ. Lemma G.1 derives the condition, which differentiates these two
cases.

Lemma G.1. Suppose that (8) holds. Then, if

ξ≤
((λ+φ − 1)π+ c) ((2−λ−φ)π(1+ r) + 2 ((λ+φ − 1)π− cr))

r ((λ+φ − 1)π− cr)2
, (G.13)

p̌ defined in (G.12) is equal to

p̌ =
cr
π

1+ r
λ+φ + r − rc/π

. (G.14)

If (G.13) does not hold, then p̌ defined in (G.12) is decreasing in ξ and equal to (9) at the limit ξ→ +∞
where the research avenues are perfectly positively correlated — i.e., as in our benchmark model.

Proof. See Appendix G.5.3.

18



G.3 Competing firms

Stage 2: After the first innovation

Proposition G.3.

1. If (10) holds, then both firms abort research after the first innovation and the second innovation
never arrives. The potential follower’s and the leader’s expected payoffs are given in (11).

2. If (12) holds, then, while the leader aborts research immediately after producing the first innovation,
the follower undertakes research at full intensity until either the second innovation arrives or the
firms’ belief p2 falls to

pF =
cr
φπ

; (G.15)

The follower’s and the leader’s expected payoffs are

VF (p2) =
1

1+ r

�

p2
φπ

r
− c
�

−
c(1− p2)
r(1+ r)

�

1−
�

pF (1− p2)
p2(1− pF )

�r�

, (G.16)

VL(p2) =
π

r
−
(1−λ)π
r(1+ r)

p2

�

1−
�

pF (1− p2)
p2(1− pF )

�r+1�

. (G.17)

if p2 > pF and are given in (11) for p2 < pF .

3. If
(λ+φ − 1)π

r
< c ≤

π

r

�

φ −
(1−λ)r

1+ r

�

, (G.18)

then both the leader and the follower undertake research at full intensity until either the second
innovation arrives or the belief p2 falls to pL; starting from belief pL, only the follower continues
research and aborts it at belief pF . Threshold pF is defined in (G.15); threshold pL > pF is defined
as a unique solution to

pL

1+ r

�

1−
�

pF (1− pL)
pL(1− pF )

�r+1�

=
r

1−λ

�

c
π
−
λ+φ − 1

r

�

. (G.19)

The potential follower’s and the leader’s expected payoffs are

VF (p2) =
1

2+ r

�

p2
φπ

r
− c
�

+
c(1− p2)
r(1+ r)

·
pL(1− p2)
p2(1− pL)

�

pF (1− p2)
p2(1− pF )

�r

−
c(1− p2)

(1+ r)(2+ r)

�

1−
�

pL(1− pF )
pF (1− pL)

−
2+ r

r

��

pL(1− p2)
p2(1− pL)

�r+1�

, (G.20)
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VL(p2) =
π

r
+

1
2+ r

�

(2λ+φ − 2)π
r

− c
�

+ (1− p2)
φπ/r + (1−λ)π− c
(1+ r)(2+ r)

�

1−
pL

1+ pL + r

�

pL(1− p2)
p2(1− pL)

�r+1�

+
(1−λ)π
r(1+ r)

·
pL(1− p2)
1+ pL + r

�

pL + r
1− pL

�

pF (1− p2)
p2(1− pF )

�r+1

+
�

pL(1− p2)
p2(1− pL)

�r+1�

(G.21)

for p2 > pL, (G.16) and (G.17) for pF < p2 < pL, and (11) for p2 < pF .

4. If

c ≤
(λ+φ − 1)π

r
, (G.22)

then both the leader and the follower undertake research at full intensity until either the second
innovation arrives or the belief p2 falls to pF defined in (G.15); starting from belief pF , only the
leader continues research until the second innovation arrives. The potential follower’s and the leader’s
expected payoffs are

VF (p2) =
1

2+ r

�

p2
φπ

r
− c
�

−
c(1− p2)

(1+ r)(2+ r)

�

1−
�

pF (1− p2)
p2(1− pF )

�r+1�

, (G.23)

VL(p2) =
π

r
+

1
2+ r

�

(2λ+φ − 2)π
r

− c
�

+ (1− p2)
φπ/r + (1−λ)π− c
(1+ r)(2+ r)

�

1+
pF

1− pF

�

pF (1− p2)
(1− pF )p2

�r+1�

(G.24)

for p2 > pF and

VF (p2) = 0, VL(p2) =
π

r
+

1
1+ r

�

(λ+φ − 1)π
r

− c
�

(G.25)

for p2 < pF .

Proof. See Appendix G.5.4.

Stage 1: Before the first innovation

As in the merged entity’s setting, here we also focus on the symmetric prior. Due to high complexity
of the analysis, we focus mostly on ξ≤ 0 and present the following result as a conjecture.

Proposition G.4 (Conjecture).

1. If (16) holds, then neither firm undertakes research.

2. If (17) holds, then the firms undertake research at full intensity as long as their current belief p(t)
is above threshold p̂ defined in (18). Once an innovation arrives or the belief falls to p̂, the firms
completely abort research efforts.
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3. If (19) holds and ξ ≤ 0, then the firms undertake research at full intensity as long as their current
belief p(t) is above threshold p. Once the belief falls to p, both firms completely abort research
efforts. Threshold p is equal to p̌ defined in Proposition 2.

Leveraging the results from the one-avenue benchmark model, we conjecture that the stopping
threshold for the competing firms should be defined as

p =
c

VL

�

h
� , (G.26)

where h ∈ (0, 1) solves

c =
h

1+
�

1− h
�2
ξ

VL

�

h
�

. (G.27)

Moreover, intuitively, there might be an indifference region (p, p̄) with an intermediate intensity. A
necessary condition for such region to appear in equilibrium is that, whenever the firms are about
to abandon research — i.e., whenever the common current belief p(t) is close to p — once one firm
innovates, learning that the competitor’s research avenue is good encourages the potential follower to
undertake more research along its own avenue.

According to Proposition G.3, if (10) holds, neither firm undertakes research after the first innova-
tion. Hence, there is no indifference region. Since VL = π/r, the stopping threshold (G.26) is equal to
cr/π. If (16) holds, then this expression is greater than 1, which means that neither firm undertakes
research — case 1 in Proposition G.4. If (17) holds, then we get case 2 in Proposition G.4.

According to cases 2 and 3 in Proposition G.3, if either (12) or (G.18) holds, then, if the first
innovation arrives whenever the common current belief p(t) is close to p, neither firm undertakes

research if h, which solves (G.27), is less than pF . If h < pF , then VL

�

h
�

= π/r, and so, the right-hand
side of (G.27) becomes

h

1+
�

1− h
�2
ξ

π

r
. (G.28)

Since, by (G.11), (G.28) is increasing in h, h< pF only if

c <
pF

1+ (1− pF )
2 ξ

π

r
, (G.29)

which is equivalent to

0<
pF

1+ (1− pF )
2 ξ

π

r
− c

(G.15)
=

c(1− pF )2

1+ (1− pF )2ξ

�

1−φ
φ(1− pF )2

− ξ
�

, (G.30)

which gives us

ξ <
1−φ

φ(1− pF )2
. (G.31)

Hence, if either (12) or (G.18) holds and, in addition, condition (G.31) holds, then there is no indif-
ference region, VL

�

h
�

= π/r and the stopping threshold (G.26) is equal to cr/π— i.e., it is equal to p̌
defined in (7).

Case 4 is similar to cases 2 and 3. The only difference is that if h < pF , then VL

�

h
�

is defined in
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(G.25), and so, the analog of (G.30) is

0<
pF

1+ (1− pF )
2 ξ

§

π

r
+

1
1+ r

�

(λ+φ − 1)π
r

− c
�ª

− c

(G.15)
=

c(1− pF )2

1+ (1− pF )2ξ

�

1−φ
φ(1− pF )2

+
λ+φ − 1− cr/π
(1+ r)φ(1− pF )2

− ξ
�

, (G.32)

which gives us

ξ <
1−φ

φ(1− pF )2
+
λ+φ − 1− cr/π
(1+ r)φ(1− pF )2

. (G.33)

Hence, if (G.22) holds and, in addition, condition (G.33) holds, then there is no indifference region
and VL

�

h
�

is defined in (G.25). Hence, the stopping threshold (G.26) is equal to p̌ defined in (G.14).
Condition ξ≤ 0 ensures that both (G.33) and (G.13) hold, which means that in this case, the stopping
thresholds in the competing firms setting and in the merged entity’s setting coincide.

G.4 Comparison

In this section, we compare the merged entity’s optimal strategy (Propositions G.1 and G.2) and
the equilibrium in the competing firms setting (Propositions G.3 and G.4).

Theorem 1 remains unchanged for all values of ξ. Indeed, under condition (25), the imperfect
correlation between the avenues does not change the solution.

In contrast, Theorems 2 and 3 significantly change if ξ≤ 0. According to Propositions G.2 and G.4,
the stopping thresholds of the competing firms and of the merged entity are the same. Hence, there is
no appropriability effect. Moreover, since in the competing firms setting, there is no indifference region
with an intermediate intensity, there is no informational effect.

Theorem G.1. If either (26) or (28) holds, then the merger has an unambiguously negative impact: while
it does not change the probability and timing of the first innovation, it may delay or completely block the
second innovation.

In particular, if (26) holds, then after the first innovation arrives, the second innovation arrives with
certainty in both settings because both the leader and the merged entity undertakes research along the
avenue which produces the first innovation. However, along the other avenue, the potential follower
may undertake research for longer than the merged entity because

ˆ̌p− pF
(G.4) and (G.15)

=
c(1+ r)

c + (λ+φ − 1)π
−

cr
φπ
=

c
�

>0 by (26)
︷ ︸︸ ︷

(λ+φ − 1)π− cr+(1+ r)(1−λ)π
�

φπ (c + (λ+φ − 1)π)
> 0. (G.34)

If (28) holds, then the merged entity never produces the second innovation. In contrast, the competing
firms may produce the second innovation if the first innovation arrives sufficiently early so that, despite
zero or negative correlation between the avenues, learning that one avenue is good does not discourage
the potential follower from undertaking research along the other avenue.
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G.5 Proofs

G.5.1 Proof of Proposition G.1

Let VM (p2) be the merged entity’s expected payoff from the second stage. Following the logic similar
to the one behind (A.3) and (A.5), we get

VM (p2) = max
0≤x1≤1
0≤x2≤1

�

πdt−c(x1 + x2)dt+
(λ+φ)π

r
(x1 + x2p2)dt

+ (1− x1 dt−x2p2 dt−r dt)VM (p2)− V ′M (p2)x2(1− p2)p2 dt

�

, (G.35)

which yields the Hamilton-Jacobi-Bellman equation

0= max
0≤x1≤1
0≤x2≤1

�

π+
�

(λ+φ)π
r

− c − VM (p2)
�

x1

+
�

(λ+φ)π
r

p2 − c − p2VM (p2)− p2(1− p2)V
′
M (p2)
�

x2 − rVM (p2)

�

. (G.36)

Naturally, if it is optimal to undertake research along avenue 2, which type is uncertain, then it is also
optimal to undertake research along avenue 1, which is known to be good. Hence, it is sufficient to
consider three cases: when no research is optimal, when only avenue 1 is explored, and when both
avenues are explored.

Region with no research. If x1 = x2 = 0, then, by (G.36), VM (p2) = π/r. According to (G.36),
choosing x1 = x2 = 0 is optimal only if

c ≥max
§

p2

�

(λ+φ)π
r

− VM (p2)− (1− p2)V
′
M (p2)
�

,
(λ+φ)π

r
− VM (p2)
ª

. (G.37)

Since VM (p2) = π/r, condition (G.37) can be simplified as

c ≥
(λ+φ − 1)π

r
. (G.38)

Region with research only along avenue 1. If x1 = 1 and x2 = 0, then, by (G.36),

VM (p2) =
π

r
+

1
1+ r

�

(λ+φ − 1)π
r

− c
�

. (G.39)

According to (G.36), choosing x1 = 1 and x2 = 0 is optimal only if

p2

�

(λ+φ)π
r

− VM (p2)− (1− p2)V
′
M (p2)
�

≤ c ≤
(λ+φ)π

r
− VM (p2). (G.40)
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Since VM (p2) is defined in (G.39), condition (G.40) can be simplified as

c ≤
(λ+φ − 1)π

r
(G.41)

and

p2 ≤
c(1+ r)

c + (λ+φ − 1)π
. (G.42)

Region with research along both avenues. For the region of beliefs, in which x1 = x2 = 1, we
can solve the differential equation (G.36):

π+
(λ+φ)π

r
− 2c + p2

�

(λ+φ)π
r

− VM (p2)− (1− p2)V
′
M (p2)
�

= (1+ r)VM (p2), (G.43)

for VM (p2) explicitly up to a constant of integration:

VM (p2) =
π

r
+

2
2+ r

�

(λ+φ − 1)π
r

− c
�

− (1− p2)

�

(λ+φ − 1)π+ 2c
(1+ r)(2+ r)

− CM

�

1− p2

p2

�r+1
�

. (G.44)

According to (G.36), choosing x1 = x2 = 1 is optimal only if

c ≤min
§

p2

�

(λ+φ)π
r

− VM (p2)− (1− p2)V
′
M (p2)
�

,
(λ+φ)π

r
− VM (p2)
ª

. (G.45)

Equation (G.43) allows rewriting condition (G.45) as

π

r
+

1
1+ r

�

(λ+φ − 1)π
r

− c
�

≤ VM (p2)≤
(λ+φ)π

r
− c. (G.46)

No-research solution. Choosing x1 = x2 = 0 is optimal for all beliefs p2 ∈ (0, 1) only if condition
(G.38) holds, which is equivalent to the statement that condition (2) does not hold.

Full-intensity solution. Suppose that there exists ˆ̌p ∈ (0,1) such that x1 = 1 and x2 = 0 for
p2 ∈ [0, ˆ̌p) and x1 = x2 = 1 for the beliefs just above ˆ̌p. Then the value-matching and smooth-pasting
properties for (G.39) and (G.44) at p2 = ˆ̌p give the expression for ˆ̌p and the constant of integration:

ˆ̌p =
c(1+ r)

c +π(λ+φ − 1)
, CM =

c
(1+ r)(2+ r)

� ˆ̌p

1− ˆ̌p

�r+1

. (G.47)

Observe that for thus defined ˆ̌p, condition (G.42) holds for all p2 ≤ ˆ̌p. Condition (2) is necessary for the
full-intensity solution to exist because it is equivalent to (G.41) and, moreover, it ensures that ˆ̌p ≤ 1.
Condition (2) is also sufficient because (G.46) holds for all p2 > ˆ̌p. Indeed, at p2 = ˆ̌p, VM (p2) is equal
to (G.39) — i.e., the lower bound in (G.46). Moreover, differentiating (G.44) twice yields

V ′′M (p2) = CM
(1+ r)(2+ r)

p3
2

�

1− p2

p2

�r

, (G.48)
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which is positive because CM > 0. Hence, since V ′M (ˆ̌p) = 0 by smooth-pasting property, VM (p2) is
increasing on p2 ∈ (ˆ̌p, 1). At p2 = 1, VM (p2) is still below the upper bound in (G.46):

VM (1) =
π

r
+

2
2+ r

�

(λ+φ − 1)π
r

− c
�

<
π

r
+
�

(λ+φ − 1)π
r

− c
�

. (G.49)

G.5.2 Proof of Proposition G.2

Given the research intensities x1 and x2, the merged entity’s instantaneous payoff is

∑

i=1,2

x i dt
�

piVM

�

Pr(both avenues are good)
pi

�

− c
�

, (G.50)

where VM denotes the merged entity’s second-stage payoff, as derived in Proposition G.1, and where pi

and Pr(both avenues are good) represent the merged entity’s current beliefs.
Following Mayskaya and Nikandrova (2024), in addition to ξ, we introduce the variables

q1 =
Pr(only avenue 2 is good)
Pr(both avenues are good)

, q2 =
Pr(only avenue 1 is good)
Pr(both avenues are good)

. (G.51)

By assumption (G.1), variables q1 and q2 are well-defined and can take any positive values. There is a
one-to-one correspondence between (q1, q2,ξ) and the beliefs:

Pr(both avenues are bad) =
(1+ ξ)q1q2

1+ q1 + q2 + (1+ ξ)q1q2
, (G.52)

Pr(both avenues are good) =
1

1+ q1 + q2 + (1+ ξ)q1q2
, (G.53)

Pr(only avenue 2 is good) =
q1

1+ q1 + q2 + (1+ ξ)q1q2
, (G.54)

Pr(only avenue 1 is good) =
q2

1+ q1 + q2 + (1+ ξ)q1q2
. (G.55)

Since before the arrival of the first innovation, ξ remains constant regardless of the investment strategy,
vector (q1, q2) can serve as a state variable for the first-stage optimization problem. Investment in
avenue i increases qi while keeping the other state variable constant:

q′i(t) = qi x i. (G.56)

Let Ŵ (q1, q2) denote the merged entity’s value function in the first stage. Given the instantaneous
payoff (G.50) and the belief transition formulas (G.52) to (G.55), we can now write down the Hamilton-
Jacobi-Bellman (HJB) equation:
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0= max
0≤x1≤1
0≤x2≤1

�

x1

�

1+ q2

1+ q1 + q2 + (1+ ξ)q1q2
VM

�

1
1+ q2

�

− c
�

+ x2

�

1+ q1

1+ q1 + q2 + (1+ ξ)q1q2
VM

�

1
1+ q1

�

− c
�

−
�

(1+ q2)x1 + (1+ q1)x2

1+ q1 + q2 + (1+ ξ)q1q2
+ r
�

Ŵ (q1, q2) +
∂ Ŵ (q1, q2)
∂ q1

q1 x1 +
∂ Ŵ (q1, q2)
∂ q2

q2 x2

�

. (G.57)

We focus on the diagonal q1 = q2 ≡ q where the HJB equation becomes

rŴ (q, q) = max
0≤x1≤1
0≤x2≤1

�

(x1 + x2)

�

1+ q
1+ 2q + (1+ ξ)q2

�

VM

�

1
1+ q

�

− Ŵ (q, q)
�

− c

�

+
∂ Ŵ (q, q)
∂ q1

qx1 +
∂ Ŵ (q, q)
∂ q2

qx2

�

. (G.58)

Since by symmetry ∂ Ŵ (q,q)
∂ q1

= ∂ Ŵ (q,q)
∂ q2

, we conclude that along the diagonal, there exists a symmetric
optimal strategy, i.e., an optimal strategy with x1 = x2.

If x1 = x2, then the ratio q1/q2 stays constant:

d
dt

q1(t)
q2(t)

(G.56)
=

q1

q2
(x1 − x2)

x1=x2= 0. (G.59)

Hence, under any symmetric strategy, the state variable (q1, q2) stays on the diagonal. This observation
allows us to move from the two-dimensional state space to a one-dimensional state space.

Denote W
�

q1+q2
2 , q1

q2

�

= Ŵ (q1, q2). Then, the derivative of W with respect to its first argument is
equal to

2
q1 + q2

�

q1
∂ Ŵ (q1, q2)
∂ q1

+ q2
∂ Ŵ (q1, q2)
∂ q2

�

, (G.60)

which means that the HJB equation on the diagonal q1 = q2 can be rewritten as

rW (q) = max
0≤x≤1

�

2x

�

1+ q
1+ 2q + (1+ ξ)q2

�

VM

�

1
1+ q

�

−W (q)
�

− c

�

+W ′(q)qx

�

. (G.61)

where we omit the second argument of W .
The rest of the proof follows closely the proof of Proposition 2.

Region with no research. If x = 0, then, by (G.61), W (q) = 0. According to (G.61), choosing
x = 0 is optimal on the diagonal only if

c ≥
1+ q

1+ 2q + (1+ ξ)q2

�

VM

�

1
1+ q

�

−W (q)
�

+
1
2

W ′(q)q. (G.62)
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Since W (q) = 0, condition (G.62) can be simplified as

c ≥
1+ q

1+ 2q + (1+ ξ)q2
VM

�

1
1+ q

�

≡ F(q). (G.63)

Region with full intensity along both avenues. For the region of x = 1 we can solve the differ-
ential equation (G.61):

rW (q) =
2(1+ q)

1+ 2q + (1+ ξ)q2

�

VM

�

1
1+ q

�

−W (q)
�

− 2c +W ′(q)q (G.64)

for W (q) up to a constant of integration:

W (q) =
4q4+2r

�

1+ 2q + (1+ ξ)q2
�2



CM +

+∞
∫

q

�

1+ 2s+ (1+ ξ)s2
�2

s5+2r
(F(s)− c)ds



 , (G.65)

where function F(s) is defined in (G.63). According to (G.61), choosing x = 1 is optimal only if

c ≤
1+ q

1+ 2q + (1+ ξ)q2

�

VM

�

1
1+ q

�

−W (q)
�

+
1
2

W ′(q)q. (G.66)

Equation (G.64) allows rewriting condition (G.66) as

W (q)≥ 0. (G.67)

No-research solution. Suppose that the no-research region covers all q > 0. Since choosing zero
intensity is optimal only if condition (G.63) holds and since function F is decreasing in q, the no-research
region covers all q > 0 if and only if (G.63) holds for q = 0:

c ≥ F(0) = VM (1)
Proposition G.1

=
π

r
+

2
2+ r

max
§

(λ+φ − 1)π
r

− c, 0
ª

, (G.68)

which is equivalent to (5). Hence, the no-research solution corresponds to case 1 in Proposition G.2.

Full-intensity solution. Since the limit q→ +∞ of (G.65) is either ±∞— which is infeasible —
or finite and negative — which contradicts (G.67) — q = +∞ belongs to the region with no research.

Suppose that there exists q̌ > 0 such that there is no research for q > q̌, while q just below q̌ belong
to the full-intensity region. Then the value-matching and smooth-pasting properties, W (q̌) =W ′(q̌) =
0, together with (G.65), give the expression for the constant of integration:

CM = −

+∞
∫

q̌

�

1+ 2s+ (1+ ξ)s2
�2

s5+2r
(F(s)− c)ds, (G.69)
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and the equation for q̌:
c = F(q̌). (G.70)

A necessary condition for the full-intensity solution to exist is

c < F(0) = VM (1), (G.71)

which is a necessary and sufficient condition for equation (G.70) to have a solution. Equation (G.70)
implies that c < F(q) for all q < q̌, and so the expression in the brackets in (G.65) is decreasing in q.
Hence, since this expression is equal to 0 at q = q̌, it is positive — and so W (q) > 0 — for all q < q̌.
Since condition (G.67) holds as strict inequality for all q < q̌, the full intensity region ends at q = 0.
Moreover, condition (G.71) is sufficient for the full-intensity solution to exist.

The full-research solution corresponds to cases 2 and 3 in Proposition G.2. In particular, if (6) holds,
then, by Proposition G.1, VM

�

1
1+q

�

= π
r and thus equation (G.70) becomes

1+ q̌

1+ 2q̌ + (1+ ξ)q̌2 =
cr
π

, (G.72)

which gives threshold (7) by the transition formulas (G.53) to (G.55). If (8) holds, then q̌ defined by
equation (G.70) is equal to 1/ȟ− 1, where ȟ solves (G.10).

G.5.3 Proof of Lemma G.1

As we show below, condition (G.13) is equivalent to the condition that the solution ȟ to equation
(G.10) is less or equal to ˆ̌p defined in (G.4). If ȟ≤ ˆ̌p, then the value of VM

�

ȟ
�

is given in (G.6), which
implies that p̌ defined in (G.12) is equal to (G.14).

To see why condition (G.13) is equivalent to ȟ ≤ ˆ̌p, recall that the right-hand side of (G.10) is
increasing in ȟ. Hence, the solution ȟ to equation (G.10) is less or equal to ˆ̌p if and only if the value of
the right-hand side of (G.10) at ȟ= ˆ̌p is greater or equal to c:

0<
ˆ̌p

1+
�

1− ˆ̌p
�2
ξ

VM

�

ˆ̌p
�

− c

=
c(1− ˆ̌p)2

1+ (1− ˆ̌p)2ξ

�

((λ+φ − 1)π+ c) ((2−λ−φ)π(1+ r) + 2 ((λ+φ − 1)π− cr))

r ((λ+φ − 1)π− cr)2
− ξ
�

, (G.73)

which gives us condition (G.13).
If condition (G.13) does not hold, then ȟ > ˆ̌p, and so, the value of VM

�

ȟ
�

is given in (G.5). In this
case, function VM

�

ȟ
�

is increasing. Hence, to prove that p̌ defined in (G.12) is decreasing in ξ, it is
sufficient to show that ȟ is increasing in ξ. The solution ȟ to equation (G.10) is indeed increasing in ξ
because the right-hand side of (G.10) is increasing in ȟ and decreasing in ξ, while the left-hand side of
(G.10) is independent of ȟ and ξ.

At the limit ξ→ +∞, the solution ȟ to equation (G.10) is equal to 1. Hence, p̌ defined in (G.12)
is equal to c/VM (1). Substituting the expression for VM (1) from Proposition G.1 gives (9).
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G.5.4 Proof of Proposition G.3

Let VF (p2) be the potential follower’s expected payoff from the second stage. Then, given the
research intensity xL(p2) of the leader, we get

VF (p2) = max
xF∈[0,1]

�

− cxF dt+
φπ

r
xF p2 dt+(1− xF p2 dt−xL(p2)dt−r dt)VF (p2)

− V ′F (p2)xF (1− p2)p2 dt

�

, (G.74)

which yields the Hamilton-Jacobi-Bellman equation

(r + xL(p2))VF (p2) = max
xF∈[0,1]

�

φπ

r
p2 − c − p2VF (p2)− p2(1− p2)V

′
F (p2)
�

xF . (G.75)

Similarly, for the leader’s expected payoff VL(p2) we have

VL(p2) = max
xL∈[0,1]

�

πdt−cxL dt+
(λ+φ)π

r
xL dt+

λπ

r
xF (p2)p2 dt

+ (1− xF (p2)p2 dt−xL dt−r dt)VL(p2)− V ′L(p2)xF (p2)(1− p2)p2 dt

�

, (G.76)

and so

r
�

VL(p2)−
π

r

�

+ xF (p2)p2

�

VL(p2)−
λπ

r
+ (1− p2)V

′
L(p2)
�

= max
xL∈[0,1]

�

(λ+φ)π
r

− c − VL(p2)
�

xL.

(G.77)

Region with no research. If xL = xF = 0, then (G.75) and (G.77) give VF (p2) = 0 and VL(p2) =
π/r. According to (G.75) and (G.77), choosing xL = xF = 0 is optimal only if

c ≥max
§

p2

�

φπ

r
− VF (p2)− (1− p2)V

′
F (p2)
�

,
(λ+φ)π

r
− VL(p2)
ª

. (G.78)

Since VF (p2) = 0 and VL(p2) = π/r, condition (G.78) can be simplified as

c ≥max
§

φπ

r
p2,
(λ+φ − 1)π

r

ª

. (G.79)

Region with full intensity for both firms. For the region of beliefs, in which xL = xF = 1, we
can solve the differential equation (G.75):

(1+ r)VF (p2) + p2

�

VF (p2) + (1− p2)V
′
F (p2)
�

=
φπ

r
p2 − c, (G.80)
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for VF (p2) explicitly up to a constant of integration:

VF (p2) =
1

2+ r

�

p2
φπ

r
− c
�

−
c(1− p2)

(1+ r)(2+ r)
+ CF

�

1− p2

p2

�r+1

(1− p2). (G.81)

Similarly, the differential equation (G.77):

(1+ r)VL(p2) + p2

�

VL(p2) + (1− p2)V
′
L(p2)
�

= π+
(λ+φ)π

r
+
λπ

r
p2 − c, (G.82)

gives

VL(p2) =
π

r
+

1
2+ r

�

(2λ+φ − 2)π
r

− c
�

+

�

φπ/r + (1−λ)π− c
(1+ r)(2+ r)

+ CL

�

1− p2

p2

�r+1
�

(1−p2). (G.83)

According to (G.75) and (G.77), choosing xL = xF = 1 is optimal only if

c ≤min
§

p2

�

φπ

r
− VF (p2)− (1− p2)V

′
F (p2)
�

,
(λ+φ)π

r
− VL(p2)
ª

. (G.84)

Equations (G.80) allows rewriting condition (G.84) as

VF (p2)≥ 0 (G.85)

and

VL(p2)≤
(λ+φ)π

r
− c. (G.86)

Region where only the leader undertakes research. If xL = 1 and xF = 0, then (G.75)
and (G.77) give (G.25). According to (G.75) and (G.77), choosing xL = 1 and xF = 0 is optimal
only if

p2

�

φπ

r
− VF (p2)− (1− p2)V

′
F (p2)
�

≤ c ≤
(λ+φ)π

r
− VL(p2). (G.87)

Substituting (G.25) into (G.87) yields

φπ

r
p2 ≤ c ≤

(λ+φ − 1)π
r

. (G.88)

Region where only the follower undertakes research. For the region of beliefs, in which xL = 0
and xF = 1, we can solve the differential equation (G.75):

rVF (p2) + p2

�

VF (p2) + (1− p2)V
′
F (p2)
�

=
φπ

r
p2 − c, (G.89)

for VF (p2) explicitly up to a constant of integration:

VF (p2) =
1

1+ r

�

p2
φπ

r
− c
�

−
c(1− p2)
r(1+ r)

+ C f

�

1− p2

p2

�r

(1− p2). (G.90)
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Similarly, the differential equation (G.77):

rVL(p2) + p2

�

VL(p2) + (1− p2)V
′
L(p2)
�

= π+
λπ

r
p2, (G.91)

gives

VL(p2) =
π

r
−
(1−λ)π
r(1+ r)

p2 + Cl

�

1− p2

p2

�r

(1− p2). (G.92)

According to (G.75) and (G.77), the choice xL = 0, xF = 1 is optimal only if

(λ+φ)π
r

− VL(p2)≤ c ≤ p2

�

φπ

r
− VF (p2)− (1− p2)V

′
F (p2)
�

. (G.93)

Equation (G.89) allows rewriting condition (G.93) as

VL(p2)≥
(λ+φ)π

r
− c (G.94)

and
VF (p2)≥ 0. (G.95)

Conditions (G.79) and (G.88) are incompatible and thus give rise to two possibilities: cr > (λ+φ−
1)π when the leader cannot undertake research alone, and cr < (λ+φ − 1)π when at least one firm
always undertakes research.

No-research equilibrium. Suppose that the no-research region covers the whole belief interval,
p2 ∈ (0, 1). Since choosing xL = xF = 0 is optimal only if condition (G.79) holds, this is an optimum if
and only if

c >
φπ

r
, (G.96)

that is, condition (10) holds. Hence, the no-research equilibrium corresponds to case 1 in Proposi-
tion G.3.

Follower-research equilibrium. Suppose that there exists pF ∈ (0, 1) such that there is no research
for p2 ∈ [0, pF ) and the beliefs just above pF belong to the region where only the follower undertakes
research. Then VF (pF ) = V ′F (pF ) = 0, together with (G.90), give the expression for pF and the constant
of integration:

pF =
cr
φπ

, C f =
c

r(1+ r)

�

pF

1− pF

�r

. (G.97)

Moreover, VL(pF ) = π/r and (G.92) give

Cl =
(1−λ)π
r(1+ r)

�

pF

1− pF

�r+1

(G.98)

Substituting the constants of integration to (G.90) and (G.92) gives us the expressions (G.16) and (G.17)
for VF (p2) and VL(p2) for all p2 > pF within the only-follower-research region.
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A necessary condition for the follower-research equilibrium to exist is

c ≤
φπ

r
, (G.99)

which ensures that pF is below 1. The choice xL = 0 and xF = 1 is optimal only if conditions (G.94)
and (G.95) hold. Function VF (p2), as defined in (G.16), is convex:

V ′′F (p2) =
c

p2
2(1− p2)

�

pF (1− p2)
p2(1− pF )

�r

> 0. (G.100)

Hence, since VF (pF ) = V ′F (pF ) = 0, function VF (p2) is positive for all p2 > pF — which means that
condition (G.95) holds as strict inequality. Function VL(p2), as defined in (G.17), is decreasing for all
p2:

V ′L(p2) = −
(1−λ)π
r(1+ r)

�

1+
p2 + r
1− p2

�

pF (1− p2)
p2(1− pF )

�r+1�

< 0, (G.101)

and at p2 = 1 equal to

VL(1) =
(λ+φ)π

r
−
π

r

�

φ −
(1−λ)r

1+ r

�

. (G.102)

Hence, we have two possibilities.
First, condition (G.94) holds for all p2 > pF :

c >
π

r

�

φ −
(1−λ)r

1+ r

�

. (G.103)

Together, conditions (G.99) and (G.103) are equivalent to (12). Note that (12) ensures that (G.79)
holds for all p2 < pF . This equilibrium corresponds to case 2 in Proposition G.3.

Second, condition (G.94) holds only for p2 close enough to pF — that is, condition (G.18) holds. In
this case, condition (G.94) holds for all p2 ∈ (pF , pL), where pL is defined as a unique solution to (G.19).
As p2 increases above pL, condition (G.94) fails, which means that for the leader, it becomes optimal to
undertake research. Hence, we conjecture that all p2 ∈ (pL, 1) belong to the both-firms-research region.
At p2 = pL, both VF (p2) and VL(p2)must be continuous. Equalizing (G.16) and (G.81) at p2 = pL yields

CF =
c

(1+ r)(2+ r)

�

pL(1− pF )
pF (1− pL)

−
2+ r

r

��

pL

1− pL

�r+1

+
c

r(1+ r)
pL

1− pL

�

pF

1− pF

�r

. (G.104)

Similarly, equalizing (G.17) and (G.83) at p2 = pL yields
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CL =
π(1−λ)(pL + r)pL

r(1+ r)(1+ pL + r)(1− pL)

�

�

pF

1− pF

�r+1

+
1− pL

pL + r

�

pL

1− pL

�r+1
�

−
pL (φπ/r + (1−λ)π− c)
(1+ r)(2+ r)(1+ pL + r)

�

pL

1− pL

�r+1

+
π(1−λ)

r(1− pL)(1+ pL + r)

�

r
1−λ

�

c
π
−
λ+φ − 1

r

�

−
pL

1+ r

�

1−
�

pF (1− pL)
pL(1− pF )

�r+1��

︸ ︷︷ ︸

=0 by (G.19)

�

pL

1− pL

�r+1

.

(G.105)

Substituting these constants into (G.81) and (G.83) gives (G.20) and (G.21). As expected, VL(p2) is
continuously differentiable at p2 = pL. Moreover, VL(p2) is convex for all p2 > pL:

V ′′L (p2) =
(1−λ)πp2

L

p3
2 r(1− pL)(1+ pL + r)

��

pL(1− p2)
p2(1− pL)

�r

+
(2+ r)pF (pL + r)

pL(1− pF )

�

pF (1− p2)
p2(1− pF )

�r�

+
p2

L

p3
2(1− pL)(1+ pL + r)

�

c −
(λ+φ − 1)π

r

�

︸ ︷︷ ︸

>0 by (G.18)

�

pL(1− p2)
p2(1− pL)

�r

> 0. (G.106)

Hence, since by construction of pL, VL(pL) is equal to the right-hand side of (G.94) — i.e., (G.86) holds
as equality at p2 = pL — (G.86) holds for all p2 ∈ [pL, 1] if and only if it holds at p2 = 1. The latter is
true under condition (G.18):

VL(1) =
(λ+φ)π

r
− c −

1+ r
2+ r

�

π

r

�

φ −
(1−λ)r

1+ r

�

− c
�

︸ ︷︷ ︸

≥0 by (G.18)

. (G.107)

As for condition (G.85), it holds for all p2 ∈ [pL, 1]. First, it holds at p2 = pL. Second, if at some point
p2 > pL the value of VF (p2) becomes 0, its derivative V ′F (p2) at this point has to be positive:

V ′F (p2)
(G.80)
=
φπp2/r − c
p2(1− p2)

(G.15)
=
φπ

r
p2 − pF

p2(1− p2)
> 0. (G.108)

This equilibrium corresponds to case 3 in Proposition G.3.

Both-firms-research equilibrium. Suppose that p2 = 0 belongs to the region where only the
leader undertakes research. Choosing xL = 1 and xF = 0 is optimal only if condition (G.88) holds.
This condition is equivalent to (G.22) and p2 < pF , where pF is defined as in (G.15). For p2 just above
pF , the follower also finds it optimal to undertake research, so that for such beliefs the firms’ payoffs
are defined in (G.81) and (G.83). At p2 = pF , both VF (p2) and VL(p2) must be continuous. Equalizing
VF (p2) in (G.25) and (G.81) at p2 = pF yields

CF =
c

(1+ r)(2+ r)

�

pF

1− pF

�r+1

, (G.109)
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so that VF (p2) becomes (G.23). Equalizing VL(p2) in (G.25) and (G.83) at p2 = pF yields

CL =
φπ/r + (1−λ)π− c
(1+ r)(2+ r)

�

pF

1− pF

�r+2

, (G.110)

so that VL(p2) becomes (G.24). As expected, V ′F (pF ) = 0, which means that the smooth-pasting property
holds.

Choosing xL = xF = 1 is optimal only if conditions (G.85) and (G.86) hold. Following the same
reasoning as for the equilibrium in case 3 — that is, appealing to (G.80) to argue that VF (p2) cannot
cross 0 from above on the region p2 > pF — we conclude that condition (G.85) holds for all p2 > pF .
Condition (G.86) also holds for all p2 > pF because it holds at p2 = pF :

VL(pF ) =
(λ+φ)π

r
− c −

(λ+φ − 1)π− cr
1+ r
︸ ︷︷ ︸

≥0 by (G.22)

(G.111)

and at p2 = 1:

VL(1) =
(λ+φ)π

r
− c −

1+ r
2+ r

�

(λ+φ − 1)π
r

− c
�

︸ ︷︷ ︸

≥0 by (G.22)

−
(1−λ)π
r(2+ r)

(G.112)

and function VL(p2) is convex:

V ′′L (p2) =
1

p2(1− p2)2









(1−λ)π(1+ r)
r

+
(λ+φ − 1)π

r
− c

︸ ︷︷ ︸

≥0 by (G.22)









�

pF (1− p2)
p2(1− pF )

�r+2

> 0. (G.113)

This equilibrium corresponds to case 4 in Proposition G.3.
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