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A.  Ambiguity aversion and revealed beliefs

Denote by b(Qp) a bet that pays ¢* on Qp and ¢, off it, and by b(22\ Qp)
the bet on the complementary event Q \ Qp. Note that P (Qp) = 1. Normalize
u; and ¢; so that u; (cx) = 0 and ¢; (0) = 0, and write h = u(c*). Consumer
i evaluates these bets as: U;(b(Q2p)) = pu(P)o; (P (Qp)h) = pu(P)¢p; (h) and
Uib(2\Qp)) = (1 —u(P))¢; (h). Consider next a lottery ¢" which pays c*
with a probability 7 and ¢, with probability 1 — 7. Then, U;(¢™) = ¢; (7h). If ¢;
is strictly concave, then U;(b(Qp)) < U;(¢#®)) and U;(b(Q\ Qp)) < U (£1—+P)),
Define 7,7 € [0,1] so that U;(¢®) = U;(b(Qp)) and U;(£*~™) = U;(b(Q\ Qp)).
Since ¢ is strictly increasing, m < p (P) < 7. Moreover, 7 satisfies

¢i (mh+ (1 =m)0) = u(P)¢;(h)+(1—pu(P))g; (0)
srh = ¢ (u(P)g(h))

Applying a quadratic approximation, we get, letting A4, be the Arrow-Pratt
measure of absolute risk aversion for the function ¢; (see Supplemental Appendix
B for further detail).

wh = @) h— 22 Ly ()] 40 (1)

2
)\¢i (O)
2

eor = pP)- p(P)(1—p(P))h+o(h)

Similarly, 7 = p (P) + )WT(O)M (P)(1 —p(P))h + o(h). Hence, the “probability
matching” interval for Qp is given by [r, 7]. Its length is increasing in Ay,.

B. Relative ambiguity aversion

We relate the measure of relative ambiguity aversion introduced in Section
I1.B to ambiguity premiums (see also (Cerreia-Vioglio, Maccheroni and Marinacci
2022)). Let h be a random variable defined on © and w be the initial consumption
level. Denote by P# the reduced measure fp Qu(dQ), and by A, the Arrow-
Pratt measure of absolute risk aversion for a Bernoulli utility w. The variance
(c")2 (B (h)) of the function E"(h) : P — EF(h) under u reflects the uncertainty
on the expected values and encapsulates ambiguity.
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The certainty equivalent for a proportional ambiguous prospect xh can be ap-
proximated as3"

Clatah) = o+ B (@h) = Sh, (@) (@ (1)

=5 O (@) =X (@) (0% (B () + o (|10
Since ¢ = vout, A\ (u(z)) = u/(m) (Av () — Ay (), that is, Ay (u(x))u/ (z) =
Ay () = Ay (). The ambiguity premium for xh is obtained by subtracting the risk
premium from the overall uncertainty premium and, as a proportion of wealth,
equal to

(O (2) = ha () 2) % 5(5)? (B () = Ay (ul)d () x 5(0")? (P (1)

In our HARA specification, it is convenient to express the ambiguity premium in
terms of the effective consumption x — . By differentiating v = ¢ o u, we obtain

M) S, . da)
(B o)~ ) T W)

By multiplying both sides by x — {, we obtain, under Condition 2:

RN

C.  Proof of Proposition 4.

For the purpose of this Appendix, denote the value function of (9) by wu(z, \).
Then, u is the representative consumer’s (inner) Bernoulli utility function, where
dependence on the vector A of utility weights is made explicit. Similarly, de-
note the value function of (3) by VF(XP, \) and the value function of (2) by
\%4 ((XP)Pe'p, )\) Then,

P P P
. P7
(C.1) V(Y E:u WP (VPN

for every (Y¥)p.
Denote the solution to (9) by (fi(z,A));. Then (f;); is the risk-sharing rule,
with the dependence on the vector A of utility weights made explicit. By the

30This is akin to the quadratic approximation of certainty equivalent obtained by (Maccheroni, Mari-
nacci and Ruffino 2013)
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envelope theorem,

ou

(C.2) o

(z,A) = Nuj(fi(z, N)

for every i. Denote the risk tolerances of u; and u by ¢; and t. (Wilson 1968)
showed that t(z,\) = >, t;(fi(z, A)) for every (z, ). Hence,

(C.3) Vat(z, \) Zt (fi(z, \)Vafi(z, \).

LEMMA 5: Vit(z,A) =0 if and only if t| (fi(x,\)) = -+ =t} (fr(z, N)).

Proof of Lemma 5 Although this lemma is true for an arbitrary I, we give a
proof only for I = 2 to save space. By (C.2), \juj(fi(z,N)) = Aauh(fa(z, N)). B
differentiating both sides w.r.t. Ai:

1)) M0 (2 ) G ) = Nl ) G2 ().

Since Y. (0fi/ON)(z,N) =0, uj(fi(z,N)) = —%(w, A) > Aiud (fi(x, A)). Hence,
(0f1/0A1)(x,\) > 0. Thus,

58;1(9:, A) = (t(fi(z, N) — ty(fa(z, M) g/{ll(x’ A =0

if and only if #{(f1(x, X)) = th(fa(x, A)). O
If (XF); is a solution to (3), then, by the envelope theorem,

a) =\l (EPUZ-(XZ-P)) u;(XiP(w))P(w) for all 7 and w.

(C.4) )((()

LEMMA 6: For each P € P, let (XF); be a solution to (3). Write \F =
i@} (EPuZ(XP)) and A\ = (AF);. Suppose that there is a pair of a differen-
tiable function u : X — R and a differentiable function ¢ : u(X) — R such that
VP, A\) = ¢(E¥u(Y)) for all P € P and Y : Q — X. Then, for all w; and

Wy € Qp,
/XP(“”) dx
XP(w1) t(J,‘,/\P)

depends only on the values of X¥ (wy) and XF (w), that is, if XF(w1) = XP(ws)

and XP (wg) = XQwy), then fXP(E:Q)) TPy = fXQ(Eﬁ) oaqy for all P.Q € P,
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wi,ws € Qp, and w3z, ws € Qq.

Proof of Lemma 6 First, we prove that

oVFP(XF, N
OXP (ws)

Indeed, by (C.4),

OVP(XF N
0XP(w)

— \PU(XP(w
P(w) _)‘1 z(Xz( ))

for every w. Thus, the right-hand side is independent of i. Hence, the first-order
condition for a solution to (9) is met, and XF (w) = f;(XF (w),\F) for all i and
w € Q. Thus, by (C.2), APu}(XF(w)) = Z%(XF (w), AF). Hence,

OVP(XF \)
8XP(LU2) ou  — _p
(C.5) E(LEQP? = gw(XP(WQ)’AP) = exp (— /X - @ AP dg;))) )
OVE(XH, ) eI XP(wy) 2,
xR on
P(wl)

On the other hand, by assumption, the chain rule implies that

VP (XP \)

xP) ~ ¢ E O (X (@)PW)

for every w. Thus,

OVE(XFP, )\)
DXP (wp)
P(w2)
OVP(XF N
OXP(wy)
P(w1)

u
u
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for all wi and wy. Since the right-hand side depends only on the values of X P(wl)
and X¥(wy), so is the left-hand side. The lemma follows now from (C.5). O

LEMMA 7: Suppose that there is a pair of a differentiable function u : X — R

and a differentiable function ¢ : u(X) — R such that V((Y®)p, A) = Y p u(P)p(E®

Jor every (YF)p, where Y¥ : Qp — X for every P. Then, VF (Y, ) = ¢(EFu(Y))
for all P and Y : Q — X.

Proof of Lemma 7 Let Q € P, and (XF)p and (YF)p be two endowments
such that X¥ = YP for every P € P\ {Q}. By assumption and (C.1),

P(E(XQ)) — ¢(B(YQ)) = VR (XQUN) - VR (YQN).

Therefore for every P € P, thereis an a¥ € R such that VP (YP) = ¢(EPu(Y?))+

a¥ for every YP : Qp — X. Hence, Y p u(P)a¥ = 0. Let Y : © — X be (de-
terministic) endowments for which there is an # € X such that Y(w) = z for
every w. Then, for every P, the solution (YZP) to (2) is given by letting YP be
the deterministic consumption x; such that \;¢(u;(w;))u;(x;) is 1ndependent of
i, and VP (Y) = >, Nigi(u;(w;)). Thus, whenever YV is determlmstlc VP(Y) is
1ndependent of P. Hence, a¥ is independent of P. Thus, af¥ = 0 for every P.
Hence, VP (Y) = ¢(EFu(Y)) for all P and YF : Qp — X. O

PROPOSITION 7:  Assume Q)| > 4. For each i, let u; be a (inner) Bernoulli
utility function with the following property: for each i, there is an x; € X
such that it is not true that ti(x}) = th(zd) = --- = t)(z}). Then, there
are: for each i, a Bernoulli utility function ¢; over expected utility levels; a
(common) second-order belief i on Q; endowments X : Q — X whose range
1s model-independent; and a vector N\* of utility weights, such that such that if
V' is defined by (2), then there is no pair of a (inner) Bernoulli utility func-
tion u and a Bernoulli utility function ¢ over expected wutility levels such that

V((YP)p,A) = Xp u(P)¢ (E¥u(YT)) for all (Y¥)p

Proof of Proposition 7 Suppose that for each i, there is an x} € X; such that
it is not true that ) (z%) = th(z3) = - - - = t(x%). For each i, let \* = (uf(x¥))™",
and \* = (Af);. Write 2 = Y . a7. Then, 27 = fi(z*,\*) for every i. By
Lemma 5, Vyt(z*,\*) is a nonzero vector. Thus, there is a x € R such that
Vat(z*, A*)k > 0. Note here that

Diui (fi(x*, \) = wl(fi(z*, X))V fi(z*, \*) € RL,

Let 6 > 0 be so large that Dyu;(f;(x*,\*))x + d > 0 for every i, then there is a
neighborhood Y of z* and a neighborhood A of \* such that Dyu;(f;(z, A\))k+9 >

u(Y'?))
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0 and Vt(z, A\)k > 0 for all 7 and (z,\) € Y x A. Then,

d
£t(:v, AN +er) = Vat(x,\" + er)k >0
for every x € Y and every ¢ sufficiently close to 0. Hence, for every =z € Y,
t(z, \* 4+ ek) is a strictly increasing function of ¢ around 0.

Since 2 > 4 there is a partition (_1,:2,:3 Z4) of Q where each Z" is non-
empty. Let 2,22 € X be such that 2! < z2. Define X : Q — X by

= zl fwesluzs
22 fweZ2uEt

Define p > 0 so that (u;(f;(z%,\)) — wi(fi(x',N\)))p > 6 for all i. Let PY € A(Q)
be s. th. P%(w) > 0 for all w € 2! UZ? and PY(w) = 0 for all w € Z3 U = For
each € > 0 sufficiently close to 0, let P¢ € A(Q) be s. th.

‘H

3|( 0<H1) —¢ep) ifwe =9,
P (w) = 4|(P (B +ep) ifwe=4
if we=tuzE2

0]

Sl

Then, P¢(Z3) = P(Z!) — ep, P5(Z*) = P(Z?) + p and P*(E' UE?) = 0. Fix a
sufficiently small £* > 0 and let P = {P% P="}. Then, P is point-identified with

kernel k s.th.
k(w) = P’ fweElUE?
YT PT ifwezduzst

Moreover, Qpo = Z' U Z? and Qpex = =3 UEY Thus, the range of X is model
independent. Let u be a second-order belief s.th. p(P°%) > 0 and u(P") > 0.
Then, by definition of § and p, Ve > 0:

dilgEPEui(fi(X', N+ ek)) = (wi(fi(z?, X+ ek))) — ui(filzh, \* + ek))p
Z Pg D)\uz fz(X( ) A+ 5’{))'{
weN
>0+ Y Pw)(—0) =0.
wes

Thus, by Proposition 10 of (Hara et al. 2022) for each 4, there is a twice continu-

ously differentiable ¢; with ¢} < 0 < ¢} such that ((f;(X,\* + E/ﬁ))i)ezo _. isan

efficient allocation of the economy ((u;, ¢s, )i, X).
Since ((f;(X, A" + 5/4;))Z.)E:07E*
there is a v € R | such that it is a solution to (2) when \ is replaced by v. The

is an efficient allocation of the economy ((u;, ¢;, p);, X
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first-order condition is that for all £ and w,
Vit (B¥ s (fi(X, X + er))) uj(fi( X (w), \* + ek))
is independent of i. Write AY~ = v;¢, (E¥ u;(f;(X,\* 4+ ¢k))). By definition,
(A + era)us (fi( X (W), A" + er))

is independent of i. Thus, AP"/(\f + ek;) is independent of 4. Denote it by c*.
Then AP° = ¢*(\* +ex). Hence, u (-, \F") = cfu (-, \* +¢ek). Thus, ¢ (-,A\F7) =
t (-, \* + k). Hence,

(C.6) / diw _/ __dz
o1 t(x, AP9) 2 tx, A* 4 erR)

Since t(x, \*+ek) is a strictly increasing function of € for every x, each side of this
equality is a strictly decreasing function of €. In particular, each side is greater
for e = 0 than for ¢ = ¢*.

Suppose that there is a pair of a twice continuously differentiable function w :
X — R satisfying v” < 0 < ' and a twice continuously differentiable function ¢ :
u(X) — R satisfying ¢” < 0 < ¢’ such that V((YF),) = > p u(P)¢ (EPu(Y?))
for all (Y®)p, where V is the value function of (2). Then, by Lemma 7, for every
P e P, VP(YP) = ¢ (EPu(YP)) for all YP : Q — X, where V¥ is the value
function of (3). Thus, by Lemma 6, the left-hand side of (C.6) is independent of .
In particular, it takes the same value for ¢ = 0 and € = ¢*. This is a contradiction.
Hence, there is no pair of a differentiable function v : X — R and a differentiable
function ¢ : u(X) — R such that V((YP)P) = > p u(P)p (EFu(YP)) for all
(YP)p. O

D. Constant absolute risk aversion

We study here an economy where u; and v; are HARA with zero marginal risk
tolerance.3!

ASSUMPTION 2: Assume u; is CARA with risk aversion o; > 0 and v; is
CARA with risk aversion v; > o

Assumption 2 is equivalent to assume wu; and v; are HARA with CMRT (with pa-
rameters (0, a%) and (0, %) respectively). Let ¢; = v;ou; ', 50 ¢i(t) o< —(—t7i/%).
Hence, our economy consists of smooth ambiguity-averse consumers with hetero-
geneous risk aversion and heterogeneous ambiguity aversion, parameterized by

31'While this class of utility functions is usually not the one considered in the DSGE literature, it admits
an easy representation for the efficient allocations and the representative consumer’s utility function, while
allowing for heterogeneity.
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CARA Bernoulli utilities with risk aversion coefficient «; > 0 and by a power
function with index 1t > 1, respectively.

PROPOSITION 8: Let (XF)p,; be an efficient allocation of an economy that
satisfies Assumption 2. Let o = (3, a;l)il and v = (3, 7;1)71. Then,

1) For each P, there are constants (7})i—1,..1 s.th. >, 7F =0 and X =
(a/a;)X +1F for every i.

2) For every i, there is a function 1; : (—00,00) — (—00,00) and constants k;

such that 7;(c) = % (1 - %) c+ Kk with ), k; =0 and

(D.1) TZ-P = Ti(CP)

with ¢ = w Y (E¥u(X)), where u, the representative consumer’s utility
function, is CARA with absolute risk aversion coefficient «.

8) In the smooth ambiguity representative consumer’s utility ¢(t) oc —(—t7/®)
and v = ¢ ou is CARA with parameter .

7(¢)

Rep. cons. 0

Ti

c=u" (FBu(X))

FIGURE A1l. CONSTANT RISK TOLERANCE CASE.

Note: The Figure shows the transfers as a function of the certainty equivalents for two consumers, ¢ and
j. Consumer ¢ is more ambiguity-averse than, and j is less ambiguity-averse than, the representative
consuimer.

As P varies, the efficient allocation rule adjusts by varying the intercept term
of the linear sharing rule, 7F, a term denoting transfers that sum to zero across
all the consumers. The function TZ-P is itself linear in the aggregate certainty

equivalent. Figure (A1) gives a graphical depiction showing how TiP varies as a
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function of the representative consumer’s certainty equivalent for two consumers
in this economy as established in Proposition 8.

If ambiguity attitudes were homogeneous, i.e., v;/c; = 7;/a; for all 4,5 € I,
then the efficient allocation would be the same as if all consumers were expected-
utility consumers: for all 7, TiP is independent of P.

E.  Non-zero marginal risk tolerance

We provide here a complement to Proposition 5 and give the limit behavior of

9,() and b.

PROPOSITION 9:  Consider the functions 0; and RAA4 constructed in Propo-
sition 5. Then,

1) 0;(2) = 0 as z — 0 if 3 # max;—1 .1V and 0;(z) = 0 as z — oo if
Vi # ming—1,_.1%-

2) RAAy(z) = max;—1,. 1% —a as z — 0, and RAA4(z) = minj—1_ 17 — o
as z — 00.

Proof of Proposition 9 The Lh.s. of (A5) is equal to the derivative of the
logarithm of the function z — (fi(2))" v'(z + ¢). Hence this function is, in fact,
constant. Thus, if there were an i s.th. f;(z) is bounded from above, then v'(2)
would be bounded away from zero. Then, f;(z) would be bounded from above
for every i. This would contradict the assumption that ). f;(z) = z for every
z > 0. Hence, for every i, fi(z) — oo as z — oco. We can analogously show that
for every i, fi(z) — 0 as z — 0. This also shows that v'(z) — oo as * — ( and
v'(z) = 0 as x — oo.

Denote the constant value of (f;(2))" v'(z + () by k;. Then, for every i and j,

fi(2) Kj Vi I{E:/Vj
(v’(z+ C))

( K >1/%
. . VYN L/ ‘ ,
0<6;(2) = fl,(;) < fi(2) _ V(24 () _ K (v/(z_’_o)l/%*l/%_

If v; < max;—1_.17v ="j, then 1/7;—1/~; < 0. Since v'(2+() — oo as z — 0, the
far right-hand side of the above equality converges to 0 as z — 0. Hence 60;(z) — 0
as z — 0. We can analogously show that for every i, if v; > min;—; ;s then
0i(z) — 0 as z = oo. The limiting behavior of RAA, follows. O

We now explain the qualitative features of the graph of the shares 6; as a
function of the aggregate certainty equivalent.

Part 1(b) of Proposition 5 implies that, as we move from worse to better models,
a consumer whose relative ambiguity aversion is greater (smaller) than that of the
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representative consumer around cF will see their share decrease (resp. increase)
for models with certainty equivalents marginally greater than ¢f as shown in
Figure A2.

Ok
1

9[ 91

Ci Cj u”H(Bu(X))

FIGURE A2. COMPARING CONSUMPTION SHARES 6 UNDER CONDITION 2.

Note: Consumer I (resp. 1) is the most (resp. the least) relatively ambiguity-averse. 4 is more relatively
ambiguity-averse than consumer j.

Consider consumer I with the largest relative ambiguity aversion in the econ-
omy. By part 2 of Proposition 5, their relative ambiguity aversion is greater than
that of the representative consumer (at all ¢¥'). By part 1(b) of Proposition 5,
0r will be negatively sloped everywhere. Analogously, consumer 1, with the low-
est relative ambiguity aversion in the economy, will have a 6; that is positively
sloped everywhere. From 1 of Proposition 9, the most relatively ambiguity-averse
consumers get all of X — ¢ at the worst models. Therefore, at these models the
representative consumer’s relative ambiguity aversion is max;—1, . 7; —«. Hence,
by part 1(b) of Proposition 5, any consumer ¢ with relative ambiguity aversion less
than max;—1 . 77; — « will have their share increasing at least initially. Since the
representative consumer has decreasing relative ambiguity aversion, we will reach
a model, identified by ¢; in Figure A2, where the representative consumer’s rela-
tive ambiguity aversion falls below i’s; hence, i’s share is decreasing to the right
of ¢;. For a consumer j relatively less ambiguity-averse than i, the representa-
tive consumer’s ambiguity aversion has to decrease further before j’s share peaks.
Hence, ¢; is to the right of ¢;. Taken together, the most relatively ambiguity-averse
consumers get protected with extra shares at the worst models, the “middling”
relative ambiguity-averse consumers get extra shares at the “middling” models
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and the least relatively ambiguity-averse ones get compensated by extra shares
at the best models.

Finally, note that if v; — a = v; —  for all ¢, j € I, then the efficient allocation
would be the same as if all consumers were expected-utility consumers: for all i,
0; is a constant function.

F. Strict log-supermodularity

In this Appendix, we give a general result on strict log-supermodularity (SLSPM
for short) from which part 2 of Proposition 6 can be derived.

Let N be a positive integer. For each z = (zp)p=12.. N8 € RV and each
Y= (Yn)n=12,..N € RN, we write z > y when x,, > y, for every n. We also write
x Vy = (max {xn,yn})n 12~ and z Ay = (min{zp, yn})n=12..~. For each
z = (Tp)p=12,..N € RV, we write 2_n = (2 )n= 12,..N—1 € RN By a slight
abuse of notation, we use >, <, V, and A for vectors in RV =1 as well.

Let f: RN — R,. We say that f is strictly log-supermodular (SLSPM for
short) if

f@)f(y) < flaVvy) flzAy)

for every € RY and y € RN unless 2 < y or # > y. That is, the strict log-
supermodularity is a stronger property than the log-supermodularity (LSPM) in
that the left-hand side is strictly smaller than the right-hand side. If z < y
or x >y, then {x,y} = {z Vy,x Ay} and the left- and right-hand sides would
necessarily be equal. The constraint that neither should hold is needed to exclude
this case. If f(x) > 0 for every z € R, then f is SLSPM if and only if In f is
strictly supermodular in the sense of Topkis (1998, Section 2.6.1).

Throughout this Appendix, we assume, for every f : RV — R under consid-
eration, that f is differentiable and f(z) > 0 for every z € R

The first part of the following result is stated in Topkis (1998, Section 2.6.1).
The second part can be proved in an analogues manner. The proof is omitted.

LEMMA 8: 1) f is LSPM if and only if, for all n and m with n # m,
Oln f(x)/0xy, is a nondecreasing function of xy,.

2) f is SLSPM if, for every n and m with n # m, 0ln f(x)/0z, is a strictly
increasing function of .

PROPOSITION 10: Suppose that for all m < N and n, 9ln f(x)/@mm s non-
decreasing in Tn, and strictly increasing in =, if n = N. Define g : RN71 R, |
by g(x—n) = [p f(x—n,zn) dan for every z_y € RN=L. Then g is SLSPM.

The assumptions of this proposition imply that f is LSPM but not that f is
SLSPM. In fact, they can be met even when f is not SLSPM. The proposition,
thus, implies that g can be SLSPM even when f is not. For a twice continuously
differentiable f, they are satisfied if, for every z € R, %ln f(x) > 0 for

every m < N, and %lnf(z) > Ofor all m < N and n # m.
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The following proof method is essentially due to Karlin and Rinott (1980, Theo-
rem 2.1). We only need to take special care of preserving strict inequalities under
integration.

Proof of Proposition 10 By Fubini’s theorem,

g(iE—N)Q(Z/—N)
- / / Fay ) fgnw)dudz = [ flen2)fynw) d(z,w)
RJR RxR

/ Fa s 2)f (g w) d(z, w)
{(z,w)ERXR|z=w}

F1) + / (F@ns 2)F (g ) + F g w0) f@—y, 2)) d(z, w).
{(z,w)ERXR|z<w}

We can similarly show that

g(x_NVy-n)g(x_N Ny-n)

f(fo v y*Nyz)f(x*N A y*Naw) d(Z,’LU)

~/{(z,w) ERxR|z=w}

+ / (fx_NVy-n,2)f(y-n Ny—n,w)
{(z,w)ERXR|z<w}

(F.2) +f(@-~NVy-n,w)f(z-N ANy-n,2)) d(z,w).

When z = w, (z_n,2) V (y-n,w) = (z_N Vy-n,2) and (2N, 2) A (y-n,w) =
(x_n ANy_n,w). Since f is LSPM,

f@-n,2) f(y-n,w) < fz-NVy-n,2) f(2-N NYy-N,w).

Thus, the first term of the right-hand side of (F.1) is less than or equal to that of
(F.2). To compare the second terms, assume that z < w and that it is false that
r_n < y_n. Write

A(z,w) = f(z-n,2)f(y-n,w),  Clz,w) = f(@-n VY-N,2)f(y-N Ny-n,w),
B<Z7w) = f(iU—N,’LU)f(y—N, Z)v D(va) = f(x—N \ y—va)f(x—N NY-nN, Z)'

Note first that
A(z,w)B(z,w) = (f(z-n,2) f(y-n, 2)) (fx-n,0) f(y—n,w))

S(fe-~NVy-n,2) f(@-N ANYy-N,2)) (f(@-N VY-~ 0) [(y-N ANYy—N,w))
= C(z,w)D(z,w).
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Next, without loss of generality, we can assume that there is an M with 1 <
M < N s.th. x,, > y, if and only if n < M. Then,

T_NVY-N = (mla"'avayM—O—lw"ayN—l)a
T_N /\ny = (yla‘"avamMJrlu"'nyfl)‘
Moreover,
T_N—T_NANY-N=2_NVY-N—Yy-~N= (1= Y1,-- s 20 —Ym,0,...,0).

Denote this by v. For each m < M, write v = (x1 — y1,-- -, %Tm — Ym,0,...,0).
Then vM = v, v% = 0, and v™ — 0™t = (0,...,0,Zm — Ym,0,...,0). Write

h =1In f. Then, for every m < M

h(z_n Ay_n +0™, 2) —h(z_n Ay_n + 0™ 1, 2)

Tm Ok
= a—(ajl, e T 1y Ty Yty - o s UMy M1 - - - s TN—1, 2) A7,
ym YITm
h(y—n + 0™ w) = h(y_n + 0™ w)
Tm QR
= 8—(3:1, e Ty Ty Yty - - o s UM YM+1 -« - s YN—1, W) A7
ym 9Tm

Since Oh/0x,, is nondecreasing in x, with n = M + 1,..., N — 1 and strictly

increasing in xy,

oh
7(9617 o =1 YmA415 - - - s YM TMA1 - - - ,HUN—hZ)
Oz,
oh

< (:Ela o Tm—1TYm+1s - s YMSYM AT - - - >yN—17w)
O0xTm

for every r. Thus,

hz_N Ay_n +v™,2) —h(z_Ny Ay_n +v™ 1, 2) < h(y_ny + 0™, w) — h(y_n + ™1, w).

Since 2_y Ay_ny + 0™ = 2_y and y_ny +vM = z_y V y_p, by taking the
summation of each side over m < M, we obtain

hMz_n,z) —h(z_Ny ANy_n,2) < h(z_y Vy_n,w) — h(y_n,w).
That is, A(z,w) < D(z,w). By swapping the roles of x_xn and y_n (while

maintaining that z < w), we can show that B(z,w) < D(z,w).

Since A(z,w)B(z,w) < C(z,w)D(z,w), A(z,w) < D(z,w), B(z,w) < D(z,w),
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and

(C(z,w) + D(z,w)) — (A(z,w) + B(z,w))
1
"~ D(z,w)

((C(z,w)D(z,w) = A(z,w) B(z,w)) + (D(z,w) — A(z,w))(D(z,w) — B(z,w))) ,

we have A(z,w)+B(z,w) < C(z,w)+D(z,w). Since the second term of the right-
hand side of (F.1) is nothing but the integral of A(z,w) + B(z,w) on {(z,w) €
R xR | z < w} and that of (F.2) is nothing but the integral of C(z,w)+ D(z,w)
on the same domain, this completes the proof. O

This proposition can be extended to the case in which the domain of the function
is X7 X Xg X --- x Xy, where X,, is an interval in R for every n.

G. Comparing kernels

PROPOSITION 11:  For eachn =1,2, let m, : Ry+ — Ry be differentiable and
suppose that 7, < 0. Suppose, moreover, that €(s; 1) is independent of s, e(s;m2)
18 strictly decreasing in s, and the value of the former is contained in the range of
the latter. Suppose, furthermore, that there is a non-degenerate probability P on
Ryt s.th. [mi(z)P(dx) = [ mo(x)P(dx). Then, there are x, and x* in Ryy with
Ty < x* s.th. m(z) < ma(x) if o <z or x> ¥ m(x) > m(x) if x. < x < 2%
and w1 (x) = mo(x) if x = xy or x = x*.

Proof of Proposition 11 Define g : R — R by g(2) = Inma(exp z) —In i (exp z).
Then,

mh(expz)expz  mi(expz)expz

ma(exp z) m1(exp z)

g'(2) =

Thus, ¢ is strictly increasing, and there are z and Z s.th. ¢’(z) < 0 < ¢/(Z). Then,
' (2) < ¢'(z) for every z < z and ¢'(z) > ¢'(Z) for every z > Z. By applying the
mean-value theorem to g on the interval [z, z] and the strict increasingness of
g', we obtain g(z) < ¢'(2)(z — z) + g(2), that is, g(z) > —¢'(2)(z — 2) + g(2)
for every z < z. As z — —o0, the right-hand side diverges to co. Similarly,
9(z) = ¢(Z)(z —Z) + g(Z) for every z > Z. As z — oo, the right-hand side
diverges to co. Thus, g attains its minimum (over the entire R). Denote by 2
a point at which the minimum is attained. Then, ¢'(Z) = 0 by the first-order
condition. Since ¢’ is strictly increasing, ¢'(z) < 0 for every z < 2, and ¢'(z) > 0
for every z > Z. Thus, g is strictly decreasing on (—o0, 2) and strictly increasing
on (2, —00).

If g(2) > 0, then g(z) > 0 for every z, with a strict inequality possibly except at
z = Zz. Thus, me(x) > m(z) for every x, with a strict inequality possibly except
for z = exp z, and the integral assumption is violated. Thus, g(Z) < 0. By the
intermediate value theorem, there is a unique z, < Z s.th. g(z.) = 0; and there
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is a unique z* > Z s.th. g(2*) = 0. Let 2, = exp 2z, and z* = exp z*, to complete
the proof. 0

REFERENCES. —

KARLIN S. and Y. RINOTT, 1980, ”Classes of orderings of measures and related
correlation inequalities. I. Multivariate totally positive distributions”, Journal of
Multivariate Analysis, 10, 467-498.

Mas-CoOLELL A., The theory of general economic equilibrium: A differentiable
approach, 1985, Cambridge University Press.

Topkis D. M., Supermodularity and Complementarity, 1998, Princeton Uni-
versity Press.



