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The objective of this paper is to demystify Al agents—autonomous LLM-based systems
that plan, use tools, and execute multi-step research tasks—and to provide hands-on
instructions for economists to build their own, even if they do not have programming
expertise. As Al has evolved from simple chatbots to reasoning models and now to
autonomous agents, the main focus of this paper is to make these powerful tools
accessible to all researchers. Through working examples and step-by-step code, it
shows how economists can create agents that autonomously conduct literature reviews
across myriads of sources, write and debug econometric code, fetch and analyze
economic data, and coordinate complex research workflows. The paper demonstrates
that by "vibe coding” (programming through natural language) and building on modern
agentic frameworks like LangGraph, any economist can build sophisticated research
assistants and other autonomous tools in minutes. By providing complete, working
implementations alongside conceptual frameworks, this guide demonstrates how to
employ AI agents in every stage of the research process, from initial investigation to
final analysis.
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Reader’s guide:

For readers of earlier versions of “Generative Al for Economic Research:” This
paper is new in its entirety.

For new readers : This paper provides an overview of the state of Al Agents in
Economic Research as of mid-2025. Readers may also want to consult two related
resources: The December 2024 JEL update on “LLMs Learn to Collaborate and
Reason” covers advances in LLM reasoning and collaboration as well as several dozen
use cases. The original December 2023 JEL article on “Generative Al for Economic
Research” offers an introduction to LLMs in economic research (Sections 1 and 2)
and discusses longer-term implications for economists (Section 4).

1. Introduction

AT agents are software systems that combine large language models with planning
capabilities, memory, and access to external tools to autonomously pursue complex goals
through multi-step actions. Unlike traditional chatbots that respond to individual prompts
in isolation, Al agents can decompose research questions, gather information from multiple
sources, execute code, and iteratively refine their approach based on intermediate findings.
They function as semi-autonomous research assistants capable of conducting end-to-
end analyses: downloading datasets, cleaning and processing data, running econometric
analyses, creating visualizations, interpreting, and synthesizing results into coherent
narratives.

Since the original "Generative Al for Economic Research" was published (Korinek, 2023),
the landscape of Al capabilities has shifted dramatically. What were experimental features
and proofs-of-concept just two years ago have matured into production-ready tools that
economists can increasingly rely upon for their daily research workflows. The chatbots
that could help draft emails and summarize papers have evolved into sophisticated systems
that can autonomously conduct literature reviews, write and debug complex econometric
code, and orchestrate multi-faceted research investigations. This transformation reflects
not merely incremental improvements but fundamental architectural advances in how Al
systems operate.

This paper documents and analyzes these advances, providing both a conceptual
framework for the evolution of Al capabilities and practical guidance for leveraging these
tools in economic research. I cover five major themes:

The Evolution from Chatbots to Agents The paper documents the progression
of Al systems through three distinct paradigms. Traditional LLMs, which have been
broadly available since ChatGPT’s launch in November 2022, excel at language-based
tasks through pattern recognition and generation. These systems operate like Kahneman’s
"System 1" thinking—fast, intuitive, but limited to single-pass responses without the
ability to reflect or revise (Kahneman, 2011).

Reasoning models, introduced in September 2024, bring "System 2" capabilities—
deliberate, step-by-step problem solving that can perform complex mathematical deriva-
tions and logical analysis. These models can now solve multi-step problems that consis-
tently challenged earlier systems, from deriving optimal control conditions to implementing
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sophisticated numerical methods. The ability to "think" through problems systematically
has opened new possibilities for theoretical economic work. Korinek (2024) provides a
guide to how these capabilities can benefit economic research.

The third paradigm, agentic chatbots, emerged in December 2024. It synthesizes
fluent language generation, reasoning and autonomous action. Agentic systems can plan
sequences of operations, actively gather information, and adapt their strategies based on
what they discover. For economists, this means Al systems that don’t just respond to
questions but actively investigate them—a shift from reactive tools to proactive research
partners.

Breakthrough Agents: Deep Research and Claude Code Perhaps no capability
better illustrates the potential (and limitations) of AI agents for research than Deep
Research systems. As described in Section 3, these systems employ multi-agent architec-
tures to process and synthesize hundreds of sources in minutes, producing comprehensive
research reports with accurate citations. When given a research question, an orchestrator
agent decomposes it into subtasks, spawns specialized agents to investigate different
aspects in parallel, and compiles their findings into a coherent narrative. While these
systems compile existing knowledge rather than generating novel insights, they speed
up an important part of the research process by automating the time-intensive work of
information gathering and initial synthesis. Literature reviews that once took weeks can
now be completed in under an hour. However, these systems compile existing knowledge
as it is available on the internet and struggle at times to identify the most impactful
papers on a given question, especially in less established areas of literature—a critical
skill for researchers who work at the frontier.

Anthropic’s Claude Code was released as a coding agent in February 2025 to create
sophisticated software through natural language descriptions—a practice known as "vibe
coding." Many of the examples in this paper were generated with this tool, in minutes
rather than hours. However, Claude Code’s usefulness extends beyond coding to other
areas of cognitive work, including research as it offers an agent that can automate complex
workflows simply from natural language descriptions. By some measures, Claude Code
has emerged as the most powerful agent in recent months. I felt that using it gave me a
glimpse of the future in which more and more cognitive work will be automated.

Democratizing Technical Implementation A striking development documented
throughout this paper is how Al agents are making sophisticated technical work accessi-
ble to researchers without significant programming expertise. Vibe-coding offers a new
paradigm for any research tasks that benefit from computer code. Section 3.3.3 demon-
strates how to use vibe-coding to build complete econometric tools from simple English
descriptions, handling everything from file uploads to regression analysis to visualization.

This democratization extends beyond simple scripts. Researchers can now build custom
data pipelines, implement complex estimation procedures, and create interactive research
tools without writing a single line of code. The examples in this paper show agents not
just writing code but debugging it, adding features based on feedback, and producing
well-documented, professional-quality software. For a discipline where computational
methods are increasingly central but programming skills remain unevenly distributed,
some suggest that this may lead to a leveling of the technical playing field. However,
although all may benefit, a common alternative perspective is that those power users who
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know best how to deploy sophisticated Al agents may benefit far more from agentic Al
than regular users.

Building Custom Research Agents Moving beyond using pre-built agents, Section
4 demonstrates that creating specialized Al agents for research is surprisingly accessible.
Through concrete examples—from a simple FRED data retrieval agent to a sophisticated
Deep Research system—the paper shows how researchers can build agents tailored to their
specific needs. The tools required are not mysterious: with frameworks like LangGraph and
a few hundred lines of code (fully generated with natural language prompts), researchers
can create systems that embody the same architectural principles as commercial offerings.

The paper’s implementation examples reveal an important recursive truth: these agent
systems are themselves largely "vibe coded," with Al assistants helping write the code for
new Al agents. This capability spiral, where each generation of tools enables the creation
of still more sophisticated successors, suggests an accelerating pace of development. The
emergence of standardized protocols like MCP (Model Context Protocol) and A2A (Agent-
to-Agent) further reduces barriers, enabling agents to connect to institutional databases
and collaborate across platforms without complex integration work.

Economic and Strategic Considerations Our analysis also brings up interesting
economic considerations. The computational cost of advanced capabilities has driven new
pricing models, with premium subscriptions reaching $200 per month—a tenfold increase
from standard subscriptions just a year ago. This raises concerns about unequal access to
frontier Al capabilities. The concentration of advanced reasoning and agentic capabilities
among well-resourced labs, evidenced by their leadership in benchmarks, suggests that
cutting-edge Al tools may increasingly become a function of ability-to-pay.

Yet there are also countervailing forces. Open-source models from players like DeepSeek
and Alibaba’s Qwen offer near-frontier capabilities at dramatically lower costs. The
example of Moonshot’s Kimi-K2, offering GPT-4-class performance at 1/100th the price,
illustrates how competition and innovation can broaden access. For researchers, these
dynamics suggest maintaining flexibility across model providers rather than committing
to a single ecosystem.

As these capabilities continue to evolve at a remarkable pace, this paper aims to
provide economists with both the conceptual understanding and practical tools needed to
effectively leverage Al agents in their research. The examples and implementations are
designed to be immediately useful while also providing a foundation for understanding
future developments. In a field where the half-life of specific tools may be measured in
months, the architectural patterns and strategic insights that I document should prove
more durable guides for navigating the Al-augmented research landscape.

Despite their remarkable capabilities, Al agents still face significant practical limitations
that researchers must be aware of. Current systems still suffer from hallucinations,
generating plausible but incorrect content, for example citations or statistics. Sometimes
agentic systems detect and correct mistakes, but at other times, mistakes compound
through multi-agent workflows and may give rise to computational cascades where errors,
tool failures, or incomplete data can propagate undetected and enter the final output.
Moreover, Al agents sometimes demonstrate remarkable brittleness to small variations in
prompts that make evaluation and reproducibility challenging. Also, they are exposed
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to the risk of prompt injection attacks, allowing malicious actors to manipulate agent
behavior through hidden instructions. Combined with costs that can quickly add up
in multi-agent workflows, these limitations pose significant challenges. Perhaps most
critically for economists, current LLM-based Al agents still struggle with genuine economic
reasoning when pushed to operate at the level of a researcher—they sometimes misapply
theoretical frameworks and reproduce common misconceptions from their training data
rather than maintaining rigorous economic logic and are not yet capable of independent
investigation. These limitations underscore that current Al agents require careful and
responsible human oversight.

A useful analogy for how to productively employ Al agents in research is to treat them
like a professor would treat a team of research assistants: they require careful planning of
what is to be done, oversight during execution, and detailed vetting of the final results.
Importantly, although there are also similarities, the mistakes made by LLMs and AI agents
differ from the mistakes typically made by humans—for example, LLMs will generate
hallucinations while sounding supremely confident in their correctness—and productively
integrating them into research workflows requires getting used to such subtleties.

The paper covers several practical examples and use cases for Al agents in the sections
below, ranging from intuitive chatbot-based interactions for everyday use to pedagogical
hands-on examples of how to code Al agents. The examples include:

e Drawing and analyzing Beveridge curves

e Implementing simple agent workflows

e Agent workflows for plotting economic data
e Deep Research literature reviews

e Vibe coding an econometric tool

e Building an economic data retrieval agent

e Building a multi-agent deep research system

The remainder of this paper provides both conceptual frameworks and practical tools
for economists engaging with Al agents. Section 2 describes the evolution from traditional
LLMs to reasoning models and agentic chatbots over the past year and documents the
current offerings of leading AI labs. Section 3 focuses on Al agents, explaining their
architecture, exploring Deep Research systems, and examining coding agents that are
reshaping software development. Section 4 goes "under the hood," providing working
code examples and showing how to build research agents using modern frameworks. The
appendix provides additional technical details and complete code implementations for
researchers who wish to build their own systems.

2. Changing Paradigms: From LLMs to Reasoners and Agentic Chatbots

This section covers the evolution of generative Al systems from traditional LLMs, to
reasoning models, and ultimately to agentic chatbots. It describes the most recent progress
and state of the art in each type of system. Traditional LLMs have been broadly available
since the launch of ChatGPT in November 2022, reasoning models were introduced in
September 2024, and agentic chatbots followed soon after, in December 2024.

Each paradigm offers specific capabilities that make it particularly suited for different
research tasks. Traditional LLMs excel at language-based tasks through pattern recognition
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and generation, reasoning models bring structured problem-solving capabilities that enable
complex mathematical and logical analysis, while agentic chatbots combine these strengths
with the ability to autonomously employ tools such as web search or data analysis to
perform end-to-end research workflows. We cover each type of system in further detail in
the following subsections. Moreover, Table 1 provides a practical comparison of how each
paradigm performs across the seven key research categories laid out by Korinek (2023):
traditional LLMs dominate in pure language and writing tasks, reasoning models excel
where logical precision is paramount such as coding and math, and agentic chatbots are
most valuable for tasks requiring interaction with external systems or real-time information

such as background research and data analysis.

Table 1
PRIMARY USEFULNESS OF LLM MODEL TYPES FOR RESEARCH TASKS

Research Category

Traditional LLMs

Reasoning Models

Agentic Chatbots

Ideation & Good for initial Best for structured Actively scans literature
Feedback brainstorming. feedback and for novelty and grounding.
identifying logical
flaws.
Writing Excellent for drafting, Ensures logical flow in Incorporates real-time web
summarizing, and complex arguments. information.
rephrasing existing
text.
Background Shortcoming: No live web Synthesizes info from Best for live web
Research access. provided texts. searches and up-to-date
literature reviews.
Coding Generates basic code Excellent for writing Executes code, tests

Data Analysis

snippets.

Shortcoming: Cannot
ezecute code.

and debugging complex
algorithms.

Helps interpret data and
suggest approaches.

hypotheses, and
interacts with data
files.

Best for end-to-end
analysis: data cleaning,
coding, visualization.

Math Shortcoming: Unreliable Solves multi-step Can leverage external
for complex math. problems and formal computational tools to
proofs at PhD level. ensure accuracy.
Promoting Drafts initial promotional Tailors summaries for Automates creating
Research content. specific audiences. summaries and posts

for multiple platforms.

Note: The most useful model type in each research category is bolded.

In early 2025, it was common that users had to explicitly select which type of Al system
to interact with. As of mid-2025, leading chatbots such as ChatGPT, Claude, or Gemini
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have the funtionality to automatically select in which of the three paradigms they operate,
but they offer the user the choice to make the system “think longer” to explicitly turn on
a reasoning mode that delivers better coding and math results.

The following subsections examine each paradigm in further detail, summarizing their
underlying architectures, capabilities, and limitations for economic research. This is
followed by a summary of the current offerings of leading Al labs.

2.1. Traditional LLM-Based Chatbots

Traditional LLM-based chatbots have become wildly popular since the release of
ChatGPT in November 2022, although they have improved vastly since. They still
represent the foundational paradigm of modern generative Al, generating text through
token-by-token prediction based on their training data and fine-tuning. They build on
deep neural networks that are trained on vast amounts of text to represent the conditional
probability distribution of words given preceding context. This process enables these
systems to develop abstract representations of concepts and their relationships, forming
what can be understood as implicit world models that allow them to generate coherent
and contextually appropriate text.

The speed, low transaction costs, and broad accessibility of traditional LLMs have made
them invaluable tools for automating numerous micro-tasks in the research workflow. As
already documented in the original version of this article (Korinek, 2023), traditional
LLMs have proven remarkably versatile for economic research, being useful for tasks
requiring language understanding and generation, including synthesizing text, editing,
translating, and explaining economic concepts.

Many modern LLMs are multimodal, implying that they can process not only text but
also other modalities such as images, videos, and sound. This is extremely helpful both
when using chatbots as assistants for small tasks (e.g., transcribing spoken text, or taking
a picture of an equation and translating it to latex) and for systematic data collection for
economic research (e.g., evaluating large quantities of images or videos).

Table 2
ToP MODELS OF LEADING AI LABS ON LMSYS-ARENA

Al Lab Best model Latest Update LMSYS URL

Google DeepMind Gemini 2.5 Pro 2025-06-17 1457 gemini.google
OpenAl GPT-5 high 2025-08-07 1455 chatgpt.com
Anthropic Claude Opus 4.1 2025-08-05 1451 claude.ai

xAI Grok-4 2025-07-09 1425 X.com
Alibaba Qwen3 2025-05 1422 chat.qwen.ai
Moonshot Al Kimi K2 2025-07-11 1421 kimi.com

Source: https://lmarena.ai/?leaderboard. See Chiang et al. (2024). Last accessed on
Aug 20th, 2025.

Table 2 shows that the current landscape of traditional LLMs is highly competitive, with
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Google’s Gemini 2.5 Pro leading the LMSYS rankings at 1465, followed closely by models
from major Al labs including OpenAl, Anthropic, and emerging players like Alibaba, xAl
and DeepSeek. LMSYS, short for Large Model Systems Organization, maintains a widely
used leaderboard that ranks LLMs by pitting randomly-selected models against each other
and employing user ratings to compile an Elo-like score for each model.1:2The table is
ranked by the score of each provider’s leading models in the LMSYS leaderboard (column
4). The proximity in the models’ scores listed in the table suggests that the differences
between leading models are relatively minor — high-quality language models have almost
become commodities, democratizing access. For example, using the Elo formula from
footnote 1, the difference in scores between the first and last model listed in the table
implies relative winning probabilities of 60%/40% when the two models are pitted against
each other.

However, traditional LLMs operate fundamentally as pattern recognition systems along
the lines of what Kahnemann described as "system-1" thinking, which leads to characteristic
limitations: they process text in a unidirectional stream without the ability to ponder on
and revise earlier output, they lack access to real-time information beyond their training
cutoff, and they struggle with tasks requiring multi-step logical reasoning or mathematical
derivations. The two newer paradigms discussed in the next two subsections have made
major leaps to remedy these shortcomings.

2.2.  Reasoning Models

Reasoning models are designed to overcome the analytic shortcomings of traditional
LLMs through structured thinking processes. These models are still next-token predictors
but are trained via reinforcement learning to generate tokens that imitate "system-2"
thinking in humans—deliberate, step-by-step problem solving that can perform complex
and systemic analysis while also identifying and correcting errors. The reinforcement
learning teaches the models to follow techniques such as producing chains of thought and
tree search to solve complex analytic problems step-ty-step. The reasoning steps produced
by the models are often kept invisible to the user. Proprietary models typically show just
a summary as their final output. For a detailed description, see Section 2.1 of Korinek
(2024).

To unlock the highest level of reasoning capabilities in the leading chatbots, user
typically need a paid subscription from one of the leading model providers. Gemini 2.5
Pro and ChatGPT-5 automatically default to “slow thinking” mode when complex analytic
questions are entered. In Claude, users can activate the setting “Extended thinking” to
achieve the highest possible reasoning performance.

The architecture of reasoning models allows them to excel at tasks that have consistently
challenged traditional LLMs. They can solve multi-step mathematical problems, write and
debug complex code, and construct formal proofs at levels approaching or exceeding human

IThe Elo-system was designed by the physicist Arpad Elo to rank chess players by their relative skills. Tt is
designed so that a score difference of D points between two players (or LLMs) corresponds to the higher-ranked
one having a probability of 1/1+10P/490 of winning in a direct match-up.

2Like all ranking systems that condense the capabilities of candidates who differ across many dimensions
into a single dimension, the LMSYS score offers only a partial and imperfect snapshot of LLM capabilities and
has been subject to considerable controversy. I chose to use for my ranking of traditional LLM-based chatbots
here because it has almost universal coverage, is updated in close to real-time, and aggregates many different
types of use cases when evaluating models.
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expert performance. For economic research, this capability is transformative: reasoning
models can perform sophisticated mathematical derivations, such as log-linearizing dynamic
equilibrium conditions or solving optimal control problems, tasks that were beyond the
reach of earlier systems. The Fall 2024 update documents how ol-preview, the first
publicly available reasoning model, successfully coded a complete solution to the Ramsey
growth model, including the shooting method for finding the optimal consumption path—a
task that had stumped traditional LLMs just months earlier (Korinek, 2024).

However, reasoning models come with trade-offs. Their deliberative process requires
significantly more computational resources during inference, as the quality of their outputs
scales with the number of reasoning tokens generated. This makes them slower and
more expensive to operate than traditional LLMs, particularly for tasks that require
extensive reasoning chains. And while they excel at well-defined problems with clear
logical structures, they offer little advantage over traditional LLMs for tasks primarily
requiring language fluency or creative generation. For economists, reasoning models are
most valuable when accuracy and logical coherence are paramount, such as in theoretical
derivations, coding, and algorithm development.

Table 3
TorP REASONING AND AGENTIC CAPABILITIES BY LAB, GPQA &
SWE-BENCH-V SCORES

Lab Model Last Updated GPQA ¢ Score SWE-Bench V
OpenAl GPT-5 2025-08-07 89.4% 75%

xAl Grok-4 2025-07-10 88.9% 72-T5%*
Google DeepMind ~ Gemini 2.5 Pro 2025-06-17 84.0% 63.8%
Anthropic Claude Opus 4.1 2025-08-05 83.3% 72.7%
DeepSeek DeepSeek-R1 2025-03-24 71.5% 49.2%

Source: Compiled by author. Last update: Aug 20th, 2025; * marks preliminary data.

Table 3 depicts the performance of reasoning models on the graduate-level Google-Proof
Q&A (GPQA) benchmark (Rein et al., 2023) — a leading benchmark that measures
expertise and reasoning in a range of scientific domains. PhDs in the relevant subjects
typically score about 65%; the best LLM when the benchmark was originally released in
November 2023 reached only 39%. Yet at the time of writing, the GPQA benchmark has
almost become saturated (i.e., fully solved, accounting for estimates that about 10% of the
questions contain errors): OpenAl’s GPT-5 and xAT’s Grok 4 lead with scores of 89.4%
and 88.9% respectively; Google DeepMind’s Gemini 2.5 Pro and Anthropic’s Claude 4
follow closely at 84% and 83.3%, while a significant gap separates these top performers
from the rest of the field. This distribution suggests that achieving human-expert-level
reasoning remains computationally intensive and technically challenging, with only the
most resource-rich labs able to compete at the frontier.

By June 2025—mnine months after the first public release of a reasoning model—a
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gathering of the world’s leading mathematicians found that the most advanced reasoning
models were capable of solving some of the hardest solvable math problems in existence
(Chiou and Moskowitz, 2025). In July 2025, both an experimental reasoning model by
OpenAl and DeepMind’s Gemini Deep Think achieved gold-medal level performance at
the International Mathematical Olympiad (Castelvecchi, 2025). These systems are now
likely to exceed the math capabilities of all but a handful of scientists in the world.

2.8. Agentic Chatbots

Agentic chatbots represent the newest paradigm in generative Al, characterized by the
ability to autonomously take actions and call on external tools to accomplish the goals
specified by the user. Unlike traditional LLMs that respond to individual prompts in
isolation, agentic systems can plan sequences of actions, actively gather information from
multiple sources, and iteratively refine their approach based on intermediate results. This
new paradigm is made possible by the combination of several technological advances: larger
context windows that enable memory across interactions, improved reasoning capabilities
that support multi-step planning, and the integration of tools that allow LLMs to interact
with external systems to query the internet or execute code. Still, it is useful to remember
the underlying LLMs fundamentally operate as next-token predictors. They have been
taught via reinforcement learning to generate tokens that call up external tools from a
list of available tools when this looks promising. We will cover one of the culminations of
these advances — autonomous research agents — in the following two sections of the paper.
For now we keep the focus on agentic chatbots.

Agentic chatbots can act as semi-autonomous research assistants rather than merely
responsive tools. They can perform web searches, interact with databases, execute code,
manipulate files, and even control computer interfaces to accomplish complex tasks. For
economic researchers, this means an Al system that can conduct end-to-end analyses:
downloading datasets, cleaning and processing data, running econometric analyses, creating
visualizations, and synthesizing results into coherent narratives.

An example is the following;:

Chat 1 (ChatGPT 03): Can you draw and analyze the Beveridge curve for the US using data for
the past 25 years?

Thought for 7Tm 5s >
Analyzed >
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US Beveridge Curve (December values, 2000-2024)
2021

2024 2020

2000

2008

2009

4 5 6 7 8 9 10
Unemployment Rate (%)

US Beveridge Curve (December values, 2000-2024)

What the chart shows

Phase

Typical pattern on the curve

Economic story

200007 expan-
sion

200809 Great
Recession

2010-19 recov-
ery

2020 pandemic
shock

2021-22 boom

Slides down the same downward—
sloping locus: unemployment fell from
~ 4% to ~ 41/2%, while the vacancy
rate hovered around 3-3 1/4%.

The curve pivoted outwards: the econ-
omy jumped from =~ 3% vacancies/5%
unemployment in 2007-12 to the lower—
right corner (1.9% vacancies/9.9% un-
employment) in 2009-12.

A slow crawl back up the pre—crisis
curve: vacancies regained pre—crisis
levels by 2018 while unemployment
fell below 4%.

Huge clockwise jump: unemployment
spiked to 6.7% (Dec—2020) yet vacan-
cies stayed high at 4 1/2%.

Vacancy rate hit a record 7.1% with
unemployment already back below 4%
(Dec—2021) — a dramatic outward shift
of the curve.

Labour—-market matching was reason-
ably efficient; firms filled openings
quickly when jobseekers were plentiful.

A negative aggregate-demand shock
produced both fewer openings and far
more jobseekers.

Matching efficiency and worker reallo-
cation gradually normalised.

Lockdowns and fear effects severed
matches, but fiscal/monetary support
let firms keep posting jobs.

Explosive demand, labour—supply con-
straints (health, caregiving, early re-
tirements, immigration shortfalls) and
sectoral mismatches made hiring un-
usually difficult.
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2023—24 cooling The economy slides down the new, Fed tightening and fading pandemic
higher curve: vacancies retreat to 4 distortions eased labour—-market over-
1/2% (Dec—2024) while unemployment  heating but matching efficiency re-
edges up only to about 4%. mains weaker than pre—2020.

Key take—aways

1) Downward slope is intact — periods with more job openings still coincide with fewer unemployed
workers, reflecting basic search—-and—matching dynamics.

2) The whole curve has shifted outward since 2020, meaning that for any given unemployment
rate, today's vacancy rate is about 1 1/2-2 percentage points higher than in the 200019 period.

Possible explanations: lower worker—job matching efficiency (skill or geographic mismatch), lingering
health-related absences, increased job—shopping in a tight market, and a higher “reservation” wage
after pandemic support.

3) Clockwise loops mark recessions (2001, 2008-09, 2020): vacancies collapse first, then unemploy-
ment rises. Counter—clockwise moves mark expansions.

4) Policy implication — Bringing labour demand back into balance will probably require either:
(a) further cooling of aggregate demand (reducing postings) or (b) structural measures that raise
matching efficiency (skills training, childcare to lift participation, immigration). Otherwise, the
outward—shifted Beveridge curve implies continued wage—price pressure even with unemployment
near 4%.

5) Watch 2025 data: early releases show the vacancy rate easing toward 4 1/4% while unemployment
flattens around 4.1%, tentatively continuing the slow move down the pandemic-shifted curve.

The model’s analysis is insightful and adheres closely to the popular consensus on
the topic. Depending on the use case, the latter can be a feature or a limitation. For
researchers who are aware of it, obtaining in-depth analysis from agentic chatbots at high
speed is highly valuable. However, there is also a risk that non-experts are not sufficiently
exposed to alternative viewpoints. Another notable point about the given example is that
the chatbot does not explictly report its data source, which makes it more difficult to
audit the results. It is advisable to ask agentic chatbots for their sources in data analysis
tasks and verify it. I have experienced on more than one occasion that chatbots generated
pseudo data that looked plausible but was made up when such systems cannot gain access
to the data they would like to fetch.

An important development that has amplified the power of agentic chatbots is the
introduction of "connections"—integrations that allow Al systems to directly access and
interact with external applications and services. These connections may enable chatbots
to read a user’s emails, navigate the file system on their harddisk, query databases,
access calendars, and interact with other productivity tools. This transforms the Al
from a system limited to its training data into one that can draw upon a user’s entire
digital ecosystem. For economic researchers, this means an Al assistant that can instantly
locate past paper drafts, cross-reference email discussions with co-authors, pull data from
institutional databases, and check upcoming deadlines—all within a single interaction. The
combination of reasoning capabilities, tool use, and persistent connections to a researcher’s



Korinek: AI Agents for Economic Research 13

working environment creates a system that understands not just general knowledge but
the specific context of an individual’s research workflow, making Al an integrated research
partner.

Over time, the potential of agentic chatbots will extend beyond automating individual
tasks to reshaping research workflows more significantly. These systems can maintain
research context across extended projects, proactively identify relevant literature, test
hypotheses through computational experiments, and even generate comprehensive research
outputs. However, this autonomy also introduces new challenges. Researchers must
carefully oversee agentic systems to ensure they pursue the right objectives and maintain
research integrity. Privacy and security concerns become paramount when systems have
broad access to computational resources and data. Additionally, the current generation of
agentic chatbots still requires significant human guidance to navigate complex research
decisions and ensure that their outputs meet academic standards. Yet as these systems
continue to evolve, they promise to transform from tools that assist with research tasks to
collaborators that can independently pursue research objectives under human direction.

A model’s performance on the SWE-Bench V coding benchmark, displayed in the last
column of Table 3, reflects its ability to function as a software engineering agent that
is called to fix software bugs in verified real-world use cases. The top tier of models
— OpenATl’s GPT-5, xAl’'s Grok 4, and Anthropic’s Claude Opus 4.1 — achieve scores
above 70%, demonstrating the ability to independently resolve complex software issues
that require understanding codebases, identifying bugs, and implementing solutions.
These scores correlate with models’ broader agentic capabilities as well as with reasoning
capabilities, as the skills required for SWE-Bench — planning, tool use, iterative problem-
solving, and code execution — mirror those needed for autonomous research assistance.
The rapid improvement in these scores over the past year suggests that fully autonomous
AT research assistants may soon be built.

2.4. Leading AI Labs and Their Model Portfolios

Whereas the three paradigms above provide a functional view of generative Al ca-
pabilities, the following provides an overview of how these capabilities are packaged in
the chatbots of leading Al labs. Each of the leading labs offers portfolios of models of
different sizes that reflect different trade-offs between model performance, speed, and
cost. Larger models are more “intelligent” and generally offer better performance and
greater capabilities, but they also require more computational resources and take longer
to process requests, making them more expensive. Smaller models, on the other hand,
are faster and more cost-effective, but may not provide the same level of quality in their
outputs.

PROPRIETARY MODEL PROVIDERS

The growing computational cost of reasoning models and agentic chatbots has also
given rise to new pricing models in recent months, as illustrated in the table below. Each
of the top AT labs is now offering premium subscriptions that cost $200/month or more —
a tenfold increase from the standard subscription cost of $20 that gave users access to
the best Al models a year ago. As the table illustrates, a power user who buys the most
expensive subscription for each of the leading labs would spend close to $1000/month.
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This raises concerns that access to top intelligence for researchers (and everyone else) may
increasingly become a function of their ability-to-pay. Sam Altman has already floated
the possibility that he may soon sell access to a Ph.D.-level scientist system at a cost of
$20,000 per year (Palazzolo and Weinberg, 2025).

Table 5
PRICING TIERS FOR CHATBOT SUBSCRIPTIONS OF LEADING Al LABS
(USD PER MONTH, JULY 2025)

Lab / Provider Basic tier $/mo  Most expensive tier  $/mo
OpenAl ChatGPT Plus $20 Pro $200
Google DeepMind Gemini Al Pro $20 Al Ultra $250
Anthropic Claude Pro $20 Max 20x usage $200
xAI Grok X Premium $8 SuperGrok Heavy $300
Microsoft Copilot Copilot Pro $20

Google DeepMind has emerged as a consistent leader across all three paradigms with
its Gemini 2.5 Pro model, last updated in June 2025, achieving top-tier performance
in traditional language tasks (LMSYS score: 1457) and excellent reasoning and agentic
capabilities. The model’s most distinguishing feature is its 2-million token context window,
enabling it to process multiple books or dozens of research papers simultaneously. Google
also offers some limited access to its Pro model even to free subscribers of its chatbot.
Aside from the Gemini chatbot, researchers can obtain access to Google’s most advanced
LLMs with a signfiicant free usage quote at https://aistudio.google.com. Moreover, Google
also offers a smaller model, Gemini 2.5 Flash, that is very capable (LMSYS score: 1416),
placing it above the top models of several other leading labs. According to an analysis
by latent.space, Gemini currently offers the best price/performance ratio across different
model sizes.

OpenAl released its GPT-5 model in August 2025, which offers perhaps the smoothest
agentic chatbot experience among leading providers and top performance in reasoning and
agentic coding. ChatGPT-5 analyzes uses queries and automatically decides what level of
reasoning is necessary to generate a satisfactory response. (Sometimes it is useful to add
“think hard” in one’s prompt to ensure that the correct level of thinking is employed.) Even
the free tier of ChatGPT offers access to the cutting-edge GPT-5. The most expensive
“Pro” subscription tier gives users access to GPT-5 pro, which uses extra compute for the
best answers to hard questions. ChatGPT’s Agent mode, available since late July 2025, is
an extra capability layer that gives GPT-5 access to a virtual computer, browser, and
app connectors, allowing it to autonomously plan and execute multi-step tasks like travel
booking while keeping the user in the loop.

Anthropic continues to be a leader for its coding capabilities and its nuanced writing
style while maintaining industry-leading safety standards with its Claude Opus 4.1 model,
updated in August 2025. The lighter-weight Claude Sonnet 4 offers almost the same
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performance at lower compute cost. Both models feature an “Extended Thinking” mode
that turns on in-depth reasoning capabilities. Claude can also be easily connected to
external apps such as email applications.

x AT is the newest entrant, founded by Elon Musk in March 2023, but has achieved
remarkable progress with its Grok-4 model, which was state-of-the-art when released in
July 2025. The model ranks highly in reasoning capabilities (GPQA: 88.0%) and is among
the top for agentic tasks (SWE-Bench: 72-75%), while maintaining competitive traditional
language performance. The company’s rapid ascent, leveraging its integration with the
X platform and Elon Musk’s "free speech absolutism" philosophy, represents a distinct
approach to Al development that prioritizes accelerating advances in Al capabilities.

Microsoft occupies a unique position in the Al landscape through its partnership with
OpenAl while also advancing their own internal Al research efforts. While Microsoft does
not appear independently in the benchmark tables above, it offers access to OpenAl’s
leading models via its Microsoft Copilot subscription and has become instrumental in
bringing frontier Al capabilities to enterprise and research users by integrating Copilot
into Microsoft Office. Through these offerings, Microsoft has arguably achieved the widest
deployment of Al assistance in professional workflows.

GLOBAL AND OPEN-SOURCE PLAYERS

Whereas the models above are proprietary, there is also a growing number of open-source
players who make their models freely available to download, use, modify, and distribute.?
This offers several benefits for economic research. Firstly, the transparency of open-source
models allows researchers to examine the underlying architecture, enabling them to better
understand the model’s structure. Secondly, open-source projects allow anybody to
innovate upon the model. This can help accelerate the development of LLMs tailored
to specific needs. Thirdly, if researchers have access to low-cost computing resources,
they can leverage open-source models for their work without incurring financial costs.
Fourthly, open-source models that are operated locally offer significant privacy benefits
as sensitive data does not need to be channeled over the internet to be processed on
the servers of proprietary model providers. Finally, open-source models allow for greater
reproducibility, which is helpful for ensuring scientific integrity in research as it enables
other researchers to verify and build upon the reported results. These benefits make
open-source language models an attractive choice for natural language processing. The
main downside of open-source models is that their performance may lag behind the leading
proprietary offerings and that operating them requires more expertise. Moreover, many of
the models are too large to operate on typical desktop computers and require expensive
server infrastructure.

Meta is one of the leading provider of open-source models in the US but has found
itself lagging behind the Chinese open-source competition in recent months, with the
LLaMA 4 series that was released in April 2025 delivering disappointing benchmark
results. In June 2024, Mark Zuckerberg restructured Meta’s Al organization and created
Meta Superintelligence Labs (MSL), acqui-hiring Scale Al’s founder Alexandr Wang for
$14.3 billion and reportedly offering pay packages worth hundreds of millions of dollars

3More precisely, the models are “open weights,” which means that the weights and software to run inference
on the LLM can be freely downloaded but not the training source code and data.
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to leading Al researchers at competing labs. Given Meta’s unparalleled computational
resources, vast social media training data, and aggressive hiring of top Al talent, they
remain a formidable long-term player.

OpenAl also released two open-weight models gpt-oss-120B and gpt-0ss-20B in August
2025 that deliver impressive performance for their size, especially in code generation.
By offering both proprietary and open-weight models, OpenAl is making their products
available to a wider range of users and addressing the growing competition to their business
faced from open-source competitors.

DeepSeek represents China’s growing presence in frontier AI development, with its
R1 model achieving competitive traditional language scores (LMSYS: 1414) despite
operating under semiconductor export restrictions. The company’s focus on efficiency and
novel architectures demonstrates that computational constraints can drive innovation,
potentially offering a path for researchers with limited resources.

Alibaba’s Qwen series (short for Tongyi Qianwen, which translates to “Unified Thou-
sand Questions”) offers a comprehensive portfolio of open-source models, spanning from
mobile-deployable versions to a highly capable flagship 235B parameter model, with
strong multilingual capabilities. This offers researchers many different choices along the
size/capability frontier.

Kimi-K2, released by Alibaba-backed startup Moonshot in July 2025, is the most
recent Chinese open-source model that challenges the leading Al labs. The model has
impressive benchmark results but offers dramatically lower pricing—just 15 cents per
million input tokens compared to, e.g., Claude’s $15. This 100x price differential helps to
make high performance far more widely available.

Mistral Al founded by former Google DeepMind and Meta employees, has carved out
a niche in the European Al ecosystem, emphasizing efficient, privacy-conscious models.
Their Magistral Medium achieves respectable reasoning performance (GPQA: 70.8%)
while maintaining lower computational requirements than competing models, appealing
to European researchers prioritizing data sovereignty and computational efficiency.

STRATEGIC IMPLICATIONS FOR RESEARCHERS

Let me summarize three observations on the current Al landscape. First, traditional
LLM capabilities have become commoditized, with differentiation now occurring in
reasoning and agentic capabilities. Second, the significant performance gaps in GPQA
and SWE-Bench scores indicate that advanced capabilities remain concentrated among
well-resourced labs. Third, the emergence of strong open-source alternatives, particularly
from Chinese developers, is democratizing access to capabilities below but near the frontier.

For economic researchers, a paid subscription to the offerings of any of the leading
labs in Table 2 is a reasonable choice. It provides access to top-tier reasoning models for
complex analytical work and to agentic capabilities for workflow automation. However, for
researchers with intermittent needs—such as occasional coding assistance through Cursor
or Claude Code—using models via API on a pay-per-use basis may be more economical
than maintaining multiple monthly subscriptions. The rapid pace of improvement across
all labs counsels against over-commitment to any single provider.
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DATA SECURITY CONSIDERATIONS

Researchers working with sensitive data—whether due to institutional requirements
(such as central banks handling market-sensitive information) or the confidential nature
of their research materials—must carefully evaluate the security implications of different
AT deployment options. OpenAl and Anthropic, in particular, provide enterprise security
(including SOC 2 Type 2) and strong data controls. For API and enterprise use, both
default to no training on customer content, and OpenAl offers zero-data-retention options;
by contrast, consumer chat usage can contribute to training unless users opt out in settings.
These safeguards suggest that concerns about data leakage through major commercial
providers may sometimes be overstated, particularly when proper API configurations are
used rather than consumer chatbot interfaces.

For maximum security, however, deploying open-source models on internal infrastructure
remains the gold standard. Models like OpenATI’s gpt-oss or Meta’s Llama 4 series deliver
near-frontier capabilities while allowing complete control over data handling. These models
can perform sophisticated tasks including agentic workflows, code generation, and complex
reasoning entirely within institutional firewalls. The trade-off between the convenience
and somewhat superior performance of cloud-based proprietary models and the security
of locally-deployed open-source alternatives ultimately depends on the specific sensitivity
of the research data and institutional compliance requirements. However, it is crucial that
institutions base their compliance policies on evidence-based security assessments rather
than outdated assumptions, ensuring that researchers can fully leverage Al capabilities
without unnecessarily handicapping their productivity.

3. Al Agents for Economic Research
3.1.  Basic Architecture

AT agents are software systems that combine LLMs with planning tools, function-
calling capabilities, and memory systems to autonomously pursue complex goals through
multi-step actions.

The architecture of simple Al agents is illustrated in Figure 1: an orchestrator passes
the original objective (for example a user prompt) and the list of available external tools
to a reasoning LLM. This LLM represents the digital equivalent of the system’s brain: it
strategizes how to pursue the objective and decides what external tools to call. These
tools provide the system with an interface with the external world, giving it the digital
equivalent of eyes to see its environment and hands to perform actions. Common examples
of such tools are search engines, web browsers, code execution, database queries, or LLM
subagents, all of which we will explore below. Each time the reasoning engine wants to
call a tool, it generates tokens that indicate to the orchestrator to call upon the designated
external tool and feed the result back to the reasoning engine before continuing the token
generation process. Moreover, a memory system allows the agent to store context and
build upon past results.*

4Observe the close analogy to more traditional definitions of the term “agents:” In computer science and
robotics, agents have traditionally been described as entities that perceive their environment via sensors and
act on it via actuators. In our example, these sensors and actuators are given by external tools that the
reasoning engine can call upon. In economics, agents maximize an objective subject to information and resource
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Figure 1. Al AGENT ARCHITECTURE

Whereas traditional chatbots engage with human users in the form of turn-by-turn
conversations that require regular human interaction to provide the agent with data or
instructions for the next step, Al agents automate some of this process: once they are
started, they can be thought of as autonomous conversations between LLMs and different
computer tools that pursue a specific goal without constant human interaction.

The following is a very simple schematic example, following the ReAct (Reasoning and
Acting) framework that was introduced by Yao et al. (2023), in which the agent’s process
is clearly separated into thoughts, actions, and observations. The orchestrator passes the
initial query to the LLM reasoning engine, which starts by generating the tokens displayed

constraints. In our example, Al agents seek to fulfill the objective given by the initial prompt. They operate
within token and memory limits and subject to the tools they have access. Given bounded rationality, they use
approximate reasoning to navigate these constraints. In economics, much of the focus of agency theory is on
the potential misalignment between principal and agent; for Al agents, the question of alignment is likewise
receiving a growing amount of attention (Hendrycks, 2025).
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in the “Thought” and “Action” parts. The latter signals to the orchestrator to call upon
the external function weather:get_current(.), to which it passes the current location as an
argument. The weather function fetches the requested data and returns “Observation,’
which the orchestrator feeds back into the LLM, which understands that it has all the
available information required to respond and generates the final “Result.”

?

Chat 2 (Schematic Agent Workflow): What’s the weather in Washington DC?

Thought: I need to check the current weather conditions in Washington, DC.
Action: weather:get_current({"location": "Washington, DC"})

# [Orchestrator calls weather API and returns current conditions]
Observation: Temperature: 88 F, Conditions: Partly cloudy

Result: The current weather in Washington, DC is 88 F with partly cloudy skies.

The next example illustrates the use of data gathering and code execution. The reasoning
engine is asked to produce a plot and has access to a data-gathering tool from FRED
(Federal Reserve Economic Data, St. Louis Fed) as well as to a python code interpreter
that can execute computer code. When the reasoning engine has produced the respective
“Action” commands, the orchestrator interrupts the token generation to call the indicated
external tools, passes the results back to the reasoning engine, and lets it decide how to
continue in order to satisfy the initial request. Note that the computer code that is passed
on to the second “Action” was written by the reasoning engine on the fly — modern LLMs
are excellent at writing computer code and, if the orchestrator enables them to execute
code, they can code and perform a wide range of computer-based actions that they want
to pursue.

Chat 3 (Schematic Agent Workflow): Plot the US unemployment rate and inflation over the
past 20 years.

Thought: To answer this, I will retrieve the unemployment rate (series ID: UNRATE) and consumer
price inflation (series ID: FPCPITOTLZGUSA), both from FRED.

Action: fred_data:get_series(["UNRATE", "FPCPITOTLZGUSA"], start="2005-07-01", end="2025-07-01",

frequency="monthly")

# [Orchestrator calls FRED API and returns datal]

Observation: Data retrieved and stored in economic_ data.csv (240 rows, columns: date, unemployment,
inflation)

Thought: Now I have the merged data with YoY inflation already calculated. I'll create a Phillips curve
scatter plot.

Action: python:execute({"code":

"o

import pandas as pd; import matplotlib.pyplot as plt

df = pd.read_csv(’economic_data.csv’)

plt.figure(figsize=(10, 8))

plt.scatter(df [’unemployment’], df[’inflation’], alpha=0.6)
plt.xlabel(’Unemployment Rate (%)°’); plt.ylabel(’Inflation Rate (%)’)
plt.title(’Phillips Curve: US Unemployment vs Inflation (2004-2024)’)
plt.savefig(’phillips_curve.png’)

"o

b

# [Orchestrator executes python code to generate chart.]



20 Korinek: AI Agents for Economic Research

Observation: Code executed successfully. Chart saved as phillips_ curve.png

Thought: I've created the Phillips curve. Now I need to display this to the user.

Action: display:image("file": "phillips_curve.png", "caption": "Phillips Curve showing the
inverse

relationship between US unemployment and inflation rates over the past 20 years")

# [Orchestrator renders the image in the user interface]

Observation: Image displayed to user.

Result: The Phillips curve visualization shows the relationship between unemployment and inflation in
the US economy from 2004-2024, revealing periods where the traditional inverse relationship held and
periods of deviation.

As illustrated in this example, planning and tool-calling enables AT agents to handle
far more complex, multi-step actions than their traditional chatbot predecessors with
far greater autonomy while adapting to what they learn from the tools they use. They
can decompose ambitious research goals into actionable steps, exhibiting the kind of
forward-looking behavior that characterizes human problem-solving. Kwa et al. (2025)
show that Al agents can now autonomously perform tasks that take humans about 50
minutes to perform and, more importantly, that the task length that Al is competent for
has been doubling every seven months since 2019. At this pace of progress, Al agents
would be able to autonomously perform day-long general research tasks by the end of
next year.

3.2.  Deep Research Agents

The most powerful applications of Al agents for research applications are currently
Deep Research systems. These systems were pioneered by Google DeepMind in December
2024 and have quickly become part of the offerings of all the leading Al companies. After
a user enter a research question, a Deep Research agent spends between several minutes
to half an hour to search the internet on the topic, compile and evaluate the most useful
materials, and prepare a comprehensive research report on the topic that is complete
with well-sourced citations (OpenAl, 2025). Deep Research agents sometimes access and
evaluate more than 500 internet sources for a single assignment.

To be sure, what these so-called Deep Research systems produce is what non-researchers
call research, compiling existing materials rather than generating genuinely novel insights.
Still, they can be enormously useful for researchers, especially in generating literature
surveys or compiling background information on a topic on which the researcher may
want to learn more. For example, I start many of my research projects by asking several
deep research systems to provide background information on the topic. A typical example
of an interaction looks as follows:

Chat 4 (Gemini Deep Research): I am an academic economist working on a paper on “Al agents
for economic research” in which I would like to cover how using and designing Al agents can benefit
PhD-level researchers. Give you write a 10-page overview of the topic?

Here’s the plan I've put together. Let me know if you need any changes before I start researching.
Al Agents for Economic Research

Research Websites

(1) Establish a foundational understanding by defining ’AI agents’ within the context of economic
research. Differentiate them from broader AI/ML models and traditional economic agent concepts by
reviewing seminal and recent academic literature on the topic.
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(2) Investigate and detail how PhD researchers can *use* existing Al agents as research assistants.
This includes:

(a) Their role in automating systematic literature reviews and knowledge synthesis.

(b) Their application in extracting and structuring data from unconventional sources like text, images,
or satellite data.

(3) Explore the application of AI and machine learning techniques in advanced econometric analysis,
focusing on benefits for researchers like automated model selection, causal inference with complex
data, and forecasting.

(4) Analyze the benefits of *designing™® AI agents, with a primary focus on Agent-Based Modeling
(ABM). Research how ABMs are used across different economic fields (e.g., macroeconomics, finance,
development economics) to simulate complex systems and study emergent phenomena.

(5) Investigate advanced methods for designing intelligent agents beyond simple rule-based ABMs.
Explore the use of Reinforcement Learning (RL) to model adaptive agents and the application of
generative agents for simulating realistic socio-economic interactions.

(6) Compare and contrast the agent-based approach with traditional economic modeling techniques
(e.g., DSGE, CGE models). Synthesize the unique advantages Al agents offer, such as modeling
heterogeneity, bounded rationality, and out-of-equilibrium dynamics.

(7) Critically evaluate the challenges, limitations, and ethical considerations associated with using Al
agents in economic research. This includes issues of model validation, computational cost, explainability
(the "black box’ problem), and potential algorithmic bias.

(8) Speculate on the future of AI agents in economics by researching emerging trends, influential
working papers, and expert opinions on how these tools will shape the discipline and the skill set
required for future PhD-level economists.

Analyze Results

Create Report

Ready in a few mins

[After pressing “Start Research,” Gemini spent about 9 minutes consulting over a hundred
sources and assembled a comprehensive report.]

Al Agents in Economic Research: A Methodological and Applied Overview

Executive Summary

This report provides a comprehensive overview of the transformative role of Artificial Intelligence (AI)
agents in PhD-level economic research. It delineates the dual function of Al agents: first, as powerful
research multipliers that augment and accelerate the traditional research workflow, and second, as the
fundamental components of a new generation of sophisticated economic simulations. The report begins
by establishing a clear definition of AI agents, distinguishing them from traditional economic agents
and standard machine learning models. It then systematically explores their application in automating
literature synthesis, unlocking novel datasets through advanced extraction techniques (NLP, computer
vision), and enhancing the rigor of modern econometrics, particularly in causal inference. A significant
portion is dedicated to the renaissance of Agent-Based Modeling (ABM), detailing how the integration
of Reinforcement Learning (RL) and Large Language Models (LLMs) allows for the design of adaptive
and generative agents that can simulate complex, out-of-equilibrium dynamics. Finally, the report
addresses the critical methodological, ethical, and practical challenges—including the "black box"
problem, model validation, and algorithmic bias—and concludes by outlining the future trajectory of
the field and the evolving skill set required for the modern economist.

[remainder omitted for space reasons]

Requesting a Deep Research report from ChatGPT on the same topic leads to the
following interaction:
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Chat 5 (ChatGPT Deep Research): I am an academic economist working on a paper on “Al
agents for economic research” in which I would like to cover how using and designing Al agents can
benefit PhD-level researchers. Give you write a 10-page overview of the topic?

I’d be happy to help with that. Could you please clarify a few things so I can tailor the 10-page
overview more effectively?

1. What is the primary objective of the paper (e.g., conceptual framework, literature review, method-
ological proposal, practical guide)?

2. Should the focus be more on existing tools and applications, theoretical frameworks, or forward-
looking implications?

3. Do you want examples from specific economics subfields (e.g., macroeconomics, labor, IO, finance)?
4. Should the tone and structure resemble an academic paper, a white paper, or more of a policy
briefing?

5. Do you want coverage of specific tools or platforms (e.g., ChatGPT, Elicit, AutoGPT, OpenAgent,
etc.)?

Once I have these details, I'll begin the deep research and writing process for you.

. Informing Ph.D. economists on the methodology and including a practical guide

. all three

. general

academic

. broad coverage of the offerings of main labs plus some details on LangGraph for buildling agents

TR W N

[After submitting the requested follow-up responses, ChatGPT spent 10 minutes perform-
ing 109 searches, whittling them down to 21 sources, and assembling a comprehensive
report]

AT Agents for Economic Research

Abstract

Artificial intelligence (AI) agents powered by large language models (LLMs) are rapidly transforming
how economists conduct research. This overview provides a methodological introduction and practical
guide to Al agents in economic research. We first discuss the conceptual and theoretical frameworks
underpinning Al agents — defining what constitutes an “Al agent,” exploring how multi-agent systems
and cognitive automation can augment research workflows, and addressing key considerations like
replicability, domain adaptation, and evaluation. Next, we survey the current state of tools, models, and
platforms enabling Al-driven research assistants. Major AI labs (OpenAl, Anthropic, Google DeepMind,
Meta) offer advanced LLMs (e.g. GPT-4, Claude 2, PaLM/Bard, LLaMA 2) and frameworks that
economists can leverage for literature review, coding simulations, data analysis, model diagnostics,
and even drafting papers. We highlight the capabilities of these models — such as code execution,
large-context processing, and open-source customization — and provide links to resources for their use.
In the practical guide section, we illustrate how economists can deploy Al agents for various research
tasks: scanning and summarizing literature, writing and debugging code for simulations or empirical
analysis, interpreting statistical outputs and diagnosing models, and assisting in writing and editing
manuscripts. Throughout, we use examples from different economics subfields to demonstrate these
applications. We also present a focused section on LangGraph, an innovative framework for building
customizable multi-agent research assistants. LangGraph allows researchers to design agent workflows
as graphs of interconnected LLM-powered “experts” (e.g. a data collector, an analyst, a writer)
with built-in memory and quality-control loops. We discuss how LangGraph can facilitate complex,
collaborative agent workflows in economics research while maintaining reliability via human-in-the-loop
oversight. The overview concludes with reflections on future prospects and best practices, emphasizing
that Al agents — when used thoughtfully — can significantly augment economists’ productivity and
creativity in research.

[remainder omitted for space reasons]
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Both systems fielded some useful information for this paper. However, they also illustrate
several shortcomings of these systems. Sometimes they offer unvalidated niche results
with great confidence—for example, I am not sure that Al agents can “enhance the rigor
of modern econometrics, particularly in causal inference,” as suggested by Gemini’s Deep
Research system above. Sometimes they exhibit overconfidence, as in the opening sentence
from OpenAl’s Deep Research system, which claims that “Al agents [...] are rapidly
transforming how economists conduct research.” And they do not always include the most
recent findings, as when OpenAl refers to “advanced LLMs” and lists models that have
become outdated more than a year ago.

I found Deep Research systems to be most useful in areas where a significant amount of
established research already exists. For very new topics like the one on which I tested
them above, they have difficulty determining which references are the most useful—a
critical skill for human researchers who work at the frontier. Moreover, I found it highly
useful to provide significantly more context for Deep Research queries than in regular
chatbot interactions. Even though they perform research for anything from a few minutes
to half an hour, the exact amount of reseach that they engage in is sometimes difficult to
steer—in part because model providers need to limit their costs. For example, a query
like “Perform task X for each of the 50 States of the US” is technically feasible, but for
complex tasks X, it quickly reaches the internal limits that model providers have set for
the use of typical Deep Research systems.

The table below lists several of the top providers of Deep Research systems, their
availability, and how they differ in their features. As can also be seen from the chat
examples above, Gemini Deep Research proposes a research strategy after receiving the
user’s prompt, asking for confirmation of the path that it intends to pursue. OpenAl
Deep Research asks the user to clarify several follow-up questions about the format and
direction of the search before generating the deep research report.

Table 6
OVERVIEW OF DEEP RESEARCH AGENTS
System Availability & Features Time
usage limits
Gemini Free to try; better & higher Proposes a research plan that user  5-10 min
Deep Research allowance on paid plans can confirm/ modify
OpenAl Allowance of 25/200 reports per Asks follow-up questions to 5-30 min
Deep Research month for Plus/Pro plan optimally target response
Claude Available subject to limits for Runs immediately; can connect 5-15 min
Deep Research paid plans with workspace
Perplexity Free to try; unlimited under paid Fast option covering lots of sources  2-4 min
Deep Research plan
xAI Grok Available under X premium plan  Real-time info through close <1-10 min
DeepSearch integration with X platform

Technically, Deep Research systems employ a multi-agent architecture to perform open-
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ended investigative research tasks that would overwhelm single agents. An LLM-powered
lead researcher agent serves as the orchestrator, receiving the initial research query and
developing a comprehensive strategy for how to perform the research assignment. This
lead agent analyzes the question’s complexity, decomposes it into discrete subtasks, and
spawns specialized LLM-based subagents to pursue different investigative threads in
parallel. Each subagent operates with its own context window, memory, and tools —
especially access to search engines and web browsers — functioning akin to an independent
researcher focused on a specific aspect of the broader question. The Gemini example above
describes several of the sub-problems into which the lead agent splits the problem; for
each sub-problem, multiple parallel agents browse and evaluate the available information.
This parallel architecture offers substantial performance advantages over a sequential
approach, especially in complex research tasks in which breadth matters, for example,
analyzing a question for 50 US States or for all S&P 500 IT companies. The lead agent
is also able to dynamically adapt the search strategy based on intermediate findings or
errors encountered.

Deep Research agents employ substantive amounts of compute. They typically use
on order of magnitude more tokens than traditional chatbot interactions. None of the
labs have provided detailed numbers, but estimates suggest compute cost around a dollar
per report. As a result, LLM providers strictly limit the availability of Deep Research
requests, indicated in the second column of Table 6, and these systems were an important
reason for the high-cost subscription plans shown in Table 5. The lead researcher agent is
typically a state-of-the-art LLM to ensure that the sub-agents are given the best possible
instructions and the compute that they use is well-spent — just as companies like to hire
capable managers to ensure that their employees perform at their best.

As LLMs continue to improve and token costs decrease, deep research systems are
likely to become economically viable for an expanding range of applications. Deploying
multiple agents in parallel allows for far greater complexity in what research tasks can be
performed. Tasks that previously required days of human research can now be completed
in minutes, with the multi-agent architecture ensuring both thoroughness and efficiency.

3.83.  Coding Agents

Another powerful application of Al agents are coding agents, which are terminal-based
AT assistants that were originally designed for internal use by the leading AT labs to assist
in their software engineering, but which have been shared publicly with users in recent
months and have given rise to a new way of creating software — “vibe coding — that is,
creating entire software projects based on user prompts in natural language. Vibe coding
has made it possible for users with no programming experience to create software projects
from beginning to end. However, the most powerful coding agents are only available via
command line interface — this may feel a bit clunky to researchers who are used to sleek
web-based interfaces but is a common interface for software developers. An example is
given below:

Chat 6 (Claude Code): Develop a simple econometric tool that lets users upload a CSV file with
data, displays which data series are contained in it, and asks them what to regress on what using OLS.
After the user has made a selection, show the regression results with the typical statistics included and
display the marginal relationship between the regressor and the first variable in an appropriate graph.
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I’ll help you create a simple econometric tool for OLS regression. Let me break this down into tasks
and get started.

* Update Todos

* Create HTML structure with file upload and UI elements

* Implement CSV parsing and display data series

* Build variable selection interface for regression

* Implement OLS regression calculation

* Display regression results with statistics

* Create scatter plot with regression line

+ Wrote 130 lines to index.html

+ Wrote 261 lines to regression.js

The econometric tool is ready! Open index.html in a web browser to use it. The tool:

1. Accepts CSV file uploads

2. Displays data summary with variable statistics

3. Allows selection of dependent (Y) and independent (X) variables

4. Performs OLS regression with full statistics (coefficients, standard errors, t-values, p-values,
R-squared)

5. Shows a scatter plot with the regression line

The regression results include all typical statistics and the tool displays the marginal relationship
graphically.

I'm getting NaN for one of my regressions. Can you include a functionality that it drops missing
values?

* T’ll update the code to properly handle missing values by dropping them before regression.

* Read(regression.js)

+ Updated regression.js with 7 additions and 1 removal

The tool now properly handles missing values by:

1. Recognizing empty strings, '"NA’, ’NaN’, 'nan’, and "’ as missing values during parsing

2. Showing the count of missing values for each variable in the data summary

3. Dropping rows with missing values in either variable before regression

4. Displaying how many observations were dropped in the regression results

The p-value does not seem to be correct.

* You're right. Let me fix the p-value calculation. The issue is with the Student’s t-distribution
implementation.

* Update(regression.js)

+ Updated regression.js with 47 additions and 16 removals

* Actually, let me use a better implementation for the t-distribution p-value calculation:
* Update(regression.js)

+Updated regression.js with 2 additions and 2 removals

* Update(regression.js)

+ Updated regression.js with 28 additions and 26 removals

The p-value calculation has been fixed. The tool now:

. Properly handles missing values (empty strings, 'NA’, ’NaN’, 'nan’, )

. Shows missing value counts in the data summary

. Drops rows with missing values before regression

. Displays the number of dropped observations

. Correctly calculates p-values using the Student’s t-distribution

T W N =
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The first draft of the program took less than two minutes, and testing and debugging
with the two follow-up prompts documented above took perhaps another five minutes.
The resulting user interface and regression results of a sample regression are displayed
in the figure below. This illustrates that creating software without special expertise has
become far easier than it ever used to be before.

Simple OLS Regression Tool

Choose CSV File
Selected: Debt_service_data.csv

Data Summary
Rows: 656
Columns: 4
Variables:
« country: non-numeric
« time: 656 numeric values - min: 1980.00, max: 2020.00, mean: 2000.00

« New_borrowing: 636 numeric values (20 missing) - min: 1.95, max: 25.42, mean: 9.41
« Debf_service: 639 numeric values (17 missing) - min: 3.7, max: 22.62, mean: 10.11

Select Variables for Regression
Dependent Variable ().

Debt_sevice
Independent Variable (X):

New_borrowing

Regression Results

Estimate  Std. Error  t-value  p-value
41552 0.2473 16.303  ©.0000
e 0.633  0.0238 .65  ©.0000

on Equation: Debt_service = 4.1552 + 0.6339 * lew_borrowing

Debt_service vs New_borrowing

Debt_service

New_borrowing

Figure 2. Claude Code Simple OLS Regression Tool

Coding agents operate on the basic principles introduced in Section 3.3.1, but with
specialized capabilities for software development workflows. They combine LLM-based
reasoning engines with direct access to the local file system, with code execution envi-
ronments and version control systems to keep track of what changed. This architecture
enables them to read and modify source code, execute commands, run tests, and manage
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complete development workflows autonomously.

The three major Al labs have each released their own coding agents since the beginning
of the year. Anthropic was first, releasing Claude Code as a closed system in February 2025,
currently building on Claude 4/4.1. It can be accessed either via a monthly subscription
to Claude Pro or Max (with certain usage limits) or on a pay-per-use basis by entering
an API key. Claude Code is still considered state-of-the-art. OpenAl launched Codex
CLI in April 2025, embracing an open-source approach, allowing developers to use not
only OpenAI’s models but also, through community forks like Open-Codex, models from
Google, Anthropic, xAl, or locally-hosted open-source models. Codex is available on a
pay-per-use basis. Google’s Gemini CLI, the most recent entrant in June 2025, is also
open-source and leverages Google’s infrastructure lead to provide an exceptionally generous
free tier to users, offering 60 requests per minute and 1,000 requests per day. Gemini also
excels at support for PDFs and images. All three agents support core functionalities like
code generation, modification and refactoring, automated debugging, unit test creation,
Git integration, and multi-file editing.

Even for researchers who prefer traditional coding methods and have no interest in vibe
coding, modern LLMs offer substantial value as code reviewers. These models excel at
identifying bugs, security vulnerabilities, and inefficiencies in existing codebases. By simply
sharing their project code with AT assistants, researchers can receive detailed feedback
on potential issues ranging from memory leaks and race conditions to SQL injection
vulnerabilities and algorithmic inefficiencies—catching problems that might otherwise go
unnoticed until they cause unexpected failures or compromise research integrity.

For researchers who are interested in a more user-friendly interface, cloud-based Al
coding environments like Replit, vO by Vercel, and bolt.new by StackBlitz represent
another approach to develop software via vibe-coding. These browser-based platforms
provide instant access to Al-assisted coding without any need for local installation or
cumbersome configuration. For instance, Replit, accessible via web browser at replit.com,
combines a full development environment with integrated Al assistance, automatic hosting,
and real-time collaboration features. All three platforms are particularly popular among
non-technical users who want to create simple functional software without wrestling with
development environment setup.

A middle ground between autonomous command-line coding agents like Claude Code and
simple chatbot interfaces are Al-enhanced integrated development environments (IDEs).
Tools like GitHub Copilot, Cursor, and Windsurf offer comprehensive coding support,
providing intelligent suggestions, automated refactoring, and debugging assistance. These
Al-powered IDEs preserve the familiar development environment that programmers expect
while augmenting every aspect of the coding process with Al capabilities. For researchers
accustomed to traditional development environments, these tools offer a gentle on-ramp
to Al-assisted programming without requiring a wholesale shift in how they work.

Manus, an Al agent launched in March 2025 by a Singapore-based startup, demonstrated
that making agents accessible could be as important as improving their capabilities. Unlike
most agents at the time requiring command-line interfaces, Manus worked like a regular web
application. Users could watch the agent work through a window showing its ’computer
screen’ as it opened browsers and navigated websites. They could replay completed
tasks to understand how problems were solved, and the system continued working in
the cloud after users logged off. A researcher could ask Manus to compile data from
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multiple websites, close their laptop, and return later to find a completed spreadsheet.
Within hours of launch, developers had created open-source versions, indicating strong
demand for such user-friendly agent tools. Manus illustrates the importance of being
user-friendly. By prioritizing visual feedback, replay capabilities, and eliminating technical
setup, Manus lowered the barriers that had traditionally prevented non-programmers
from using agents—an approach that may prove essential for more and more economists
to incorporate Al agents into their research workflows.

While these agent systems offer powerful capabilities, researchers should be aware
of their operational limitations. A common weakness is their brittleness to workflow
interruptions—a single failed step, such as encountering a website requiring authentication,
can halt an entire multi-step process. Deep Research agents may confidently synthesize
information from unreliable sources alongside peer-reviewed papers without adequately
distinguishing quality. Coding agents may generate syntactically correct but logically
flawed code in applications that require deep domain expertise. These limitations mean
that Al agents currently function best as research assistants rather than autonomous
researchers—they require active human supervision to verify outputs, correct course when
stuck, and ensure that economic reasoning remains sound throughout the workflow.

Moreover, as Al agents become more capable of autonomous operation, they also raise
important novel questions about the future of cognitive professions and the changing
nature of human-Al collaboration in technical fields. Almost all information that white
collar workers process and manipulate can be codified in files and thus be made available
to similar agents as coding agents.® For researchers studying AI’s economic impact, coding
agents thus provide a concrete early example of AI’s potential to both augment and
replace human expertise, while fundamentally changing the skills and workflows required
for effective software development (Anthropic, 2025a). Similar developments may soon
affect economists.

4. Under the Hood: Building AI Agents for Research
4.1. A Self-Made Economic Data Retrieval Agent

To make the concept of Al agents concrete, let us build a simple example that demon-
strates the key principles outlined in the previous section in python. The code below
implements a simple agent that can answer questions about economic data by autonomously
fetching and analyzing information from the Federal Reserve Economic Data (FRED)
database of the St. Louis Fed. This illustrates how to implement the described architecture
and helps demystify how Al agents operate. The source code is also available for download
at https://www.GenAl4Econ.org. A schematic illustration of the agent workflow is given in
Figure 3.

5For example, Anthropic employees in fields as far apart as finance, legal, marketing, and design report
that they use Claude Code to automate complex workflows without writing code themselves. They describe
their workflows in plain text and leave them to Claude Code to execute automatically. These applications
demonstrate how Al agents are enabling non-technical professionals to execute sophisticated technical tasks
without expertise in engineering (Anthropic, 2025b).
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User Question

Think:
Plan what FRED data to fetch

|

Act:
Fetch data from FRED API

Observe:
Analyze fetched data

Respond:
Generate natural language answer

Figure 3. Architecture of Data Retrieval Agent
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econdata.py: An AI Agent using FRED - Educational Example

Demonstrates the core concepts of an AI agent that can:
1. Understand a question (Think)

2. Fetch economic data (Act)

3. Analyze results (Observe)

4. Generate an answer (Respond)

Setup:

1. pip install openai fredapi python-dotenv colorama
2. Get API keys from:

FRED: https://fred.stlouisfed.org/docs/api/api_key.html
OpenAI: https://platform.openai.com/api-keys

3. Create .env file with your keys in the following format:
FRED_API_KEY=[enter key]
OPENAI_API_KEY=[enter key]

import os, json

from
from
from
from
from

load_

datetime import datetime, timedelta
dotenv import load_dotenv

fredapi import Fred

openai import OpenAl

colorama import init, Fore, Style

dotenv ()

init ()
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class FREDAgent: # Define agent class

def __init__(self): # Runs when new agent instance created
self.fred = Fred(api_key=os.getenv(’FRED_API_KEY’))
self.1llm = OpenAI (api_key=os.getenv (’0PENAI_API_KEY’))

def think(self, question): # Plan what data to fetch
prompt = f"""What FRED series code would help answer this question?
Question: {question}

Common FRED codes: UNRATE (unemployment), FPCPITOTLZGUSA (CPI inflation),
GDP, DFF (fed funds rate)

Return JSON: {{"explanation": "why this helps", "series_code": "
EXACT_FRED_CODE"}}"""

print (f"\n{Fore.CYAN}=== THINK: LLM Call ==={Style.RESET_ALL}")
print (f"{Fore.YELLOW}Input:{Style.RESET_ALL}\n{promptl}")

response = self.llm.chat.completions.create(
model="gpt-4.1",
messages=[{"role": "user", "content": promptl}],
response_format={"type": "json_object"}

output = response.choices [0].message.content
print (f"\n{Fore.YELLOW}Output:{Style.RESET_ALL}\n{outputl}")

plan = json.loads (output)
return plan[’series_code’]

def act(self, series_code): # Fetch requested data from FRED
print (f"\n{Fore.GREEN}=== ACT: FRED API Call ==={Style.RESET_ALL}")
print (f"{Fore.YELLOW}Fetching:{Style .RESET_ALL} {series_codel}")

# Get series metadata for units
info = self.fred.get_series_info(series_code)
units = info[’units’]

# Get last 2 years of data
end = datetime.now()
start = end - timedelta(days=730)

print (f"{Fore.YELLOW}Period:{Style.RESET_ALL} {start.date()} to {
end.date ()}")

data = self.fred.get_series(series_code, start, end)

print (f"{Fore.YELLOW}Result:{Style.RESET_ALL} {len(data)} data
points™")

print (f"Latest: {data.iloc[-1]:.2f} {units} ({data.index[-1].date()
P

return data, units

def observe(self, data, units): # Analyze fetched data
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observations = {
"current_value": float(data.iloc[-1]),
"current_date": data.index[-1].strftime("%Y-%m-%d"),
"units": units

}

print (f"\n{Fore.MAGENTA}=== 0OBSERVE: Data Analysis ==={Style.

RESET_ALL}")
print (json.dumps (observations, indent=2))

return observations
respond (self, question, observations): # Generate natural language

response
prompt = f"""Answer this question using the data:

Question: {question}
Data: {json.dumps (observations, indent=2)3}

Provide

def

a brief, clear answer citing specific numbers."""

print (f"\n{Fore.CYAN}=== RESPOND: LLM Call ==={Style.RESET_ALL}")
print (f"{Fore.YELLOW}Input:{Style.RESET_ALL}\n{promptl}")

response = self.llm.chat.completions.create(
model="gpt-4.1",
messages=[{"role": "user", "content": promptl}]

output = response.choices[0].message.content
print (£"\n{Fore.YELLOW}Output:{Style.RESET_ALL}\n{outputl}")

return output

answer (self, question): # Define orchestrator agent

# Think -> Act -> Observe -> Respond

print (£"\n{Fore.BLUE}{’=’%60}{Style.RESET_ALL}")

print (f"{Fore.BLUE}Question: {question}{Style.RESET_ALL}")
print (f"{Fore.BLUE}{’="%60}{Style.RESET_ALL}")

try:
series_code = self.think(question) # Think: What data?
data, units = self.act(series_code) # Act: Fetch data
observations = self.observe(data, units) # Observe: Analyze
data
response = self.respond(question, observations) # Respond:

Generate an answer

print (f"\n{Fore.GREEN}=== FINAL ANSWER ==={Style.RESET_ALL}")
print (response)

return response
except Exception as e:

error_msg = f"Error: {str(e)}"
print (£"\n{Fore.RED}{error_msg}{Style.RESET_ALL}")

31
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return error_msg

# Example usage
if __name__ == "__main__": # Execute agent with example and interactive
prompt

agent = FREDAgent ()

# Example query
agent .answer ("What is the US inflation rate?")

# Interactive mode

print (£"\n{Fore.CYAN}Interactive mode{Style.RESET_ALL}")

question = input (f"\n{Fore.YELLOW}Ask an economic question: {Style.
RESET_ALL}")

agent.answer (question)

What makes this code an "agent"' rather than a simple script is its autonomous, goal-
directed behavior through multiple steps. When given a question like "How is the US
labor market doing?", the agent does not simply execute a predetermined sequence of
commands. Instead, it exhibits the planning and tool-calling capabilities that define Al
agents: it first thinks about what data would help answer the question, then acts by
calling the appropriate external tool (the FRED API), observes by analyzing the returned
data, and finally responds with a natural language answer. This Think-Act-Observe loop
characterizes sophisticated agentic systems.

The agent demonstrates several crucial concepts from our earlier discussion. First, it
combines an LLM reasoning engine (OpenAI’'s GPT-4.1) with external tools (FRED API),
illustrating how agents extend beyond the knowledge limitations of language models alone.
Second, it shows autonomous decision-making: the agent determines which economic
indicator to fetch based on its understanding of the user’s question, rather than requiring
the user to specify technical details like FRED series codes. Third, it performs multi-
step reasoning, breaking down the task of answering an economic question into discrete,
manageable steps that build upon each other.

From a technical perspective, the agent’s ‘answer()‘ method implements the orchestrator
described in Section 3.3.1, coordinating between the reasoning engine and external tools.
Each method in the class represents a distinct capability: ‘think() for planning, ‘act()* for
tool invocation, ‘observe()‘ for data analysis, and ‘respond()* for synthesis. This modular
structure makes it easy to understand how each component contributes to the agent’s
overall intelligence and allows researchers to extend the agent with additional tools or
more sophisticated reasoning capabilities.

Several features of the code above are worth emphasizing. First, it is fully vibe-coded —
coding agents are capable of writing simple programs like this in less than a minute. The
code is also structured in a clean and easily legible manner with clear documentation.
Second, a significant part of the code consists of natural language instructions to the LLM.
For example, lines 37 — 42 instruct the LLM to pick an appropriate FRED data series to
download and specifies the format. Lines 92 — 96 instruct the LLM to interpret the data
to formulate a response in natural language.

I hope that this simple example demystifies the "magic" of Al agents by showing that
they are, at their core, programs that combine LLM reasoning with systematic access to
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external tools. It also highlights practical considerations like APT calls (each question
requires two LLM calls), latency (the multi-step process takes several seconds), and the
importance of prompt engineering in getting reliable results from the reasoning engine.
Perhaps most importantly, it provides a foundation that researchers can build upon, adding
more data sources, more sophisticated analysis capabilities, or multi-agent coordination
to tackle more complex research questions.

The following example illustrates our simple agent in action:

Chat 7 (econdata.py agent): How is the US labor market doing?

=== THINK: LLM Call ===

Input:

What FRED series code would help answer this question?

Question: How is the US labor market doing?

Common FRED codes: UNRATE (unemployment), FPCPITOTLZGUSA (CPl inflation), GDP, DFF (fed funds
rate)

Return JSON: {"explanation": "why this helps", "series_code": "EXACT_FRED_CODE"}

Output:

{"explanation": "The unemployment rate (UNRATE) is a key indicator of labor market health, reflecting the
percentage of people actively seeking work but unable to find employment. It provides a broad gauge of labor
market conditions in the US.", "series_code": "UNRATE"}

=== ACT: FRED API Call ===

Fetching: UNRATE

Period: 2023-07-29 to 2025-07-28

Result: 24 data points

Latest: 4.10 Percent (2025-06-01)

=== OBSERVE: Data Analysis ===

{

"current_value": 4.1,

"current_date": "2025-06-01",

"units": "Percent"

}

=== RESPOND: LLM Call ===

Input:

Answer this question using the data:

Question: How is the US labor market doing?

Data: {

"current_value": 4.1,

"current_date": "2025-06-01",

"units": "Percent"

}

Provide a brief, clear answer citing specific numbers.

Output:

As of June 1, 2025, the US labor market has an unemployment rate of 4.1 percent. This figure indicates a
relatively healthy job market, as unemployment rates around 4 percent are generally considered low and typical
of a stable economy.

4.2.  From Linear Scripts to Complex LangGraph Agents

While our economic data retrieval agent demonstrates the core concepts of Al agents
effectively, it represents what we might call a "first-generation" approach to agent design.
The agent follows a rigid, linear path: think — act — observe — respond. This works
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well for straightforward queries, but real-world research often requires more flexibility.
What if the agent needs to fetch multiple data series? What if the initial data suggests
a follow-up query would be valuable? What if we want the agent to backtrack when it
realizes it’s pursuing an unproductive path?

LangGraph is a software package available in both python and JavaScript that addresses
these limitations by allowing for agents to operate as state machines with directed graphs
rather than linear sequences. The fundamental difference between the simple agent in the
previous subsection and LangGraph lies in how the agent’s workflow is structured. Our
linear implementation uses a simple orchestrator:

1| # Our linear implementation (lines 118-121 above)
2| def answer (self, question):
3| series_code = self.think(question)
4| data, units = self.act(series_code)
5| observations = self.observe(data, units)
6| response = self.respond(question, observations)
LangGraph transforms this into a graph structure with three key components:
1. State Management:. —  Instead of passing data between methods via parameters

and return values, LangGraph uses a centralized state object that flows through the entire
graph. Each step reads from and writes to this shared state.

2. Nodes:. — Each method becomes a node function that operates on the state:

1| def think_node(state: AgentState) -> AgentState:

2| # Extract question from state instead of parameter

3| question = state["question"]

4| # LLM logic to determine series_code

5 series_code = call_llm_for_series_code(question)

6| # Return updated state

7| return {"series_code": series_code}

3. Constructing the Graph:. —  After defining nodes, we build the graph by

connecting them:

graph = StateGraph(AgentState)
graph.add_node ("think", think_node)
graph.add_node("act", act_node)
graph.add_node ("observe", observe_node)
graph.add_node("respond", respond_node)
# Define the flow

graph.add_edge ("think", "act")
graph.add_edge("act", "observe")
graph.add_edge("observe", "respond")

© 0 N o oA W N
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However, unlike in our simple example, LangGraph can dynamically choose paths based
on the state. For instance, if the agent determines multiple data series are needed, it
could branch to a different analysis path without code modification.

In the appendix, we provide a complete but simplified LangGraph implementation of
our economic data retrieval agent that demonstrates these architectural principles while
maintaining clarity and brevity. The code blocks in the preceding points follow this
example. The implementation shows how the linear flow transforms into a graph structure
that provides a foundation for more sophisticated research applications.

Moreover, LangGraph offers several additional benefits for more complex agentic systems.
First, every state transition is traceable, making it easier to understand and debug complex
multi-step analyses. Researchers can see exactly what data the agent considered at each
step and why it made specific decisions. Second, LangGraph can save the state at each
node, enabling researchers to inspect the agent’s reasoning process, resume interrupted
analyses, or explore alternative paths from any decision point. Third, Adding new
capabilities is as simple as adding new nodes and edges. For example, multiple data
sources can be fetched in parallel by adding a branching path.

The key insight is that LangGraph transforms our procedural agent into a declarative
graph structure. Instead of hard-coding the sequence of operations, the user can define
the possible states and transitions, allowing the agent to navigate this space dynamically.
This becomes particularly powerful when building more complex research agents that
need to explore multiple hypotheses, handle various data sources, or adapt their strategy
based on intermediate findings.

4.8.  Building a Deep Research Agent Using LangGraph

Having explored the transition from linear scripts to graph-based architectures, we now
turn to implementing a more sophisticated research system that embodies the multi-agent
principles discussed in Section 3.3.2. The Deep Research agent presented here illustrates
how LangGraph enables the construction of systems that can autonomously pursue
complex research questions through parallel investigation, dynamic strategy adaptation,
and multi-stage synthesis. The full source code of the agent system is available in the
appendix and requires the user to sign up to both an LLM APT (in our example, OpenAT)
and to a search provider (here, Tavily).6

The architecture of our Deep Research agent mirrors the commercial systems described
earlier, but is less ambitious and at a scale suitable for understanding and experimentation.
Nonetheless, it is far more powerful than a simple LLM query. At its core, the system
implements a lead researcher that orchestrates multiple specialized sub-agents, each
pursuing different aspects of the research question in parallel. This design choice reflects
that complex research questions rarely have simple, linear paths to answers. Instead, they
require exploring multiple hypotheses, cross-referencing different sources, and synthesizing
findings across different domains.

We start by describing the agent’s set of state variables, which lies at the heart of
LangGraph-based architectures. Unlike our simple economic data agent, which maintains
minimal state variables between steps, the Deep Research agent tracks a rich state object

6A more comprehensive open-source agent “Open Deep Research” is also available from LangChain (2025).
For pedagogical reason, our implementation here focuses on simplicity.
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that includes the research plan, multiple subtasks, accumulated search results, analyses
from different perspectives, and the evolving synthesis. This state flows through the graph,
with each node reading from and contributing to the collective understanding. The formal
definition of the system’s state looks as follows (see lines lines 3747 in the full code in
the appendix):

class ResearchState(TypedDict):
question: str
research_plan: Dict[str, List[str]]
subtasks: List[Dict[str, strl]
search_results: List[Dict[str, anyl]
analysis_results: List[Dict[str, strll]
final_report: str

N o ook w N e

The code below constructs the graph. It shows how LangGraph allows users to
orchestrate a complex research workflow (see lines 82-108 in the full code):

1| def _build_graph(self) -> StateGraph:

2 """Construct the research workflow graph"""

3 workflow = StateGraph(ResearchState)

4

5 # Add nodes

6 workflow.add_node("lead_researcher", self.lead_researcher_node)
7 workflow.add_node ("spawn_subtasks", self.spawn_subtasks_node)
8 workflow.add_node ("search_agent", self.search_agent_node)

9 workflow.add_node("analysis_agent", self.analysis_agent_node)
10 workflow.add_node ("synthesis_agent", self.synthesis_agent_node)
11

12 # Define edges

13 workflow.set_entry_point("lead_researcher")

14 workflow.add_edge("lead_researcher", "spawn_subtasks")

15 workflow.add_edge ("spawn_subtasks", "search_agent")

16 workflow.add_conditional_edges (

17 "search_agent",

18 self.should_continue_searching,

19 {

20 "continue": "search_agent",

21 "analyze": "analysis_agent"

22 }

23 )

24 workflow.add_edge("analysis_agent", "synthesis_agent")

25 workflow.add_edge ("synthesis_agent", END)

26

27 return workflow.compile ()

This graph structure explicitly defines the flow of research from strategic planning
through parallel investigation to final synthesis. The conditional edges enable dynamic
behavior — depending on the state, the agent can loop through multiple search iterations be-
fore proceeding to analysis, adapting to the complexity of the research question. In the code
snippet above, the conditional edges are implemented through the should_continue_searching
method. They allow the agentic system to dynamically decide whether to continue
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gathering information or proceed to analysis based on the current state. This flexibility
proves essential when dealing with research questions: simple queries might require only a
few searches, while nuanced topics might demand extensive investigation across multiple
subtasks.

In the analysis phase, agents examine the findings in the context of the defined research
directions and questions. They can identify patterns, contradictions, and gaps — the
kind of higher-order thinking that distinguishes research from mere information retrieval.
The parallel execution of these analysis agents means that multiple perspectives on the
data develop simultaneously, potentially delivering insights that sequential processing
might miss. Finally, the synthesis_agent node performs perhaps the most challenging
task: integrating all the diverse findings into a coherent narrative. This node must
balance comprehensiveness with clarity and condense all the retrieved findings into a clear
narrative. Using a highly capable model here ensures that the final report maintains the
quality expected from a deep research system.

An architectural feature that makes the system more powerful is its extensive use of
parallel execution. The implementation leverages Python’s ThreadPoolExecutor to enable
parallel operation of search and analysis. For the former, multiple search queries can
execute simultaneously within each subtask. When the search__agent node activates, it
spawns multiple search threads by creating “future” tickets that are appended to a list of
all open tickets (search futures). The function “future.result()” in the penultimate line
waits until all parallel tasks have been executed before delivering the results.

# Perform parallel searches using ThreadPoolExecutor
search_futures = []
for query in subtask[’search_queries’]:

future = self.executor.submit(self._perform_search, query)

search_futures.append (future)

# Collect results from all parallel searches
for future in search_futures:
results = future.result ()
state[’search_results’].extend(results)
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This parallelism dramatically reduces search time — if each search takes 2 seconds and a
subtask has 3 queries, parallel execution saves 4 seconds per subtask. A similar form of
parallel analysis occurs in the analysis layer. Our implementation processes subtasks in
batches of three to minimize graph recursions while maintaining parallelism within each
batch. Commercial systems likely employ dozens of search agents investigating different
research directions simultaneously.

Our implementation also demonstrates an important optimization strategy: using
different models for different roles. The lead researcher, responsible for strategic planning
and final synthesis, uses a more capable model (GPT-4.1), whereas the analysis agents,
which perform a more straightforward task on a well-defined input, can use a smaller,
faster model (GPT-4.1-mini). This tiered approach can significantly reduce costs while
maintaining quality where it matters most — in strategic planning and final synthesis. The
following is the output the agent generated in response to the default question in the code:
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Chat 8 (deepresearch.py): What are the labor market effects of transformative AI expected to be?

[performed approximately 1 minute of analysis]
Lead Researcher: Developing research strategy...
Research strategy developed with 3 directions
Creating research subtasks...

Created 5 focused research subtasks

Wil execute ~15 searches across all subtasks
Search Agent: Processing subtasks 1-3/5

Batch complete: collected 9 search results
Search Agent: Processing subtasks 4-5/5

Batch complete: collected 6 search results
Analysis Agents: Analyzing search results...
Completed analysis of 5 subtasks

Synthesis Agent: Creating final report...
Research report completed!

The Labor Market Effects of Transformative AI: A Comprehensive Research Synthesis

Executive Summary

Transformative artificial intelligence (AI) is rapidly reshaping global labor markets, with profound
implications for occupational structures, wage dynamics, and workforce adaptation. This report
synthesizes recent empirical research and expert analyses to assess the expected labor market effects of
transformative Al. Key findings include:

- Occupational Displacement and Creation: Routine, repetitive, and some creative jobs are
most susceptible to automation, while new roles are emerging in Al development, oversight, and
augmentation. By

2030, up to 30% of U.S. jobs may be automated, with 60% experiencing significant task modification
[National University, 2024].

- Wage and Inequality Dynamics: Al adoption is driving wage polarization, benefiting high-skilled
workers and exacerbating income inequality. Urban and tech-centric regions are seeing job growth,
while

rural and low-skill sectors face stagnation or decline [Veritone, 2025; Brookings, 2024].

- Labor Market Adaptation and Policy Response: Reskilling programs and social safety nets
are essential but have mixed effectiveness. Success depends on targeted, well-funded, and experiential
approaches, as well as robust social protections [Brookings, 2024; HBR, 2023].

- Synthesis: The net effect of transformative Al is a dual labor market: expanding opportunities for
high-skill workers while increasing displacement risks for low-skill and routine occupations. Without
proactive policy and workforce development, inequality is likely to worsen.

Recommendations include prioritizing targeted reskilling, strengthening social safety nets, fostering
human-AT collaboration, and investing in longitudinal research to monitor labor market transitions.
1. Occupational Displacement and Creation

1.1. Jobs Most at Risk

[report truncated for space reasons]

Our self-made deep research system successfully compiled a report complete with real
citations, at a total cost of approximately 1 cent in OpenAl tokens and 15 Tavily search
queries. The contrast with commercial Deep Research systems is instructive as the
analysis is clearly less sophisticated. While Google’s Gemini Deep Research might spawn
dozens of parallel sub-agents processing hundreds of sources in total, our implementation
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typically handles 5-6 subtasks with controlled parallelism — sufficient for understanding
the architecture while remaining computationally tractable. The core principles remain
identical: decomposition of complex questions, parallel investigation, and systematic
synthesis. Another reason for the superior performance of commercial Deep Research
systems is that they have been optimized via reinforcement learning on millions of attempts
to learn when to pick which tool and when to optimally continue the research process
versus when to stop research in a particular direction.

Our implementation also hints at natural extensions. We could use more sophisticated
(and expensive) LLMs as orchestrator. Additional parallel processing could be added at
the subtask level, allowing multiple research directions to be explored simultaneously.
Specialized analysis nodes could run in parallel for different content types — statistical anal-
ysis for quantitative data, sentiment analysis for policy documents, and citation network
analysis for academic literature could all process the same search results concurrently.

Perhaps most importantly, our simple Deep Research agent demonstrates that sophisti-
cated Al research systems are not black boxes accessible only to major tech companies.
With roughly 300 lines of well-structured Python code — much of it natural language
prompts — researchers can build systems that embody the same architectural principles as
cutting-edge commercial offerings. The explicit parallelism in the implementation shows
how multi-agent systems achieve their impressive performance: not through any single
breakthrough, but through the coordinated effort of multiple specialized agents working
in concert.

As with our simpler examples, this code was largely vibe-coded with assistance from
AT coding agents, underscoring a recursive truth: Al agents are now capable of building
AT agents. This capability spiral, where each generation of tools enables the creation of
still more sophisticated successors, suggests that the pace of advancement in Al-assisted
research will likely accelerate rather than plateau.

4.4.  Open Protocols for Agent Interoperability

As AT agents are becoming increasingly sophisticated and specialized, they need stan-
dardized communication protocols. Just as the internet required the HyperText Transfer
Protocol (HTTP) standard to enable communication between different systems, the emerg-
ing ecosystem of Al agents requires protocols that enable seamless interaction between
agents built on different frameworks, hosted by different providers, and specialized for
different tasks. Without such standards, the challenge is exponential: every system uses
different data formats, authentication methods, and error handling approaches, meaning
N agents connecting to M tools requires NxM custom integrations. With standardized
protocols, this reduces to just N+M connections. Two recent open protocols, the Model
Context Protocol (MCP) and the Agent2Agent (A2A) Protocol, address complementary
aspects of this challenge and have significant implications for how researchers can build
and deploy Al systems.

THE MODEL CONTEXT PrOTOCOL (MCP): CONNECTING AGENTS TO
RESOURCES, TOOLS AND DATA

The Model Context Protocol was introduced by Anthropic in November 2024 (Anthropic,
2024) and has been adopted by all the major AT labs since. It has emerged as the de-facto
standard to build secure, two-way connections between Al agents and the resources, tools,
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and data from another party. Consider the challenge faced by a researcher employing an
AT assistant to analyze economic data. Without MCP, connecting the assistant to each
data source — FRED, other institutional databases, private research repositories — requires
custom integration code. Every new data source requires its own type of implementation
(as we encountered in our FRED example above), making fully connected systems difficult
to scale. MCP solves this by providing a universal connection standard, much like USB-C
provides a universal physical connection for devices.

The protocol operates on a client-server architecture where MCP servers offer resources,
tools, and data sources, while MCP clients (typically AI agents or applications) can
connect to these servers to access their capabilities. For example, an economic institution
like a central bank or an individual researcher compiling a new data source can create an
MCP server to make their data accessible to any Al system or agent without requiring
users to develop dataset-specific knowledge or API details. The MCP server can act as a
standardized gateway (Model Context Protocol Working Group, 2025).

At a technical level, creating an MCP server requires building a standardized gateway
to the data that is offered, similar to creating a basic website: one defines which datasets
to provide (e.g., economic statistics), what analytical tools to provide (e.g., time series
analysis or data filtering), and what access permissions to implement. The MCP framework
handles the complex communication protocols automatically, so developers can focus on
specifying what data to share rather than how to share it. IT departments can implement
a basic MCP server in a matter of days, as it primarily involves wrapping existing data
access methods in the standard MCP format — much like putting a universal adapter on
existing electrical equipment rather than rewiring the entire system.

Once an MCP server is operational, researchers can connect to it through two primary
modes. For local use (e.g., within an institution or on an individual computer), users
simply add the server configuration to their AI application (like Claude Code or Desktop),
similar to adding a printer to their computer — the Al assistant then gains direct access to
query datasets, run analyses, and retrieve results from the MCP server through natural
language commands. For public access, institutions can deploy their MCP servers on the
internet with appropriate authentication, allowing external researchers to connect after
obtaining credentials, thereby providing automated access to valuable research data while
maintaining security and usage controls.

At the time of writing — less than a year after the protocol was established — close to
10,000 MCP servers were available for Al agents to connect to. For economists, general-
use MCP servers provide Al agents automated access to the user’s file system, email
systems (e.g., Gmail or Outlook), local databases, GitHub, or apps like Slack. There are
also economics-specific MCPs, for example third-party wrappers that provide access to
FRED or IMF data available on the website pulsemcp.com that users can connect to so
that their AI agents or chatbots can automatically access the relevant data. I expect that
the institutions behind these economic databases will soon offer their own MCP servers.
The rapidly expanding set of MCP servers will continue to expand the availability of
high-quality economic resources to Al agents to enable them to manage larger parts of
the research lifecycle.


pulsemcp.com
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THE AGENT2AGENT PROTOCOL: ENABLING MULTI-AGENT COLLABORATION

While MCP focuses on connecting agents to data, the Agent2Agent (A2A) protocol,
launched by Google with several dozen industry partners in April 2025, enables Al agents
to communicate with each other, securely exchange information, and coordinate actions
on top of various enterprise platforms or applications. The protocol was transferred to the
Linux Foundation to make it more independent in June 2025. It addresses a different but
equally important challenge, how specialized agents can work together on complex tasks.

The A2A protocol enables several key capabilities. For each participating agent, Agent
Cards detail the agent’s capabilities and connection information, allowing other agents
to understand what tasks it can perform and how to transact with it. The protocol
supports everything from quick queries between agents to long-running collaborative
research projects. A tangible example of a (fictitious) Agent Card is the following:
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{
"agent_id": "panel_regression_agent",
"name": "Panel Regression Specialist",
"endpoint": "https://www.genaidecon.org/agents/panel",
"defaultInputModes": ["csv", "xlsx", "stata_dta"],
"defaultOutputModes": ["regression_table", "latex", "json"],
"capabilities": [
{
"skill": "fixed_effects",
"description": "Run fixed effects regression with entity and
time FE"
1,
{
"skill": "random_effects",
"description": "Perform random effects estimation with Hausman
test"
}
]
}

These Agent Cards can be posted in public registries, under well-known URLs, or in
pre-configured allow-lists of an orchestrator agent so that other agents can discover the
capabilities that are on offer.

PRACTICAL IMPLICATIONS FOR ECcONOMIC RESEARCH

While economic research is just beginning to explore these protocols, industry has
already deployed them at scale. MCP powers thousands of integrations including GitHub
for code management, Slack for team communications, and Jira for project tracking—
enabling Al agents to autonomously manage software development workflows. A2A has
seen rapid adoption in customer service, where specialized agents handle billing, technical
support, and scheduling in parallel, and in enterprise automation, orchestrating document
processing, compliance checking, and approval workflows across departments. These
deployments demonstrate that the infrastructure for sophisticated multi-agent research
systems already exists.
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The described protocols also create powerful possibilities for economic research workflows.
Consider a research project investigating the employment effects of Al adoption. A
lead research agent may connect to multiple data sources through MCP servers — BLS
employment statistics, company financial reports, patent databases, or academic paper
repositories. Each connection uses the same standardized protocol, eliminating integration
complexity. The lead agent can then delegate subtasks to specialized agents, e.g., data
cleaning agents, financial analysis agents, econometric agents, visualization agents, etc.
Despite being built by different creators on different systems, agents can communicate
through A2A; sharing results and coordinating their efforts.

Both protocols are also usable with LangGraph. MCP enjoys native support through
the langchain-mcp-adapters package, which seamlessly converts MCP tools into LangGraph-
compatible formats. A2A integration currently requires wrapping LangGraph agents with
A2A server code, but the process is well-documented with official examples.

Beyond building and connecting agents, rigorous evaluation systems are essential for
production deployment. MLflow 3, released in June 2025, exemplifies the emerging in-
frastructure for agent monitoring, offering specialized functionality for tracking agent
performance, comparing different prompting strategies, and evaluating multi-step work-
flows. The platform enables researchers to systematically assess agent reliability across
tasks, measure drift in performance over time, and identify failure modes before they
impact research outcomes.

FUTURE DIRECTIONS

These protocols represent early steps toward a more interconnected automated Al
ecosystem. As they mature, I expect several developments in research: Common and
reusable agent patterns may emerge for literature review, data analysis, and paper writing.
Agents at different institutions could collaborate while respecting data privacy and access
controls, enabling new forms of distributed research. These protocols may also enable
markets for specialized agents in research and other domains.

5. Conclusions

This paper has documented the evolution from LLM-based chatbots to Al agents—
autonomous systems that plan, use tools, and execute multi-step research tasks. The
examples throughout demonstrate that we have crossed a critical threshold: economists
can now build sophisticated research assistants without technical expertise, agents can
autonomously conduct literature reviews across hundreds of sources, and "vibe coding"
enables the creation of complex analytical tools through natural language alone. These
are not future possibilities but present realities, as the working code examples in this
paper attest.

The trajectory from reactive chatbots to proactive agents reveals something profound
about the nature of research automation. When Al systems can decompose complex
questions, gather information autonomously, and synthesize findings without constant
human oversight, we are witnessing the early stages of what may become comprehensive
research automation. The Deep Research agents that today compile existing knowledge
may tomorrow generate novel hypotheses and test them. The coding agents that currently
implement our specifications may soon design their own research methodologies.
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However, humans are not yet obsolete in research. While current LLM-based Al systems
excel at synthesis and implementation, they have yet to consistently demonstrate genuine
creativity. The spark of insight that identifies a truly novel research question, the intuition
that connects disparate phenomena, the judgment that recognizes profound implications—
these remain at present human contributions. Al agents are superb research assistants
but not yet independent researchers.

The gap, however, may be narrowing faster than we anticipate. The capability spiral
documented in this paper—where Al helps build better AI, which enables still more
sophisticated systems—suggests an accelerating pace of development. If human-level
AT emerges across all cognitive domains, as many Al pioneers predict, the automation
of economic research becomes not a question of if but when. The multi-agent systems
that today require human orchestration may tomorrow coordinate themselves, pursuing
research agendas we can barely imagine.

For economists, this presents both immediate opportunities and long-term challenges. In
the near term, Al agents offer unprecedented leverage: junior researchers can accomplish
what once required entire teams, established scholars can pursue more ambitious agendas,
and technical barriers that once excluded many from computational work are dissolving.
The democratization of research capabilities may lead to a golden age of discovery, as
more minds can test more hypotheses with fewer constraints.

Yet this rapid integration of AI into research workflows also brings unexpected vulner-
abilities. Gans (2025) documents how authors can manipulate Al-powered peer review
systems through prompt injection — a phenomenon that reveals both the speed of Al
adoption in academia and the emergence of new forms of strategic behavior. While his
analysis suggests such manipulation might paradoxically improve welfare by preventing
over-reliance on automated reviews, it underscores a broader point: as Al agents become
more central to research processes, we must anticipate and address novel forms of gaming
and manipulation that were impossible in purely human systems.”

More fundamentally, we must prepare for a transformation of our discipline. As research
generation becomes increasingly automated, the economist’s role will shift from producing
analysis to defining values, interpreting implications, and ensuring that economic insights
serve human flourishing. The questions that will matter most—what problems deserve
investigation, how should we evaluate trade-offs, what constitutes progress—will remain
irreducibly human even as the technical machinery of research becomes artificial.

The practical implications are clear. First, economists should embrace these tools now,
not merely to boost productivity but to understand their capabilities and limitations.
Building your own agents, as this paper demonstrates, demystifies the technology and
reveals both its power and its boundaries. Second, we must invest in the uniquely human
aspects of economic thinking—ethical reasoning, creative problem formulation, and wisdom
about social welfare—that will remain essential even in an Al-saturated future.

Finally, economists have a special responsibility. We understand incentives, market
dynamics, and resource allocation. We grasp the subtleties of human behavior and social
coordination. These insights will be crucial for the transition to an Al-augmented research

"Beyond their immediate research applications, Al agents may fundamentally reshape economic markets
and institutions as they evolve from tools to economic actors in their own right (see, e.g., Hadfield and Koh,
2025; Rusak et al., 2025).
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ecosystem. By engaging deeply with Al agents today—building them, using them, and
thinking carefully about their implications—we can help shape a future where artificial
intelligence amplifies rather than replaces human economic wisdom.

The competition period with Al that Kasparov experienced for chess in the 1990s may
be beginning for economic research. Unlike chess, however, the stakes extend far beyond
academic prestige. How we integrate Al agents into economic research will influence how
society understands and addresses its most pressing challenges. The tools documented in
this paper are not just productivity enhancers but harbingers of a transformed discipline.
Our task is to guide that transformation wisely, ensuring that as our artificial colleagues
grow more capable, our human contribution grows more thoughtful, more ethical, and
more focused on what truly matters for human well-being.

APPENDIX A: ADDITIONAL EXAMPLES
Al. Data Retrieval Agent Using LangChain

The following LangGraph implementation transforms the class-based agent from 4.4.1
into a graph of interconnected functions. The code begins by defining ‘AgentState‘, a
TypedDict that replaces our method parameters and return values with a single state
object containing all data needed throughout the analysis. Each of our original methods
becomes a node function that receives this state, performs its operation, and returns only
the fields it needs to update. For instance, ‘think node‘ extracts the question from state
and returns just the series_ code, while ‘act_node‘ takes that series_code and adds the
fetched data values. This pattern makes data flow explicit and traceable.

The graph construction in ‘create_fred_agent()‘ illustrates the declarative nature of
LangGraph. Rather than calling methods sequentially, we define nodes and edges that
specify possible execution paths. The ‘add_ edge‘ calls create a linear flow for this simple
example, but this structure easily extends to support branching, loops, and parallel
execution. When we invoke the compiled graph with an initial question, LangGraph
automatically manages the state updates as execution flows through each node, ultimately
producing our final response. This separation of logic (nodes) from flow (edges) is what
enables LangGraph agents to handle complex, adaptive research workflows that would be
cumbersome to implement in traditional procedural code.

econdata_langgraph.py: FRED Agent with LangGraph

A concise LangGraph implementation demonstrating graph-based agent
architecture

for economic data retrieval. Maintains the same flow as econdata.py but
with

explicit state management and graph structure.

Setup:

1. pip install openai fredapi python-dotenv colorama langgraph grandalf "
langsmith==0.3.45"

2. Use an .env file with FRED_API_KEY and OPENAI_API_KEY

import os, json
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from datetime import datetime, timedelta
from typing import TypedDict, Optional

from dotenv import load_dotenv

from fredapi import Fred

from openai import OpenAl

from langgraph.graph import StateGraph, END

load_dotenv ()

# State definition - data that flows through the graph
class AgentState (TypedDict):

question: str

series_code: Optional[str]

data_value: Optional[float]

data_date: Optionall[str]

units: Optionall[str]

response: Optionall[str]

error: Optionall[str]

# Initialize clients
fred = Fred(api_key=os.getenv (’FRED_API_KEY’))
1lm = OpenAI(api_key=os.getenv(’0PENAI_API_KEY’))

# Node functions - each represents a step in our analysis
def think_node(state):
"""Determine which FRED series to fetch based on the question.
prompt = f"""What FRED series code would help answer this question?
Question: {state[’question’]}

Common FRED codes: UNRATE (unemployment), FPCPITOTLZGUSA (CPI inflation),
GDP, DFF (fed funds rate)

Return JSON: {{"series_code": "CODE"}}"""

response = llm.chat.completions.create(
model="gpt-4.1",
messages=[{"role": "user", "content": promptl}],
response_format={"type": "json_object"}

)

result = json.loads(response.choices[0].message.content)

return {"series_code": result[’series_code’]}

def act_node(state):
"""Fetch data from FRED API."""

try:
# Get series info and recent data
info = fred.get_series_info(state[’series_code’])
data = fred.get_series(
state[’series_code’],
observation_start=datetime.now() - timedelta(days=365)
)

return {
"data_value": float(data.iloc[-1]),

45
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68 "data_date": data.index[-1].strftime("%Y-%m-%d"),

69 "units": info[’units’]

70 }

71 except Exception as e:

72 return {"error": str(e)}

73

74| def respond_node(state):

75 """Generate natural language response from the data."""

76 if state.get(’error’):

77 return {"response": f"Error: {state[’error’]}"}

78

79 prompt = f"""Answer this question using the data:

80 Question: {state[’question’]}

81 Data: {state[’data_value’]} {state[’units’]} as of {state[’data_date’]}
nnn

82

83 response = llm.chat.completions.create(

84 model="gpt-4.1",

85 messages=[{"role": "user", "content": prompt}]

86 )

87

88 return {"response": response.choices[0].message.content}

89

90| # Build the graph
91| def create_fred_agent():

92 """Construct the agent graph."""

93 graph = StateGraph(AgentState)

94

95 # Add nodes

96 graph.add_node ("think", think_node)
97 graph.add_node("act", act_node)

98 graph.add_node ("respond", respond_node)
99

100 # Define flow

101 graph.add_edge ("think", "act")

102 graph.add_edge("act", "respond")

103 graph.add_edge("respond", END)

104

105 # Set entry point

106 graph.set_entry_point ("think")

107

108 return graph.compile ()

109

110 | # Example usage
n

111 | if __name__ == __main__":

112 agent = create_fred_agent ()

113 question = "How is the US labor market doing?"
114 result = agent.invoke({"question": questionl})
115

116 print (f"\nQuestion: {question}")

117 print (f"Answer: {result[’response’]}")

118

119 # Show graph structure

120 print ("\nGraph Structure:")

121 print (agent.get_graph() .draw_ascii())
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A2. Deep Research Agent

The following implementation demonstrates a sophisticated multi-agent research system
that embodies the principles discussed in Section 3.3.2. The architecture is discussed in
Section 4.4.3. Unlike the simple data retrieval agent above, this system orchestrates multi-
ple specialized agents to pursue complex research questions through parallel investigation
and synthesis. The code showcases how LangGraph enables the construction of research
systems that autonomously decompose questions into subtasks, execute dozens of searches
in parallel, analyze findings from multiple perspectives, and synthesize comprehensive
reports. At approximately 370 lines of code, it illustrates that powerful AI research
systems are accessible to researchers and developers, not just major tech companies.

The implementation centers around a rich ResearchState object that tracks the research
plan, subtasks, search results, analyses, and the evolving synthesis as it flows through the
graph. The graph structure, defined in _build_graph(), creates a workflow from strategic
planning through parallel investigation to final synthesis. Key architectural features
include the use of ThreadPoolExecutor for parallel search execution (up to 10 concurrent
operations), batch processing of subtasks to minimize graph recursions while maximizing
parallelism, and a tiered approach to model selection, using GPT-4.1 for strategic planning
and synthesis while employing GPT-4.1-mini for the more straightforward analysis tasks.
The conditional edges in the graph enable dynamic behavior, allowing the system to
adapt its search depth based on the complexity of findings. This design demonstrates how
multi-agent systems achieve their performance not through any single breakthrough, but
through the coordinated effort of specialized agents working in concert.

Text

2| deep_research_agent.py: Deep Research Agent for Economic Research using
LangGraph

4| A multi-agent system that performs comprehensive research on economic
topics through:

5/ 1. Lead Researcher - Develops research strategy and synthesizes findings
6| 2. Search Agents - Execute parallel searches across multiple sources

7| 3. Analysis Agents - Analyze results from different perspectives

8| 4. Synthesis Agent - Integrates all findings into a comprehensive report
9

10| Setup:

11| 1. pip install langchain-openai langgraph tavily-python python-dotenv
12| 2. Get API keys from:

13 - OpenAI: https://platform.openai.com/api-keys

14 - Tavily: https://app.tavily.com/

15| 3. Create .env file with your keys in the following format:
16 OPENAI_API_KEY=[enter key]

17 TAVILY_API_KEY=[enter key]
18 nnn

19
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import os

from typing import Dict, List, TypedDict, Annotated, Literal
import json

import asyncio

from concurrent.futures import ThreadPoolExecutor

from dotenv import load_dotenv

from langchain_openai import ChatOpenAI

from langchain_core.messages import HumanMessage, SystemMessage
from langgraph.graph import StateGraph, END

from langgraph.graph.message import add_messages

from tavily import TavilyClient

# Load environment variables
load_dotenv ()

class ResearchState(TypedDict):
"""State that flows through the research graph"""
question: str
research_plan: Dict[str, Listl[str]]
subtasks: List[Dict[str, strl]
search_results: List[Dict[str, anyl]
analysis_results: List[Dict[str, strll]
final_report: str
messages: Annotated[List, add_messages]
current_subtask: int
max_iterations: int

class DeepResearchAgent:
"""Multi-agent system for deep economic research"""

def __init__(self, openai_api_key: str = None, tavily_api_key:
None) :
# Use provided keys or fall back to environment variables
openai_key = openai_api_key or os.getenv(’0PENAI_API_KEY’)
tavily_key = tavily_api_key or os.getenv(’TAVILY_API_KEY?’)

if not openai_key:
raise ValueError ("OpenAI API key not found. Please set
OPENAI_API_KEY in .env file")
if not tavily_key:
raise ValueError("Tavily API key not found. Please set
TAVILY_API_KEY in .env file")

# Initialize LLMs

self.lead_llm = ChatOpenAI(
model="gpt-4.1",
temperature=0.1,
api_key=openai_key

)

self.analysis_1llm = ChatOpenAI(
model="gpt-4.1-mini",

temperature=0.1,

str
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api_key=openai_key

# Initialize tools

self.tavily = TavilyClient (api_key=tavily_key)

self.executor = ThreadPoolExecutor (max_workers=10) # Increased for
more parallelism

# Build the research graph
self.graph = self._build_graph()

_build_graph(self) -> StateGraph:
"""Construct the research workflow graph"""
workflow = StateGraph(ResearchState)

# Add nodes

workflow.add_node("lead_researcher", self.lead_researcher_node)
workflow.add_node ("spawn_subtasks", self.spawn_subtasks_node)
workflow.add_node ("search_agent", self.search_agent_node)
workflow.add_node("analysis_agent", self.analysis_agent_node)
workflow.add_node("synthesis_agent", self.synthesis_agent_node)

# Define workflow
workflow.set_entry_point("lead_researcher")
workflow.add_edge("lead_researcher", "spawn_subtasks")
workflow.add_edge ("spawn_subtasks", "search_agent")
workflow.add_conditional_edges (
"search_agent",
self .should_continue_searching,
{
"continue": "search_agent",
"analyze": "analysis_agent"

)
workflow.add_edge("analysis_agent", "synthesis_agent")
workflow.add_edge ("synthesis_agent", END)

return workflow.compile ()

lead_researcher_node(self, state: ResearchState) -> ResearchState:
"""Lead researcher develops the overall research strategy"""

print ("Lead Researcher: Developing research strategy...")

prompt = f"""Develop a research strategy for: {state[’question’]}

Create 3-4 research directions and key questions to investigate.
Focus on quality over quantity.

Return JSON:

{{
"research_directions": ["directionl", "direction2", "direction3
"1,
"key_questions": ["questionl", "question2", "question3"],
"data_requirements": ["datal", "data2", "data3"]
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response = self.lead_llm.invoke ([SystemMessage(content=prompt)])
research_plan = json.loads(response.content)

state[’research_plan’] = research_plan
state[’messages’].append (HumanMessage (content=f"Research plan: {
research_planl}"))

print (f"Research strategy developed with {len(research_plan[’
research_directions’])} directions™")

return state

spawn_subtasks_node (self, state: ResearchState) -> ResearchState:
"""Create specific subtasks based on the research plan"""
print ("Creating research subtasks...")

subtasks = []
directions = state[’research_plan’][’research_directions’]
questions = state[’research_plan’][’key_questions’]

# Diagonal pairing: each direction with corresponding question
for i, direction in enumerate(directions):
if i < len(questions):
subtask = {

"direction": direction,

"question": questions[i],

"status": "pending",

"search_queries": self._generate_search_queries(

direction, questions[i])
}
subtasks.append (subtask)

# Add cross-cutting combinations for depth
if len(directions) >= 2 and len(questions) >= 2:
subtasks.extend ([

{
"direction": directions [0],
"question": questions[1],
"status": "pending",
"search_queries": self._generate_search_queries(
directions [0], questions[1])
},
{
"direction": directions[1],
"question": questions[0],
"status": "pending",
"search_queries": self._generate_search_queries(
directions [1], questions[0])
}
1
state[’subtasks’] = subtasks

state[’current_subtask’] = 0
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state[’search_results’] = []
state[’analysis_results’] = []

print (f"Created {len(subtasks)} focused research subtasks")

total_searches = sum(len(subtask[’search_queries’]) for subtask in
subtasks)
print (£" Will execute ~{total_searches} searches across all

subtasks")
return state

_generate_search_queries(self, direction: str, question: str) ->
List[str]:

"""Generate specific search queries for a subtask"""

prompt = f"""Generate 2-3 search queries for:

Direction: {direction}

Question: {question}

Focus on recent studies, data, and expert analyses.
Return JSON: {{'"queries": ["queryl", "query2", "query3"]l}}

response = self.lead_llm.invoke ([SystemMessage (content=prompt)])
return json.loads(response.content)[’queries’][:3]

search_agent_node (self, state: ResearchState) -> ResearchState:
"""Execute parallel searches for current batch of subtasks"""

current_idx = state[’current_subtask’]

batch_size = 3 # Process 3 subtasks per graph iteration (not a
parallelism limit)

end_idx = min(current_idx + batch_size, len(state[’subtasks’]))

if current_idx < len(state[’subtasks’]):
print (f"Search Agent: Processing subtasks {current_idx + 1}-{
end_idx}/{len(state[’subtasks’])}")

# Execute all searches for this batch in parallel
all_search_futures = []
for idx in range(current_idx, end_idx):
subtask = state[’subtasks’][idx]
for query in subtask[’search_queries’]:
future = self.executor.submit(self._perform_search,
query)
all_search_futures.append(future)

# Collect results
for future in all_search_futures:
state[’search_results’].extend (future.result ())

# Update progress

for idx in range(current_idx, end_idx):
state[’subtasks’][idx][’status’] = ’searched’

state[’current_subtask’] = end_idx

print (f" Batch complete: collected {len(all_search_futures)}
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search results")
return state

def _perform_search(self, query: str) -> List[Dict]:
"""Perform a single search using Tavily API"""
try:
results = self.tavily.search(
query=query,
search_depth="basic", # Faster for pedagogical example
max_results=3, # Reduced for focused results
include_domains=None, # Search all domains
include_answer=True, # Include AI-generated answer
include_raw_content=False, # We want processed content
include_images=False
)
search_results = [{
"query": query,
"url": r.get("url", ""),
"title": r.get("title", "y,

"content": r.get("content", ""), # Full content, no
truncation
"score": r.get("score", 0)

} for r in results.get("results", [])]

# Add Tavily’s AI-generated answer if available
if results.get("answer"):
search_results.insert (0, {

"query": query,

"url": "Tavily AI Summary",
"title": "AI-Generated Summary",
"content": results["answer"],
"score": 1.0

b

return search_results

except Exception as e:
print (f"Search error for ’{queryl}’: {el}")
return []

def should_continue_searching(self, state: ResearchState) -> Literall["
continue", "analyze"]:
"""Decide whether to continue searching or move to analysis"""
if state[’current_subtask’] < len(state[’subtasks’]):
return "continue"

return "analyze"

def analysis_agent_node(self, state: ResearchState) -> ResearchState:
"""Analyze search results for each subtask in parallel"""
print ("Analysis Agents: Analyzing search results...")

analysis_futures = []

for subtask in state[’subtasks’]:
if subtask[’status’] == ’searched’:
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relevant_results = [r for r in state[’search_results’]
if r[’query’] in subtask[’search_queries’
1]
future = self.executor.submit (
self._analyze_subtask_results,
subtask,

relevant_results
)

analysis_futures.append ((subtask, future))

# Collect analysis results
for subtask, future in analysis_futures:
state[’analysis_results’].append ({
"subtask": subtask,
"analysis": future.result ()

b

print (f"Completed analysis of {len(state[’analysis_results’])}
subtasks")

return state

_analyze_subtask_results(self, subtask: Dict, results: List[Dict])

-> str:

"""Analyze results for a specific subtask"""

prompt = f"""Analyze these search results:

Direction: {subtask[’direction’]}

Question: {subtask[’question’]}

Results: {json.dumps(results, indent=2)}

Provide a comprehensive analysis (300-500 words) covering:

- Key findings and evidence

- Data and statistics

- Different perspectives

- Practical implications

Cite sources as [Title, URL].

response = self.analysis_llm.invoke([SystemMessage (content=prompt)
D

return response.content

synthesis_agent_node(self, state: ResearchState) -> ResearchState:

"""Synthesize all analyses into a comprehensive report"""

print ("Synthesis Agent: Creating final report...")
prompt = f£f"""Synthesize the research findings into a comprehensive
report.

Question: {state[’question’]}

Research Plan: {json.dumps(state[’research_plan’], indent=2)}
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Analysis Results: {json.dumps(state[’analysis_results’], indent=2)}

Write a well-structured research report (3-5 pages) that includes:
- Executive summary with key findings

- Analysis of each research direction

- Synthesis of insights across findings

- Recommendations and future research areas

Use citations in [Source, Year] format. Make it suitable for
executive audiences.

nwun

response = self.lead_llm.invoke ([SystemMessage (content=prompt)])
state[’final _report’] = response.content

print ("Research report completed!")
return state

async def research(self, question: str) -> str:
"""Execute the deep research process"""

initial_state = {
"question": question,
"research_plan": {},
"subtasks": [],
"search_results": [],
"analysis_results": [],
"final_report": "",
"messages": [],
"current_subtask": O,
"max_iterations": 10
}
# Run the graph with increased recursion limit
config = {"recursion_limit": 50}
final_state = await self.graph.ainvoke(initial_state, config=config
)

return final_state[’final_report’]

def shutdown(self):
"""Clean up resources
self.executor.shutdown(wait=True)

# Example usage
if __name__ == "_ _main__":
# Initialize and run research
agent = DeepResearchAgent ()
question = "What are the labor market effects of transformative AI

expected to be?"

print (f"Starting deep research on: {question}")
print ("-" * 80)




379 report = asyncio.run(agent.research(question))
380

381 print ("\n" + "="%80)

382 print ("RESEARCH REPORT")

383 print ("="%80)

384 print (report)

385

386 # Clean up resources

387 agent .shutdown ()
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