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A Additional Tables

Table A1: Summary statistics

Mean values of key characteristics

Variable 2012 2013 2014 2015 2016 2017 2018

BEV
Price 30,575 31,383 35,491 32,569 37,105 37,200 34,671
Quality (Range in km) 168 173 202 196 213 246 259
Fuel Cost 4.03 4.35 4.39 4.19 4.24 4.28 4.21
Acceleration 2.80 2.98 3.19 2.96 3.31 3.26 2.94
Weight 1,581 1,662 1,797 1,797 1,867 1,902 1,841
Footprint 6.01 6.40 6.78 6.78 7.03 7.13 6.97
Doors 4.50 4.70 4.85 4.85 4.86 4.88 4.89
Number of Products 6 10 13 13 14 16 18
Sales 2,100 5,517 9,044 13,234 12,201 25,593 34,629

PHEV
Price 43,409 48,607 44,389 56,007 57,479 54,651 57,126

Quality (Range in km) 54 53 52 44 40 45 45
Fuel Cost 5.31 5.66 5.78 5.77 5.57 5.58 5.89
Acceleration 4.58 5.16 5.02 5.81 5.82 5.81 5.95
Weight 1,988 2,160 2,143 2,408 2,476 2,425 2,449
Footprint 7.93 8.17 8.04 8.53 8.66 8.66 8.74
Doors 5 5 5 5 4.87 4.86 4.79
Number of Products 2 3 6 11 15 22 24
Sales 1,148 1,079 2,671 8,248 10,614 25,374 25,841

ICE
Price 32,673 32,965 34,008 33,881 34,653 33,669 33,652
Quality (Range in km) 995 1,018 1,039 1,057 1,063 1,023 997
Fuel Cost 10.09 9.34 8.65 7.60 6.98 7.47 8.01
Acceleration 5.29 5.32 5.41 5.44 5.62 5.76 5.74
Weight 2,023 2,035 2,044 2,043 2,031 2,008 2,017
Footprint 8.00 8.04 8.07 8.08 8.10 8.09 8.12
Doors 4.43 4.48 4.52 4.55 4.52 4.58 4.63
Number of Products 233 233 227 222 214 213 215
Sales 2,739,581 2,569,876 2,651,415 2,767,185 2,855,922 2,864,409 2,819,762

Stations
Number of Charging Stations 1,169 1,461 2,104 3,326 5,638 9,560 17,509

Note: This table shows average values of key characteristics, the number of products available, and total sales, broken up by engine type.
The last row holds the cumulative number of charging stations.
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Table A2: Charging station entry

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Charging stations
Total 1,169 1,461 2,104 3,326 5,638 9,560 17,509 27,098 36,439 42,373
Level 2 1,162 1,454 2,077 3,170 5,141 8,421 15,331 23,756 31,614 36,900
Level 3 7 7 27 156 497 1,139 2,178 3,342 4,825 5,473
Pct Level 2 0.994 0.995 0.987 0.953 0.912 0.881 0.876 0.877 0.868 0.871

Note: This table shows cumulative numbers of charging stations. The second and third lines break this up between Level 2 and Level 3
chargers, and the fourth row shows the share of Level 2 chargers among the number of chargers installed.

Table A3: First Stage Estimates

Price Range Range x Trend Stations

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Exogenous Charac.
Fuel Cost -0.795 (0.027) 0.010 (0.001) 0.045 (0.003) 0.007 (0.002)
Footprint 8.999 (0.096) 0.040 (0.002) 0.189 (0.010) 0.018 (0.005)
Acceleration 3.704 (0.046) -0.017 (0.001) -0.088 (0.005) -0.005 (0.002)
Doors 0.246 (0.066) -0.012 (0.001) -0.066 (0.005) -0.002 (0.003)
BEV 13.625 (1.709) 0.197 (0.097) -3.245 (0.477) 4.298 (0.254)
PHEV 13.801 (1.870) -0.694 (0.094) -4.423 (0.479) 5.012 (0.310)
Own State 2.386 (0.366) 0.002 (0.011) -0.015 (0.060) 0.240 (0.026)

PHEV
Range x PHEV -4.815 (1.334) 0.004 (0.000) 0.021 (0.002) 0.004 (0.001)
Range x PHEV x Trend -1.094 (0.331) 2.112 (0.095) 15.758 (0.828) -0.204 (0.422)

Cost shifters
Station Subsidies 0.241 (0.077) -0.259 (0.019) -3.560 (0.149) -0.004 (0.071)
Steel x Volume 2.237 (0.107) -0.009 (0.005) -0.104 (0.033) 0.085 (0.012)
GMY x-rate 4.171 (0.146) -0.042 (0.003) -0.183 (0.016) -0.019 (0.008)
LI price x Volume -0.001 (0.000) 0.012 (0.003) 0.024 (0.016) -0.026 (0.011)
LI x-rate x Volume 0.327 (0.105) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Differentiation IVs
BEV count-local-own -1.388 (0.338) 0.155 (0.008) 0.725 (0.044) 0.041 (0.016)
Range index quadratic-own -4.788 (0.576) -0.055 (0.024) 0.114 (0.140) 0.050 (0.049)
Range index quadratic-rival -2.372 (0.396) -0.031 (0.047) 1.328 (0.278) 0.187 (0.101)
Footprint-local-own 17.023 (1.158) 0.231 (0.024) 2.494 (0.137) 0.244 (0.057)
Footprint-local-rival -3.876 (0.316) 0.874 (0.042) 4.264 (0.229) 0.223 (0.124)
Price-local-own -32.094 (1.019) -0.025 (0.007) -0.001 (0.032) 0.002 (0.017)
Price-quadratic-own 0.146 (0.006) -0.647 (0.035) -3.153 (0.189) -0.183 (0.100)
Fuel efficiency-quadratic-own -0.905 (0.667) -0.001 (0.000) -0.004 (0.001) 0.000 (0.000)
Fuel efficiency-quadratic-rival 0.138 (0.126) -0.225 (0.019) -1.228 (0.099) -0.083 (0.037)
Weight-local-rival -8.483 (0.310) 0.008 (0.001) 0.049 (0.006) -0.004 (0.003)

Firm FE X X X X
Class FE X X X X
Body FE X X X X
State FE X X X X
Year FE X X X X
SW F-Stat 180.683 89.668 41.42 41.582
Observations 28,288 28,288 28,288 28,288

Note:
makecell[l]This table presents first-stage estimates for each of the endogenous characteristics. The Sanderson-Windmeijer multivariate
F-test is reported for each endogenous variable.
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Table A4: Demand and marginal cost estimates

Utility Marginal Cost

Coefficient Rob. SE Coefficient Rob. SE

Mean Utility
Intercept -9.396 (0.377) Intercept 1.124 (0.041)
Range 2.274 (0.35) Trend -0.095 (0.008)
Range x Trend -0.201 (0.034)
Stations 0.373 (0.079) Intercept 1.595 (0.150)
Fuel Cost -0.564 (0.039) Weight 0.252 (0.044)
Footprint 0.708 (0.055) Fuel Efficiency -0.035 (0.006)
Acceleration 0.376 (0.026) KW 0.005 (0.000)
Doors -0.200 (0.027) Footprint 0.079 (0.023)
BEV -10.037 (1.928) BEV -0.946 (0.055)
PHEV -6.982 (1.824) PHEV 0.196 (0.026)
Own State 1.059 (0.076)
2013 -0.706 (0.040) 2013 -0.006 (0.013)
2014 -0.889 (0.042) 2014 -0.023 (0.014)
2015 -1.326 (0.058) 2015 -0.058 (0.015)
2016 -1.212 (0.061) 2016 -0.061 (0.015)
2017 -1.186 (0.058) 2017 -0.066 (0.015)
2018 -1.262 (0.060) 2018 -0.088 (0.015)

Obs. Heterogeneity
Price / Income -7.112 (0.648)

Standard Dev.
BHEV 2.455 (0.891)
Range 0.326 (0.346)
Fuel Cost 0.267 (0.017)

Note: Prices deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State
Fixed Effects included.

Table A5: Station entry estimation: Robustness checks

OLS IV IV IV IV IV

Log(EV base) 0.593 0.491 0.589 0.704 0.706 0.707
(0.079) (0.177) (0.22) (1.508) (0.191) (0.191)

Subsidies national 0.122 0.141 0.123 0.113 0.116 0.116
(0.025) (0.022) (0.033) (0.061) (0.021) (0.021)

Subsidies local 0.004 0.026 0.004 -0.016 0.022 0.022
(0.042) (0.059) (0.063) (0.043) (0.030) (0.030)

R-quared 0.926 0.924 0.926 0.924 0.859 0.859
First stage

F-stat 23.811 24.239 417.561 124.797 111.219
p-value 0 0 0 0 0
R-squared 0.840 0.833 0.990 0.917 0.917

Instruments
Gas station density X X X X
Gas prices X X X X
Road network X X X X X

Controls
County FE X X X X
Time trend X X X
State controls X X

Note: This table shows different specifications for the station entry equation, along with
the OLS estimate in the first column.
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Table A6: Station entry: First Stage

Dependent variable:

Log(EV Base)

Subsidies national −0.037 (0.021)
Subsidies local 0.018 (0.022)
Gas station density −0.030 (0.588)
Road network length 2.725 (0.500)
Gasoline price 0.804 (0.196)

Observations 112
R2 0.917
F Statistic 111.219

Note:
This table reports the first stage for the specification used
in the paper (last column of Table A5.

Table A7: Station entry estimation: Using lagged station density

OLS IV IV IV IV IV

Log(EV base) 0.593 0.462 0.519 -0.274 0.706 0.707
(0.079) (0.167) (0.20) (0.983) (0.192) (0.192)

Subsidies national 0.122 0.146 0.136 0.077 0.116 0.116
(0.025) (0.027) (0.034) (0.046) (0.021) (0.021)

Subsidies local 0.004 0.032 0.02 -0.018 0.022 0.022
(0.042) (0.057) (0.062) (0.043) (0.03) (0.03)

R-quared 0.926 0.923 0.925 0.939 0.859 0.859
First stage

F-stat 24.999 25.313 427.436 123.261 109.864
p-value 0 0 0 0 0
R-squared 0.846 0.839 0.991 0.916 0.916

Instruments
Lagged gas station density X X X X
Gas prices X X X X
Road network X X X X X

Controls
County FE X X X X
Time trend X X X
State controls X X
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B Additional Figures
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Figure B1: Price and range evolution over time

These tables show price and range for each BEV in the sample for each year.
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Figure B2: Evolution of selected attributes over time

Note that the Ford Focus was not offered in 2016
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This figure plots hypothetical marginal costs at different range levels in 2012 and 2018.
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C Estimation details

C.1 Zero market shares

Approximately 4% of my observations are products with strictly positive national-level sales
but zero state-level sales. Zero sales pose a problem in random coefficient demand models,
as the estimation procedure is not well defined when zero sales are present. Deleting obser-
vations with zero sales from the sample is problematic because it alters the market structure
and makes these products unavailable in counterfactual analyses. There exist approaches in the
literature to accommodate zero sales in random coefficient demand models.1 I follow Xavier
D’Haultfœuille, Isis Durrmeyer and Philippe Février (2019) and use a simple correction of
state-level market shares:

scjm =
qobsjm + 0.5

Mm

,

where qobsjm is the observed quantity sold of product j in a given market and Mm is the market
size in that market. This correction aims to minimize the bias of log(sjm) such that demand
parameters can be consistently estimated. D’Haultfœuille, Durrmeyer and Février (2019) pro-
vide an interesting and detailed discussion on this. The zero sales problem is rather small in my
sample, given that it only affects approximately 4% of my observations. My results are robust
to the use of different corrections (such as replacing qjm = 0 with qjm = 1, see Appendix I),
which I see as evidence that my demand parameters are consistently estimated and lead me to
believe that the correction I use is sufficient.

C.2 Estimation of the car demand side

On the demand side, the vector of parameters to be estimated is given by θd ≡ (βx
i , β

r, α).
I allow for random coefficients on characteristics for which I believe consumer heterogeneity
matters: the driving range, an EV dummy for battery- and plug-in hybrid vehicles and Fuel

Cost, measured in AC /100 km. The random coefficient on range allows for flexible substitution
patterns between EVs with different range levels. The random coefficient on the EV dummy al-
lows for flexible substitution between electric cars and combustion engine cars. Obtaining such
flexible substitution patterns is crucial for studying the market outcomes of subsidy schemes,
as substitution between EVs with different range levels and across engine types drives these
outcomes. The random coefficient on Fuel Cost allows consumers to have idiosyncratic pref-
erences for a characteristic that proxies the usage cost of cars. Additionally, substantial dif-
ferences across engine types exist in the fuel cost per 100 km, which renders the substitution

1Jing Li (2023) uses a Bayesian shrinkage estimator to move market shares away from zero. Amit Gandhi,
Zhentong Lu and Xiaoxia Shi (2022) construct bounds for the conditional expectation of inverse demand and show
that their approach works well even when the fraction of zero sales is 95%. Jean-Pierre Dubé, Ali Hortaçsu and
Joonhwi Joo (2021) use a pairwise-differencing approach to estimate demand parameters.
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patterns between cars of different engine types more flexible. I include a trend in the mean
taste for range, possibly capturing taste changes for range over time. In addition, I add several
characteristics for which I only estimate the mean taste, including the number of public charg-
ing stations per 10,000 inhabitants, fuel cost, footprint, doors, dummies for electric vehicles,
a linear time trend, and a dummy if the firm has its headquarters in the state considered.2 I
also add brand, class, body, and state–fixed effects. All remaining unexplained variation is then
collected in ξjmt, which is interacted with the instruments described in the previous section to
build moment conditions of the form E[zdjmtξjmt] = 0, with zdjmt as an instrument. Stacking
ξjmt across products and markets into a column vector ξ, I obtain the GMM objective function
to be minimized:

min
θd

ξ(θd)
′ZdW dZd′ξ(θd),

where Zd contains the instruments and W d is a positive definite weighting matrix. I use the
two-step efficient GMM estimator, where I use an approximation of the optimal weighting
matrix based on an initial set of estimates to recover the final estimated vector of parameters.
The estimation algorithm that I use is described in detail in Steven Berry, James Levinsohn and
Ariel Pakes (1995) and Aviv Nevo (2001). In the estimation, I account for various numerical
issues that recent literature has drawn attention to (Jean-Pierre Dubé, Jeremy T Fox and Che-
Lin Su (2012), Christopher R Knittel and Konstantinos Metaxoglou (2014), Daniel Brunner,
Florian Heiss, André Romahn and Constantin Weiser (2025), Christopher Conlon and Jeff
Gortmaker (2020)). First, I approximate the market share integral with 1,000 draws using
modified Latin hypercube sampling. Stephane Hess, Kenneth E Train and John W Polak (2006)
and Brunner et al. (2025) show that this method performs very well in random coefficient logit
models and provides better coverage than the more frequently used Halton sequences. Second,
I set the tolerance level in the contraction mapping of the inner loop to 1e-14 to solve for the
demand-side unobservables. A tight tolerance prevents numerical errors from the inner loop
from propagating to the outer loop. Third, I use the low-storage BFGS algorithm of NLOPT.
Fourth, I initialize the optimization routine from many different starting values to search for a
global minimum. Finally, I check first- and second-order conditions at the obtained minimum
to ensure the optimizer did not get stuck at a saddle point.

C.3 Estimation of the car supply side

With demand estimates in hand, I can derive implied markups and marginal costs. The vector
of parameters to be estimated is θs = (ψ, γ0, γ1). I let the baseline marginal cost depend on
several observed characteristics, such as the product’s weight, footprint, fuel efficiency, and

2I introduce the last variable to account for the fact that car companies often register a large number of cars in
their home state. Firms do so to comply with emissions regulations or to sell these cars at a discount later. Not
accounting for this may introduce a bias, especially for products with small market shares.
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engine power measured in kilowatts. I also include year, firm, class, and body-fixed effects.
All remaining unobserved marginal cost-shifters are then collected in ωjt.

Remember that the marginal cost of range consists of an intercept and a linear time trend to
capture the decreasing cost of the lithium-ion cells that are a crucial input for the battery pack,
the size of which, in turn, is a primary determinant of range. Any unobserved, product-specific
cost of additional range is then captured by ηjt.

The first-order conditions in (1) and (2) can be solved for the pair of supply-side unob-
servable vectors ω and η. I then interact them with the instruments described in the previous
section to build moment conditions of the form E[zsjtωjt] = 0 and E[zsjtηjt] = 0. Letting ρjt =
(ωjt, ηjt) and stacking across products and markets, I then obtain the GMM objective function
to be minimized:

min
γ0,γ1

ρ(γ0, γ1)
′ZsW sZs′ρ(γ0, γ1),

where Zs contains the instruments and W s is a positive definite GMM weighting matrix. The
baseline marginal cost parameters ψ can be concentrated out of the minimization routine, much
like the linear mean tastes in the utility function. Note that the number of observations differs
on the demand and supply sides. As firms choose price and range at the national level, I have
one national market per year t and not m state-level markets per year t on the supply side.

I take into account subsidies as outlined in equations (3)-(4). I do not consider rebates
granted by firms for two reasons: The first is that some firms granted larger rebates than they
had pledged. I do not observe these rebates. The second reason is that during the sample period,
firms also granted substantial rebates on gasoline and especially diesel cars, to a large extent
in response to the Volkswagen emissions scandal.3 The list prices net of government subsidies
can be seen as the maximum transaction price, as is the case in most of the literature estimating
demand and supply in new car markets.

C.4 Estimation of the charging station entry side

The estimation of the charging station side is straightforward. Once I obtain equation (8), I
estimate υ using two-stage least squares. In the estimation, I include national-level subsidies
and state-level subsidies. I set the national-level subsidies equal to AC 8,000. The vast majority
of stations (around 86.7%) in my sample received a subsidy of up to AC 3,000 for the installation
and of up to AC 5,000 for the connection to the grid. In the preferred specification, I also include
a linear time trend and state-level controls. In particular, I use the population density (which
varies across time) and the surface area of the state (which does not vary across time). I allow
the time trend to be different for the states of Berlin, Hamburg, and Bremen. These three
states are city-states in which the development of the EV market is likely to be very different

3https://www.handelsblatt.com/unternehmen/industrie/studie-zum-automarkt-wo-es-die-groessten-diesel-
rabatte-gibt/22682110.html?protected=true
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from other, less dense states. I also include a city–state dummy to control for unobserved
differences between these states and the other states. I also run an alternative specification in
which I replace these state-level controls with a state fixed effect, which I report along with
other robustness checks in Appendix Table A5. I use data from 2015 to 2021 to estimate the
station entry side. The reason for this choice is twofold. First, adding later years to the data set
offers more cross-sectional and temporal variation in state subsidies and the EV base. Second,
I only have information on gasoline and diesel prices starting in late 2014, so I cannot build the
gas price instrument for 2012 to 2014.

D Results under simultaneous moves

This section presents results for estimation and subsidy design when assuming a simultaneous
move game. In that case, firms just best respond to the charging station side, meaning that we
fall back to the standard market share derivatives with respect to price and range.

Table D1: Results under simultaneous moves

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
Range 2.274 (0.35) log(EV base) 0.707 (0.191)
Range x Trend -0.201 (0.034) National Subsidies 0.116 (0.021)
log(Charging Stations) 0.373 (0.079) Local Subsidies 0.022 (0.03)
Fuel Cost -0.564 (0.039)
BEV -10.037 (1.928)
PHEV -6.982 (1.824)

Demand: Obs. Heterogeneity
Price / Income -7.112 (0.648)

Demand: St. Dev.
BHEV 2.455 (0.891)
Range 0.326 (0.346)
Fuel Cost 0.267 (0.017)

Supply: Range provision
Intercept 1.171 (0.043)
Trend -0.100 (0.009)

Statistics
Mean own-price elasticity -4.043
Mean own-range elasticity (BEVs) 3.761
Mean markup (BEVs) 7.629

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State
Fixed Effects included on car demand- and supply side. Linear time trend and state demographics
are included on the station entry side.

Table D1 holds the estimation results. As outlined in Section IV, elasticities and markups
change. Also, the supply-side results change, even though we can see that they do so only
slightly. We still recover the drop in the marginal cost of providing range. Table D2 holds the
results for the grid search under simultaneous moves. Akin to Table 6, I report the subsidy
schemes that optimize different policy objectives, along with the observed scheme and the case
in which there are no subsidies. Table D2 suggests that the results are robust to using this
alternative timing assumption. Results in the simultaneous move game are similar to the ones
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found in Section V.B. The exact amounts of the subsidies, as well as the effects on range,
prices, and policy objectives, only change slightly. Overall, the conclusions we could draw
from Section V.B go through.

Table D2: Comparison of subsidy schemes (simultaneous moves)

Scheme Price Range Sales Stations CO2 CS TS

(0, 0, 0) 44,535 293 19,736 9,562 5,198,968 43,321 65,490

(2, 0, 8) -11,754 -34 +15,025 7,947 -6,763 +157 +254

(2.05, 0, 7.9) -11,794 -34 +15,186 +7,756 -6,833 +158 +256

(2.3, 0.3, 5.95) -13,761 -39 +16,384 +4,237 -7,356 +140 +229

(2.3, 0.2, 6.5) -13,719 -40 +16,391 +5,139 -7,318 +145 +237

E Supply side: details

E.1 Matrix form

The first-order conditions in (3) and (4) can be expressed in matrix form. I use the index B
for battery electric vehicles and I for other vehicles. I let JB,JI denote the set of either type
of vehicle and JB, JI the number of either kind of vehicle on the market. I then define the
following matrices:

∆p : JxJ matrix with entry k, l =


∑

m ϕmt
∂slmt

∂pkt
if k, l ∈ Jf

0 otherwise

∆B
r : JBxJB matrix with entry k, l =


∑

m ϕmt
∂slmt

∂rkt
if k, l ∈ Jf and k, l ∈ JB

0 otherwise

∆I
r : JBxJI matrix with entry k, l =


∑

m ϕmt
∂slmt

∂rkt
if k, l ∈ Jf , l ∈ JI and k ∈ JB

0 otherwise

The system of first-order conditions can then be expressed as
s+ (p+ λ−mc)∆p = 0 (1)

−∂mcB

∂rB
sB +∆B

r (p
B + λB −mcB) + ∆I

r(p
I + λI −mcI) = 0, (2)

where s is the vector of market shares, p is the vector of prices, λ the subsidy vector, mc

the marginal costs vector and r the vector of range levels. This expression makes apparent that
the introduction of a (flat) subsidy is equivalent to a marginal cost decrease from the viewpoint
of the firm.
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E.2 Marginal cost specification

I specify a marginal cost function that is log-linear. For product j, it is given by

log(mcjt(qjt, wjt; θs)) = wjtψ + ωjt︸ ︷︷ ︸
baseline

marginal cost

+(γ0 + γ1t+ ηjt)rjt︸ ︷︷ ︸
marginal cost of
providing range

, (3)

where wjt is a vector of observed cost-shifters, ωjt is a cost shock observed by firms but un-
observed by the researcher, t is a linear time trend, ηjt is a range-specific marginal cost shock
observed by firms but unobserved by the researcher, and θs ≡ (ψ, γ0, γ1) is a vector of pa-
rameters to be estimated. Note that the second part of (3) is zero since I do not model their
range choices for products that are not battery electric vehicles since I do not model their range
choices. In the case of BEVs, I assume that the marginal cost of providing range depends on
an intercept term, a linear time trend allowing for less costly range provision over time, and
an unobserved, product-specific component. The exponential nature of fixed costs is in line
with the technology facing firms: Increasing range may be achieved by increasing the size of
the battery. A kilometer of range becomes more costly at higher range levels. One reason is
that the car’s dimensions restrict the size of the battery. Additionally, other ways of increas-
ing range, such as achieving a higher energy density of batteries, may also be constrained by
technological factors and make range provision costlier at higher range levels.

E.3 Equilibrium price and range levels

Having a functional form for marginal costs allows me to express the equilibrium levels of price
and range in matrix form. Let c0 ≡ w′ψ + ω and c1 ≡ (γ0 + γ1t+ η). Then, the equilibrium
price and range are

p = mc+∆−1
p s (4)

r =
1

c1
log

(∆B
r (p

B −mcB) + ∆I
r(p

I −mcI)

sBc1

)
− c0

c1
(5)

F Counterfactual details

F.1 Procedure

This section presents details on the counterfactual procedure.
Having estimates of price and range semi-elasticities, a system of first-order conditions

(FOCs) for prices and range levels, and an estimate of the marginal cost of providing range, as
well as the charging station entry equation, I can compute the new equilibrium vectors of price
and range and the new equilibrium entry of charging stations. I employ an iterative algorithm
to find this new equilibrium (p, r,d). I proceed as follows:
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1. I start with a vector of prices pl, ranges rl, and charging stations dl.

2. Update price and range vectors. At iteration h,

(a) Compute a new price vector using the price FOC given by equation (4). Take a
small step towards the simulated price vector: ph+1 = αp∗ + (1 − α)ph, with α
small.

(b) Update market shares and elasticities using ph+1, rh

(c) Compute a new range vector using the range FOCs given by equation (5). Take a
small step towards the simulated range vector: rh+1 = αr∗ + (1 − α)rh, with α
small.

(d) Update market shares and elasticities using ph+1, rh+1

(e) Let diffmax = max(diffhp , diffhr ), where diffhp = max |ph+1 − ph| and diffhr =

max |rh+1 − rh|. If diffmax ≥ ϵc with ϵc being some convergence criterion, go
back to step (a). If diffmax < ϵc, extract (ph+1, rh+1) to be the new equilibrium
vector of prices and range levels pl+1 and rl+1.

3. Update charging stations by iterating on equation (7) until convergence. Extract the new
charging station vector dl+1.

4. Compute difflmax = max(difflp, difflr), diffld). If difflmax >= ϵo, go back to step 2. If
difflmax < ϵo, pl+1, rl+1,dl+1 is the new equilibrium vector of prices, ranges, and charg-
ing stations.

I restrain the values that the range can take in counterfactuals. First, I put a floor of 100km,
which is the lowest range I observe for BEVs throughout the sample period. Second, I bound
range from above in the following way: First, I define c1min to be the lowest marginal cost of
providing range in 2018: c1min = minj∈JBEV,2018

(c1j). I then define the maximum attainable
range in 2018 for BEV j to be rmax,j ≡

(
log(mcj) − c0j

)
/(c1min × 1.2). I find that this

procedure converges to the same equilibrium vector of price levels, range levels, and charging
stations, even when I start from different starting values in different counterfactual settings. I
take this feature as a sign that a unique counterfactual equilibrium exists. Altering the ordering
of the price and range updating does not change the results, also giving me confidence that the
counterfactual results that I find are robust to the specific details of the algorithm and different
starting values. The fact that firms choose only the range of BEVs means that the number of
additional FOCs to iterate in addition to the price FOCs is small. This factor contributes to the
good convergence properties of the algorithms. I perform all counterfactuals for 2018.
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F.2 Details on grid search

To find the budget-equivalent values for λ, I use the following procedure: At a given budget
B, I search for values of λ that satisfy the budget constraint. I employ a grid search where at
each candidate value λ̃, I solve for the counterfactual equilibrium vector of prices and ranges
as outlined in Appendix F and compute the total cost of the scheme. If the cost is either above
or below B, I discard the candidate value, and if the cost is equal to B (up to a small tolerance),
I keep it. For each candidate point, I compute the mean price and range of BEVs, the quantity
sold of BEVs, consumer surplus4, and fleet emissions. To calculate fleet emissions, I rely on
data that gives me the average distance driven by fuel type coming from a survey conducted by
the German Federal Highway Research Institute (Marcus Bäumer, Heinz Hautzinger, Manfred
Pfeiffer, Wilfried Stock, Barbara Lenz, Tobias Kuhnimhof and Katja Köhler, 2017).5

Note that in the computation of fleet emissions, I assume that BEVs’ CO2 emissions are
equal to zero. Obviously, this assumption is only valid if they run exclusively on electricity
generated from renewable sources. The assumption is unrealistic in a country such as Ger-
many, where an important part of electricity generation comes from CO2-intensive coal-fired
plants. However, there are three reasons why this approach is justified. The first is that it serves
as a useful benchmark since it measures the maximum amount by which fleet emissions can
decrease. The second is that the main reason why policymakers see electric vehicles as a key
instrument in making the transport sector emission-free is that electricity generation itself is
being decarbonized. Decarbonized electricity generation means that BEVs will eventually be
emission-free, making it a valuable benchmark to think of them as zero-emission vehicles. The
third reason is that assuming non-zero CO2 emissions from BEVs requires ad hoc assumptions
on the electricity mix used and driving behavior.

G The role of internalizing spillovers on price and range choices

In the estimation of the model, I find that ignoring indirect network effects leads to markups
that are 19% higher on average and that BEVs act as complements in both price and range. In
the first set of counterfactuals that I perform, I take a closer look at the relationship between
indirect network effects and firms’ price and range choices. In particular, I am interested in
how the complementarity between BEVs affects market outcomes. I consider two scenarios. In
the first scenario, I assume firms do not internalize the effect of their price and range choices on
any other EV, not even the EVs in their product portfolio. This scenario amounts to modifying
the matrices ∆p and ∆B

r in equations (1) and (2). Specifically, I set each entry (j, k), j ̸= k in
(1) and (2) to zero if row j and row k correspond to an EV. Note that doing so is different from

4Consumer surplus is calculated using the log-sum formula: CSt =∑
m ϕmt

∑
i wi

log(1+
∑

j exp(δjmt+µijmt))

αi
.

5I compute fleet emissions as
∑

j CO2j qj usagej , with CO2j being the CO2 emissions of car j, measured in
g/km, qj being the quantity sold of car j, and usagej the annual amount driven in km.
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assuming single-product firms, as firms still internalize diverted sales towards their own firm’s
combustion cars. In the second scenario, I assume firms internalize the effects of their price and
range decisions on all other EVs in the market. This scenario also amounts to modifying the
matrices ∆p and ∆B

r in equations (1) and (2). Specifically, I set each entry (j, k) in (1) and (2)
to one if row j and row k correspond to an EV. Note that doing so is different from assuming
a complete merger to monopoly in the car market as firms still only internalize diverted sales
towards own-firm combustion cars and not towards combustion cars produced by other firms.
Given that the vast majority of new car sales still come from combustion cars in 2018, assuming
a full merger to monopoly would likely entail large coordinated effects that would pollute the
effect of merely assuming full internalization on rival firm EVs.

Table G1: Market outcomes with different market structures

Data No internalization Full internalization

Price 34,782 +3,560 -5,687
(-1,639, +7,903) (-12,422, +3,674)

Range 259 +10 -27
(-13, +21) (-119, -4)

MC 21,774 +1,816 -2,836
(-1,287, +4,718) (-6,746, +2,027)

Markup 7,361 +1,176 -1,943
(-139, +2,065) (-3,924, +954)

Sales 34,761 -1,789 +10,930
(-5,073, +2,854) (-24, +37,137)

Stations 17,509 -208 +1,041
(-3,089, +4,880) (-1,854, +8,029)

Consumer Surplus 49,250 -29 +132
(-3,022, +4,078) (-2,931, +4,376)

CO2 emissions 5,192,205 +404 -2,806
(-1,510, +2,255) (-13,205, +1,232)

Note: Table gives differences to observed outcomes with 90% C.I. in parentheses. Prices, range
levels, marginal costs, markups, and sales are mean values across BEVs.

The results are in Table G1. We can see that in the scenario in which firms do not internalize
the effect of their price and range choices on any other EV (column ”No internalization”),
BEVs would, on average, be more expensive and have a higher range. Sales of BEVs would be
lower and fewer charging stations would enter. These results suggest that complementarities
in price and range choices lead to BEVs that are cheaper but also have a slightly lower range.
These cheaper, lower-range BEVs generate a large number of extra sales and also spur charging
station entry. On the other hand, we can see in the last column that when firms internalize the
effect of their price and range choices on all other EVs in the market, BEVs are, on average,
substantially cheaper and have a much lower range. However, these inexpensive, low-range
BEVs generate large additional sales and strong charging station entry. Overall, consumer
surplus would increase by around AC 200 million in this case. However, much of the increase
in consumer surplus comes from increased substitution from the outside option. The rest of
the consumer surplus increase comes from the fact that EVs become substantially cheaper, and
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the fact that there are more charging stations available. Interestingly, firms have an incentive
to reduce the range of their cars when internalizing indirect network effects. One reason for
this may be that consumers have a relatively low willingness to pay for range. Another reason
is the indirect network effects at play: Reducing the price of BEVs induces more charging
station entry. This increase in charging stations makes it possible for firms to reduce range and
generate additional sales by further reducing the price. The indirect network effects strengthen
the incentives of firms to reduce price and range.

H Alternative model with range-charging station interaction

This section presents an alternative version of the demand and supply model where I allow for
an interaction term between EV driving range and charging stations. In order to identify this
interaction term, I include the natural logarithm of range (measured in km) in the demand. In
particular, the utility that consumer i enjoys from purchasing one of the products j = 1, . . . , J

is

uijmt = βb
iBEVj + βp

i PHEVj + βrlog(rjt) + βdlog(djmt) + βrdlog(rjt)log(djmt)︸ ︷︷ ︸
only EVs

−α pjt
yimt

+ xjmtβ
x
i + ξjmt + εijmt︸ ︷︷ ︸

all cars

,

Note that while range and charging stations are likely to be substitutes to some extent, the
ultimate extent to which this is the case will depend on an individual’s driving needs, their
home and/or workplace charging availability, and other factors. Including an interaction term
between range and charging stations is, hence, a rather crude way of capturing the interactions
between these two variables.

The estimation results in Table H1 suggest that range and charging stations are substitutes,
with the valuation of range being a decreasing function of the number of charging stations
and vice versa. Introducing the log of charging stations has implications for the first-order
conditions and the estimates of c1, the term pre-multiplying range in the marginal cost function,
because the level of range is now measured in kilometers instead of 100 kilometers. However,
I obtain similar estimates of the marginal cost of providing range.

In Table H2, we see that the trade-off between maximizing EV sales, maximizing consumer
and total surplus, and minimizing CO2 emissions persists. There are slight changes to the type
of subsidy schemes that optimize different policy goals. Instead of focusing on subsidizing
charging station entry, consumers now prefer a scheme that balances incentivizing charging
station entry and incentivizing range provision. The EV sales-maximizing scheme looks very
similar to the one in the main specification, with the policymaker having an incentive to focus
most of the spending on flat purchase subsidies. To minimize CO2 emissions, policymakers
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Table H1: Estimation results with interaction

Demand/supply for cars Station entry

Coefficient SE Coefficient SE

Demand: Means
log(Range) 1.877 (0.232) log(EV base) 0.707 (0.191)
log(Charging Stations) 0.555 (0.198) National Subsidies 0.116 (0.021)
log(Range) x log(Charging Stations) -0.100 (0.039) Local Subsidies 0.022 (0.030)
Fuel Cost -0.611 (0.039)
BEV -13.182 (2.923)
PHEV -10.940 (2.878)

Demand: Obs. Heterogeneity
Price / Income -7.352 (0.627)

Demand: St. Dev.
BHEV 1.466 (1.834)
Fuel Cost 0.289 (0.017)

Supply: Range provision
Intercept 0.00510 (0.00035)
Trend -0.00044 (0.00008)

Statistics
Mean own-price elasticity -4.163
Mean own-range elasticity (BEVs) 1.399
Mean markup (BEVs) 7.614

Note: Prices, subsidies deflated and in EUR 1,000. Vehicle class-, Body-, Firm-, Year- and State Fixed
Effects included on car demand- and supply side. Linear time trend and state demographics are included
on the station entry side.

Table H2: Comparison of subsidy schemes: range-station interaction

Scheme Price Range Sales Stations CO2 CS TS

(0, 0, 0) 36,147 277 25,686 9,570 5,196,955 43,198 64,523

(2, 0, 8) -3,365 -19 +9,075 +7,939 -4,750 +87 +135

(3.15, 0, 4) -4,470 -16 +14,685 +1,850 -7,348 +107 +169

(3.25, 0, 2.85) -4,501 -14 +15,109 +797 -7,529 +107 +168

(3.25, 0, 2.85) -4,501 -14 +15,109 +797 -7,529 +107 +168

should increase the flat part of the purchase subsidy and decrease the charging station subsidy.
Again, this scheme looks very similar to before. Overall, price and range adjustments are
less substantial compared to the model in the main part of the paper. This is because shifting
spending to purchase subsidies reduces charging station entry, which increases consumers’
willingness to pay for range and hence increases firms’ incentives to provide it, limiting the
scope for large range reductions and accompanying price reductions.

I Robustness to alternative corrections

Table I1 shows estimates of key demand parameters under different corrections for observa-
tions with zero market shares. The column Min bias holds the results from the correction
employed in the paper that follows D’Haultfœuille, Durrmeyer and Février (2019). The sec-
ond column (Laplace) uses a correction based on Laplace’s rule of succession that is used in
Amit Gandhi, Zhentong Lu and Xiaoxia Shi (2013). It consists of replacing market shares by
˜sjmt =

Mmtsjmt+1

Mmtsjmt+Jmt+1
, with Jmt the number of products in market mt. Finally, column 3
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(Naive) uses a naive correction where quantities of zero sales observations are assumed to be
1. We can see that the estimates barely differ across the different corrections, leading me to
conclude that the prevalence of zero sales does not pose a serious threat in my estimation.

Table I1: Estimates of key parameters under alternative corrections for zero market shares

Min bias Laplace Naive

Mean Utility
Range 2.274 2.175 2.256

(0.350) (0.330) (0.340)
Range x Trend -0.201 -0.19 -0.193

(0.034) (0.032) (0.033)
Charging Stations 0.373 0.349 0.373

(0.079) (0.076) (0.078)
Fuel Cost -0.564 -0.552 -0.571

(0.039) (0.037) (0.038)
BEV -10.037 -9.626 -10.204

(1.928) (1.87) (1.921)
PHEV -6.982 -6.767 -7.229

(1.824) (1.772) (1.808)
Obs. Heterogeneity

Price / Income -7.112 -6.904 -7.263
(0.648) (0.608) (0.646)

Standard Dev.
BHEV 2.455 2.450 2.579

(0.891) (0.864) (0.861)
Range 0.326 0.299 0.303

(0.346) (0.349) (0.359)
Fuel Cost 0.267 0.262 0.269

(0.017) (0.016) (0.017)

Note: Standard errors in parentheses.

J Estimated price elasticities in selected papers

Table J1 presents estimates of price elasticities from several papers using a similar structural
model of demand to mine.

K A model of quality provision

K.1 Monopoly

In this section, I outline a model of quality provision by a monopolist. This model helps
to understand the forces that determine how price and quality adjust to the introduction of a
subsidy or a decrease in the marginal cost of quality provision. Note that what I call quality in
this model can, in principle, be any product characteristic, such as driving range.
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Table J1: Estimated price elasticities of selected papers

Author(s) Price elasticity

Arie Beresteanu and Shanjun Li (2011) -10.91

Berry, Levinsohn and Pakes (1995)1 -3.928

Berry, Levinsohn and Pakes (1995)2 -3.461

Li (2023) -2.732

Thomas Klier and Joshua Linn (2012) -2.6

Giulia Pavan (2017) -2.85

Mathias Reynaert and James Sallee (2021) -5.45

Katalin Springel (2021)3 [-1, -1.5]

Jeff Thurk (2018) -3.6

Paul LE Grieco, Charles Murry and Ali Yurukoglu (2024)4 -5.36

Own estimated price elasticity: -4.043
1 Conlon and Gortmaker (2020) replication
2 Conlon and Gortmaker (2020) own procedure
3 Range of elasticities for EVs
4 For 2015

Set-up

Let us consider a monopolist who chooses price (p) and quality (q) of a single product sold
to final consumers.6 In my application, q would be the driving range of a car. The demand
function s(p, q) is increasing in quality, decreasing in price, and is twice differentiable. Cost
is an increasing function of quality and is denoted c(q)s(p, q). A social planner subsidizes
the product with a subsidy denoted by λ, possibly to increase the diffusion of the product.
This scheme mirrors the type of subsidy for electric vehicles employed in countries such as
Germany.

Quality choice

The monopolist maximizes its total profits given by π(p, q). His optimization problem is given
by

max
p,q

π(p, q) ≡ (p+ λ− c(q)) s(p, q)

and the first-order conditions of the monopolist are given by

[p]: πp ≡ s(p, q) + (p+ λ− c)
∂s(p, q)

∂p
= 0

[q]: πq ≡ −cqs(p, q) + (p+ λ− c)
∂s(p, q)

∂q
= 0.

6The set-up slightly differs from Michael Spence (1975) and Eytan Sheshinski (1976) where the monopolist’s
choice variables are quality and quantity.
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For the price, we recover the standard optimal markup formula. For quality, the formula looks
similar. The firm faces a trade-off: It can increase quality to expand sales. However, doing so is
costly and leads to a smaller margin. To see how the monopolist chooses quality in equilibrium,
we can plug the price FOC into the quality FOC and re-arrange to find

cq =
∂s(p, q)/∂q

|∂s(p, q)/∂p|
, (6)

where cq is the marginal cost of providing quality ∂c(q)
∂q

The monopolist sets quality such that the
marginal cost of providing quality is equal to the absolute value of the ratio of semi-elasticities
of quality and price. The larger the fraction on the right-hand side of equation (6), the larger
the level of quality provided in equilibrium.

The effect of a subsidy

What happens when the policymaker introduces a subsidy? If quality cannot adjust, we expect
the monopolist to pass on the subsidy by lowering the price. The extent of this pass-through
depends on the curvature of the demand curve. The more elastic the demand curve, the higher
the amount of pass-through. If both the price and quality can adjust, there is no clear-cut answer
to how the monopolist will react. Differentiating the system of first–order conditions gives[

dp
dλ
dq
dλ

]
=

[
πpp πpq

πpq πqq

]−1 [
−πpλ
−πqλ

]
,

where πmn denotes the second order derivative of the monopolist’s profit function with respect
to m and n, with m,n ∈ {p, q} and where

πpp = 2sp + spp(p+ λ− c)

πqq = −cqqs− 2cqsq + sqq(p+ λ− c)

πpq = sq + (p+ λ− c)spq − cqsp

πpλ = sp, πqλ = sq.

This gives

dp

dλ
=

1

∆

(
πpqπqλ − πqqπpλ

)
dq

dλ
=

1

∆

(
πpqπpλ − πppπqλ

)
,

where ∆ ≡ πppπqq − π2
pq > 0 from the second order conditions of having a global maximum.

The SOCs further require πpp < 0 and πqq < 0. Note that we also have πpλ < 0 and πqλ > 0.
If πpq < 0, meaning price and quality are strategic substitutes, we have dp

dλ
< 0 and dq

dλ
> 0.
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In the case where πpq > 0, things become more ambiguous. Note that we can write

dp

dλ
=

1

∆

(
πpqsq − πqqsp

)
dq

dλ
=

1

∆

(
πpqsp − πppsq

)
,

We can then conclude that

sign
(dp
dλ

)
= sign

( ∣∣∣∣ sqπqq
∣∣∣∣− ∣∣∣∣ spπpq

∣∣∣∣ )
sign

(dq
dλ

)
= sign

( ∣∣∣∣ spπpp
∣∣∣∣− ∣∣∣∣ sqπpq

∣∣∣∣ )
The effect of a subsidy on quality and price depends on the relative magnitudes of the price and
quality semi-elasticities, sp and sq, and the marginal cost of providing quality cq. Moreover,
we can rule out the case πpλ > 0 and πqλ < 0. To see see why, note that this case would imply
πpq

πpp
< sq

sp
< πqq

πpq
which violates the second order conditions.

K.2 Multi-product oligopoly

In this section, I show how the main insights obtained in the monopoly case generalize to a
multi-product oligopoly setting. The fact that there are cannibalization effects within a firm’s
product portfolio and the fact that products are differentiated within and across the product
portfolio will influence the effect of a subsidy on price and quality but not alter the main con-
clusions. To see why, let us consider the following setting: There are j = 1, . . . J products
in a market. Consumers care about the quality of a subset of products j ∈ B and do not have
any preferences over the quality of the remaining products j ∈ I.7 The social planner puts a
subsidy on products in B but not on those in I. Let us look at the firm f ’s profit maximization
problem:

max
pf ,qf

πf =
∑

k∈Jf∩k∈B

(pk + λ− c(qk))sk(p, q) +
∑

l∈Jf∩k∈I

(pl − c(ql))sl(p, q),

where pf and qf denote the own-firm vectors of price and quality, respectively, p and q are the
price and quality vectors of all firms in the market, and Jf is the portfolio of firm-f products.

7Think of the market for cars: The range of electric cars is a proxy for quality and costly to provide. Consumers
do not care about the range of diesel or gasoline cars as it is sufficiently high, and firms do not give it first-order
importance when making strategic decisions.
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The FOCs for product one are then given by

[p1]: πfp1 ≡

s1 +
∑

k∈Jf∩k∈B

(pk + λ− c(qk))
∂sk
∂p1

+
∑

l∈Jf∩k∈I

(pl − c(ql))
∂sl
∂p1

= 0

[q1]: πfq1 ≡

− cq1s1 +
∑

k∈Jf∩k∈B

(pk + λ− c(qk))
∂sk
∂q1

+
∑

l∈Jf∩k∈I

(pl − c(ql))
∂sl
∂q1

= 0

The second-order derivatives of the profit function will depend not only on the effect of own
price and quality on own demand but also on the demand of the other own-firm products.
Finally, they depend on rival product prices and quantities through the demand function.

Increase of subsidy for a single product

In the case where the subsidy is only increased for a single product, say product 1, we get

dp1
dλ

=
1

∆

(
πfp1q1πfq1λ − πfq1q1πfp1λ

)
dq1
dλ

=
1

∆

(
πfp1q1πfp1λ − πfp1p1πfq1λ

)
,

meaning that the general results from the previous section go through: The signs of dp1
dλ
, dq1
dλ

depend on whether p, q are strategic substitutes or complements. They also still depend on the
marginal cost of providing quality as well as the relative magnitudes of πfp1λ and πfq1λ that
themselves still depend on sp and sq.

Increase in the subsidy for all products in B
Things become more complicated when we consider an increase in the subsidy of all products
in B. We now need to differentiate J + JB first–order conditions (JB being the cardinality of
B). In essence, the effect of price and quality on the FOC of all other products now needs to be
taken into account as well.
Let J denote the cardinality of all products, JB the cardinality of those products with endoge-
nous quality and f(j) the firm of product j. Then, we have the following system of FOCs with
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J + Jq equations:

[p1]: πf(1)p1 ≡ s1 +
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂sk

∂p1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂p1
= 0

...

[pJ ]: πf(J)pJ
≡ sJ +

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂sk

∂pJ
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂pJ
= 0

[q1]: πf(1)q1 ≡ −cq1s1 +
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂sk

∂q1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂q1
= 0

...

[qJB ]: πf(JB)qJB
≡ −cqJB

sJB +
∑

k∈Jf(JB)∩k∈B
(pk + λ− ck)

∂sk

∂qJB

+
∑

l∈Jf(J)∩l∈I
(pl − cl)

∂sl

∂qJB

= 0

The total differentiation of this system yields



dp1
dλ
...

dpJ
dλ
dq1
dλ
...

dqJB
dλ


=



πf(1)p1p1 . . . πf(J)pJp1 πf(1)q1p1 . . . πf(JB)qJBp1

...
...

...
...

πf(1)p1pJ
. . . πf(J)pJpJ

πf(1)q1pJ
. . . πf(JB)qJBpJ

πf(1)p1q1 . . . πf(J)pJq1 πf(1)q1q1 . . . πf(JB)qJB q1

...
...

...
...

πf(1)p1qJB
. . . πf(J)pJqJB

πf(1)q1qJB
. . . πf(JB)qJB qJB



−1 

−πf(1)p1λ

...
−πf(J)pJλ

−πf(1)q1λ

...
−πf(JB)qJBλ


, (7)

where, for instance,

• πf(1)p1p1 = 2
∂s1

∂p1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂p21
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p21

• πf(J)pJp1 =
∂sJ

∂p1
+

∂sJ

∂p1
1{1,J∈f(J)}+

∑
k∈Jf(J)∩k∈B

(pk + λ− ck)
∂2sk

∂pJ∂p1
+

∑
l∈Jf(J)∩l∈I

(pl − cl)
∂2sl

∂pJ∂p1

• πf(1)p1q1 = −cq1
∂s1

∂p1
+

∂s1

∂q1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂p1∂q1
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p1∂q1

• πf(1)p1qJB
= −cqJB

∂sJB

∂p1
1{1,JB∈f(1)}+

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂2sk

∂p1∂qJB

+
∑

l∈Jf(1)∩l∈I
(pl − cl)

∂2sl

∂p1∂qJB

• πf(1)q1q1 = −cq1q1s1 − 2cq1
∂s1

∂q1
+

∑
k∈Jf(1)∩k∈B

(pk + λ− ck)
∂2sk

∂q21
+

∑
l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂q21

• πf(1)q1qJB
= −cqJB

∂sJB

∂q1
1{1,JB∈Jf} − cq1

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B
(pk + λ− ck)

∂2sk

∂q1∂qJB

+
∑

l∈Jf(1)∩l∈I
(pl − cl)

∂2sl

∂q1∂qJB

• πp1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂p1

• πq1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂q1

It is no longer possible to simply pin down the effects of the subsidy on whether or not p, q
are strategic complements, nor on the relative magnitudes of πfp1λ and πfq1λ and the marginal
cost of providing quality. First off, however, the entries πfpjpj and πfqjqj in the matrix to be
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inverted in 7 are likely to dominate the entries πfpjpk and πfqjqk , k ̸= j. Hence, the signs and
magnitudes of these own second-order derivatives will play an important role in determining
the effect of the subsidy. Secondly, the system in 7, while too opaque to be solved analytically,
can be solved numerically if estimated profits and semi-elasticities can be recovered and prices
as well as qualities are known. I can do so in my empirical setting below. In principle, this
system can also be obtained to measure the pass-through of a change in marginal cost. The
difference is then that the system of first–order conditions will be differentiated with respect
to the change in marginal cost. Finally, one can use this framework to analyze the case where
several multi-product firms produce products with endogenous quality that are subsidized and
products with fixed quality that are not subsidized. Note that a similar system can be obtained
to analyze the pass-through of a shock to the marginal cost of providing quality.
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