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The in-print appendices of the paper consist of Appendix A and Appendix B; hence, this
document begins with Appendix C.

C. Details for Banning Affirmative Action

This section substantiates the discussion in Section IV.A of the paper.

C.1. A Model of Affirmative Action

There are two potentially observable non-test dimensions, x = (x0, x1). Dimension x0 is
binary, with realizations in {r, g} (red and green). Dimension x1, which may represent some
aggregate of GPA and/or extra-curricular achievement, takes continuous values in R. Test
scores are binary, with values normalized to 0 and 1.

The college and society have identical preferences over all factors except for the type
dimension x0. Society does not care about this dimension, but all else equal, the college
wants to admit green types over red types.1 Specifically, we assume that

us(x, t) = x1 + t,

uc(x, t) = x1 + t+ β11x0=g − c,

with β > c > 0, and 11x0=g an indicator for green types. The parameter β is the bonus the
college gives to green types over red types. The parameter c is not essential to our analysis,
but it allows for the college and society to have different test-score bars for both red and
green students. It can be interpreted as the (opportunity) cost for a college of admitting
any student. We have normalized the analogous constant in society’s utility to zero. The
assumption β > c > 0 implies that the college has a lower test-score bar than society for
green types and a higher one for red types. Note that the the college’s ex-post utility is

u∗(x, t) = x1 + t+
β

1 + δ
11x0=g −

c

1 + δ
.

Let x0 = g with probability q ∈ (0, 1) and x0 = r with probability 1 − q. We assume
that the distribution of test scores depends on x only through x0: Pr(t = 1|x = (x0, x1)) =

px0 ∈ (0, 1). Our primary interest is in the case of pr > pg, meaning that green types, which

1 We could allow for society to have preferences over a student’s x0 dimension as well; what is important
is that the college favors green types more than society does.
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are favored by the college, have a worse distribution of test scores. This may correspond
to green students being an underrepresented demographic group, for instance. But we also
allow for the opposite case of pr < pg, in which the college’s favored group has a better
test score distribution. Here, green students may correspond to those from rich families,
who have better access to test preparation, and are favored by the college because of donor
considerations. If the green students correspond to legacy applicants, it may be that either
pr < pg or pr > pg.

We take x1 to be independent of both x0 and t. We also assume that x1 is uniformly
distributed over a large enough interval. Specifically, x1 ∼ U [x1, x1], with x1 < c−β−1 and
x1 > c. The inequality on x1 guarantees that there are students with x1 low enough that
neither the college nor society wants to admit them, even if they are otherwise as desirable
as possible (x0 = g and t = 1). The inequality on x1 guarantees that there are students with
x1 high enough that the college and society want to admit them even if they are otherwise
as undesirable as possible (x0 = r and t = 0).

We will consider the college’s choice over whether to be test mandatory or test blind in two
observability regimes. First, we allow both dimensions of x to be observable, which we call
affirmative action allowed. Then we consider only x1 to be observable, with the dimension
x0 unobservable; we call this regime affirmative action banned. We interpret the switch from
the first to the second regime as a policy change where society—which does not intrinsically
care about x0—bans the use of that dimension in admissions. This may represent a law or
court decision forbidding the use of race or legacy status in admissions.2

C.2. Results

Affirmative action allowed. Consider first the case when affirmative action is allowed.

Under test mandatory, the college can choose a distinct threshold of x1 above which
to admit students at each (x0, t) pair.3 This threshold is determined by setting the ex-post
utility to 0. Since the college favors green students, its x1 threshold will be lower by β/(1+δ)

2 Note that we assume that when x0 is unobservable to the college, it is also unobservable to society.
While society does not value x0 directly, the observability of x0 to society could still matter for the calculation
of the college’s social costs. This is because, if society can observe x0 but cannot observe test scores, then
it would expect a different test score for green students (pg) than red students (pr). We assume that a
law preventing the college from making inferences of this form also stop society from making/penalizing the
college based on such inferences.

3 Since we will be comparing test mandatory with test blind, it turns out to be convenient for our analysis
to take the perspective of x1 admissions thresholds rather than test score thresholds.
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for green students than for red students at each score level t. From society’s perspective,
the college uses an x1 threshold that is too low for green students and too high for red
students—but crucially, the gap between society’s preferred threshold and what the college
uses does not vary with t.4

Under test blind, the college chooses an admissions threshold on dimension x1 that de-
pends on the student’s type x0 but not the test score t. However, x0 is informative about t:
the college and society evaluate students of type x0 as if they have the expected test score
E[t|x0] = px0 . If pr > pg, the college’s preference for green students is countered by the
fact that green students have lower test scores on average than red students. So the college
will now use a lower x1 threshold for green students than red students only if its preference
parameter β is sufficiently large: specifically, if and only if β/(1 + δ) > pr − pb. Regardless,
the gap between the college’s chosen x1 threshold and society’s preferred threshold is the
same as under test mandatory, for any test score t—that gap did not depend on the test
score, and utilities are linear in the test score.

We can establish:

Proposition C.1. If affirmative action is allowed, then the college prefers test mandatory
to test blind.

The reason is that going test blind leads to a set of students that the college prefers less,
but in the current specification there is never a countervailing benefit of reducing disagree-
ment cost. The latter point stems from two sources. First, as noted above, for any given x0

type (and test score, under test mandatory), the gap between society’s preferred x1 threshold
and what the college uses is independent of the regime, even though these thresholds do shift
across regimes. Second, our assumption of a uniform distribution of x1 means that the total
disagreement cost for students of a given x0 type (at a given test score, or averaging over
test scores) only depends on the size of the gap.

Affirmative action banned. Now consider the case when affirmative action is banned.

Under test mandatory, the observed test score is informative about a student’s type x0.
Specifically, since there are a fraction q of green types in the population and the probability
of test score t = 0 for a student of type x0 is 1−px0 , we compute the probability of a student

4 The gap is (β − c)/(1 + δ) for green students and c/(1 + δ) for red students.
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being green conditional on t = 0 as

P 0
g := Pr(x0 = g|t = 0) =

q

q + (1− q) 1−pr
1−pg

.

Analogously, conditional on t = 1, the probability of a green type is

P 1
g := Pr(x0 = g|t = 1) =

q

q + (1− q) pr
pg

.

Let ∆ := P 0
g −P 1

g be the difference between these two quantities, i.e., a low test score implies
a ∆ higher probability of x0 = g than a high test score. Note that ∆ > 0 if pr > pg, whereas
∆ < 0 if pr < pg. Based on the inference of x0 from t, the college’s underlying utility gives
a bonus of β∆ to students with low test scores relative to those with high scores. As a
result, the college now values a high test score 1−β∆ units higher than a low score, whereas
society still values it 1 unit higher. That is, unlike when affirmative action is allowed, the
gap between society’s preferred x1 admissions threshold and what the college chooses now
varies with the test score.5 We impose the assumption that β∆ < 1, so the college still
prefers students with higher test scores.

There is now an avenue for test blind to help the college. Under test blind, since the
college evaluates all students as having Pr(x0 = g) = q and E[t] = qpg + (1 − q)pr, it is
as if the college’s utility from any student is x1 + E[t] + qβ − c. Analogously, it is as if
society’s utility from any student is x1 + E[t]. If c = qβ, which means the college and the
society seek to admit the same number of students overall, then it is as if their utilities agree,
and the college implements its preferred admissions policy—subject to being test blind and
no affirmative action—at zero disagreement cost. More generally, the disagreement cost is
always lower under test blind than test mandatory. Whether the reduced disagreement cost
outweighs the allocative loss from being test blind depends on parameters, specifically the
intensity of social pressure δ and the college’s bonus to low-scoring students β∆.

Proposition C.2. Suppose affirmative action is banned. If (1+ δ)(2β∆− 1) ≥ (β∆)2, then
the college prefers test blind, and otherwise the college prefers test mandatory.

5 Absent affirmative action, it is as if the college’s underlying utility from a student is x1 + t+ βP t
g − c,

and so the college’s gain from a student with test score t = 1 over t = 0 is 1 + βP 1
g − βP 0

g = 1− β∆. Given

its underlying utility, the college’s ex-post utility from a student is x1 + t +
βP t

g−c

1+δ . The gap between the

college’s chosen x1 admissions threshold with society’s preference is the term βP t
g−c

1+δ , which varies with t so
long as P 0

g ̸= P 1
g , or equivalently ∆ ̸= 0.
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Recall we assume β∆ < 1. Proposition C.2 implies that if β∆ ≤ 1/2, the college always
prefers test mandatory: the allocative losses (“admission mistakes”) from not observing test
scores are larger than those from simply implementing society’s preferred decision rule and
incurring no disagreement. When β∆ ∈ (1/2, 1), there is a trade-off, and test blind will be
preferred if the intensity of social pressure, δ, is sufficiently large. The following corollary
develops this and other comparative statics.

Corollary C.1. Suppose that affirmative action is banned (x0 is unobservable) and that a
low test score is associated with x0 = g (∆ > 0).

1. There is some β∗ ∈
(

1
2∆

, 1
∆

)
such that the college prefers test mandatory when β < β∗

and prefers test blind when β > β∗.

2. There is some ∆∗ ∈
(

1
2β
, 1
β

)
such that the college prefers test mandatory when ∆ < ∆∗

and prefers test blind when ∆ > ∆∗.

3. If β∆ ≤ 1/2, then the college prefers test mandatory for all δ; if β∆ ∈ (1/2, 1), then
there is some δ∗ > 0 such that the college prefers test mandatory when δ < δ∗ and
prefers test blind when δ > δ∗.

C.3. Society’s Preferences

We now consider society’s payoff under different affirmative action and testing regimes.
Society’s realized utility for an individual student is Aus(x, t), where the dummy variable A

indicates whether the student is admitted. We assume that society’s objective is to maximize
its expected utility across the pool of applicants.

Proposition C.3. Society’s preferences over affirmative action and testing regimes are as
follows:

1. Fixing the testing regime as mandatory or blind, society prefers banning affirmative
action to allowing affirmative action.

2. Fixing affirmative action as banned or allowed, society prefers test mandatory to test
blind.

3. Suppose society chooses the affirmative action regime and then the college chooses the
testing regime. Then banning affirmative action can harm society. In particular, if
β∆ ∈ (1/2, 1), there exist thresholds 0 < δ ≤ δ < ∞ such that (i) if affirmative action
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is banned, the college chooses test blind if δ > δ, and (ii) society is harmed by banning
affirmative action if δ > δ, while it benefits if δ < δ.6

The first two parts of the proposition are intuitive, since society does not want the ad-
mission decision to depend on whether a student is red or green (which suggests part 1) but
does want the decision to depend on the test score (which suggests part 2). If society could
choose both the testing and affirmative action regimes, it would ban affirmative action and
choose test mandatory. However, part 3 of the proposition cautions that if society chooses
the affirmative action regime and the college subsequently chooses the testing regime, society
can be worse off by banning affirmative action. Specifically, when δ is large enough, banning
affirmative action backfires because the college’s response of going test optional results in
a student pool that society likes less than under test mandatory and affirmative action al-
lowed. Indeed, as δ gets arbitrarily large, society’s payoff is arbitrarily close to society’s first
best when affirmative action is allowed and there is mandatory testing, while it is bounded
away when affirmative is banned and the college goes test blind. But when δ is intermediate
(between the thresholds δ and δ in Proposition C.3 part 3), society is better off by banning
affirmative even though it results in the college going test blind.7

C.4. Proofs for Results on Banning Affirmative Action

As a preliminary observation, we can write the college’s loss relative to first best as its
allocative loss plus the cost of social pressure. At a given (x0, t) pair of test scores and group
memberships, the assumption of a uniform distribution over x1 implies that the college’s
allocative loss depends only on the difference between the college’s chosen x1-cutoff for
admission and the college’s ideal x1 cutoff. Specifically, let f := 1

x1−x1
be the (constant)

density of the x1 distribution on its support. If the college’s chosen cutoff is r above its ideal
cutoff, then its allocative loss on this (x0, t) pair is∫ r

0

fxdx =
f

2
r2. (C.1)

Society’s (allocative) loss is given by the same formula, when the chosen cutoff is r above
society’s preferred cutoff.

6 If β∆ ≤ 1/2, the college never goes test blind, and so, by part 1 of the proposition, society always
benefits from banning affirmative action.

7 It is possible that δ = δ, in which case whenever a ban on affirmative action leads to test optional,
society is harmed by the affirmative-action ban.
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Proof of Proposition C.1. Suppose that affirmative action is allowed. Here, there is no
interaction between the college’s decisions at different realizations of x0. So, it suffices to
show that test mandatory would be preferred to test blind for any fixed x0 = x′

0 in {r, b}.

Fixing x0 = x′
0, let h := uc(x′

0, x1, t)− us(x′
0, x1, t) = β11x′

0=g − c be the difference between
the college’s and society’s utility for admitting a student of type x0 = x′

0, which does not
depend on x1 or t. It then holds that uc(x′

0, x1, t)−u∗(x′
0, x1, t) =

δ
1+δ

h, and that u∗(x′
0, x1, t)−

us(x′
0, x1, t) =

1
1+δ

h. Given its information, the college sets x1 admissions cutoffs at the value
of x1 setting the expectation of u∗(x′

0, x1, t) to 0. Note that the college’s ideal x1-cutoff for
students in group x0 = x′

0 with test score t is −t− h, whereas society’s ideal x1-cutoff is −t.

The college’s loss under test mandatory. At (x′
0, t), the college’s chosen x1-cutoff for

admission is δ
1+δ

h above its ideal point, yielding allocative loss (from (C.1)) of

f

2

h2δ2

(1 + δ)2
. (C.2)

Similarly, the college’s chosen x1-cutoff for admission is − 1
1+δ

h above society’s ideal point,
leading to an allocative loss for society of f

2
h2

(1+δ)2
. The college then pays a social pressure

cost equal to δ times that, or

f

2

δh2

(1 + δ)2
. (C.3)

Both of these expressions are independent of t, meaning that these expressions also represent
the college’s losses averaged over test scores.

The college’s loss under test mandatory, for students with x0 = x′
0, is the sum of (C.2)

and (C.3).

The college’s loss under test blind. With unobservable test scores, the players evaluate
students of type x0 = x′

0 as if they have the expected test score of px′
0
. The college’s chosen

x1 cutoff for students of type x0 = x′
0 sets u∗(x′

0, x1, px′
0
) to 0, i.e., a cutoff of x1 = −px′

0
− h

1+δ
.

To calculate the college’s allocative losses, we compare the college’s chosen (test-independent)
x1 admissions cutoffs to its (test-dependent) ideal cutoffs. Recall that the college’s ideal cut-
off at test score t is x1 = −t − h. So at t = 1, the college’s chosen cutoff is 1 − px′

0
+ δ

1+δ
h

above its ideal point; at t = 0, the college’s chosen cutoff is −px′
0
+ δ

1+δ
h above its ideal
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point. The college’s expected allocative loss over test scores, once again plugging into (C.1),
is therefore given by

px′
0

f

2

(
1− px′

0
+

δ

1 + δ
h

)2

+ (1− px′
0
)
f

2

(
−px′

0
+

δ

1 + δ
h

)2

=
f

2

h2δ2

(1 + δ)2
+

f

2
px′

0
(1− px′

0
). (C.4)

To calculate social costs, we compare the college’s chosen x1 admissions cutoff not to
society’s ideal cutoff, but to society’s preferred cutoff given that test scores are not observed.
Society’s preferred x1-cutoff is given by −px′

0
. The chosen cutoff is − h

1+δ
above society’s

preferred cutoff. We can now plug into (C.1) to calculate society’s loss relative to its preferred
cutoff (given its information) as f

2
h2

(1+δ)2
. The college’s social pressure cost is δ times that, or

f

2

δh2

(1 + δ)2
. (C.5)

The college’s loss under test blind, for students with x0 = x′
0, is the sum of (C.4) and

(C.5).

Comparison. Comparing expressions (C.3) and (C.5), the social pressure cost under test
blind is identical to that under test mandatory. Comparing expressions (C.2) and (C.4), the
allocative loss is higher under test blind. Hence, the college prefers test mandatory.

Proof of Proposition C.2. Suppose that affirmative action is banned. Let ET := E[t] =
qpr + (1 − q)pg be the average test score in the population, i.e., the share with test score
t = 1. Recall that P t

g = Pr(x0 = g|t). We will now calculate the college’s loss in each testing
regime.

In each case, we will evaluate the college’s allocative loss relative to a benchmark where
the college must make decisions independently of the unobservable x0 type. The college’s
ideal cutoff at test score t, given that it must pool together students across the two x0 types,
is −t− βP t

g + c.

The college’s loss under test mandatory. Society’s ideal x1-cutoff for admitting a
student of with test score t is −t. The college’s chosen cutoff, setting the expected ex post
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utility to 0, is −t− 1
1+δ

(βP t
g − c).

To calculate the allocative loss, observe that the college’s chosen cutoff is δ
1+δ

(βP t
g − c)

above its ideal cutoff at test score t. Plugging into (C.1), its allocative loss across the two
test scores is given by

(1− ET )
f

2

(
δ

1 + δ
(βP 0

g − c)

)2

+ ET
f

2

(
δ

1 + δ
(βP 1

g − c)

)2

. (C.6)

To calculate the loss due to social pressure, observe that the chosen x1-cutoff is − 1
1+δ

(βP t
g−

c) above society’s preferred cutoff. The college’s expected loss due to social pressure (plugging
this difference into (C.1) for each test score, taking expectation over test scores to find
society’s loss, and then multiplying by δ) is therefore

δ(1− ET )
f

2

(
1

1 + δ
(βP 0

g − c)

)2

+ δET
f

2

(
1

1 + δ
(βP 1

g − c)

)2

. (C.7)

The college’s total loss is (C.6) plus (C.7).

The college’s loss under test blind. The average test score is ET , and so society’s
preferred x1-cutoff is −ET . The college’s chosen cutoff, setting the expected ex post utility
to 0, is −ET − 1

1+δ
(βq − c), where q is the probability of x0 = g.

Again, we calculate the college’s allocative loss relative to its ideal point with observable
t but unobservable x0. At test score t, the chosen cutoff minus the ideal cutoff is

t− ET + βP t
g −

qβ

1 + δ
− cδ

1 + δ

Plugging into (C.1) and taking the expectation across test scores, the college’s allocative loss
is given by

(1− ET )
f

2

(
−ET + βP 0

g − qβ

1 + δ
− cδ

1 + δ

)2

+ ET
f

2

(
1− ET + βP 1

g − qβ

1 + δ
− cδ

1 + δ

)2

.

(C.8)

The difference between the college’s chosen cutoff and society’s preferred cutoff is − 1
1+δ

(βq − c).
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Plugging into (C.1) and multiplying by δ, the college’s loss from social pressure is

f

2

δ(βq − c)2

(1 + δ)2
. (C.9)

The college’s total loss is (C.8) plus (C.9).

Comparison. The net benefit of choosing test blind rather than test mandatory is given
by the loss from test mandatory minus the loss from test blind, i.e.,

(C.6) + (C.7) − (C.8) − (C.9).

Substituting in q = (ET )P 1
g + (1− ET )P 0

g and ∆ = P 0
g − P 1

g and then simplifying, we can
rewrite this net benefit as

f

2

ET (1− ET )

1 + δ

(
(1 + δ)(2β∆− 1)− (β∆)2

)
.

The above expression is weakly positive if and only if (1 + δ)(2β∆− 1) ≥ (β∆)2.

Proof of Corollary C.1. Suppose that affirmative action is banned. Proposition C.2 es-
tablishes that the college prefers test blind to test mandatory if and only if

(1 + δ)(2β∆− 1) ≥ (β∆)2. (C.10)

Recall we maintain the assumptions that β > 0, β∆ < 1, and for this corollary, ∆ > 0. We
prove each part of the corollary in turn:

1. Rewriting (C.10), the college prefers test blind if and only if

−∆2β2 + 2∆(1 + δ)β − (1 + δ) ≥ 0.

The LHS is a concave quadratic that is negative at β = 1
2∆

(equal to −1/4) and positive
at β = 1

∆
(equal to δ). Hence, there exists β∗ ∈ ( 1

2∆
, 1
∆
) such that the college prefers

test blind when β > β∗ and test mandatory when β < β∗. Using the quadratic formula,

β∗ =
1+δ−

√
δ(1+δ)

∆
.

2. Since (C.10) is symmetric with respect to β and ∆, the argument of the previous part

goes through unchanged after swapping β and ∆. We get ∆∗ =
1+δ−

√
δ(1+δ)

β
.
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3. If β∆ ∈ (0, 1/2), then the LHS of (C.10) is nonpositive and the RHS is strictly positive,
implying that test mandatory is optimal.

If β∆ > 1/2, then we can rewrite (C.10) as δ ≥ (1−β∆)2

2β∆−1
, and hence the result holds for

δ∗ = (1−β∆)2

2β∆−1
> 0.

Proof of Proposition C.3. As in (C.1), at a given (x0, t), society’s loss relative to its
first best when the college’s chosen x1-cutoff for admission is r above society’s ideal cutoff is∫ r

0
fxdx = f

2
r2. Society’s expected loss across all values of x0 and t is equal to the expectation

of f
2
r2 over the distribution of r, with r the difference between the chosen cutoff (which may

depend on x0 and t) and society’s ideal cutoff (which depends only on t). Since the loss f
2
r2

is convex in r, mean-preserving spreads in the distribution of these cutoff differences make
society worse off.

Part 1. Fix any testing regime. The distribution of cutoffs at each test score when
affirmative action is allowed is a mean-preserving spread of the distribution when affirmative
action is banned. Hence, society prefers banning affirmative action.

Part 2. First, suppose that affirmative action is allowed. Fix some type x0 = x′
0, at which

the college has a utility bonus of h := uc(x′
0, x1, t) − us(x′

0, x1, t) = β11x′
0=g − c relative to

society. Under test mandatory, at each test score, the chosen x1-cutoff is h
1+δ

below society’s
ideal cutoff. Under test blind, at t = 1, the chosen cutoff is 1 − px′

0
+ h

1+δ
below society’s

cutoff; and at t = 0, the chosen cutoff is −px′
0
+ h

1+δ
below society’s cutoff. Hence, under test

blind, at each type x′
0, the distribution of society’s cutoff minus the chosen cutoff is given by1− px′

0
+ h

1+δ
with probability px′

0

−px′
0
+ h

1+δ
with probability 1− px′

0
.

This distribution is a mean-preserving spread of the constant h
1+δ

. Hence, society is worse
off under test blind for each realization x′

0 of x0, and so is worse off in expectation.

Next, suppose that affirmative action is banned. As also defined in the proof of Proposi-
tion C.2, we let ET := E[t] = qpr+(1− q)pg denote the average test score in the population,
i.e., the share of students with test score t = 1. At test score t, the college’s ideal x1-cutoff
is −t− βP t

g + c (recall P t
g = Pr(x0 = g|t)), and society’s ideal x1-cutoff is −t.

Under test mandatory with affirmative action banned, the college’s chosen x1-cutoff is
1

1+δ
(βP t

g − c) below society’s ideal point at test score t. That is, a share ET of students have
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cutoffs 1
1+δ

(βP 1
g −c) below society’s ideal point, and a share 1−ET have cutoffs 1

1+δ
(βP 0

g −c)

below. Plugging in q = (ET )P 1
g + (1− ET )P 0

g and ∆ = P 0
g − P 1

g , some algebra yields that
the distribution of society’s ideal cutoffs minus the chosen cutoffs is 1

1+δ
(βq − c)− (1− ET ) β∆

1+δ
with probability ET

1
1+δ

(βq − c) + ET β∆
1+δ

with probability 1− ET.
(C.11)

Under test blind with affirmative action banned, the college’s chosen x1 cutoff is −ET −
1

1+δ
(βq−c). This means that for the ET share of students with t = 1, the chosen x1-cutoff is

1
1+δ

(βq−c)−(1−ET ) below society’s ideal cutoff of −1; for the 1−ET share with t = 0, the
chosen cutoff is 1

1+δ
(βq − c) +ET below society’s ideal cutoff of 0. That is, the distribution

of society’s ideal cutoffs minus the chosen cutoffs is 1
1+δ

(βq − c)− (1− ET ) with probability ET

1
1+δ

(βq − c) + ET with probability 1− ET.
(C.12)

Since β∆ < 1 (by assumption) and 1+δ > 1, the distribution in (C.12) is a mean-preserving
spread of that in (C.11). Hence, when affirmative action is banned, society prefers test
mandatory to test blind.

Part 3. From Proposition C.2, if (1 + δ)(2β∆− 1) < (β∆)2, then the college chooses test
mandatory under an affirmative action ban. If (1 + δ)(2β∆ − 1) > (β∆)2, which implies
β∆ > 1/2, the college chooses test blind under an affirmative action ban.

So, when β∆ ∈ (0, 1/2], society prefers to ban affirmative action: it prefers test mandatory
and no affirmative action to test mandatory with affirmative action (by part 1).

Now suppose that β∆ > 1/2. Let δ := (β∆)2

2β∆−1
− 1 be the solution to (1 + δ)(2β∆− 1) =

(β∆)2. For δ < δ, the college chooses test mandatory, in which case society prefers to
ban affirmative action. For δ > δ, the college chooses test blind. In this case, we need to
compare society’s payoff of test mandatory with affirmative action versus test blind without
affirmative action.

The distribution of chosen x1-cutoffs minus society ideal cutoffs under test mandatory
with affirmative action is 

β−c
1+δ

with probability q

−c
1+δ

with probability 1− q.
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Society’s corresponding payoff loss is

f

2(1 + δ)2
(
c2 − 2cqβ + qβ2

)
. (C.13)

The distribution of cutoffs minus society ideal points under test blind without affirmative
action is given by (C.12). Society’s payoff loss is correspondingly

f

2(1 + δ)2
(
(βq − c)2 + (1− ET )ET (1 + δ)2

)
(C.14)

with ET = qpg + (1− q)pr.

The sign of(C.14) minus (C.13) tells us whether society prefers test mandatory with
affirmative action or test blind without affirmative action. The sign of that difference is the
same as the sign of ET (1− ET )(1 + δ)2 − q(1− q)β2. This expression equals zero when δ

equals

δ′ := β

√
q(1− q)

ET (1− ET )
− 1.

When δ > δ′, society prefers test mandatory with affirmative action to test blind without
affirmative action; when δ < δ′, the preference is reversed.

Finally, let δ := max{δ, δ′}. We now see that (i) when δ > δ, the college chooses test
blind if affirmative action is banned; and (ii) taking into account the college’s response in
choosing its testing regime, society prefers to ban affirmative action if δ < δ, and prefers to
allow affirmative action if δ > δ.

D. Competition Examples
This section provides three numerical examples to substantiate the discussion in Section

IV.B about competition.

All three examples have two colleges. There is a single observable, and thus we omit the
dependence of all variables on x. At this observable, students have test scores uniformly
distributed between 0 and 100. Two identical colleges have underlying utility uc(t) = t− tc;
society has utility us(t) = t − ts; and the colleges place a weight δ = 1 on social pressure,
implying ex-post utilities u∗(t) = t − t∗ with t∗ = (tc + ts)/2. A test-optional college is
restricted to impute τ = 50, the average test score, for nonsubmitters. If admitted by both
colleges, a student chooses betwen them uniformly at random.

13



Example D.1 (Complements due to adverse selection). Let tc = 5 and ts = 25, implying
t∗ = 15. Here, society is more selective than the college. Our calculations below will establish
strategic complementarity. That is, when a college’s competitor is test mandatory, the college
prefers to be test mandatory; but when a college’s competitor is test optional, the college
prefers to be test optional.

A test-mandatory college admits students with t > t∗ = 15 and rejects students with
t ≤ 15. Assume that a test-optional college admits nonsubmitters with t ∈ [0, 50], which is
optimal so long as the yield-weighted average test score of nonsubmitters is above t∗ = 15, as
will be the case. The test-optional college also admits the submitting students with t > 50.

A test-mandatory college facing another test-mandatory college has yield of 1/2 for all
of the students it admits, since the other college makes identical admission decisions. The
college then gets underlying utility of 1

2

∫ 100

15
1

100
(t − 5)dt = 22.3125, social pressure costs of

1
2

∫ 25

15
1

100
(25− t)t = .25, and a net payoff of ≃ 22.1.

A test-mandatory college facing a test-optional college also has yield of 1/2 for all of the
students it admits, because the other college admits all students. So its payoff is also ≃ 22.1.

A test-optional college facing another test-optional college has yield of 1/2 for all students.
The yield-weighted average test score for nonsubmitters is just the unweighted expectation of
25. The college’s underlying utility from admitting every student is 1

2

∫ 100

0
1

100
(t−5)dt = 22.5,

and social pressure costs are 0. So its payoff is 22.5.

Finally, a test-optional college facing a test-mandatory college has a yield of 1/2 for
students with t > 15, and a yield of 1 for students with t ≤ 15. The yield-weighted average
test score for nonsubmitters is 20.9615.8 The college’s underlying utility from admitting every
student is 22.5, and social pressure costs are (25− 20.9615) · 1

100
· (1 · (15− 0)+ 1

2
(50− 15)) =

1.3125. Its payoff is ≃ 21.2.

We see that when a college’s competitor is test mandatory, the college prefers to be test
mandatory (22.1 > 21.2). When a college’s competitor is test optional, the college prefers to
be test optional (22.5 > 22.1). We also see that a test-optional college prefers its competitor
to be test-optional (22.5 > 21.2).

Example D.2 (Substitutes due to adverse selection). Let tc = 50 and ts = 20, implying
t∗ = 35. Here, the college is more selective than society. Our calculations below will establish

8 The average test score between 0 and 15 is 7.5; the average test score between 15 and 50 is 32.5; and
the weighted average, putting a weight of 1/2 on test scores between 15 and 50, is (7.5 · (15− 0)+ 1/2 · 32.5 ·
(50− 15))/((15− 0) + 1/2 · (50− 15)).
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strategic substitutability. That is, when a college’s competitor is test mandatory, the college
prefers to be test optional; but when a college’s competitor is test optional, the college prefers
to be test mandatory.

A college that is test mandatory admits students with t > t∗ = 35 and rejects students
with t ≤ 35. Assume that a test-optional college rejects nonsubmitters with t ∈ [0, 50],
which is optimal so long as the yield-weighted average test score of nonsubmitters is below
t∗ = 35, as will be the case. The test-optional college also admits the submitting students
with t > 50.

A test-mandatory college facing another test-mandatory college has yield of 1/2 for stu-
dents with t > 35 and yield of 1 for students with t ≤ 35, since the other college makes iden-
tical admission decisions. The college then gets underlying utility of 1

2

∫ 100

35
1

100
(t − 50)dt =

5.6875, social pressure costs of
∫ 35

20
1

100
(t− 20)dt = 1.125, and a net payoff of ≃ 4.6.

A test-mandatory college facing a test-optional college has a yield of 1/2 for students
with t > 50 and a yield of 1 for students with t ≤ 50. So it gets underlying utility of∫ 50

35
1

100
(t − 50)dt + 1

2

∫ 100

50
1

100
(t − 50)dt = 5.125, social pressure costs of

∫ 35

20
1

100
(t − 20)dt =

1.125, and a net payoff of 4.

A test-optional college facing another test-optional college has a yield of 1/2 for students
with t > 50 and yield of 1 for students with t ≤ 50. The yield-weighted average test score for
nonsubmitters is just the unweighted expectation of 25. The college’s underlying utility from
rejecting nonsubmitters and accepting submitters with t > 50 is 1

2

∫ 100

50
1

100
(t− 50)dt = 6.25,

and social pressure costs are 1
100

(25− 20)(50− 0) = 2.5. So its payoff is 3.75.

Finally, a test-optional college facing a test-mandatory college has a yield of 1/2 for
students with t > 35, and a yield of 1 for students with t ≤ 35. The yield-weighted average
test score for nonsubmitters is 21.9118.9 The college’s underlying utility from rejecting
nonsubmitters and accepting submitters is 6.25, as above, and social pressure costs are
(21.9118− 20) · 1

100
· (1 · (35− 0) + 1/2 · (50− 35)) = .812515. Its payoff is ≃ 5.4.

We see that when a college’s competitor is test mandatory, the college prefers to be test
optional at this observable (5.4 > 4.6). When a college’s competitor is test optional, the
college prefers to be test mandatory (4 > 3.75). We also see that a test-optional college
prefers its competitor to be test-mandatory (5.4 > 3.75).

9 The average test score between 0 and 35 is 17.5; the average test score between 35 and 50 is 42.5; and
the weighted average, putting a weight of 1/2 on test scores between 35 and 50, is (17.5 · (35 − 0) + 1/2 ·
42.5 · (50− 35))/((35− 0) + 1/2 · (50− 35)).
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Example D.3 (Substitutes due to cherry picking). Let tc = 39 and ts = 25, implying
t∗ = 32. Here, the college is again more selective than society. As in Example D.2, our
calculations below will establish strategic substitutability, but the mechanism now owes to
“cherry-picking” rather than adverse selection.

A college that is test mandatory admits students with t > t∗ = 32 and rejects students
with t ≤ 32. As in Example D.2, a test-optional college rejects nonsubmitters with t ∈ [0, 50]

and admits the submitting students with t > 50.

In contrast to Example D.2, the payoff of a test-optional college is now independent of
its competitor’s testing regime: regardless of whether the competitor is test mandatory or
test optional, the college gets a yield of 1/2 for the submitters that it admits, and it faces
no social pressure costs for the nonsubmitters that it rejects. (Society’s bar is 25; and
the yield-weighted average test score is 25 when the competitor is test optional, and it is
below 25 when the competitor is test mandatory.) The test-optional college’s payoff is thus
1
2

∫ 100

50
1

100
(t− 39)dt = 9.

A test-mandatory college facing a test-mandatory competitor has a yield of 1/2 for stu-
dents with t > 32 and a yield of 1 for students with t ≤ 32, since the other college makes
identical admission decisions. The college then gets underlying utility of 1

2

∫ 100

32
1

100
(t−40)dt =

9.18, social pressure costs of
∫ 32

25
1

100
(t− 25)dt = 0.245, and a net payoff of 8.935.

A test-mandatory college facing a test-optional competitor has a yield of 1/2 for students
with t > 50 and yield of 1 for students with t ≤ 50. So it gets underlying utility of∫ 50

32
1

100
(t−39)dt+ 1

2

∫ 100

50
1

100
(t−39)dt = 9.36, social pressure costs of

∫ 32

25
1

100
(t−25)dt = 0.245,

and a net payoff of 9.115.

We see that, as in Example D.2, when a college’s competitor is test mandatory, this
college prefers to be test optional (9 > 8.935). When a college’s competitor is test optional,
this college prefers to be test mandatory (9.115 > 9). We also see that a test-mandatory
college prefers its competitor to be test-optional (9.115 > 8.935), because that allows it to
cherry-pick the students with t ∈ (32, 50)—whom it wants to admit, on average—without
competition.

E. Connection to Bayesian Persuasion

In this section, we show that our college’s payoff can be transformed into a familiar setup
of Bayesian persuasion (Kamenica and Gentzkow, 2011). That is, we can view the college

16



(sender) as having an indirect utility function over society’s (receiver’s) belief about the test
score (state of the world).

However, we cannot simply apply standard Bayesian persuasion tools because there is a
restricted set of information structures available. Instead of generating an arbitrary exper-
iment about the test scores at each observable, our college can choose only an imputation
level τ . This imputation then determines the rest of the information structure: all test
scores below τ are pooled together, and all test scores above τ are revealed perfectly. (This
information structure is sometimes called “lower censorship” in the persuasion literature; see
Remark E.1 below.)

The transformation. Fixing some observable and omitting that for notational conve-
nience, we can write our college’s underlying utility as uc(t) = −tc + t and society’s utility
as us(t) = −ts + t for a student with test score t. (At a fixed observable, we can normalize
both parties’ “weights” on the test score to 1.) For a student for whom the available informa-
tion induces posterior belief E[t] = ts, the college’s payoff from making admission decision
A ∈ {0, 1} can be written as

U c(ts, A) = Auc(ts)− δ ·


−us(ts) if A = 1 and ts < ts

us(ts) if A = 0 and ts > ts

0 otherwise.

Lemma 1 establishes that for a fixed information structure, the college’s admission decision
on the equilibrium path is made as if it maximizes the ex-post utility, u∗(t) = uc(t)/(1+δ)+

δus(t)/(1 + δ) = −t∗ + t, for t∗ = (tc + δts)/(1 + δ). The college accepts students with an
expected test score ts above t∗, and rejects students with an expected test score ts below t∗.

We now present an analogous result for the college’s choice of information. Consider some
arbitrary set of possible information structures from which the college may choose, and take
as given that the college will use this information to make ex-post optimal admission deci-
sions. We will find that the college chooses the information that maximizes the expectation
of an indirect utility function ũ(ts). As we will see, however, this new utility function ũ will
be distinct from the ex-post utility u∗.10

10 The ex-post utility u∗(t) is linear in t, meaning that its expectation is the same—the value at the mean
test score—for all information structures at a given distribution. However, the new indirect utility function
ũ(ts) will not be linear.
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To define ũ, we separately consider two cases. First, suppose the college is more selective
than society: ts < t∗ < tc. In this case, when ts ≤ ts, the payoff U c(ts, A) is zero because
the applicant is rejected (A = 0) and there is no disagreement cost. When ts < ts ≤ t∗, the
applicant is rejected but the college pays a disagreement cost of δus(ts) = δ(t− ts). Finally,
when ts > t∗, the applicant is accepted (A = 1) and there is no disagreement cost, yielding
U c(ts, A) = uc(ts) = −tc + t. Putting this all together, it holds that U c(ts, A) = ũ(ts) for

ũ(ts) :=


0 if ts ≤ ts

−δ · (ts − ts) if ts < ts ≤ t∗

−tc + ts if t > t∗.

(College More Selective)

Next, suppose the college is less selective than society: tc < t∗ < ts. In this case,
when ts ≤ t∗, the payoff U c(ts, A) is zero because the applicant is rejected (A = 0) and
there is no disagreement cost. When t∗ < ts ≤ ts, the applicant is accepted (A = 1),
generating underlying payoff uc(ts) = −tc + ts; but the college also pays a disagreement cost
of −δus(ts) = δ(t − ts). Finally, when ts > t∗, the applicant is accepted (A = 1) and there
is no disagreement cost, yielding U c(ts, A) = uc(ts) = −tc + t. Putting this all together, it
holds that U c(ts, A) = ũ(ts) for

ũ(ts) :=


0 if ts ≤ t∗

(1 + δ)(ts − t∗) if t∗ < ts ≤ ts

−tc + ts if ts > t∗.

(College Less Selective)

Figure E.1 illustrates ũ. Notice that in both cases, ũ is neither globally convex nor globally
concave.

Remark E.1. As mentioned above, the college can only use lower-censorship information
information structures: pool scores below a threshold τ and reveal scores above τ .

When the college is less selective than society (Figure E.1b), lower censorship can be
suboptimal in the class of all information structures. Specifically, as shown in Proposition 2
(case 2), the optimal admission policy for the college can entail setting τ = t∗ and accepting
all students with scores t > τ . The college then bears a disagreement cost for all those high
scores. When E[t|t > t∗] < ts, the college would be strictly better off by instead pooling
those scores above τ = t∗, now accepting the same set of students at no disagreement cost.
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When the college is more selective than society (Figure E.1a), on the other hand, we know
from Proposition 3 that it is optimal for the college to set τ ∈ [t∗, tc] and again accept all
students with scores t > τ . By since ũ is now linear in this region, there is never a (strict)
benefit of pooling these high scores.

In fact, the results of Kolotilin, Mylovanov, and Zapechelnyuk (2022) suggest that lower-
censorship information structures are optimal in the class of all information structures when
the college is more selective than society; whereas when the college is less selective, “upper
censorship” (pooling scores above a threshold and revealing them below) is optimal. We say
“suggest” rather than “imply” because formally those authors’ smoothness assumptions on
the sender’s indirect utility preclude the kinks in our function ũ.
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(a) College more selective

tcts t*
ts

u


us u* uc

(b) College less selective
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

us u* uc

Figure E.1 – The indirect utility function ũ(ts) for Bayesian persuasion.
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