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Supplemental Appendix

Sharing Model Uncertainty

Chiaki Hara and Sujoy Mukerji and Frank Riedel and Jean-Marc Tallon

A. Ambiguity aversion and revealed beliefs

Denote by b (ΩP) a bet that pays c∗ on ΩP and c∗ off it, and by b (Ω \ ΩP)
the bet on the complementary event Ω \ ΩP. Note that P (ΩP) = 1. Normalize
ui and φi so that ui (c∗) = 0 and φi (0) = 0, and write h = u(c∗). Consumer
i evaluates these bets as: Ui(b (ΩP)) = μ (P)φi (P (ΩP)h) = μ (P)φi (h) and
Ui(b (Ω \ ΩP)) = (1− μ (P))φi (h) . Consider next a lottery �π which pays c∗
with a probability π and c∗ with probability 1− π. Then, Ui(�

π) = φi (πh). If φi

is strictly concave, then Ui(b (ΩP)) < Ui(�
μ(P)) and Ui(b (Ω \ ΩP)) < Ui(�

1−μ(P)).
Define π, π̄ ∈ [0, 1] so that Ui(�

π) = Ui(b (ΩP)) and Ui(�
1−π̄) = Ui(b (Ω \ ΩP)).

Since φ is strictly increasing, π < μ (P) < π̄. Moreover, π satisfies

φi (πh+ (1− π)0) = μ (P)φi (h) + (1− μ (P))φi (0)

⇔ πh = φ−1i (μ (P)φi (h))

Applying a quadratic approximation, we get, letting λφi
be the Arrow-Pratt

measure of absolute risk aversion for the function φi (see Supplemental Appendix
B for further detail).

πh = μ (P)h− λφi
(0)

2

[
μ (P)h2 − (μ (P)h)2

]
+ o

(
h2

)
⇔ π = μ (P)− λφi

(0)

2
μ (P) (1− μ (P))h+ o (h)

Similarly, π̄ = μ (P) +
λφi

(0)

2 μ (P) (1− μ (P))h + o(h). Hence, the “probability
matching” interval for ΩP is given by [π, π̄]. Its length is increasing in λφi

.

B. Relative ambiguity aversion

We relate the measure of relative ambiguity aversion introduced in Section
II.B to ambiguity premiums (see also (Cerreia-Vioglio, Maccheroni and Marinacci
2022)). Let h be a random variable defined on Ω and w be the initial consumption
level. Denote by Pμ the reduced measure

∫
P Qμ(dQ), and by λu the Arrow-

Pratt measure of absolute risk aversion for a Bernoulli utility u. The variance
(σμ)2 (E · (h)) of the function E ·(h) : P �→ EP(h) under μ reflects the uncertainty
on the expected values and encapsulates ambiguity.
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The certainty equivalent for a proportional ambiguous prospect xh can be ap-
proximated as30

C(x+ xh) = x+ EPμ
(xh)− x2

2
λu (x) (σ

Pμ
)2 (h)

−x2

2
(λv (x)− λu (x)) (σ

μ)2
(
EPμ

(h)
)
+ o

(
‖h‖2

)

Since φ = v ◦ u−1, λφ (u(x)) = 1
u′(x) (λv (x)− λu (x)), that is, λφ (u(x))u

′ (x) =

λv (x)−λu (x). The ambiguity premium for xh is obtained by subtracting the risk
premium from the overall uncertainty premium and, as a proportion of wealth,
equal to

((λv (x)− λu (x))x)× 1

2
(σμ)2

(
EPμ

(h)
)
= λφ (u(x))u

′ (x)x× 1

2
(σμ)2

(
EPμ

(h)
)
.

In our HARA specification, it is convenient to express the ambiguity premium in
terms of the effective consumption x− ζ. By differentiating v = φ ◦ u, we obtain

(B.1) −v′′(x)
v′(x)

= −φ′′(u(x))
φ′(u(x))

u′(x)− u′′(x)
u′(x)

.

By multiplying both sides by x− ζ, we obtain, under Condition 2:

(B.2) −φ′′(u(x))
φ′(u(x))

u′(x)(x− ζ) = γ − α.

C. Proof of Proposition 4.

For the purpose of this Appendix, denote the value function of (9) by u(x, λ).
Then, u is the representative consumer’s (inner) Bernoulli utility function, where
dependence on the vector λ of utility weights is made explicit. Similarly, de-
note the value function of (3) by V P(X̄P, λ) and the value function of (2) by
V

(
(X̄P)P∈P , λ

)
. Then,

V
(
(Ȳ P)P, λ

)
=

∑
P

μ(P)V P
(
Ȳ P, λ

)
(C.1)

for every (Ȳ P)P.

Denote the solution to (9) by (fi(x, λ))i. Then (fi)i is the risk-sharing rule,
with the dependence on the vector λ of utility weights made explicit. By the

30This is akin to the quadratic approximation of certainty equivalent obtained by (Maccheroni, Mari-
nacci and Ruffino 2013)
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envelope theorem,

∂u

∂x
(x, λ) = λiu

′
i(fi(x, λ))(C.2)

for every i. Denote the risk tolerances of ui and u by ti and t. (Wilson 1968)
showed that t(x, λ) =

∑
i ti(fi(x, λ)) for every (x, λ). Hence,

∇λt(x, λ) =
∑
i

t′i(fi(x, λ))∇λfi(x, λ).(C.3)

LEMMA 5: ∇λt(x, λ) = 0 if and only if t′1(f1(x, λ)) = · · · = t′I(fI(x, λ)).

Proof of Lemma 5 Although this lemma is true for an arbitrary I, we give a
proof only for I = 2 to save space. By (C.2), λ1u

′
1(f1(x, λ)) = λ2u

′
2(f2(x, λ)). By

differentiating both sides w.r.t. λ1:

u′1(f1(x, λ)) + λ1u
′′
1(f1(x, λ))

∂f1
∂λ1

(x, λ) = λ2u
′′
2(f2(x, λ))

∂f2
∂λ1

(x, λ).

Since
∑

i(∂fi/∂λ1)(x, λ) = 0, u′1(f1(x, λ)) = − ∂f1
∂λ1

(x, λ)
∑

i λiu
′′
i (fi(x, λ)). Hence,

(∂f1/∂λ1)(x, λ) > 0. Thus,

∂t

∂λ1
(x, λ) =

(
t′1(f1(x, λ))− t′2(f2(x, λ))

) ∂f1
∂λ1

(x, λ) = 0

if and only if t′1(f1(x, λ)) = t′2(f2(x, λ)). �
If (XP

i )i is a solution to (3), then, by the envelope theorem,

∂V P(X̄P, λ)

∂X̄(ω)
= λiφ

′
i

(
EPui(X

P
i )

)
u′i(X

P
i (ω))P(ω) for all i and ω.(C.4)

LEMMA 6: For each P ∈ P, let (XP
i )i be a solution to (3). Write λP

i =
λiφ

′
i

(
EPui(X

P
i )

)
and λP = (λP

i )i. Suppose that there is a pair of a differen-
tiable function u : X → R and a differentiable function φ : u(X) → R such that
V P(Ȳ , λ) = φ(EPu(Ȳ )) for all P ∈ P and Ȳ : Ω → X. Then, for all ω1 and
ω2 ∈ ΩP,

∫ X̄P(ω2)

X̄P(ω1)

dx

t(x, λP)

depends only on the values of X̄P(ω1) and X̄P(ω2), that is, if X̄
P(ω1) = X̄Q(ω3)

and X̄P(ω2) = X̄Q(ω4), then
∫ X̄P(ω2)

X̄P(ω1)
dx

t(x,λP)
=

∫ X̄Q(ω4)

X̄Q(ω3)
dx

t(x,λQ)
for all P,Q ∈ P,
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ω1, ω2 ∈ ΩP, and ω3, ω4 ∈ ΩQ.

Proof of Lemma 6 First, we prove that

∂V P(X̄P, λ)

∂X̄P(ω2)

P(ω2)

∂V P(X̄P, λ)

∂X̄P(ω1)

P(ω1)

= exp

(
−

∫ X̄P(ω2)

X̄P(ω1)

dx

t(x, λP)

)
.

Indeed, by (C.4),

∂V P(X̄P, λ)

∂X̄P(ω)

P(ω)
= λP

i u
′
i(X

P
i (ω))

for every ω. Thus, the right-hand side is independent of i. Hence, the first-order
condition for a solution to (9) is met, and XP

i (ω) = fi(X̄
P(ω), λP) for all i and

ω ∈ Ω. Thus, by (C.2), λP
i u

′
i(X

P
i (ω)) = ∂u

∂x(X̄
P(ω), λP). Hence,

∂V P(X̄P, λ)

∂X̄P(ω2)

P(ω2)

∂V P(X̄P, λ)

∂X̄P(ω1)

P(ω1)

=

∂u

∂x
(X̄P(ω2), λ

P)

∂u

∂x
(X̄P(ω1), λP)

= exp

(
−

∫ X̄P(ω2)

X̄P(ω1)

dx

t(x, λP)

)
.(C.5)

On the other hand, by assumption, the chain rule implies that

∂V P(X̄P, λ)

∂X̄P(ω)
= φ′(EPu(X̄))u′(X̄P(ω))P(ω)

for every ω. Thus,

∂V P(X̄P, λ)

∂X̄P(ω2)

P(ω2)

∂V P(X̄P, λ)

∂X̄P(ω1)

P(ω1)

=
u′(X̄P(ω2))

u′(X̄P(ω1))
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for all ω1 and ω2. Since the right-hand side depends only on the values of X̄P(ω1)
and X̄P(ω2), so is the left-hand side. The lemma follows now from (C.5). �

LEMMA 7: Suppose that there is a pair of a differentiable function u : X → R

and a differentiable function φ : u(X)→ R such that V ((Ȳ P)P, λ) =
∑

P μ(P)φ(EPu(Ȳ P))
for every (Ȳ P)P, where Ȳ

P : ΩP → X for every P. Then, V P(Ȳ , λ) = φ(EPu(Ȳ ))
for all P and Ȳ : Ω→ X.

Proof of Lemma 7 Let Q ∈ P, and (X̄P)P and (Ȳ P)P be two endowments
such that X̄P = Ȳ P for every P ∈ P \ {Q}. By assumption and (C.1),

φ(EQu(X̄Q))− φ(EQu(Ȳ Q)) = V Q
(
X̄Q, λ

)− V Q
(
Ȳ Q, λ

)
.

Therefore, for everyP ∈ P, there is an aP ∈ R such that V P(Ȳ P) = φ(EPu(Ȳ P))+
aP for every Ȳ P : ΩP → X. Hence,

∑
P μ(P)aP = 0. Let Ȳ : Ω → X be (de-

terministic) endowments for which there is an x ∈ X such that Ȳ (ω) = x for
every ω. Then, for every P, the solution (Y P

i )i to (2) is given by letting Y P
i be

the deterministic consumption xi such that λiφ
′
i(ui(xi))u

′
i(xi) is independent of

i, and V P(Ȳ ) =
∑

i λiφi(ui(xi)). Thus, whenever Ȳ is deterministic, V P(Ȳ ) is
independent of P. Hence, aP is independent of P. Thus, aP = 0 for every P.
Hence, V P(Ȳ ) = φ(EPu(Ȳ )) for all P and Ȳ P : ΩP → X. �

PROPOSITION 7: Assume |Ω| ≥ 4. For each i, let ui be a (inner) Bernoulli
utility function with the following property: for each i, there is an x∗i ∈ Xi

such that it is not true that t′1(x∗1) = t′2(x∗2) = · · · = t′I(x
∗
I). Then, there

are: for each i, a Bernoulli utility function φi over expected utility levels; a
(common) second-order belief μ on Ω; endowments X̄ : Ω → X whose range
is model-independent; and a vector λ� of utility weights, such that such that if
V is defined by (2), then there is no pair of a (inner) Bernoulli utility func-
tion u and a Bernoulli utility function φ over expected utility levels such that
V

(
(Ȳ P)P, λ

)
=

∑
P μ(P)φ

(
EPu(Ȳ P)

)
for all (Ȳ P)P.

Proof of Proposition 7 Suppose that for each i, there is an x∗i ∈ Xi such that

it is not true that t′1(x∗1) = t′2(x∗2) = · · · = t′I(x
∗
I). For each i, let λ∗i = (u′i(x

∗
i ))

−1,
and λ∗ = (λ∗i )i. Write x∗ =

∑
i x
∗
i . Then, x∗i = fi(x

∗, λ∗) for every i. By
Lemma 5, ∇λt(x

∗, λ∗) is a nonzero vector. Thus, there is a κ ∈ R
I such that

∇λt(x
∗, λ∗)κ > 0. Note here that

Dλui(fi(x
∗, λ∗)) = u′i(fi(x

∗, λ∗))∇λfi(x
∗, λ∗) ∈ R

I .

Let δ > 0 be so large that Dλui(fi(x
∗, λ∗))κ + δ > 0 for every i, then there is a

neighborhood Y of x∗ and a neighborhood Λ of λ∗ such that Dλui(fi(x, λ))κ+δ >
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0 and ∇λt(x, λ)κ > 0 for all i and (x, λ) ∈ Y× Λ. Then,

d

dε
t(x, λ∗ + εκ) = ∇λt(x, λ

∗ + εκ)κ > 0

for every x ∈ Y and every ε sufficiently close to 0. Hence, for every x ∈ Y,
t(x, λ∗ + εκ) is a strictly increasing function of ε around 0.

Since Ω ≥ 4, there is a partition (Ξ1,Ξ2,Ξ3,Ξ4) of Ω where each Ξn is non-
empty. Let x1, x2 ∈ X be such that x1 < x2. Define X̄ : Ω→ X by

X̄(ω) =

{
x1 if ω ∈ Ξ1 ∪ Ξ3

x2 if ω ∈ Ξ2 ∪ Ξ4

Define ρ > 0 so that (ui(fi(x
2, λ))− ui(fi(x

1, λ)))ρ > δ for all i. Let P0 ∈ Δ(Ω)
be s. th. P0(ω) > 0 for all ω ∈ Ξ1 ∪ Ξ2 and P0(ω) = 0 for all ω ∈ Ξ3 ∪ Ξ4. For
each ε > 0 sufficiently close to 0, let Pε ∈ Δ(Ω) be s. th.

Pε(ω) =

⎧⎪⎨
⎪⎩

1
|Ξ3|(P

0(Ξ1)− ερ) if ω ∈ Ξ3,
1
|Ξ4|(P

0(Ξ2) + ερ) if ω ∈ Ξ4,

0 if ω ∈ Ξ1 ∪ Ξ2

Then, Pε(Ξ3) = P0(Ξ1)− ερ, Pε(Ξ4) = P0(Ξ2) + ερ and Pε(Ξ1 ∪ Ξ2) = 0. Fix a
sufficiently small ε� > 0 and let P = {P0,Pε�}. Then, P is point-identified with
kernel k s.th.

k(ω) =

{
P0 if ω ∈ Ξ1 ∪ Ξ2

Pε� if ω ∈ Ξ3 ∪ Ξ4

Moreover, ΩP0 = Ξ1 ∪ Ξ2 and ΩPε� = Ξ3 ∪ Ξ4. Thus, the range of X̄ is model
independent. Let μ be a second-order belief s.th. μ(P0) > 0 and μ(Pε�) > 0.
Then, by definition of δ and ρ, ∀ε > 0:

d

dε
EPε

ui(fi(X̄, λ∗ + εκ)) = (ui(fi(x
2, λ∗ + εκ)))− ui(fi(x

1, λ∗ + εκ))ρ

+
∑
ω∈Ω

Pε(ω)Dλui(fi(X̄(ω), λ∗ + εκ))κ

>δ +
∑
ω∈Ω

Pε(ω)(−δ) = 0.

Thus, by Proposition 10 of (Hara et al. 2022) for each i, there is a twice continu-
ously differentiable φi with φ′′i ≤ 0 < φ′i such that

((
fi(X̄, λ∗ + εκ)

)
i

)
ε=0,ε�

is an

efficient allocation of the economy
(
(ui, φi, μ)i, X̄

)
.

Since
((
fi(X̄, λ∗ + εκ)

)
i

)
ε=0,ε�

is an efficient allocation of the economy
(
(ui, φi, μ)i, X̄

)
,

there is a ν ∈ R
I
++ such that it is a solution to (2) when λ is replaced by ν. The
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first-order condition is that for all ε and ω,

νiφ
′
i

(
EPε

ui(fi(X̄, λ∗ + εκ))
)
u′i(fi(X̄(ω), λ∗ + εκ))

is independent of i. Write λPε

i = νiφ
′
i

(
EPε

ui(fi(X̄, λ∗ + εκ))
)
. By definition,

(λ∗i + εκi)u
′
i(fi(X̄(ω), λ∗ + εκ))

is independent of i. Thus, λPε

i /(λ∗i + εκi) is independent of i. Denote it by cε.
Then λPε

= cε(λ∗ + εκ). Hence, u
(·, λPε)

= cεu (·, λ∗ + εκ). Thus, t
(·, λPε)

=
t (·, λ∗ + εκ). Hence,

∫ x2

x1

dx

t(x, λPε)
=

∫ x2

x1

dx

t(x, λ∗ + εκ)
.(C.6)

Since t(x, λ∗+εκ) is a strictly increasing function of ε for every x, each side of this
equality is a strictly decreasing function of ε. In particular, each side is greater
for ε = 0 than for ε = ε�.
Suppose that there is a pair of a twice continuously differentiable function u :

X→ R satisfying u′′ < 0 < u′ and a twice continuously differentiable function φ :
u(X) → R satisfying φ′′ ≤ 0 < φ′ such that V (

(
Ȳ P

)
P
) =

∑
P μ(P)φ

(
EPu(Ȳ P)

)
for all (Ȳ P)P, where V is the value function of (2). Then, by Lemma 7, for every
P ∈ P, V P(Ȳ P) = φ

(
EPu(Ȳ P)

)
for all Ȳ P : Ω → X, where V P is the value

function of (3). Thus, by Lemma 6, the left-hand side of (C.6) is independent of ε.
In particular, it takes the same value for ε = 0 and ε = ε�. This is a contradiction.
Hence, there is no pair of a differentiable function u : X→ R and a differentiable
function φ : u(X) → R such that V (

(
Ȳ P

)
P
) =

∑
P μ(P)φ

(
EPu(Ȳ P)

)
for all

(Ȳ P)P. �

D. Constant absolute risk aversion

We study here an economy where ui and vi are HARA with zero marginal risk
tolerance.31

ASSUMPTION 2: Assume ui is CARA with risk aversion αi > 0 and vi is
CARA with risk aversion γi ≥ αi

Assumption 2 is equivalent to assume ui and vi are HARA with CMRT (with pa-
rameters (0, 1

αi
) and (0, 1

γi
) respectively). Let φi = vi ◦u−1i , so φi(t) ∝ −(−tγi/αi).

Hence, our economy consists of smooth ambiguity-averse consumers with hetero-
geneous risk aversion and heterogeneous ambiguity aversion, parameterized by

31While this class of utility functions is usually not the one considered in the DSGE literature, it admits
an easy representation for the efficient allocations and the representative consumer’s utility function, while
allowing for heterogeneity.
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CARA Bernoulli utilities with risk aversion coefficient αi > 0 and by a power
function with index γi

αi
≥ 1, respectively.

PROPOSITION 8: Let (XP
i )P,i be an efficient allocation of an economy that

satisfies Assumption 2. Let α =
(∑

i α
−1
i

)−1
and γ =

(∑
i γ
−1
i

)−1
. Then,

1) For each P , there are constants (τPi )i=1,...,I s.th.
∑

i τ
P
i = 0 and XP

i =
(α/αi)X̄ + τPi for every i.

2) For every i, there is a function τi : (−∞,∞)→ (−∞,∞) and constants κi

such that τi(c) =
γ
γi

(
1− γi/αi

γ/α

)
c+ κi with

∑
i κi = 0 and

(D.1) τPi = τi(c
P)

with cP = u−1(EPu(X̄)), where u, the representative consumer’s utility
function, is CARA with absolute risk aversion coefficient α.

3) In the smooth ambiguity representative consumer’s utility φ(t) ∝ −(−tγ/α)
and v = φ ◦ u is CARA with parameter γ.

τ(c)

c = u−1(Eu(X̄))

Rep. cons. 0

τi

τj

Figure A1. Constant risk tolerance case.

Note: The Figure shows the transfers as a function of the certainty equivalents for two consumers, i and
j. Consumer i is more ambiguity-averse than, and j is less ambiguity-averse than, the representative
consumer.

As P varies, the efficient allocation rule adjusts by varying the intercept term
of the linear sharing rule, τPi , a term denoting transfers that sum to zero across
all the consumers. The function τPi is itself linear in the aggregate certainty
equivalent. Figure (A1) gives a graphical depiction showing how τPi varies as a
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function of the representative consumer’s certainty equivalent for two consumers
in this economy as established in Proposition 8.
If ambiguity attitudes were homogeneous, i.e., γi/αi = γj/αj for all i, j ∈ I,

then the efficient allocation would be the same as if all consumers were expected-
utility consumers: for all i, τPi is independent of P.

E. Non-zero marginal risk tolerance

We provide here a complement to Proposition 5 and give the limit behavior of
θi(.) and b.

PROPOSITION 9: Consider the functions θi and RAAφ constructed in Propo-
sition 5. Then,

1) θi(z) → 0 as z → 0 if γi �= maxi=1,...,I γi and θi(z) → 0 as z → ∞ if
γi �= mini=1,...,I γi.

2) RAAφ(z)→ maxi=1,...,I γi − α as z → 0, and RAAφ(z)→ mini=1,...,I γi − α
as z →∞.

Proof of Proposition 9 The l.h.s. of (A5) is equal to the derivative of the
logarithm of the function z �→ (fi(z))

γi v′(z + ζ). Hence this function is, in fact,
constant. Thus, if there were an i s.th. fi(z) is bounded from above, then v′(z)
would be bounded away from zero. Then, fi(z) would be bounded from above
for every i. This would contradict the assumption that

∑
i fi(z) = z for every

z > 0. Hence, for every i, fi(z) → ∞ as z → ∞. We can analogously show that
for every i, fi(z) → 0 as z → 0. This also shows that v′(x) → ∞ as x → ζ and
v′(x)→ 0 as x→∞.
Denote the constant value of (fi(z))

γi v′(z + ζ) by κi. Then, for every i and j,

0 < θi(z) =
fi(z)

z
<

fi(z)

fj(z)
=

(
κi

v′(z + ζ)

)1/γi

(
κj

v′(z + ζ)

)1/γj
=

κ
1/γi
i

κ
1/γj
j

(
v′(z + ζ)

)1/γj−1/γi .

If γi < maxi=1,...,I γi = γj , then 1/γj−1/γi < 0. Since v′(z+ζ)→∞ as z → 0, the
far right-hand side of the above equality converges to 0 as z → 0. Hence θi(z)→ 0
as z → 0. We can analogously show that for every i, if γi > mini=1,...,I γi, then
θi(z)→ 0 as z →∞. The limiting behavior of RAAφ follows. �
We now explain the qualitative features of the graph of the shares θi as a

function of the aggregate certainty equivalent.
Part 1(b) of Proposition 5 implies that, as we move from worse to better models,

a consumer whose relative ambiguity aversion is greater (smaller) than that of the
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representative consumer around cP will see their share decrease (resp. increase)
for models with certainty equivalents marginally greater than cP as shown in
Figure A2.

θk

u−1(Eu(X̄))

1

θI θ1

θi θj

ĉi ĉj

Figure A2. Comparing consumption shares θk under Condition 2.

Note: Consumer I (resp. 1) is the most (resp. the least) relatively ambiguity-averse. i is more relatively
ambiguity-averse than consumer j.

Consider consumer I with the largest relative ambiguity aversion in the econ-
omy. By part 2 of Proposition 5, their relative ambiguity aversion is greater than
that of the representative consumer (at all cP). By part 1(b) of Proposition 5,
θI will be negatively sloped everywhere. Analogously, consumer 1, with the low-
est relative ambiguity aversion in the economy, will have a θ1 that is positively
sloped everywhere. From 1 of Proposition 9, the most relatively ambiguity-averse
consumers get all of X̄ − ζ at the worst models. Therefore, at these models the
representative consumer’s relative ambiguity aversion is maxi=1,...,I γi−α. Hence,
by part 1(b) of Proposition 5, any consumer i with relative ambiguity aversion less
than maxi=1,...,I γi−α will have their share increasing at least initially. Since the
representative consumer has decreasing relative ambiguity aversion, we will reach
a model, identified by ĉi in Figure A2, where the representative consumer’s rela-
tive ambiguity aversion falls below i’s; hence, i’s share is decreasing to the right
of ĉi. For a consumer j relatively less ambiguity-averse than i, the representa-
tive consumer’s ambiguity aversion has to decrease further before j’s share peaks.
Hence, ĉj is to the right of ĉi. Taken together, the most relatively ambiguity-averse
consumers get protected with extra shares at the worst models, the “middling”
relative ambiguity-averse consumers get extra shares at the “middling” models
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and the least relatively ambiguity-averse ones get compensated by extra shares
at the best models.
Finally, note that if γi − α = γj − α for all i, j ∈ I, then the efficient allocation

would be the same as if all consumers were expected-utility consumers: for all i,
θi is a constant function.

F. Strict log-supermodularity

In this Appendix, we give a general result on strict log-supermodularity (SLSPM
for short) from which part 2 of Proposition 6 can be derived.
Let N be a positive integer. For each x = (xn)n=1,2,...,N ∈ R

N and each
y = (yn)n=1,2,...,N ∈ R

N , we write x ≥ y when xn ≥ yn for every n. We also write
x ∨ y = (max {xn, yn})n=1,2,...,N and x ∧ y = (min {xn, yn})n=1,2,...,N . For each
x = (xn)n=1,2,...,N ∈ R

N , we write x−N = (xn)n=1,2,...,N−1 ∈ R
N−1. By a slight

abuse of notation, we use ≥, ≤, ∨, and ∧ for vectors in R
N−1 as well.

Let f : RN → R+. We say that f is strictly log-supermodular (SLSPM for
short) if

f(x)f(y) < f(x ∨ y)f(x ∧ y)

for every x ∈ R
N and y ∈ R

N unless x ≤ y or x ≥ y. That is, the strict log-
supermodularity is a stronger property than the log-supermodularity (LSPM) in
that the left-hand side is strictly smaller than the right-hand side. If x ≤ y
or x ≥ y, then {x, y} = {x ∨ y, x ∧ y} and the left- and right-hand sides would
necessarily be equal. The constraint that neither should hold is needed to exclude
this case. If f(x) > 0 for every x ∈ R

N , then f is SLSPM if and only if ln f is
strictly supermodular in the sense of Topkis (1998, Section 2.6.1).
Throughout this Appendix, we assume, for every f : RN → R+ under consid-

eration, that f is differentiable and f(x) > 0 for every x ∈ R
N .

The first part of the following result is stated in Topkis (1998, Section 2.6.1).
The second part can be proved in an analogues manner. The proof is omitted.

LEMMA 8: 1) f is LSPM if and only if, for all n and m with n �= m,
∂ ln f(x)/∂xn is a nondecreasing function of xm.

2) f is SLSPM if, for every n and m with n �= m, ∂ ln f(x)/∂xn is a strictly
increasing function of xm.

PROPOSITION 10: Suppose that for all m < N and n, ∂ ln f(x)/∂xm is non-
decreasing in xn, and strictly increasing in xn if n = N . Define g : RN−1 → R++

by g(x−N ) =
∫
R
f(x−N , xN ) dxN for every x−N ∈ R

N−1. Then g is SLSPM.

The assumptions of this proposition imply that f is LSPM but not that f is
SLSPM. In fact, they can be met even when f is not SLSPM. The proposition,
thus, implies that g can be SLSPM even when f is not. For a twice continuously

differentiable f , they are satisfied if, for every x ∈ R
N , ∂2

∂xm∂xN
ln f(x) > 0 for

every m < N , and ∂2

∂xm∂xn
ln f(x) ≥ 0for all m < N and n �= m.
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The following proof method is essentially due to Karlin and Rinott (1980, Theo-
rem 2.1). We only need to take special care of preserving strict inequalities under
integration.

Proof of Proposition 10 By Fubini’s theorem,

g(x−N )g(y−N )

=

∫
R

∫
R

f(x−N , z)f(y−N , w) dwdz =

∫
R×R

f(x−N , z)f(y−N , w) d(z, w)

=

∫
{(z,w)∈R×R|z=w}

f(x−N , z)f(y−N , w) d(z, w)

+

∫
{(z,w)∈R×R|z<w}

(f(x−N , z)f(y−N , w) + f(y−N , w)f(x−N , z)) d(z, w).(F.1)

We can similarly show that

g(x−N ∨ y−N )g(x−N ∧ y−N )

=

∫
{(z,w)∈R×R|z=w}

f(x−N ∨ y−N , z)f(x−N ∧ y−N , w) d(z, w)

+

∫
{(z,w)∈R×R|z<w}

(f(x−N ∨ y−N , z)f(y−N ∧ y−N , w)

+f(x−N ∨ y−N , w)f(x−N ∧ y−N , z)) d(z, w).(F.2)

When z = w, (x−N , z) ∨ (y−N , w) = (x−N ∨ y−N , z) and (x−N , z) ∧ (y−N , w) =
(x−N ∧ y−N , w). Since f is LSPM,

f(x−N , z)f(y−N , w) ≤ f(x−N ∨ y−N , z)f(x−N ∧ y−N , w).

Thus, the first term of the right-hand side of (F.1) is less than or equal to that of
(F.2). To compare the second terms, assume that z < w and that it is false that
x−N ≤ y−N . Write

A(z, w) = f(x−N , z)f(y−N , w), C(z, w) = f(x−N ∨ y−N , z)f(y−N ∧ y−N , w),

B(z, w) = f(x−N , w)f(y−N , z), D(z, w) = f(x−N ∨ y−N , w)f(x−N ∧ y−N , z).

Note first that

A(z, w)B(z, w) = (f(x−N , z)f(y−N , z)) (f(x−N , w)f(y−N , w))

≤ (f(x−N ∨ y−N , z)f(x−N ∧ y−N , z)) (f(x−N ∨ y−N , w)f(y−N ∧ y−N , w))

= C(z, w)D(z, w).
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Next, without loss of generality, we can assume that there is an M with 1 ≤
M < N s.th. xn > yn if and only if n ≤M . Then,

x−N ∨ y−N = (x1, . . . , xM , yM+1, . . . , yN−1),
x−N ∧ y−N = (y1, . . . , yM , xM+1, . . . , xN−1).

Moreover,

x−N − x−N ∧ y−N = x−N ∨ y−N − y−N = (x1 − y1, . . . , xM − yM , 0, . . . , 0).

Denote this by v. For each m ≤ M , write vm = (x1 − y1, . . . , xm − ym, 0, . . . , 0).
Then vM = v, v0 = 0, and vm − vm−1 = (0, . . . , 0, xm − ym, 0, . . . , 0). Write
h = ln f . Then, for every m ≤M

h(x−N ∧ y−N + vm, z)− h(x−N ∧ y−N + vm−1, z)

=

∫ xm

ym

∂h

∂xm
(x1, . . . , xm−1, r, ym+1, . . . , yM , xM+1 . . . , xN−1, z) dr,

h(y−N + vm, w)− h(y−N + vm−1, w)

=

∫ xm

ym

∂h

∂xm
(x1, . . . , xm−1, r, ym+1, . . . , yM , yM+1 . . . , yN−1, w) dr.

Since ∂h/∂xm is nondecreasing in xn with n = M + 1, . . . , N − 1 and strictly
increasing in xN ,

∂h

∂xm
(x1, . . . , xm−1, r, ym+1, . . . , yM , xM+1 . . . , xN−1, z)

<
∂h

∂xm
(x1, . . . , xm−1, r, ym+1, . . . , yM , yM+1 . . . , yN−1, w)

for every r. Thus,

h(x−N ∧ y−N + vm, z)− h(x−N ∧ y−N + vm−1, z) < h(y−N + vm, w)− h(y−N + vm−1, w).

Since x−N ∧ y−N + vM = x−N and y−N + vM = x−N ∨ y−N , by taking the
summation of each side over m ≤M , we obtain

h(x−N , z)− h(x−N ∧ y−N , z) < h(x−N ∨ y−N , w)− h(y−N , w).

That is, A(z, w) < D(z, w). By swapping the roles of x−N and y−N (while
maintaining that z < w), we can show that B(z, w) < D(z, w).

Since A(z, w)B(z, w) ≤ C(z, w)D(z, w), A(z, w) < D(z, w), B(z, w) < D(z, w),
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and

(C(z, w) +D(z, w))− (A(z, w) +B(z, w))

=
1

D(z, w)
((C(z, w)D(z, w)−A(z, w)B(z, w)) + (D(z, w)−A(z, w))(D(z, w)−B(z, w))) ,

we have A(z, w)+B(z, w) < C(z, w)+D(z, w). Since the second term of the right-
hand side of (F.1) is nothing but the integral of A(z, w) + B(z, w) on {(z, w) ∈
R×R | z < w} and that of (F.2) is nothing but the integral of C(z, w) +D(z, w)
on the same domain, this completes the proof. �
This proposition can be extended to the case in which the domain of the function

is X1 ×X2 × · · · ×XN , where Xn is an interval in R for every n.

G. Comparing kernels

PROPOSITION 11: For each n = 1, 2, let πn : R++ → R++ be differentiable and
suppose that π′n < 0. Suppose, moreover, that ε(s;π1) is independent of s, ε(s;π2)
is strictly decreasing in s, and the value of the former is contained in the range of
the latter. Suppose, furthermore, that there is a non-degenerate probability P on
R++ s.th.

∫
π1(x)P (dx) =

∫
π2(x)P (dx). Then, there are x∗ and x∗ in R++ with

x∗ < x∗ s.th. π1(x) < π2(x) if x < x∗ or x > x∗; π1(x) > π2(x) if x∗ < x < x∗;
and π1(x) = π2(x) if x = x∗ or x = x∗.

Proof of Proposition 11 Define g : R→ R by g(z) = lnπ2(exp z)−lnπ1(exp z).
Then,

g′(z) =
π′2(exp z) exp z

π2(exp z)
− π′1(exp z) exp z

π1(exp z)
.

Thus, g′ is strictly increasing, and there are z and z s.th. g′(z) < 0 < g′(z). Then,
g′(z) ≤ g′(z) for every z ≤ z and g′(z) ≥ g′(z) for every z ≥ z. By applying the
mean-value theorem to g on the interval [z, z] and the strict increasingness of
g′, we obtain g(z) ≤ g′(z)(z − z) + g(z), that is, g(z) ≥ −g′(z)(z − z) + g(z)
for every z < z. As z → −∞, the right-hand side diverges to ∞. Similarly,
g(z) ≥ g′(z)(z − z) + g(z) for every z > z. As z → ∞, the right-hand side
diverges to ∞. Thus, g attains its minimum (over the entire R). Denote by ẑ
a point at which the minimum is attained. Then, g′(ẑ) = 0 by the first-order
condition. Since g′ is strictly increasing, g′(z) < 0 for every z < ẑ, and g′(z) > 0
for every z > ẑ. Thus, g is strictly decreasing on (−∞, ẑ) and strictly increasing
on (ẑ,−∞).
If g(ẑ) ≥ 0, then g(z) ≥ 0 for every z, with a strict inequality possibly except at

z = ẑ. Thus, π2(x) ≥ π1(x) for every x, with a strict inequality possibly except
for x = exp ẑ, and the integral assumption is violated. Thus, g(ẑ) < 0. By the
intermediate value theorem, there is a unique z∗ < ẑ s.th. g(z∗) = 0; and there
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is a unique z∗ > ẑ s.th. g(z∗) = 0. Let x∗ = exp z∗ and x∗ = exp z∗, to complete
the proof. �
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