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FIGURE A1: EXTENDED POLICY SIMULATIONS

(a) Increasing the Normal Retirement Age
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Notes: The figure shows simulated fiscal and welfare effects of pension reforms over an extended range of policies. Panel (a) shows
the effects of increasing the Normal Retirement Age to ages between 65 and 67 in monthly increments. Panel (b) shows the effects of
increasing the Delayed Retirement Credit to values between 6% and 36% per year in half-percentage point increments. Simulations are
conducted for birth cohort 1946. All effects are calculated among workers retiring at age 65 and above, and are in Euros per worker, in
terms of net present value at age 65. Total welfare is the sum of net fiscal effect and change in worker welfare.

40



FIGURE A2: TWO-DIMENSIONAL REFERENCE DEPENDENCE

(a) Bunching at the NRA Identifies Combinations of A;, A
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(b) Preferred Bunching Share Estimate
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Notes: The figure illustrates the empirical identification of two-dimensional reference dependence parameters. Panel (a) shows a
simulated range of combinations of reference dependence over leisure A; and reference dependence over consumption A.. Parameter
combinations are obtained by gradually moving the left bunching share from zero to 50% as described in Appendix F.3. Labeled dots
mark parameter combinations implied by selected left bunching shares between 0 and 50%. Panel (b) illustrates how we obtain our
preferred estimate of A.. The black connected dots show the observed retirement age distribution around the NRA among workers
born in 1946. The solid red line denotes the average empirical retirement age density on each side of the threshold, and the dashed red

line denotes the implied counterfactual density.
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FIGURE A3: WELFARE-MAXIMIZING NORMAL RETIREMENT AGE
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Notes: The figure shows the welfare-maximizing Normal Retirement Age (NRA) as a function of the left bunching share. A higher left
bunching share corresponds to stronger consumption reference dependence, i.e. a stronger deviation from Simple Loss Aversion over
leisure. The results are based on simulations are conducted for birth cohort 1946. The effects are calculated among workers retiring at
age 63 and above, and are in Euros per worker, in terms of net present value at age 65. The dashed vertical lines denote selected values
of the left bunching share, namely zero (no consumption reference dependence), 13% (our preferred estimate), and 50% (the upper
bound).
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TABLE A1l: BUNCHING AND PARAMETER ESTIMATES

Panel A: Bunching Estimates

ey 2) (©)
Excess mass Kink size Number of bunching
observations
Normal Retirement Age (NRA) 31.29 (6.42) -0.28 5
Pure financial incentive discontinuities  6.73 (2.09) 0.47 15

Panel B: Parameter Estimates

Reference dependence w.r.t. NRA A 0.461 (0.000)

Retirement age elasticity ¢ 0.057 (0.014)

Notes: Panel A of the table summarizes bunching estimates at the Normal Retirement Age and at pure financial incentive discontinu-
ities. The excess mass figures shown represent the average excess mass estimates at the respective type of threshold among the subset
of group-level bunching observations from Seibold (2021) applying to workers in birth cohort 1946, with standard errors in paranthe-
ses. The table also shows the average kink size at each type of threshold as well as the number of bunching observations the average

estimate is based on. Panel B presents the parameter estimates based on estimating equation (21), using the bunching observations
summarized in Panel A.
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TABLE A2: PARAMETERS FOR SUFFICIENT STATISTICS CALCULATIONS

Parameter Value
Loss aversion parameter A 0.461
Average monthly wage E(w;) 2,400.639
Average implicit tax rate (worker) 0.178
Employer contribution rate 0.095
Total fiscal externality E(7;) 0.273
Fraction in L group P(i € L) 0.154
Fraction in R group P(i € R) 0.456
L
Leisure demand responsiveness £ [%} -0.017

Average change in implicit tax rate E(A7;) (main DRC reform) -0.264
Average change in implicit tax rate F(A7;) (small DRC reform)  -0.029

Notes: The table shows the parameter values entering the sufficient statistics calculations in Section IIL.D.
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TABLE A3: WELFARE EFFECTS OF INCREASING THE NORMAL RETIREMENT AGE — ALTERNATIVE SCE-
NARIOS

1) )
Policy 1: Normal Retirement Age to 66

Stylized scenario:  Realistic scenario:
without benefit cut ~ with benefit cut

Contributions collected +2,359 +2,359
Benefits paid +3,999 +7,658
Net fiscal effect +6,358 +10,017
Worker consumption +4,230 +571
Disutility from work -2,950 -2,950
Worker welfare (7 = 0) +1,280 -2,379
Ref. dep. disutility from work -6,835 —6,835
Ref. dep. utility from ref. point +7,946 +7,946
Worker welfare (7 = 1) +2,391 -1,268
Total welfare (7 = 0) +7,638 +7,638
Total welfare (7 = 1) +8,749 +8,749

Notes: The table shows results from simulations of two pension reforms, both of which are variants of the increase in the Normal
Retirement Age from 65 to 66. The first scenario increases the NRA without associated benefit cuts as in Table 2. The second scenario
links the NRA increase to a benefit cut, as full pension benefits are only available from the new NRA of 66. Simulations are conducted
for birth cohort 1946. All effects are calculated among workers retiring at age 63 and above, and are in Euros per worker, in terms of
net present value at age 65. The signs of the effects correspond to influence on welfare. Total welfare is the sum of net fiscal effect and
change in worker welfare.
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TABLE A4: WELFARE EFFECTS OF PENSION REFORMS UNDER TWO-DIMENSIONAL REFERENCE DEPEN-

Policy 1: Normal

)

()

Policy 2: Delayed

Retirement Age to 66 Retirement Credit to 10.44%

Contributions collected +2,885 +2,327
Benefits paid +4,801 —4,105
Net fiscal effect +7,686 -1,778
Worker consumption +5,336 +12,308
Disutility from work -5,392 -2,258
Worker welfare (m = 0) -56 +10,050
Ref dep disutility from work -9,015 -8,780
Utility from retirement ref point +10,198 0
Ref dep utility from consumption +721 0
Disutility from consumption ref point -6,821 0
Worker welfare (7 = 1) —4,973 +1,270
Total welfare (7w = 0) +7,630 +8,272
Total welfare (7 = 1) +2,713 -509

Notes: The table shows results from simulations of pension reforms under two-dimensional reference dependence. The two pension
reforms we consider are an increase in the Normal Retirement Age from 65 to 66 and an increase in the Delayed Retirement Credit to
10.44% as in Table 2. Simulations are conducted for birth cohort 1946. All effects are calculated among workers retiring at age 63 and
above, and are in Euros per worker, in terms of net present value at age 65. The signs of the effects correspond to influence on welfare.
Total welfare is the sum of net fiscal effect and change in worker welfare.
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B Detailed Analysis of Reference-Dependent Payoff Formulations

In this appendix, we examine how the welfare effects of changing reference points and prices are shaped
by the form of reference-dependent payoffs. In particular, we apply our general characterization of these
welfare effects from Proposition 1 and equations (4), (5), and (8) to an exhaustive list of payoff formulations.
Tables B1 and B2 provide an overview of payoff formulations and summarize key results.

This appendix is structured as follows: Sections B.1 and B.2 analyze the most commonly used formu-
lations of reference-dependent payoffs, namely Simple Loss Aversion and Loss Aversion with Gain Utility.
Section B.3 considers Készegi and Rabin (2006)-type reference dependence over utils. Section B.4 exam-
ines an alternative type of reference dependence that we label Gain Discounting. Section B.5 investigates
the impact of incorporating Diminishing Sensitivity on key results. Section B.6 analyzes two-dimensional
reference dependence. Finally, Section B.7 demonstrates how our Flexible Reduced-Form specification can
approximate a broad set of reference-dependent payoff formulations.
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TABLE B1: REFERENCE-DEPENDENT PAYOFF FORMULATIONS

@ ) ©)
Description Reference-Dependent Payoff ~ Assumptions Lemma 1 Case
Al & A2

Simple Loss Aversion o <riA(z—r) Yes everywhere increasing

+ single-peaked
Loss Aversion with Gain Utility (m+ 1z <riA)(z—r) Yes everywhere increasing
Utils Formulation (Kdszegi-Rabin) (n+ 1z <r}IA)(u(z) —u(r)) Yes everywhere increasing
Gain Discounting Hz >ril(z—r) Yes everywhere decreasing

+ single-peaked
Simple Loss Aversion with Diminishing Sensitivity —a N (Hx < r}A)(r — 2)® 2.2 Fails N/A
Loss Aversion with Gain Utility & Diminishing Sensitivity a () (z—r)®, ifz>r 2.2 Fails N/A

—a I+ A)(r—a)* ifz <r

Two-Dimensional Loss Aversion, Hz <rp}Ag(z—rg) Yes single-peaked
(rz,ry) on budget constraint +Hy < rytAy(y—ry)
Two-Dimensional Loss Aversion with Gain Utility, (e + 1z <rz}Az)(x—712)+ Yes depends on
(rz,ry) on budget constraint (ny + H{y <ry}Ay)(y —1y) parameters
Two-Dimensional Loss Aversion, any (rz, 7y ) Yz <rg}Ag(z—ry) 1.2 Fails N/A

+H{y <ry}Ay(y —1y)

Notes: The table summarizes the formulations of reference-dependent payoffs considered in the appendix. Column (1) shows the functional form of reference-dependent
payoffs for each formulation. Columns (2) and (3) describe the features of each formulation that pin down the sign of key welfare effects: whether the formulation satisfies

Assumptions 1 and 2, and the which of the three cases from Lemma 1 obtains.
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TABLE B2: PAYOFF FORMULATIONS AND THE WELFARE EFFECT OF CHANGING REFERENCE POINTS

@D 2) ®) (4)
Welfare Effect w, (p, r) by Domain
Description Gain Domain Reference Loss Domain Individually Optimal
(x>1) Domain (z = r) (xr <) Reference Points
Simple Loss Aversion 0 W (r)—p —A (—o0, 7*]
Loss Aversion with Gain Utility —7n u'(r)—p —m(n+A) 7 =0:(—00,7]
m=1: —o0
Utils Formulation (Koszegi-Rabin) —7nu’ (r) u'(r)—p —7(n+ A)u/(r) 7=0:(—00,7]
m=1: —o0
Gain Discounting 7l u'(r)—p 0 [r*, 00)
Simple Loss Aversion with Diminishing Sensitivity 0 u'(r)—p —mA(r —z)*1 m=0: (—o0,r*), +00
+(1—=7m)A(r —2)% 1z, m=1: (—o0,r*)
Loss Aversion with Gain Utility —mn(z —r)e! u'(r)—p —m(n+A)(r—z)*! m = 0: —00, +00
& Diminishing Sensitivity +(1 —m)n(x —7r)* Lo, +A-m)(n+AN)(r—2)% 1z, T=1: -0
Two-Dimensional Loss Aversion, TAyp u(r)—p — Ay Ty =Tk
(rz,ry) on budget constraint Ty =1y
Two-Dimensional Loss Aversion with Gain Utility, T(Nyp — Nz + Ayp) u(r)—p T(pny — Nz — Az) See Appendix
(rz,ry) on budget constraint B.6
Two-Dimensional Loss Aversion, any (rz, ry) 0 u'(r)—p —\g ry € (—o0, k]

-y < ry}rpAy

Ty € (—oo,rl’;]

Notes: The table evaluates welfare effects of changes in the reference point and describes individually optimal reference points for the payoff formulations from Table B1. Columns (1) to
(3) evaluates the marginal welfare effect of changing the reference point wy (p, ) in the Gain, Reference, and Loss Domains. Note that for specifications with diminishing sensitivity, we do
not express the behavioral response x, in terms of primitives in the table due to space constraints. See Appendix B.5 for details. Column (4) shows the set of individually optimal reference
points under each formulation, where 7* is the intrinsic optimum characterized by v/ (r*) = p (v’ (r}) = p;r;, = z — pr} in the two-dimensional case), and 7 is the reference point at the
boundary between the gain and reference domain. Under two-dimensional loss aversion with gain utility and a reference point on the budget constraint, any of the cases from Lemma 1
could apply (see Table B1), and due to space constraints we defer the characterization of optimal reference points in this case to Appendix B.6.



B.1 Simple Loss Aversion

We begin with the formulation we refer to as Simple Loss Aversion in the main text. Reference-dependent
payoffs v(x,r) are given by o) = 1 < YA — ). 24)
Thus, reference dependence makes the individual averse to losses over good «; the strength of this motive
is governed by A. With this formulation, v; = Al{z < r}. This is weakly positive everywhere, so we
are in the Everywhere Increasing case from Lemma 1. Since v, is also weakly positive in the loss domain
and weakly negative in the gain domain, the Single-Peaked case also obtains. Hence, both Propositions 1.1
and 1.2 apply. The welfare effects of increasing r are weakly negative everywhere, but they are zero in the
gain domain, so the set of individually optimal reference points is (—oo, 7*]. These results essentially follow
from Proposition 1, given the properties of Simple Loss Aversion. Nevertheless, we work through a char-
acterization of behavior and welfare in more detail. Unlike the main text, we will allow for heterogeneity
across individuals indexed by ¢ from the outset.

Demand. We begin by describing demand z;(p,r) under Simple Loss Aversion. We first characterize

potentially optimal choices in the gain domain (z{') and in the loss domain (zF) as follows:
uj (2 (p)) = ps (25)
uf(zF(p)) + As = p. (26)

Because u/ < 0and A; > 0, 2§ (p) < 2¥(p), i.e. loss aversion increases demand in the loss domain relative

to demand in the gain domain. Demand of a given individual is

acz-G(p)7 if a:lG(p) >r (G)

zi(p,r) = { 2k (p), if xF(p) <7 (L) (27)

T, otherwise.  (R)

Thus, at any given price and reference point, there are three groups of individuals, namely those whose

demand is in the gain domain (G), in the loss domain (L), or at the reference point (R):
G(p,r) = {ilzf (p) > r} = {iluj(r) > p}
L(p,r) = {ilz} (p) <r} = {iluj(r) + A; < p}
R(p,r) = {ilaf (p) < v < af(p)} = {iluf(r) <p < uf(r) + Ai}.

The Marginal Internality. Aswe discuss in Section I.B, a key statistic for welfare is the marginal internality,

which is defined as the money metric welfare effect of a marginal change in = along the budget constraint,

my(p,r;m) = W i) Using the first-order conditions in equations (25) and (26) and the

behavioral characterization in (27), it is straightforward to derive the following;:
e Ifxz;(p,r) >r, mi(p,m;7) = 0.
o Ifzi(p,r) <r,mi(p,r;m) =—(1—m)A;
e Ifz;(p,r)=r,

- my(p,r; ) is undefined when 7 = 1.
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- m;(p,r;m) = u(r) —pwhen m = 0, with —A; <m; <0

When the planner judges that observed demand is welfare-maximizing (r = 1), there is no marginal
internality as a consequence of the envelope theorem. The marginal internality is undefined when z = r
in this case because of the kink in utility at = r, but it remains the case that no deviation from observed
behavior would improve welfare. When = = 0, in contrast, individuals with x; < r are over-consuming
good x out of loss aversion, so the marginal internality is negative.

Main Welfare Effects. Panel (a) of Figure 2 describes observed demand and intrinsic demand «/(z) under
Simple Loss Aversion. Under 7 = 0 the marginal internality is the vertical distance between marginal utility
and the price at observed demand. The first row of Table B2 shows the welfare effects of changing reference
points, which follow directly from equations (4) and (6). One can also derive them from first principles
using the same set of steps used in equations (4) to (6). The welfare effects of price changes follow from
equation (8):

wip = —x; — (1 —m)Hz; <r}Azgy (28)

Figure B1 provides a detailed illustration of the welfare effects of changes in references points and prices
under Simple Loss Aversion, building on Panel (a) of Figure 2. In this model, individuals generally prefer
lower reference points because they shrink losses. In the loss domain, changing r has no effect on behavior
but there is a direct welfare effect that matters under = = 1: increasing r increases the individual’s reference-
dependent losses. When 7 = 0, increasing r worsens over-consumption of good z out of loss aversion,
generating a negative behavioral welfare effect. The behavioral effect only materializes in the reference
domain. Elsewhere, changing r does not affect behavior. When r < r* at price p, all direct and behavioral
effects are zero in this model, so any reference point at or below 7* is individually optimal. In summary,
lowering reference points robustly increases welfare regardless under Simple Loss Aversion.

Figure B2 illustrates the welfare effects of price changes. When © = 0, over-consumption of good z
generates a negative internality in the loss domain, and because increasing the price decreases consumption
of good z, we obtain a positive behavioral welfare effect. In addition, there is always a standard negative
direct welfare effect. Note that in the R domain, demand is locally inelastic, so we find only a direct effect.

Optimal Corrective Taxes. The corrective tax schedule for good x that maximizes social welfare for a given
a reference point r is characterized by
0 x>

T(x,p,r) = (29)
t(p,r)(z—71) T<T]

E[MZE i€ Lip+t(p,r),7)
t*(p,r) = (1 —m) { aﬁp } , (30)
E{ o iGL(p—i-t*(p,r),r)]

When reference dependence carries full normative weight (7 = 1), there is no scope for corrective taxa-
tion, as individuals are making optimal choices in this case. When reference dependence is judged as a bias
(m = 0), on the other hand, it is efficient to tax losses, i.e. to tax consumption of x in the loss domain, because
the tax should be set proportionally to marginal internalities (Mullainathan, Schwartzstein and Congdon,
2012; Allcott and Taubinsky, 2015).Equation (30) quantifies the optimal corrective tax in the loss domain.
The expression corresponds to what Allcott and Taubinsky (2015) call the average marginal bias. When the
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FIGURE B1: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT UNDER SIMPLE LOSS AVERSION
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Notes: The figure illustrates the welfare effects of changing the reference point under Simple Loss Aversion, in the domains indicated
by the panel titles. We denote observed demand in black and gain and loss domain demand in blue and red, respectively, as in Panel
(a) of Figure 2. All welfare changes are losses given by the areas shaded in red, reflecting the result that increasing the reference
point unambiguously decreases welfare. Welfare losses due to direct effects are depicted in light red shaded areas, while losses due to
behavioral effects are shaded with diagonal hatching. In panel (e), the change in welfare in the RR case is the same regardless of =,
but whether the depicted welfare loss represents a behavioral welfage effect or a direct welfare effect depends on 7, so we use dark red
shading. The legend of each panel provides further interpretation of the main welfare effects.



FIGURE B2: WELFARE EFFECTS OF CHANGING PRICES UNDER SIMPLE LOSS AVERSION

(a) Gain domain (GG) (b) Loss domain (LL)
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Notes: The figure illustrates the welfare effects changing prices under Simple Loss Aversion, in the domains indicated by the panel
titles. We denote observed demand in black and gain and loss domain demand in blue and red, respectively, as in Panel (a) of Figure 2.
Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides further
interpretation of the main welfare effects.
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strength of reference dependence and the demand response to a price change are independent, the optimal
corrective tax simplifies to the average value of A; among individuals in the loss domain. Otherwise, the
covariance between A; and the demand response has to be taken into account.3

B.2 Loss Aversion with Gain Utility

The Simple Loss Aversion formulation is based on the model of reference dependence in riskless choice
by Tversky and Kahneman (1991), but their specification incorporates an additional feature: a reference-
dependent payoff over gains. In the case of Loss Aversion with Gain Utility, reference-dependent payoffs
are given by
i(x—r x>
vi(z,r) = il ) (31)
nidi(z—r) x<r,
The parameter 7; can be interpreted as governing the overall importance of reference dependence, while A;
governs the strength of loss aversion. Incorporating n; makes the individual consume more z by virtue of
comparing their consumption to the reference point both in the gain and the loss domain.

Behavioral Isomorphism to Simple Loss Aversion. A key reason why we mainly discuss Simple Loss
Aversion as an example of simple models of reference dependence is that Loss Aversion with Gain Utility
is behaviorally behaviorally indistinguishable from Simple Loss Aversion. We establish this result formally
here.

Consider a demand function z(p,r, z), which describes the choice of x the consumer makes for any
(p,r, z). Note that we drop i subscripts and focus on one individual. We say x(p, 7, z) is rationalizable by a
model if there are utility functions and parameters such that the optimization problem the model describes
generates the observed behavior for any (p, r, z). Thatis, z(p, r, z) is rationalizable by Simple Loss Aversion
if and only if there is a utility function u(z) with v’ > 0,u” < 0 and a parameter A > 0 such that for any
(p,r, z) the solution to the consumer decision problem from equation (1) is z(p, 7, z). On the other hand,
z(p, r, z) is rationalizable by Loss Aversion with Gain Utility under analogous conditions, using @ to denote
utility over good = with this model when we compare across formulations.

We need one modest technical assumption for our result to obtain, which is that the domain of good « is
compact. For Simple Loss Aversion, this ensures that u/(z) has a strictly positive minimum for all values of

x, which we denote ¢ = min «/(x). The assumption ensures ¢ > 0 exists.

Proposition 4. Behavioral Equivalence of Simple Loss Aversion and Loss Aversion with Gain Utility. A
demand function x(p,r, z) is rationalizable by Simple Loss Aversion if and only if it is rationalizable by Loss Aversion
with Gain Utility.

Corollary 4.1. The Isomorphism. If x(p,r,z) is rationalizable by Simple Loss Aversion with utility u(x) and
parameter A and rationalizable by Loss Aversion with Gain Utility with @(x) and parameters n, A, then we must have

u(z) = i(z) + n. (32)

34To see how the covariance matters, we can re-write equation (30) as
axL | .
Cov {A aLp‘z € L}

E 8:1:1-L
op

t"(p,r) =(1—m){ E[A;li € L(p+t*(p,7),7)] +

ictl
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A=nA-1). (33)

Proof. First suppose that z;(p, , z) is rationalizable by Simple Loss Aversion with some utility function u(z)
and parameter A.

Set any 7 such that 0 < 1 < €.* Specify @ according to equation (32), i.e. & = u(x) — nz. Specify \;
Aitn

U
Because «’ > 7 for any z by construction, we know that @’ = v —np >=u'—¢ > 0,and v’ < 0 =

according to equation (33),i.e. \; =

@ < 0. Further, by construction > 0 and A > 1. With the necessary restrictions satisfied, we only need
to show that with these specifications, the optimization problem under Simple Loss Aversion is equivalent
to the optimization problem under Loss Aversion with Gain Utility. As we have guaranteed equations (32)

and (33) hold, we can re-express decision utility under Simple Loss Aversion as:

Ul)=da(z)+nr+z—pr+ Wz <rinp(A—1)(z—7r), (34)

Next note that as it has no effect on the optimal z, we may freely eliminate —nr from the maximand. Doing
so and re-arranging yields the objective under Loss Aversion with Gain Utility.

For the converse, suppose that z(p, r, z) is rationalizable by Loss Aversion with Gain Utility with utility
function @(z) and parameters n > 0, and A\ > 1. Specify u(z) using equation (32) and set A using (33).
Checking the restrictions, we know that @ > 0 and > 0, implying that v’ = @' +7 > 0, and v’ = @” < 0.
And we know that A > 0by n > 0 and A > 1. We can re-express the optimization problem in Loss Aversion
with Gain Utility as

U)=d(z)+nz+z—pr+lz>rmA-1)(z—r)—nr. (35)
The last term has no bearing on the optimum so we can eliminate it. Applying our constructed u;(z) and

A\; then yields the objective under Simple Loss Aversion. O

Reparameterization. Before we characterize demand and welfare under Loss Aversion with Gain Utility,

we note that we can re-parameterize the payoff function from equation (31) as follows:
Ui(z,y) = @(x) +y+vi(zlr), (36)

Bar) = M) . (37)
i + Ni](z—7r), x<r,

The reparameterized version of the model is fully equivalent both in terms of behavior and welfare to the
original Tversky and Kahneman (1991) formulation from equation (31), but slightly more convenient to
work with below. As such, it is of course still behaviorally isomorphic to Simple Loss Aversion.

Demand. Panel (b) of Figure 2 illustrates demand in the reparameterized Loss Aversion with Gain Utility
model. Given the behavioral equivalence result above, it is not surprising that the same basic character-
ization of demand arises. Due to the different parametric structure, first-order conditions are modified,
though:

o/ (28 (p)) + i = p, (38)
o' (zf (p) + (mi + Ay) = p. (39)

%The fact that an arbitrary n can be chosen in this step is directly related to the fact that 7 is typically unidentified from observations
of observed demand.
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Again, because v/ < 0and n; + A; > n;, 28 (p) < xF

i (p), i.e. loss aversion increases demand in the loss

domain relative to demand in the gain domain. An analogue to equation (27) obtains but with the modified
gain- and loss-domain demand curves from equations (38) and (39).

Welfare. Note that v; = 7 in the gain domain and v; = 7 + A in the loss domain. Both of these ef-
fects are positive, so we are in the Everywhere Increasing case from Lemma 1; unlike Simple Loss Aversion
the Single-Peaked case does not apply, though. Proposition 1.1 then implies that decreasing r is welfare-
improving, and when = = 1 the inequality is strict: increasing r has the direct effect of making reference-
dependent losses larger and gains smaller, and this has a non-zero effect in all domains. Regarding be-
havioral welfare effects, when 7 = 0, we also find negative internalities in both the gain and loss domain.
However, decreasing r outside the reference domain has no effect on behavior and thus no effect on wel-
fare under m = 0. Letting 7 denote the lowest possible reference point in the reference domain, which is
characterized by () +n = p, we have that any r € (—oo, 7] is individually optimal.

Figures B3 and B4 unpack the welfare effects of changing reference points and prices under Loss Aver-
sion with Gain Utility. Comparing Figures B3 and B1, and the analytic expressions in Table B2, we observe
that our main welfare results are qualitatively similar under Loss Aversion with Gain Utility and Simple
Loss Aversion. The sign of key welfare effects remains the same, and if anything, magnitudes become larger
under Loss Aversion with Gain Utility. Under © = 0, welfare effects are exacerbated because negative inter-
nalities from over-consumption of x are larger in the loss and reference domain and additionally present in
the gain domain. Under 7 = 1, negative direct effects of increasing r are also larger in the loss and reference

domains and additionally present in the gain domain.

B.3 Reference Dependence over Utils

K6szegi and Rabin (2006) introduce a different formulation of reference-dependent payoffs where individ-
uals compare utility from their consumption of « to utility at the reference point, rather than comparing the
amount of x directly to 7. This modification is in part motivated by the fact that the scaling of reference de-
pendence parameters such as A otherwise depends on the units of x, which can make comparisons of these
parameters across dimensions of the menu space less intuitive. In terms of equation (2), a Kdszegi-Rabin
type formulation thus implies 11(z) = u(z) instead of u(z) = z as we consider so far (v remains the same).

Setup. With reference dependence over utils, payoffs v;(x,r) are

vilar) = ;[ (x) — i ()] x> (40)

(mi + M) [ui(z) —ui(r)] = <r

Note that we adopt a structure analogous to Loss Aversion with Gain Utility here, which is in line with
K6szegi and Rabin (2006). Alternatively, a version of Simple Loss Aversion over utils would also be straight-
forward to analyze.

Demand. We obtain a characterization of demand similar to Section B.2. The first-order conditions are
1. G _
ui (27" (p)) (1 +ni) = p, (41)

uj(xf (p)) (L4 i + Ay) = p. (42)
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FIGURE B3: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT UNDER LOSS AVERSION WITH
GAIN UTILITY

(a) Gain domain (G) (b) Loss domain (L)
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Notes: The figure illustrates the welfare effects of changing the reference point under Loss Aversion with Gain Utility, in the domains
indicated by the panel titles. We denote observed demand in black, intrinsic demand in grey, and gain and loss domain demand in

blue and red, respectively, as in Panel (b) of Figure 2. Red shaded areas denote welfare losses. The legend of each panel provides
further interpretation of the main welfare effects.
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FIGURE B4: WELFARE EFFECTS OF PRICE CHANGES UNDER LOSS AVERSION WITH GAIN UTILITY

(a) Gain domain (G) (b) Loss domain (L)
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Notes: The figure illustrates the welfare effects of changing prices under Loss Aversion with Gain Utility, in the domains indicated by
the panel titles. We denote observed demand in black, intrinsic demand in grey, and gain and loss domain demand in blue and red,
respectively, as in Panel (b) of Figure 2. Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The
legend of each panel provides further interpretation of the main welfare effects.
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Demand of a given individual once again falls into one of the three domains from equation (27), where the
gain- and loss-domain demand curves are pinned down by equations (41) and (42). As Table B2 shows,
the key properties of this formulation are very similar to Loss Aversion with Gain Utility, and the welfare
effects of changing reference points and prices are qualitatively the same. Quantitative magnitudes can
differ because unlike before, observed demand in the gain and loss domains and intrinsic demand are not
parallel any more. They are locally parallel around the reference point, which reflects the approximation
result from Proposition 2 of K&szegi and Rabin (2006). These nonlinearities matter mainly for the direct
welfare effects of changing reference points (i.e. when m = 1) for individuals far away from the reference
point. Behavioral effects, which occur around the reference point, are less affected. Since welfare effects are
similar to Figure 2b, we do not include a separate graphical illustration of reference dependence over utils.

B.4 Gain Discounting

The literature on reference-dependent preferences typically interprets empirical patterns such as bunching
at the reference point to loss aversion, which modifies payoffs over consumption of 2 in the gain domain.
Accordingly, the formulations of reference-dependent payoffs we considered so far fall in the Everywhere
Increasing case from Lemma 1. However, in principle, these behavioral patterns could also be explained by
an opposite-signed modification of payoffs over consumption in the gain domain. In other words, rather
than consuming more of good x in the loss domain in order to reduce losses, individuals could be consum-
ing less of good x in the gain domain because they discount gains. In this section, we lay out a possible
formulation along these lines, which we call Gain Discounting.
—T(z—r), z>7r

v(z,r) = (43)
0, Tz <r.

where the parameter I' governs the strength of gain discounting similarly to A in the Simple Loss Aversion
model. It is straightforward to verify that this payoff formulation satisfies Assumption 1 and 2. As before,
the case-wise characterization of behavior in Equation (27) obtains. The first-order conditions in the gain
and loss domains are given by

uj(zf (p)) =T = p, (44)
uf(zF(p)) = p. (45)

Comparing first-order conditions suggests that Gain Discounting model is behaviorally indistinguishable
from Simple Loss Aversion. The formal proof is very similar to the one in Section B.3.

Observed demand and intrinsic demand under Gain Discounting are illustrated in Panel (d) of Figure 2.
Perhaps unsurprisingly, adopting this formulation reverses the signs of all key welfare effects: we find
positive direct welfare effects of increasing » when 7 = 1 and positive behavioral welfare effects when
7 = 0. These effects now appear in the gain domain rather than the loss domain. Positive behavioral effects
are driven by a positive marginal internality (1 — )T in the gain domain, which reflects under-consumption
of  due to gain discounting.

Proposition 1.1 can be applied to Gain Discounting. But because the Everywhere Decreasing case from
Lemma 1 obtains, the Proposition now implies that increasing r improves welfare. Table B2 reports the
welfare effects of changes in r in detail and shows that any r > r* is individually optimal. The welfare
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effects of price change is given by

wip = —x; + Ha; > r}(1 —m)lzp. (46)

Again the sign of the behavioral welfare effect is reversed in equation (46), such that a price increase now
lowers welfare.

The discussion about loss aversion vs. gain discounting is closely related to the framework by Bernheim
(2009). In particular, one could view observed demand in the gain domain vs. the loss domain as demand
under two different "frames". Thus, one could consider Simple Loss Aversion and Gain Discounting as
two potential forms of preferences over x, where either demand in the gain domain or demand in the loss
domain is judged to be normative. However, in terms of our framework, such an interpretation would
impose m = 0 ex-ante. We provide a detailed discussion of our work and Bernheim and Rangel (2009) in
Appendix D.

B.5 Incorporating Diminishing Sensitivity

Assumption 2.2 rules out diminishing sensitivity in our main analysis. This is motivated by the fact that
empirical support for diminishing sensitivity in deterministic environments is limited (O’Donoghue and
Sprenger, 2018). In this section, we describe how relaxing this assumption changes our welfare effects.
Proposition 1 does not apply in this case, as the sign of direct and behavioral welfare effects can differ. Nev-
ertheless, we can use similar steps to characterize welfare, and the characterization of optimal policy turns
out not to be very different from other formulations. We specify the following formulation of reference-
dependent payoffs:

Lol —r) x>

47
—é(n—l—A)(r—x)o‘ T <r @)

v(x,r) =
This specification adds diminishing sensitivity to the Loss Aversion with Gain Utility formulation from
equation (31), whereby the previous formulation without diminishing sensitivity would be nested by o = 1.
In the following, we instead consider « € (0, 1). Compared to prior literature, we scale reference-dependent
payoffs by 1/«, which does not matter for behavior and welfare and allows us to maintain the same inter-
pretation of the A and 7 parameters as in the other formulations. Equation (47) has the key properties by
which diminishing sensitivity is typically defined: v/ > 0 everywhere, " > 0 when z < r and v/ < 0 when
2 > r. As an alternative formulation, we could consider a variant of Simple Loss Aversion with diminishing
sensitivity at the end of this section.
With this formulation, we continue to have case-wise demand in the gain, loss and reference domains.
However, demand in the gain and loss domains now depends on both the price and the reference point.

The first-order conditions are . G 1
u' (2™ (p,r)) +n(a (pr) =) =p (48)

o (25 (p,r)) + (4 A)(r— P (p,r)*t =p (49)

In previous formulations, there were no behavioral responses to a marginal change in the reference point
in the gain and loss domains (z& = 2L = 0), but with diminishing sensitivity there are such behavioral
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responses. Differentiating the first-order conditions with respect to r, we find

/1

G _ _ —n(l-a)(@C—r)*? __"

TS W) - GE e T gy 0
L _ _ n(-a)r-zh)e? _

Ly u () +n(l—a)(r—al)e=2 = o (51)

Inspecting these, we find that 2 > 0 everywhere in the gain domain. However, the sign of z% is ambiguous
in the loss domain, where % > 0 for x close to the reference point but 2% < 0 far from to . Under a single-
crossing condition (which is true with an isoelastic u, for instance), there are four relevant cases to consider.
Ordered from the those obtaining at the lowest to highest r, these are:

1. The Gain domain (G), where z, > 0

2. The Reference Domain (R), where 2, =1 > 0

3. The low-reference point portion of the loss domain (L. ), where z, > 0
4. The high-reference point portion of the loss domain (L-), where z, < 0.

Proposition 1 would hold in the first three cases, but fails due to the fourth case. To understand how
this matters for welfare, we return to the direct vs. behavioral effects characterization from equation (4),
whose derivation does not require diminishing sensitivity. Note that for all the formulations we consider,
including with diminishing sensitivity, v, and v, are opposite-signed. Provided z, > 0 everywhere, which
is true in all formulations satisfying Assumption 1 and 2, direct and behavioral welfare effects are ensured
to be (weakly) same-signed, such that the sign of the total welfare effect does not depend on 7. If z, < 0
somewhere, however, the sign of the behavioral welfare effect changes, and thus the sign of the welfare
effect can depend on 7, unlike in Proposition 1. We therefore obtain the following characterization of the
sign of the welfare effect of changing r:

* Under 7 = 1, w; < 0 everywhere.
e Underm =0,

1. InG, R,and L, w, < 0.
2. InL_,w, > 0.

Hence, the welfare effects of increasing the reference point are generally negative as in formulations without
sensitivity, but the sign changes for the case of the high-reference point part of the loss domain under 7 = 0.
Building on this, the individually optimal reference point is the lowest possible one under 7 = 1. Under
7w = 0, there are two individually optimal reference points: the lowest and the highest possible reference
point. To see why, note that the second term in equation (48) converges to zero both as r — —oo and as
r — oo. Consequently, behavior converges to the intrinsic optimum for either of these extreme reference

oints:
P lim QL‘G( L( *
r——00

D, T) :Tlirgox p,T) =71

Intuitively, as r grows to either extreme, the individual stops chasing gains or avoiding losses because
they are so far from the reference point that a marginally larger gain or loss does not matter much to them.
Behavior thus converges to the intrinsic optimum, as if individuals did not care about reference dependence,
and of course the intrinsic optimum is the optimal choice under 7 = 0. It is important to note that the lowest
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possible reference point is a robust choice in the sense that it is optimal regardless of 7. However, the highest
possible reference point is optimal only under = = 0, while it minimizes welfare under = 1.3

Simple Loss Aversion with Diminishing Sensitivity. As an alternative formulation, we consider a variant
of Simple Loss Aversion with diminishing sensitivity. This can be done by simply setting n = 0 in equation
(47). The modifies the welfare effects of changing the reference point as follows:

e Under 7 =1, w, = 0 for (p,r) € G and w, < 0 everywhere else.

1. InG, w, = 0.

2. Everywhere else, w, < 0.
e Underm =0,

1. InG, w, = 0.
2. In R, w, < 0.
3. InLy,w, <O.

4. InL_, w, > 0.

The welfare effect of increasing r is weakly positive everywhere except in the high-reference point part of
the loss domain under # = 0. Thus, the individually optimal reference point is (—oo, r*] under 7 = 1.
Under 7 = 0, any reference point in (—oo, 7*] remains optimal, but another optimum is given by r — oo. As
above, this implies that welfare effects can deviate from Simple Loss Aversion far away from the reference
point.

B.6 Two-Dimensional Reference Dependence

Some of the theoretical literature on reference dependence, including Tversky and Kahneman (1991) and
K6szegi and Rabin (2006), considers that reference dependence in more than one dimension. In this section,
we examine formulations of reference-dependent payoffs over both good x and y.

Two-Dimensional Loss Aversion

Setup. Following prior literature, we assume that payoffs are additively separable across dimensions. We
also assume that the formulation of payoffs is the same in each dimension but parameter values may differ.
With two-dimensional payoffs, the reference point is two-dimensional: 7 = (74, ry). We begin by consid-
ering Simple Loss Averse in each dimension; we incorporate gain utility later on. We specify reference-

dependent payoffs as

v(z,y,r) = Ho <rpdAe(x—re) + Wy <ry Ay (y —1ry)

It is useful to re-express reference-dependent payoffs as a function of z only. To do this, let v}, = (z —ry) /p.
Using the individual’s budget constraint, we can express v as a function of x and the two reference points

ry and 7.
¢ * v(z,r) = o <rptAz(z—71z) — H{z > r;}Ayp(x —rh). (52)

36There is an interesting analogy to the welfare effects of default options in Goldin and Reck (2022). In the context of defaults,
"penalty defaults" that promote active choices maximize welfare under 7 = 0 but minimize welfare under = = 1.

62



Viewed in this reduced form, two-dimensional loss aversion resembles a combination of loss aversion over
x with reference point r, and gain discounting over x with reference point ,. This insight helps us charac-
terize welfare in the two-dimensional model, and to map two-dimensional reference dependence into our
Flexible Reduced-Form model in the next section.

We will consider two types of variation in the two-dimensional reference point: changing r; or 7, hold-
ing the other fixed, or varying both along the individual budget constraint. The latter is our focus in the
main text, and in particular in the empirical application where the Normal Retirement Age can serve as a
reference point in terms of leisure and consumption that lies on the budget constraint. If (r,7y) is on the
budget constraint, r,; = 7}, and the loss domain for good y coincides completely with the gain domain for
good z.

Behavior. In the case where the reference point falls on the budget constraint, there are three cases like in
equation (27), with the following first-order conditions describing demand in the G and L domains:

u(a%(p)) _
1-1-71" =D (53)
u' (2B (p)) + A=p (54)

Panel (c) of Figure 2 depicts observed and intrinsic demand in this model. Note that the graph becomes
identical to Simple Loss Aversion when A, = 0 and very similar to Gain Discounting when A; = 0.

The above case is our main focus in the main text. If the reference point instead falls outside the budget
constraint (implying r,» < r;), we have five behavioral cases instead of the three from equation (27). There
are two reference domains: one where = r,, and one wherey = ry, <= z = r’.. Then there are three

first-order conditions describing demand in the gain and loss domains over z and y:

u'(xLG) + Az = p (LaGy)
u/(xLL) + Ay (LoLy)
1+ Ay - P lbely
u/(xGL)
—_— = G, L
1+ A, P (Galy)
We have 2GL < 2LL < 2LG n total, the five cases for behavior are as follows:
:cGL, zGL < Tyt
rh, 2GL < < oL
z(p,r) = S all, 1y <all <ol (55)
re, ol <r, < 2LG
LLG LLG S

The case where the reference point lies in the interior of the budget set can be analyzed along similar lines.

Welfare. Table B2 summarizes welfare effects of two types of variation in (r4,ry): a change in (rz,7y)
along the budget constraint, and a change in r, holding r, fixed. In the first scenario, the Single-Peaked
case from Lemma 1 obtains. Proposition 1.2 then implies that the unique optimal reference point is (3, ;).
With two-dimensional reference dependence, (73, 7;) is defined such that «'(r}) = pand r}; = z — pr.
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Marginal internalities are positive in the gain domain and negative in the loss domain:
o Ifz(p,r) >r, m(p,r;m) = (1—7)Ayp

e Ifx(p,r) <r,m(p,rim) =—(1—m)Ay

e Ifx(p,r)=r,

- m(p,r;7) is undefined when 7 = 1.

- m(p,r;pi) =/ (r) —pwhenm = 0, with —A; <m < Ayp

Intuitively, when 7 = 0, the individual under-consumes x when = > r in order to reduce reference-
dependent losses over y, and over-consumes x when z < r to reduce losses over z.

Figure B5 illustrates the individual welfare effects of variation in the reference point, and Figure B6
illustrates price changes. Increasing the reference point generates direct positive welfare effects in the gain
domain and direct negative impacts in the loss domain under 7 = 1. Behavioral welfare effects under 7 = 0
are concentrated in the reference domain and the sign of these effects turns on the location of the reference
point relative to the individual’s intrinsic optimum (similar to Figure 3 in the main text). The welfare effect
of price changes combines the standard direct effect with behavioral effects depending on the sign of the
marginal internality in each domain.

In the second scenario where r;; changes ceteris paribus rather than along the budget constraint, the char-
acterization of welfare is similar to Simple Loss Aversion. However, Assumption 1.2 fails: if r < 7y, it is
not the case that v = 0 when = = ;. Consequently, we cannot apply Proposition 1.1. In most cases, we
find that lowering reference points is weakly welfare improving, but when 7 = 0, there is one case where
wr, > 0because increasing r, mitigates over-consumption of = out of loss aversion over good y. This issue
occurs when 7 = 0 in the fourth case from equation (55) (i.e. # = r;) and the reference point lies outside the
budget constraint in the subdomain where v/(z) > p. If A, < Ayp, the condition «'(z) > p is met whenever
x = rz; otherwise, the condition is met for sufficiently low prices. In this case, there is a positive internality
from consuming more = due to loss aversion over good y, so decreasing the reference point for x does not
improve welfare. Note that in whenever w;., > 0, it is alternatively possible to increase welfare by decreas-
ing ry because the individual is incurring losses over good y. The individually optimal reference points are
then the ones at which the individual avoids all losses: any (rz,7y) < (r},7;) is individually optimal.

Two-Dimensionsal Loss Aversion with Gain Utility

Next, we incorporate gain utility into two-dimensional reference dependence. We consider the following

payoff formulation:
e (@ —ra) + (ny + Ay)(y —ry), w27

(e +Ag)(x—1g) +yly—ry) <70

v(z,y,r) = (56)

We focus on the first scenario from above, where the reference point is changed along the budget constraint

(ryr = z — pry = rz). We can express v as a function of 2 and the reference point for x:

Ne(x —71z) +p(ny + Ay)(re —z), x>7
(e + Ag)(x —12) +pny(ra —z) x<r.

(57)

v(z,r) =
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FIGURE B5: WELFARE EFFECTS OF CHANGING THE REFERENCE POINT UNDER TWO-DIMENSIONAL

REFERENCE DEPENDENCE

(a) Gain domain (G)
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(b) Loss domain (L)
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Notes: The figure illustrates the welfare effects of changing the reference point along the budget constraint under two-dimensional
reference dependence. Effects are shown in gain domain (Panel a), the loss domain (Panel b) and the reference domain (Panels ¢ and
d). For the latter, we show effects separately for individuals experiencing a marginal gain and loss. We denote observed demand in
black, intrinsic demand in grey, and gain and loss domain demand in blue and red, respectively, as in Panel (c) of Figure 2. Red shaded
areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides further interpretation of
the main welfare effects. Note that because the size of the direct effect on the G group depends on the price, so it is depicted slightly
differently from Figure 3.
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FIGURE B6: WELFARE EFFECTS OF PRICE CHANGES UNDER TWO-DIMENSIONAL REFERENCE DEPEN-
DENCE

(a) Gain domain (G) (b) Loss domain (L)
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Notes: The figure illustrates the welfare effects of changing prices along the budget constraint under two-dimensional reference de-
pendence. Effects are shown in gain domain (Panel a), the loss domain (Panel b) and the reference domain (Panel c). We denote
observed demand in black, intrinsic demand in grey, and gain and loss domain demand in blue and red, respectively, as in Panel (c)
of Figure 2. Red shaded areas denote welfare losses and blue shaded areas denote welfare gains. The legend of each panel provides
further interpretation of the main welfare effects.
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Note that this formulation satisfies Assumptions 1 and 2, so we can apply Proposition 1. However, which
case from Lemma 1 applies depends on parameter values. Differentiating v yields

— —pANy zT>71
vy = TP TRy = (58)

Ne =Py +Ng <7

We can sign the derivative in order to find which case of Lemma 1 obtains.?’

1. Loss aversion dominates: If n, < pny + pAy and n; + Az > pny, we are in the Single-Peaked case.
2. 1, dominates: If n,, > pny + pA,, we are in the Everywhere Increasing case.
3. ny dominates: If n, + A, < pn,, we are in the Everywhere Decreasing case.

These three cases are intuitive. When the value of a marginal gain is similar in both dimensions, 7, =~ pny,
the model becomes equivalent to Simple Loss Aversion in two dimensions, which is in the Singled-Peaked
case. With this restriction, equation (56) reduces to equation (52). In fact, we note that the restriction on
the magnitude of payoff parameters across different dimensions proposed by K&szegi and Rabin (2006)
effectively imposes 7, = pny. As the inequalities above are strict, we find that the unique optimal reference
point is the intrinsic optimum in this case, just as under Simple Loss Aversion in two dimensions.

The other two cases are those where the value of a marginal gain in one of the dimensions, 7, or pny, is
very large. When 7, dominates, the individual consumes more z in the gain domain over x than intrinsic
utility would imply because they chase gains over x. This lifts the gain domain demand curve above intrin-
sic demand «/(z), different from Figures B5 and B6. The individual optimum tends toward extremes in this
case. When 7 = 1, decreasing the reference point strictly improves welfare and the individual optimum is
the lowest possible reference point. When 7 = 0, the individual optimum is any reference point that puts
the individual in the gain domain for good x. Denoting the reference point at the boundary between the
gain and the reference domain 7 as before, lowering the reference point beyond 7 has no effects on behavior
or welfare.

Analogously, when 7, is very strong, the individual chases gains over good y in the loss domain for
good z. In this case the individually optimal reference point tends toward the opposite extreme, namely
high reference points. Under 7 = 1, increasing the reference point always improves welfare, while under
7 = 0, increasing the reference point improves welfare up to the boundary between the loss and reference
domains.

B.7 Our Flexible Reduced Form as an Approximation

In this section, we formalize how our Flexible Reduced-Form specification is an approximation of any pay-
off formulation satisfying Assumptions 1 and 2. This also clarifies what can be empirically identified in
situations where the true formulation is one of of those approximated by the Flexible Reduced Form.

The Flexible Reduced Form from equation (9) is given by

(1-BA(x—7r) z<r

vlr) = —BA(x —7) x>

%That the weight of reference dependence parameters in these expressions depends on the price is due the fact that we specify
reference dependence over the amount of the good. If instead we use a utils formulation or scale parameters by the price, this issue
does not arise.
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where A > 0and 3 € [0, 1]

In the following, we show that (i) any formulation satisfying Assumptions 1 and 2 admits a first-order
approximation via equation (9) with A > 0 equal to the size of the kink in preferences and 8 € R, and (ii) if
in addition the formulation falls in the Singe-Peaked case from Lemma 1, then 3 € [0, 1].

Suppose v(z,7) = v(u(z) — p(r)) satisfies Assumptions 1 and 2. The result we aim for follows from a
first-order Taylor approximation of v(x,r) about some point (g, o). However, the non-differentiability in
v at points where = = r necessitates using different Taylor approximations above and below z = r. Using
Assumption 1.1, 1.2 and 1.3, we can approximate reference-dependent payoffs in both domains:

V(0) (ro)(r—ro) T <1

V(0 (ro)(r —mo) x> =0(2y7)

v(ro,m0) + v (0)4/ (1) (z = 7o)
v(z,7) & S v(rg,r0) + vy (0)1 (ro) (z — 70)

0 Tr=rg

By Assumption 1.2, v(rg, r9) = 0. Simplifying, we have

o(z,7) = vL(0)4/ (ro) (@ —r) x <o 9

V(0 (ro)(x—r) x>

Let A = v/ (0)i/(r0) — v/, (0)4/ (r0). Note that this is the implied size of the kink in preferences around
x = ro above. And let 8 = —/, (0)1/(r0)/A. Note that 1 — 8 = v/ (0)p/(r9)/A. Then the approximate
formulation (59) becomes equation (9). All that remains to check are the parametric restrictions. We have
A > 0 by Assumption 1.3. The parameter 5 then turns on which of the cases from Lemma 1 obtains:

e v(z,r) is Single-Peaked if and if only 3 € [0, 1].
* v(xz,r) is Everywhere Increasing (v, > 0 everywhere) if and if only 5 < 0.
* v(x,r) is Everywhere Decreasing (v; < 0 everywhere) if and if only 8 > 1.

Note that we have not relied on ruling out diminishing sensitivity here (Assumption 2), although we use
sub-Assumption 2.1 in order to invoke the cases from Lemma 1. Because it is a first-order approximation,
equation (59) has a second derivative of zero and thereby satisfies Assumption 2 automatically.

When we estimate A and § empirically, we should think of r¢ as the status quo reference point. For
instance, this would be the pre-reform Normal Retirement Age in our empirical application. Welfare effects
of changes in prices and reference points for individuals choosing options near the status quo are then well-
approximated according to the logic of a first-order Taylor approximation, while welfare effects for those
further away may be subject to larger approximation errors. This has some noteworthy implications for
quantitative evaluations of changes in r. Namely, because behavioral welfare effects of variation in r are
concentrated near the reference point, these are insensitive to potential approximation errors. The same
cannot be said for direct welfare effects of changing r, as these occur further away as well.
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C Proofs

This section presents proofs of all propositions and a few notes on the theory.
Lemma 1. Under Assumptions 1 and 2.1, at least one of the following must be true:
* (Everywhere Increasing) vy, > 0 for all x # r.
e (Everywhere Decreasing) vy < 0 forall x # r.
* (Single-Peaked) v, > 0 for all x < r, and v, <0 forall x > r.

Proof. Under our domain-specific monotonicity assumption, Ass. 2.1, there are four possibilities: v, may be
positive or negative for all # > r, and it may be positive or negative for all + < r. v, being positive over
gains and negative over losses would violate the direction of the kink in preferences under loss aversion
(Assumption 1.3), as we approach the point where z = r from the right or left. At least one of the other
three cases must therefore obtain. O

Proposition 1. Signing the Welfare Effects of Reference Point Variation. Maintain Assumptions 1 and 2 and
consider any (p, r) that is not on the boundary of R.

P1.1. If v is Everywhere Increasing, then w,(p,r) < 0. If v is Everywhere Decreasing, then w(p,r) > 0.

P1.2. Let r* be the reference point such that v’ (r*) = p. If v is Single-Peaked, then w,(p,r) > 0 when r < r*, and
wr(p, ) < 0 when r > r*. Consequently, r* is an individually optimal reference point.

Proof. Most of the key steps in Proposition 1 are covered in the main text.

The derivative we wish to characterize is expressed in equation (4) for the G and L domains, while
equation (6) covers the R domain.

Generically there are two candidates for optima in the interior of the G and L domain:

o' (@) + v/l () = p; 2P < (60)
o (@) +V/p (@9) = p; 2 >
We can derive (4) using these first-order conditions. Outside the R domain,

wy = (v (x) — p+ 7vg) Ty + TU

The first order condition implies v/ (z) — p = —v,, so from the envelope condition we have

wp = —(1 — m)vgzy + TP

Substituting for v, and v, using equation (2) (as in equation (60)), we have

wy =~V (1= 7). — /1 (7).

Note that we have not relied on Assumption 2.2 yet. As noted in the main text, equation (4) can be
derived without this assumption. If we differentiate the first-order condition above and apply Assumption
2.2, we find z, = 0 in the G and L domains. The above expression simplifies to w, = —mv/p/(r). Note that
1/ > 0 everywhere by Assumption 1.1. Thus if v, > 0 <= 1/ > 0 everywhere (the Everywhere Increasing
case), wy < 0 everywhere. If v; <0,/ < 0and w, > 0. In the Single-Peaked case, v' > 0and w, < 0in the
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loss domain, while in the gain domain v, < 0 and w, > 0. This establishes the result for the gain and loss
domains.
Finally we establish the result for the R domain. Recall that under Assumption 3, there is a range of

G

values for r where & < r < 2l and z(p,r) = r, which defines the R domain. From Assumption 1.3, the

fact that u” < 0, and the first-order conditions (60) we have

G

9 <r<azl = - (u(h)

=)' (@) <l (r) = p <~V (u(x
A version of this expression appears as equation (7) in the main text. In the everywhere increasing case,
u/(r) — p is bounded by two (weakly) negative quantities so it must be (weakly) negative. Likewise in the
everywhere decreasing case, v’ (r) — p must be weakly positive. This completes the proof of Proposition 1.1.

In the Single-Peaked case, u/(r) — p is bounded between a weakly positive and a weakly negative quan-
tity, so by u” < 0 there must be some r* with (r*,p) € R and «/(r) —p = 0. We call this the intrinsic
optimum in the main text. Obviously, v'(r) —p > 0 for r < r* and the opposite is true for r > r*. This
completes the proof for the R case. O

Remark on the Derivation of Equation (8). We note that the expression for the welfare effects of price
changes in equation (8) can be derived following identical steps to the derivation of the generic expressions
for w, in the previous proof.

Proposition 2. Sufficient Statistics Characterizations

P2.1. The first-order social welfare effect of a change in the reference point is given by

%j’/ =7nE[B;iA; |i € G|P[i € G| —nE[(1—B;)A; | i € L]Pli € L]

+E [uj(r)—p| i€ R]PlicR].

P2.2. If the distribution of u}(r) — p is independent of (3;, A;) and distributed uniformly conditional on i € R(p,r),
the first-order social welfare effect of a change in the reference point is determined by

%/ _ rE[B;A; |i € GIPli € G —nE[(1— B;)A; | i € L) P[i € L]

e

P2.3. The first-order social welfare effect of a change in price is given by

ow
dp

iER} Pli € R].

=(1—7)E [BilNizp; | i€ G] Pli€ G)— (1—m)E [(1—B;)Ajap; | i € L] Pli € L] — E[z;(p, )]

T
=(1-mE {51'/\1‘61'])

i€ G} PlieG)—(1-n)E [(1 - @M,g%

i€ L} Pli € L] — E[z;],

where €; is the price elasticity of demand for good x.

Proof. Proof of 2.1. There are two main steps in this proof. The first step is to derive the individual welfare
effect under the Flexible Reduced-Form specification (9) in each of the three domains. The second step is to
show that welfare effects at the boundary of these cases are irrelevant for the first-order welfare effect, so
that the social welfare effect is a simple aggregation of the welfare effects in the three domains.
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To do this, we need only evaluate the derivatives in equation (4). As noted in the previous proof, we

have z; , = 0 for i € G, L because equation (9) satisfies Assumption 2.2. For these cases therefore we have

i€ G(p,r) = Wr; = wBi\;
i€ L(pr) = wp; = —7m(1—F;)A;

while for the R case, we already have the welfare effect from equation (6), which uses that v(0) = 0 under
Assumption 1.2:
i € R(p,r) = wr; = u(r) - p.
Now we prove that the social welfare effect of a change in r is simply the aggregation of the welfare
effects for individuals in the three cases. As the three groups cover the full population, we can decompose
social welfare as follows:

W(p,r) = /ieG(p,r) wy(p,m)dF (i) + /ieR(p,r) w;(p,m)dF (i) + /ieL(p,r) w;(p,m)dF (7).

Because w;(p, r) and behavior are everywhere continuous and differentiable almost everywhere, the result
then follows immediately from applying the generalization of Leibniz integral rule for measure spaces,
which implies

W (p,7) :/

w4 (p,r)dEF(2) + wy i (p,7)dF (1) + Wy i (D, 7)dF (7).
i€G(p,r) ,(p JE @) -/ieR(p,r) ,(p JaF() /ieL(p,r) ,(p )dF (i)

Intuitively, at the two boundaries between G and R and between R and L, we have a marginal change in
welfare for a marginal group, so the effect is of second order. Using the expressions derived above for w;. ;
and restating the integrals in terms of conditional expectations, we arrive at the desired result.

Because some readers may be unfamiliar with more general versions of Leibniz integral rules, we also
provide a less abstract argument under the assumption that there is a single dimension of heterogeneity 6;,
and A; and f3; are both homogeneous. By definition u(r) = u,(r,0;), so supposing without loss of further
generality (beyond the one-dimensional types assumption) that a higher 6 corresponds to a higher level
of marginal utility, for any (p,r) there are cutoffs 67, and 65 such that w,(r,0(r)) + (1 — 5)A = p, and
ur(r,0r) — BA = p. We find 0, < 6 due to diminishing marginal utility. These cutoffs depend on (p, ) so
we express them as 8% (p, ) and 0 (p, ).

With this restriction on individual heterogeneity we can re-write the previous expression as

W(p,r) = /

0% (p,r)

o0

0% (pr) 0% (p,r)
wlor, 0dB(0) + [ o 00diy(0) + [ 7 wlpr0)arp(0)

Differentiating with respect to r and applying the one-dimensional Leibniz rule for integrals, we find

Welpr) = [ wrlpr,0)dEy(0) ~ 67w (p,r,69) 1y (6%)

0% (p,r)
+ /(,L( ,,) wr(p,r,0)dFp(0) + 05 w(p, 7, 09) f3(0F) — 0 w(p,r,0") fo (6")
p,r

0L (p,r)
+ / " o (p, . 0)dEy(6) + 0Fw(p, r, 0 ) fo(0F)

—0o0

The boundary terms all cancel and the resulting expression is the desired result. This illustrates more con-
cretely that the boundary cases are second order when evaluating welfare effects if welfare and behavior
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evolve continuously at the boundary. For the proofs of the remaining parts of proposition 2, we take for

granted that the boundary cases are second order.

Proof of 2.2 Once we have established the previous result, all we need to do is show how the term for the R
group simplifies under the assumption that A; = u}(r) — p is uniform conditional on i € R. Without loss of
generality we can write the welfare effect in the R group as:

/z‘eR(p,r)w”p’ ///__1 ” F(A|B, A)dAdEg A(B,A)

Now we apply the uniformity assumption, that is f(A|S, A) is constant in the R domain. Under our condi-

tional independence assumption the constant does not depend on 3, A. Denoting the constant C, the above

/i.GR(p,)wrzn //C A+ﬁA dFg (B, A)

Noting that w =A(B— %) and that this expression represents a conditional expectation for i € R

expression becomes

multiplied by P[i € R], we arrive at the desired result.

Proof of 2.3 By the same argument as above, we have:

Wy(p,r) = /ieg(pr) wp1dF (i) + /Z o) wp i dF (i) + /Z o wyidF (i)

Evaluating the derivatives for the individual welfare effect of a price change in equation (8) under formula-
tion (9), we find:

i€ G(p,r) = wp; = —xi(p, ) — ThiNiTp;

i € L(p,r) = wr; = —wi(p,r) + (1= Bi) Niwp,

i€ R(p,r) = wy; = —xi(p,7)

For the R case, we are using the fact that welfare equals w;(p,r) = u;(r) — pr locally to arrive at the above
(note also z;,; = 0 locally). Substituting in these expressions and simplifying yields the desired result. For

the re-statement in terms of elasticities, we use the definition of the price elasticity: ), ; = x,; %. O

Proposition 3. Identification from Bunching. Define a random variable A; = w(r) — p and denote its density by
fa. Assume that A, A and (3 are mutually independent, and that A; is uniformly distributed conditional on i R.

P3.1. Excess bunching at x; = r is characterized by

Pli € R]

fatoy ~EA

P3.2. If B; > 0Vi,® the share of bunching that comes from the right — the share of individuals who would choose to

consume more than r in the absence of reference-dependent payoffs — is

P[r} > r|i € R] = E[min{3;,1}].

3Note that we prove a more general version of Proposition 3.2 here. The proof of the version shown in the main text follows
analogously.
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If B; < 1 for every Vi, the share of bunching that comes from the right is

Plr > r|i € R] = E[max{f;,0}].

Proof. We begin by building on the characterization of the composition of the three groups in terms of 3, A,
and A.

Pli € G) = Pr(A > BA) = /(ﬂ oy L FA(BAIB A)AF A (8, )

Plic L] = Pr(A < —(1—B)A) = /(B N FA(=(1 = B)A[B, A)dFp A (B, A)

Plie R = Pr(—(1-B)A <§ < BA) = /(B 5, FA(BAIBA) = Fa(=(1= DAIB. A)
By the independence assumption, F(A|3, A) = Fa(A). Then, using a first-order Taylor Approximation of
F(A) around A = 0, we have

PlicGl~ [ [1-Fa(0)~ fa(0)3A] dFya(B,1)

)

Plict]~ [ [Fa(0)+ Ja0)(~(1 = )M dFs (8, A)

)

Plic R~ [ aO)BA~~(1=B)AdFsABA) = [ [f20)A]dFsA(5A)

) B

Note that these approximations are accurate when f}(A) = 0, i.e. when the distribution of A is uniform
over the relevant domain. The above expressions simplify to

Pli € G] = 1 — Fp(0) — fa(0) E[B;As]
Pli € L] = FA(0) = fa(0)E[(1 — 8;)As]
Pli € R] ~ fa(0)E[A]

Now excess bunching at the reference point, defined as the probability i € R scaled by the probability that
ri =r <= A=0,is given by Pli € R
—— ~ E[A].

fa(0) (Al

So far, our derivations allow any 5 € RR. In Proposition 3.2 in the main text, we state a result that is
implied by the statement of the proposition above. Here we provide a proof for the more general statement,
using a truncation of §; to characterize the right bunching share.

We begin with the first condition above, supposing 5 > 0 Vi. An individual bunches from the right —
meaning i € Rand 7} > r-if A > 0, A < A, and A < A,ie. if 0 < A < min{3,1}A. Similarly to
the characterization of P[i € R| above, the fraction of the population who bunch from the right, i.e. those
i € R(p,r) for whom r} > r,is

Plrf > riie B = [ [fa(0)(uin{8, 1A~ 0)] dFs A (8, A) = fa(0) Blmin{ 5, 1}Ad]

Using the assumption that A and /3 are independent, we combine the two previous expressions to obtain
the probability of bunching from the right conditional on i € R, P[r} > r|i € R] = P[A; > 0|i € R]:

Plrf>r&i€R] _ ,
Pl € ] ~ E[min{3, 1}].

Plri >rlie R =
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The proof for the other case, where 3; < 1V, is analogous. O

Welfare Effects with Fiscal Externalities.

Here we derive our main welfare effects in the presence of fiscal externalities. Doing so helps us understand
the fiscal externality component of welfare effects in our empirical application. Our aim is to understand
how incorporating fiscal externalities modifies equations (13) and (15) from the main text. Here we focus on
the case of Simple Loss Aversion, i.e. we set 8 = 0. Relaxing this restriction would be straightforward, but
we rely on this simplification because we only use the restricted version of the sufficient statistics formulas
in the empirical application.

With a fiscal externality, we can characterize efficiency using
AW = AW 4 AG
where AW is the change in utilitarian social welfare approximated by the above results, AG is the change
in government revenues. Note that because we focus on efficiency, we implicitly set the marginal cost of
public funds equal to 1 here.

Suppose that good z is taxed at some linear rate t. Then AG = AE[t - z;]. For a change that leaves tax
incentives fixed, such as a ceteris paribus change in the reference point, AG = E[tAx;], and if the tax rate is
fixed across individuals, we can express this as AG = tE[Ax;].

Assuming such a uniform tax rate and considering a cetris paribus change in the tax rate, we have

E[Az;] =~ ArP(i € R), because individuals in the the G and L groups do not change behavior, the marginal
gain and marginal loss cases are second order, and Az; = Ar for i € R.

AW™ ~ — ArnE[A; | i € L(p,70)]P[i € L(p,70)]
A.
- 80 |5 1§ € R(pvro)| Pli € R(pvro)] 4180l € R ro)
Simplifying
AW ~ — ArzE[A; | i € L(p,70)|Pli € L(p,70)]
A.
+ ArE |:—Ql +t | xS R(p7r0):| P[l € R(p,?”o)]
With individual-specific marginal tax rates on good x, we would rather have
AW ~ — ArrE[A; | i € L(p,70)|PJi € L(p,70)]

A,
+ ArE {—21 +t;|i € R(p, ro)} Pli € R(p,m0)]
AW ~ — ArzE[A; | i € L(p,7)|Pli € L(p,70)]

+ Ar {—E [/;’ |i € R(p, ro)} + E[t; | i € R(p, TO)]}P[i € R(p,ro)]

For a reform that changes tax rates ceteris paribus (i.e. keeping r and other components of prices fixed), we
have direct and behavioral revenue effects:

AG = E[tAz; + z;At] = tE[Az;] + Elx;|At
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83:1-

=tF | —
[ dp

T

+t

} At + Elx;|At

=tE {e } At + Elz;]|At
p
For a change in prices operating through a change in tax rates, the individual welfare effect AW is
given by equation (14) with Ap = At.
Putting these together:

L .
AW = <—(1—7‘(‘)E Aza(;; 1€ L P[i S L] —E[l’ﬂpoﬂ‘)]) At +tE |:%J;:| At#—E[l‘i]At,

Noting that the direct revenue effect and the direct individual welfare effect offset one another perfectly,
this simplifies to

AaziL
] ap

Oz

€ L
7 ap

AW =~ <—(1 —7)E

Plie L}) At +tE [ ] At,

To characterize the new term further, note that obviously,

a
%, i€G
Ox; ozt .
37]7: 8;;7 1€ L
0, 1€ R.

We could also express these terms as elasticities, as in equation (15).
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D Relationship to Bernheim and Rangel (2009)

Bernheim and Rangel (2009) propose a general framework for decision-theoretic behavioral welfare eco-
nomics. This appendix describes in detail the relationship between our analysis and this framework. We
focus on mapping our Flexible Reduced-Form specification from equation (9) into the Bernheim-Rangel
framework; a similar line of reasoning can be applied to other formulations.

The first step in applying this framework is to conceive of an observed choice in terms of a menu and
an ancillary condition, or frame (denoted by f) — see also Bernheim and Taubinsky (2018). In describing this
process, Bernheim and Taubinsky (2018) describe frames as those aspects of the choice situation that “have
no direct bearing on well-being, but that instead impact biases.”

What are the frames in our context? An initial guess might be that the reference point itself is a frame, but
based on the definition above, this is not appropriate. We show that a change in the reference point can have
a direct welfare effect, e.g. by modifying the incurred losses of individuals in the loss domain. Whether this
direct effect should carry normative weight is a question of central importance, but this question belongs
to a later step of the analysis, not the definition of a frame. Similarly, our theory implies that individuals
should have a willingness to pay to change the reference point, suggesting that it has a direct bearing on
well-being. Thus, we do not conceive of the reference point as a frame in the. A similar justification is used
by Bernheim, Fradkin and Popov (2015) in their application of this framework to the welfare economics of
default options, to justify the treatment of the default as a component of the menu rather than a frame.

Nevertheless, there is a formal sense in which our results can be interpreted within the Bernheim-Rangel
framework, which we now describe. First, we suppose that what we call observed demand in our analysis
comes from choices under a single frame f;. This frame is analogous to what Bernheim, Fradkin and Popov
(2015) refer to as a “naturally occurring frame.” Under the frame fi, the individual reveals preferences
consistent with the utility function in equation (1), which we re-write here:

U(z,y,r, f1) =ulz) +y+ov(z,r), (61)

where v takes the form described in equation (9), or some other formulation from Appendix B.

In order to map our analysis into the Bernheim-Rangel framework, we need to consider a hypothetical
choice situation in which reference dependence is eliminated in order to capture normative choices in the
m = 0 case. If we wish to consider the possibility that reference dependence may be a bias, what preferences
would be revealed by choices in an unbiased state? We represent choices made in a state without reference
dependence via a frame fy. Choices under fy maximize

U(z,y,r, fo) =u(z)+y. (62)

Choices under fy would of course be difficult to directly observe in empirical data, but the application
of the Bernheim-Rangel framework does not require that all relevant parts of the choice correspondence
are empirically observable. Choices under fy could potentially be observed by eliminating the effect of
the reference point through some experimental intervention; we infer information about choices under fy
implicitly using bunching methods in Proposition 3. Alternatively, under the restriction 5 = 0, U under
the two frames coincide in the gain domain, so we could identify U under fy by observing choices under
an extremely low reference point in fi. Similarly under 8 = 1 we could identify U under fy by observing
demand in the loss domain.
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Note that setting fi = 1 and fy = 0, we can represent choices in either frame f € {0,1} by:

u(a:,ym,f) :u(x)—i—y—i—fm(xm), (63)

In this notation, the frame f plays a similar role to m, but here we conceive of the two different frames purely
in terms of choices in different situations, without a normative judgment.

The second step in applying the framework is to designate a subset of choice situations as the welfare-
relevant domain, i.e. situations from which we wish to take normative inference. There are three intuitive
possibilities for the welfare relevant domain, each of which reflects a normative judgment:

* (J1) include only choices under the naturally occurring frame (f = 1),
* (J2) include only choices under the no-reference-dependence frame (f = 0), or
¢ (J3) include choices under both frames.

The third step of the analysis is then to consider what revealed preferences are consistently expressed for
choices within the welfare-relevant domain. If a is chosen when b is available for some situation in the
welfare-relevant domain, and b is never chosen when « is available for other such situations, then we con-
clude that a is preferred to b.

If we interpret our results within the Bernheim-Rangel framework, our goal and contribution is mainly
to show how the these alternative judgments about the welfare-relevant domain influence welfare and op-
timal policy considerations. Under (J1) or (J2), there is a single utility function (either equation (61) or equa-
tion (62)) that ranks all options in the menu space (i.e. all combinations of (z,y,r)). Under (J3), however,

we obtain only an incomplete ranking. Our results map into the Bernheim-Rangel framework as follows:
¢ (J1) Restricting the welfare-relevant domain to choices under f = 1 is equivalent to judging = = 1
* (J2) Restricting the welfare-relevant domain to choices under f = 0 is equivalent to judging 7 = 0.

* (J3) Including both f = 0 and f = 1 in the welfare relevant domain is equivalent to only taking welfare
inference from welfare comparisons where some option (zo, yo,70) is preferred to some other option
(1,y1,7m1) forany 7 € {0, 1}.

Proposition 1 shows that we can characterize the sign of the welfare effects of changes in r without ref-
erence to 7. This means that under the restriction on payoff formulations in Assumption 1 and 2, we always
obtain robust over variation in r that are independent of 7. Through the lens of the Bernheim-Rangel frame-
work, this suggests that even if we include choices under both f; and fj in the welfare relevant domain (J3)
and use the revealed preference criterion proposed by Bernheim and Rangel, we would conclude that indi-

viduals prefer either higher or lower reference points according to the conditions laid out in Proposition 1.

Alternative Approach Under m = 0. Suppose, contrary to our preferred line of reasoning above, that we
wish to conceive of the reference point as a frame. In this case, we could actually think of demand in the
gain domain and demand in the loss domain as demand under two different frames. Note that under 7 = 0,
with equation (9) we nest the case where demand in the gain domain is normative by § = 0, as in this case
we have v(p,r) = 0 for (p,r) € G. Similarly, demand in the loss domain is normative when 3 = 1. Thus, we
could think of the parameter /5 as capturing normative ambiguity over whether gain or loss domain demand
are normative, provided we are willing to also assume that reference-dependent payoffs generally are not
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normative (m = 0). Note also that this approach requires that we rule out diminishing sensitivity; otherwise,
decisions under every possible reference point leads to distinct revealed preferences, so we would need a

distinct frame for each. There are some similarities of this approach to the anchoring model of default effects
in Bernheim, Fradkin and Popov (2015).
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E Social Welfare with Heterogeneous Reference Points

When we derive our main social welfare results in Section I, we assume that the reference point itself is
homogeneous. In this appendix, we relax this assumption. Note that for our results characterizing indi-
vidual welfare in Section I, the reference point is generally allowed to be individual-specific. However, this
does not imply we can simply replace r with r; in our social welfare results in Section II. Heterogeneous
reference points raise some fundamental theoretical issues and complications for empirical identification
that we discuss below.

Comparability and Heterogeneity. How should we compare welfare across individuals with different
reference points? The individual welfare metric — the function w(p,r;6;,T;, 3;) in our model — is identi-
cal to equivalent variation from a baseline situation in which an individual chooses the reference point.
With homogeneous reference points, this means we are evaluating equivalent variation relative a baseline
situation in which everyone chooses the same option.>” With heterogeneous reference points, we can still
derive a utility function in equivalent variation units, but the baseline from which this equivalent variation
is derived varies between individuals with different reference points. As we do not examine distributional
welfare effects in this paper, one straightforward possibility is to assume the value of a dollar is identical
across individuals with different reference points. Under this assumption, we can continue to aggregate
utility in equivalent variation units to evaluate social welfare. However, if we relax this normative assump-
tion, the marginal value of a dollar may co-vary with the reference point r;, and this covariance will matter
for welfare. We defer a full consideration of this and other distributional matters to future work.

Assuming our welfare function is comparable in level and units across individuals, we can express wel-
fare as an integral over a welfare function with heterogeneous reference points, just as in the social welfare
function from equation (11), but with an individual-specific reference point r;. In other words, under this
assumption, we obtain the same expressions for welfare at a given status quo, but with ;. Note that when
we decompose welfare into the G, L and R groups, the expression for expected welfare in each group is the
same, but now the composition of these groups depends on r;. This does not create any problems for the
theory but entails new empirical challenges that we discuss below.

Influence of Policy on the Reference Point. When we introduce policy variation and characterize the
welfare effects of a reform like a change in the NRA, r; is now a heterogeneous preference parameter rather
than a homogeneous policy parameter. This presents another challenge.

Let X € R be a policy like the NRA that influences behavior by changing reference points. Formally,
to introduce heterogeneity in r, a simple approach is to imagine that given the policy X, r; depends on the
unstructured individual preference parameter we have already introduced, §;. So we suppose there is a
function 7 such that r; = 7(6;, X). Assuming this function is differentiable almost everywhere, for a policy

perturbation AX, we have oF
o T

Ari = ZEAX.
" T ox

We obtain all the results in the main text under a homogeneity restriction that we can now formalize: for any
0;, 7(0;, X) = X. Homogeneity implies that Ar; = AX, so when we aggregate welfare using expectations,
we can pull out the term AX in equation (12). Without this restriction, we must account for the covariance
between Ar; and the other components of the welfare effect in our expressions.

3The baseline conditions and comparability assumptions that justify our approach are formally articulated in Naik and Reck (2025).
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Social Welfare Effects. With heterogeneous reference points, the expression for the first-order welfare
effect of a change in X — the analogue of equation (12) — becomes

AW =~ {E[B;\iAr; | i € G]Pli € G] — E[(1 - B;)AAr; | i € L]P[i € L]}
+ E [(uj(r;) —p)Ar; | i € R] Pli € R]. (64)
Notice that Ar; now appears inside the expectations. Making the simplifying assumption from Proposi-
tion 2.2, we obtain the following analogue of equation (13):

AW ~ 7 {E[BiAAr; | i € G)Pli € G] — E[(1— B;)N\;iAr; | i € LIP[i € L]}
G
—AXW{E [&Aiax

1\ or
+AXE [Ai <5¢ - 2) aTT(

ic R} Pli € R] (65)

i€ G} PlieG)—-E {(1—51‘)/\1'5;(

ieL} P[z‘eL]}

i€ R} Pli € R (66)

In words, the welfare effect is now a weighted average of the individual-specific effects from equation (13),
where the weights depend on individuals’ sensitivity of r; to policy, % To see how this matters

quantitatively, consider the first term in this expression, for the ¢ group, which we can re-write as
or or
).

G} :E[ﬁz‘AHG}E{ b axX
How does the welfare effect of a policy reform under heterogeneity compare to the homogeneous case?

0
E |:BiAia;;

G:| + Cov (ﬁZA

0X

First, we observe that if the covariance between the reference dependence parameters and sensitivity of
the reference point to policy is negligible — a sufficient condition for this would be that 6; and (A;, 3;) are
independent — what we need to know in addition to our initial sufficient statistics is how much the reference
point shifts in each group, ie. E [5’—;’ G} and analogous terms for the L and R groups. Outside of this
case, one also needs to account for the covariance between reference point sensitivity and other preference
parameters as in the expression above.

Empirical Implementation. If the distributions of r; and Ar; were known, applying these characteriza-
tions of welfare effects would be straightforward. Using information about r; and observed choices, we
would know which individuals are in the G, L, and R groups, and we would have all the information
needed to evaluate the expressions above. Matters become more complicated when individual reference
points and their dependence on policy are not observed. Intuitively, if we do not know what reference point
individual i is using, then even if we observe their choice z;, we do not know whether z; < r;, so we do
not know which group the individual is in. Moreover, we would be unable to evaluate the g—; terms for the
different groups.

Empirically identifying heterogeneous reference points and their responsiveness to policies is challeng-
ing. One of the main advantages of our empirical setting is that there the Normal Retirement Age is a single
salient number that many individuals use as a reference point, and that policy can directly influence refer-
ence points by shifting the NRA. This plausibly suggests a model with homogenous reference points that
respond one-to-one to changes in the NRA. More generally, accommodating heterogeneity in an empirically
implementable model would require imposing structure on reference point formation. In this appendix, we
clarify what information one would need to evaluate welfare under heterogeneous reference points, but we
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defer these questions of empirical identification to future work.
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F Empirical Application

E1 Simulation Methods

In order to obtain the results shown in Section IILE, we simulate the welfare effects of pension reforms,
building on Seibold (2021), who calculates effects of similar reforms on retirement behavior and fiscal bal-
ances. The first reform is an increase in the NRA from 65 to 66. We simulate two variants of the NRA reform,
without and with associated benefit cuts. While the former is useful in isolating the effect of changing ref-
erence points, the latter more accurately captures a "realistic" pension reform. The other type of reform we
consider is an increase in the DRC. In order to anchor this change in financial incentives, we increase the
credit from the current level of 6% to 10.44% per year, which yields the same effect on the average retire-
ment age as the first reform. In addition, we simulate a small DRC increase from 6% to 6.48% which serves
mainly as a demonstration that the sufficient statistics approach is more accurate for small reforms.

The policy simulations proceed in the following steps. First, we require a counterfactual distribution of
retirement ages — a distribution of retirement ages in the absence of reference dependence. We follow the
standard approach to obtain this counterfactual distribution and fit a polynomial to the observed distribu-
tion, excluding the bunching region around the NRA. In the absence of reference dependence, individuals
bunching at the NRA would be distributed across retirement ages above the NRA, and we simulate this
de-bunching by distributing the bunching mass across ages 65 and above. Unfortunately, the empirical re-
tirement age distribution offers little information about the counterfactual shape of this upper tail, as few in-
dividuals actually retire above the NRA in the data (see Figure 1). In the baseline simulations, we distribute
the bunching mass following a fitted Pareto distribution above age 65, corresponding to a moderately de-
creasing shape above the NRA. Figure F1 shows the counterfactual density under alternative assumptions
about the tail of the distribution, including a uniform and a lognormal distribution above the NRA. Reassur-
ingly, these alternative distributional assumptions have little impact on our simulation results, as Appendix
Table F1 shows. We then assign counterfactual retirement ages to individuals in the data based on ranks of
actually observed retirement ages.

Second, we simulate optimal retirement ages for each individual under the baseline policy environment
where the NRA is 65 and the DRC is 6% per year. Third, we simulate optimal retirement ages under each
counterfactual policy scenario. For this, we simulate individual lifetime budget constraints from equa-
tion (19) as in Seibold (2021), based on observed individual earnings and contribution histories, and choose
the retirement age that maximizes utility from equation (18) subject to the budget constraint and the refer-
ence point given by the NRA.

Fourth, we compute the difference between each counterfactual scenario and the baseline scenario for
the following outcomes: contributions to the pension system, benefits paid to workers, and workers’ lifetime
consumption. Moreover, we calculate the effects on disutility from work and reference-dependent payoffs
given the preferences in equation (18). Based on these, we can calculate the effects of each reform on the
fiscal balance of the pension system, on the welfare of workers, and on total welfare — the sum of fiscal
effects and individual welfare effects. All effects are scaled in terms of net present value at age 65, and in
line with Utilitarian social welfare we focus on average effects.
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F2 Decomposing Reference Dependence Payoffs

Besides fiscal effects and effects on standard utility components, we calculate the effects of policies on ref-
erence dependence payoffs in the simulations. In the model from from equation (18), an individual’s total
reference dependence payoffs are given by

0 R<R

v(RIR) = —{ R .
A(R-R) R>R,

where R is the individual’s retirement age and R is the reference point given by the Normal Retirement Age.
We further decompose reference dependence payoffs into additional disutility from work due to reference
dependence and direct utility from the reference point. The first component, reference dependence disutility
from work, is . .
. ARy R<R
AR R>R,
The second component, reference dependence utility from the reference point itself, is
A /K(—Ro) R < R
Ud(R‘R) - — ~ N N
A(-R) RZ>R,
Note that we introduce a “base age” Ry given by the pre-reform NRA in the case R < R. This choice is
inconsequential for overall welfare effects, because v, + v4 = v for any base age. However, anchoring v,
and vy at the initial reference point Ry allows to avoid introducing a jump discontinuity in v, and v at
R = R, which would complicate the calculation of direct versus behavioral welfare effects for individuals
moving between gain and loss domains relative to R.

E3 Two-Dimensional Reference Dependence in the Empirical Application
Two-Dimensional Model

In our empirical application, besides reference dependence over leisure, there could also be reference de-
pendence in the consumption dimension. We can modify the preferences from equation (18) to include

consumption reference dependence:

A

n Ey#— 0 R<R JA(C-C) C
n A(R—R) R>PR, |0 C

U=C-
1+§

(67)

A

c,

(AVARRVAN

where ¢ = C(R) is the consumption reference point, which is assumed to correspond to the consumption
level at the NRA. Thus, the two-dimensional reference point lies on the budget constraint. The parameter A;
captures the strength of reference dependence over leisure and A captures the strength of reference depen-
dence in the consumption dimension.*’ Such loss aversion in consumption may arise for instance because
"full" pension benefits become available at the NRA, and individuals perceive the associated consumption

level as a reference point (Behaghel and Blau 2012).4!

40 A, implies additional marginal utility from consumption in the loss domain below C. For instance, A, = 0.5 corresponds to 50%
higher marginal utility from consumption in the loss domain than in the gain domain.

“'Whether "full" pension benefits become available at the NRA depends on the specifics of the pension system. In the German
setting, full benefits become available at the Full Retirement Age, which is in principle distinct from the NRA. However, for most
workers among birth cohort 1946 on whom we focus in the simulations, the NRA and FRA coincide and thus full benefits become
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As in the one-dimensional case, the two-dimensional model predicts bunching at the NRA. However, a
crucial difference between the two models lies in the direction of predicted bunching. While reference de-
pendence over leisure induces workers to retire earlier in order to enjoy more leisure, reference dependence
over consumption induces individuals to postpone retirement and increase consumption. This occurs be-
cause the consumption loss domain is the range of consumption levels and associated retirement ages below
the NRA, whereas the loss domain over leisure is above the NRA. Thus, reference dependence over leisure
leads to bunching from above, but reference dependence over consumption leads to bunching from below. Fig-
ure 5 illustrates the predicted effect of the two dimensions of reference dependence on the retirement age
distribution. Reference dependence over leisure implies a shift in the distribution toward the NRA from
above, while reference dependence over consumption leads to a shift in the distribution toward the NRA
from below. A combination of the two would imply a shift towards the reference points from both sides.
As we argue in Section IILF, the empirically observed retirement age distribution around the NRA suggests
that reference dependence over leisure dominates reference dependence over consumption.

The marginal bunching individual from above can be characterized as in Section III.B. The upper marginal
buncher’s indifference curve would be tangent to the budget line at some retirement age R’ without ref-
erence dependence, and another indifference curve is tangent exactly at 2 with reference dependence. All
workers initially located between R and R bunch at the reference point from above, while all individuals
initially to the right of R decrease their retirement age but stay above the reference point. The two tangency
conditions for the upper marginal buncher imply R% = n% [w(l —7)]° and R = n* [w(1 — 7 — AT — A))]F,
where n* denotes her ability level and A; = A;/w is the reference dependence parameter normalized by

RL 1—-7 €
R \1l—-7—-Ar—A

Similarly, a marginal bunching individual from below can be identified. The lower marginal buncher’s

the wage per period. Hence,

indifference curve would be tangent to the budget line at R* without reference dependence, and tangency
occurs exactly at R with reference dependence. All workers initially located between R* and R bunch at
the reference point from below, while all individuals initially to the left R* retire later but stay below the
reference point. The two tangency conditions of the lower marginal buncher are R* = n* [w(1 — 7)]¢ and
R=n"[(1+ Ac)w(l —7)]%, where n* denotes her ability level. Hence,

R* 1 €
R (1 ¥ Ac)
The total excess mass b = B/ho(R) is

b 1—7 € 1 €
i l=maw) b () ®

Hence, bunching has two components. The first term in equation (68) captures bunching from the right

(from above) due to the retirement age/leisure reference point in combination with a potential budget set
kink present at the threshold. The second term in the equation captures bunching from the left (from below)
due to the consumption reference point.

Equation (68) yields the exact amount of bunching under the utility funciton we assume. Taking a first-
order Taylor approximation about the point (A;, A¢) = (0,0) under A; = 0, we obtain the following ap-
proximation of the excess mass at a two-dimensional reference point without a local financial incentive

available at the NRA.
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kink: b
7 ~e(A+Ae), (69)

This expression is closely related to our first bunching identification result from Proposition 3.1. Observed
bunching at the reference point identifies the combined strength of loss aversion over leisure and consump-
tion, (A; + A.), given an elasticity estimate. Separately identifying (A; and A.) will require information
about whether bunching comes from the left or from the right, as we show in general in Proposition 3.2 and
specifically for the retirement model below.

Parameter Estimation and Simulations

Analogously to equation (20), bunching observed at a threshold j, which may be the Normal Retirement
Age or a pure financial incentive discontinuity, can be written as

% L ]+ ! Trg (70)
Rj_ 1—Tj—ATj—Al-Dj l-l—Ac-Dj J

where D is an indicator for the Normal Retirement Age and §; is an error term. As discussed above, a key

issue with the estimation is that A; and A. cannot be separately identified based solely on equation (70).

Intuitively, both retirement age and consumption reference points lead to sharp bunching at the threshold

R such that a given amount of excess mass could be rationalized by a range of combinations of A; and A..
In order to make progress, it is useful to write the two components of excess mass separately. Bunching

from the right is bt 1— 7 €
i j _1 + 71
R; [(1—Tj—ATj—Az-Dj> ]+§] v

and bunching from the left is b

N 1 €
7= (aes) [ ve @
where b; = bj +b; . Denoting 3j = b; /b; the share of excess mass originating from the left, this share
ranges between zero and maximum of 3;. The maximum left bunching share 3; is given by one minus the
fraction of bunching that would persist if workers only bunch due to the budget constraint kink.

We follow two approaches in order to obtain joint estimates of A; and A.. First, we can simulate the full
range of possible combinations of the two parameters by gradually moving the share of left bunching at the
NRA from zero to its maximum and estimating equations (71) and (72) using the implied values of b;r and
b; . Panel (a) of Appendix Figure A2 shows resulting parameter combinations. The negative slope of the
relationship illustrates the intuition that the two types of reference dependence are substitutes in terms of
rationalizing observed excess mass. The labeled dots in in the figure mark a range of implied left bunching
shares between 0 and 50%. These results allow us to simulate the welfare effects of pension reforms as a
function of the relative strength of consumption reference dependence, which are shown in Figure 6.

As a second approach, we aim at obtaining a set of preferred "point" estimates of A; and A.. For this, an
empirical estimate of 3 is needed. We argue that the empirical retirement age distribution around the NRA
is informative of the relative magnitude of bunching from the two sides, and can be used for this purpose
under some additional assumptions. In particular, bunching shares from both sides can be computed based
on estimates of the corresponding density shifts. Intuitively, we assume the counterfactual density to be
continuous around the NRA, and infer the relative number of bunchers from the left and from the right
from the vertical difference between the counterfactual density and the actually observed density on both
sides of the threshold. This estimation requires a stronger assumption about the true relative density shifts
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being reasonably well approximated by locally observed relative shifts.
We begin with the observation that bunching at the threshold must equal the total missing density from

both sides: R Rinas
B= [ (ho(R)~n(R)dR+ [ (ho(R) ~n(R)) dR

where Ry,in and R4z are the minimum and maximum counterfactual retirement ages from which individ-
uals bunch at the NRA.

Measuring the true density shift over the full support is impossible in practice for two reasons. First,
the shift ho(R) — h(R) may vary across R in an unknown way so that ho(R) cannot be measured for all R
based on the observed density. Second, the full support of the counterfactual density may not be observed.
Even if the full support of the actual density could be observed, this does not necessarily correspond to
the counterfactual support because some counterfactual density is predicted to “disappear” at the bounds
because all individuals shift out a certain range.*?

One solution to this problem is to approximate the true density shift by a constant shift over a certain
range on each side. Denote by h; and h_ the observed density immediately to the right and left, respec-
tively, of the threshold R. Furthermore, denote by 1% and h° the corresponding counterfactual density in
the absence of the threshold. The approximation is

A

B~ (WY —h_)(R—R7)+ (k) —hy) (RT - R)

where a constant density shift observed immediately to the left of the threshold over a range [R~, R] ap-
proximates for the true shift on the left and a constant shift observed immediately to the right of R over
[R, RT] approximates for the shift on the right.
Assume also that the counterfactual density is continuous at R such that hg = hY = hg. Then hg can be
recovered as - B+ (R—R*)h_ +(R* —R)h+
0~ Rt -

From this, the implied bunching shares from both sides can be computed as B~ = (hg — h—)(R — R™) and
Bt = (hg — hy)(RT — R) because bunching from either side must be equal to the total density shift on that
side.

Panel (b) of Appendix Figure A2 illustrates this procedure. The solid red line shows the average empiri-
cal retirement density on both sides in a window of +/-2 years around the NRA, 1, and h_. The dashed red
line shows the implied counterfactual density hg calculated as described above. The figure shows that the
difference between the observed density and the counterfactual density is much larger on the right, indi-
cating that most "missing density" is on this side, and thus most bunching appears to originate from above.
We obtain an estimate of § = 0.133. Thus, the estimated share of bunching from the left due to reference de-
pendence over consumption is 13.3% and the share of bunching from the right due to reference dependence
over leisure is 86.7% . Finally, the parameters A, and A; can be estimated by plugging the bunching shares
into equations (71) and (72). We obtain estimates of A, = 0.672 and A; = 0.457. The simulations shown in
Table A4 are conducted based on these parameter estimates.

“2Besides, although theory predicts individuals responding to the threshold along the entire density in principle, it is unclear in
practice whether those far from the threshold respond in the same way as those closer.
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FIGURE F1: COUNTERFACTUAL RETIREMENT AGE DISTRIBUTION

(a) Baseline: Pareto Tail
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(b) Alternative 1: Uniform Tail (c) Alternative 2: Lognormal Tail
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Notes: The figure shows counterfactual retirement distributions under different assumptions about the shape of the upper tail of the
distribution. In all panels, the counterfactual distribution up until the Normal Retirement Age (age 65) is obtained by fitting a seventh-
order polynomial to the observed retirement age distribution, allowing for round-age effects. Panel (a) shows the baseline distribution
we use in the simulations, where the upper tail is given by a fitted Pareto distribution. Panels (b) and (c) show alternative counterfactual
distributions, where the upper tail is given by a uniform and lognormal distribution, respectively. Appendix Table F1 shows that our
simulation results are robust to the shape of the upper tail of the counterfactual distribution.
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TABLE F1: WELFARE EFFECTS OF PENSION REFORMS: ALTERNATIVE COUNTERFACTUAL DISTRIBU-
TIONS

1 2)
Panel A: Uniform Tail
Policy 1: Normal Policy 2: Delayed
Retirement Age to 66  Retirement Credit to 10.20%

Contributions collected +2,363 +2,278
Benefits paid +4,061 -3,879

Net fiscal effect +6,425 -1,601
Worker consumption +4,179 +11,937
Disutility from work -2,901 -2,094

Worker welfare (7 = 0) +1,278 +9,843
Ref. dep. disutility from work -6,900 -8,670
Ref. dep. utility from ref. point +8,121 0

Worker welfare (7 = 1) +2,499 +1,173
Total welfare (7 = 0) +7,702 +8,242
Total welfare (7 = 1) +8,923 —428

Panel B: Lognormal Tail
Policy 1: Normal Policy 2: Delayed
Retirement Age to 66 Retirement Credit to 11.28%

Contributions collected +2,261 +2,173
Benefits paid +3,707 —4,386
Net fiscal effect +5,967 -2,213
Worker consumption +4,201 +12,103
Disutility from work -3,198 -2,434
Worker welfare (7 = 0) +1,002 +9,669
Ref. dep. disutility from work -6,027 -8,268
Ref. dep. utility from ref. point +6,859 0
Worker welfare (7 = 1) +1,834 +1,401
Total welfare (7 = 0) +6,970 +7,456
Total welfare (7 = 1) +7,802 =811

Notes: The table shows results from pension reform simulations as in Table 2 under alternative assumptions about the upper tail of the
retirement age distribution indicated in the panel titles. Each panel considers two reforms, an increase in the Normal Retirement Age
(NRA) from 65 to 66, and an increase in the Delayed Retirement Credit yielding the same effect on the average retirement age as the
NRA reform, given the respective assumption about the retirement age distribution. Simulations are conducted for birth cohort 1946.
All effects in Euros per worker, in terms of net present value at age 65. The signs of the effects correspond to influence on welfare. Total
welfare is the sum of net fiscal effect and change in worker welfare.
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