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B Online Appendix

This appendix contains additional examples, results, and proofs that are supplementary

to the main text. The sections are ordered by the order they are referenced in the main

text.

B.1 Empirical Examples of Nested Bundling

Figure 10 documents some empirical examples of nested bundling.
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Figure 10: Empirical Examples of Nested Bundling

B.2 General Procedure to Find the Optimal Menu

In practice, it might not be feasible to estimate the sold-alone quantities for all bundles

when the seller must offer some base bundle (e.g., a “freemium” tier) to all consumers. In

this section, we generalize our nesting condition to allow more ways to exclude bundles

from consideration when finding the optimal menu.



For three bundles by = by < b,, we say that b, is dominated by b, conditional on b if

Q(by [ by) < Q(by | by),

where for any b — b/, recall that Q(b’ | b) denotes the incremental quantity of b’ given
b, i.e., the quantity at which the incremental profit function 7t(V’,q) — 7t(b,q) reaches its
maximum in the interval [0, max{Q(b"), Q(b)}].

A bundle b is strongly undominated if for all b’,b” such that b’ b < b”, we have

Q(b|b)>Q"|b).

Clearly, a strongly undominated bundle must be an undominated bundle.

Theorem 4 (General Nesting). Suppose that assumptions (A1) and (A2) hold. If the menu of

strongly undominated bundles is nested, then it is a minimal optimal menu.
Theorem 4 provides the following conditional sieve algorithm:
Step 1. Pick any three bundles by = by < b,.
Step 2. Remove b; from consideration if Q(by | by) < Q(b; | by).
Step 3. Repeat Steps 1-2 until the remaining bundles are nested.

Theorem 4 implies that when Step 3 stops, the remaining bundles always form an op-
timal menu regardless of how the bundles are chosen in Step 1. One can further apply
Proposition 1 to the remaining bundles to find the minimal optimal menu. Theorem 4
generalizes Theorem 1 by allowing the removal of more bundles when checking the nest-
ing condition. The proof again relies on Theorem 2 (monotone construction theorem) and
Lemma 2 (switching lemma). In fact, the strongly undominated bundles are exactly the
chain-essential elements in Theorem 2, when the partially ordered choice set is (B,<),

and the objective function is the virtual surplus function.

Proof of Theorem 4. We follow the same proof strategy as in Theorem 1 and Proposition 1.
In particular, we apply the monotone construction theorem (with the local single-crossing
property), Theorem 3, to the partially ordered set (B,<) and virtual surplus function
D(b,1).

The result follows if we show that the strongly undominated bundles are exactly the
chain-essential elements in Theorem 3 (see the proof of Theorem 1 and Proposition 1).

We follow the notation as in the proof of Theorem 1. Because by assumption Q(b) € (0,1),
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we have that t(b) € (t,¢) for all b # @. Therefore, for any @ < b; < b,, by Lemma 3, we
have
t(by | by) = min{t(by),t(by)} > 0.

Thus, for any by  b,, we have t(b, | b;) > 0.

Fix any strongly undominated bundle b. We show that b is chain essential. If b = @
or b = b, then we have that b is a chain-essential element because (i) t < t(b’) for all
V' > @ and (ii) t(b | b') <7 for all b’ c b (see the proof of Proposition 3). Thus, suppose
that @ c b < b. Suppose for contradiction that b is not chain essential. Then there exists
b, € b < b, such that

t(b|by) =t(by|b).

Since t(b; | b;) > 0, by Lemma 6, this implies
t(b [ by) = t(by | by).
Now, by Lemma 3 and the proof of Proposition 1, we have
Q(b [ b1) <Q(by | by),

contradicting to that b is strongly undominated.
Now, fix any chain-essential element b. We show that b is strongly undominated. Note

that, for all b; < b < b,, by the definition of chain-essential elements, we have
t(b|by) <t(by|b).
Since t(b, | b;) > 0, by Lemma 6, this implies that
t(b[by) <t(by|by).
Then, by Lemma 3 and the proof of Proposition 1, we have
Q(b [ by) > Q(by | by).

Since this holds for all by < b < b,, we have that b is strongly undominated. N
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Table 2: Bundle values by types for Example 3. Circled are sold-alone monopoly prices.
In case (a), the nesting condition fails and the optimal mechanism is stochastic. In case
(b), the nesting condition holds, and the optimal mechanism is deterministic and given
by the menu of undominated bundles.

B.3 Additional Example

We provide an additional example that shows totally ordered types are not sufficient for
the optimality of nested bundling. This example further illustrates our nesting condition.

For simplicity, the example is discrete, but it can be made continuous by approximation.

Example 3. Suppose that there are two items {1, 2} and three types of consumers {t{, t,, 3}
with mass 1/3 each. Suppose that the costs are zero. We consider two cases.

Case (a). The values are given by Table 2a. One can verify that the sold-alone quanti-
ties are given by Q({1,2}) = 1/3, Q({1}) = 2/3, and Q({2}) = 1 (the sold-alone prices are
circled in Table 2a). Thus, none of the bundles are dominated. So the nesting condition
fails. Note that the nested menu {{1},{1,2}} yields a profit 29/3 (by pricing {1, 2} at 23,
and {1} at 6), and the nested menu {{2},{1,2}} yields a profit 28/3 (by pricing {1,2} at
22, and {2} at 3). The optimal deterministic menu in this case is not nested: it prices the
bundle {1,2} at 22, {1} at 6, and {2} at 3, which results in a profit

29

1 31

Moreover, the fully optimal mechanism is stochastic:
* price 22 for bundle {1, 2}

* price 72/11 for a lottery that puts probability 10/11 on bundle {1} and probability
1/11 on bundle {1, 2}

* price 3 for bundle {2}
which yields a profit

2 4 1
><<22+7—+3>=3 7.3

1
3 11 33 3
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The suboptimality of nested bundling can be understood using Corollary 4 since the
nested menu {{2},{1,2}} that includes the best-selling bundle {2} yields a strictly lower
profit than the other nested menu {{1},{1,2}}.

Case (b). The values are given by Table 2b, which is exactly the same as Table 2a except
that type t;3’s value for bundle {1,2} is lowered from 25 to 20. Given this change, when
bundle {1, 2} is sold alone, the monopoly price would be 12 and the quantity Q({1,2})
would be 2/3 rather than 1/3. Then, bundle {1} is dominated, and the nesting condi-
tion holds. The optimal mechanism in this case is deterministic and given by the nested
menu {{2},{1,2}}, which coincides with the undominated bundles. The optimality of
nested bundling and the construction of optimal menu follow directly from Theorem 1

and Proposition 1.

B.4 Implementability Lemma

For completeness, we also prove the following lemma about implementability which is

used in Section III.

Lemma 7. Suppose that assumption (A1) holds. Then, for any deterministic, monotone alloca-
tion rule b(t), there exists a payment rule p(t) such that (b, p) satisfies all IC and IR constraints
and that the lowest type t receives zero payoff under (b, p).

Proof of Lemma 7. Let B = {b(t)};,c7 which is a nested menu. Without loss of generality,
let B={®,by,...,b,,} where by c---c b,,. Foralli=1,...,m, let

s(b;):=inf{te T : b(t) 2 b;}.

We construct the bundle prices {p'(b)},cp by the following difference equation: for all
i=1,...,m,

p (b)) —pt(biy) :=v(bi,s(b;)) —v(bi1,5(b;)),

where we put by = @ and p'(by) = v(by,t) = 0. To prove the result, it suffices to show that
for all t € 7T, we have

b(t)e arz;;/rrllgax {v(¥,1t) - pT(b’)}.

By assumption (A1), note that
U(b,t):=v(bt)—p'(b)
has increasing differences, and hence single-crossing property, in (b,t). Moreover, by
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construction, s(b;) is a crossing point of U(b;,t) and U(b;_4,t). Since b(-) is monotone,
we also have

s(by) <s(bp) <---<s(by,).

Now fix any i = 0,...,m and any t € (s(b;),s(b;,1)). For the edge cases, put s(by) =t and

$(bu41) = t. Now, observe that we have

Ub(t)t) =U(bit) 2 Ulbity,t) 2 Ubiso,t) = - = Ulby t),
and

U(b(t),t) =U(bj,t) = U(bj—1,t) 2 U(bj_p,t) = - = Ul(bo,1).

Hence, for any such ¢, we have

U(b(t),1) = max{U (¥, 1)}.

Now, if t = s(b;) for some i = 1,...,m + 1, then by definition, we have that (i) b(t) = b; or

b(t) =b;_q,and (ii) U(b;, t) = U(b;_1,t). Hence, the above argument also implies that

U(b(1),1) = max{U (¥, ).

Finally, suppose t = s(bg). If s(by) < s(by), then the above argument holds for t. If s(by) =
s(by), then the above argument also holds for t when applying to i = 1.

Thus, for all t € T, we have U(b(t),t) = maxyg{U(V,t)}. Then, the payment rule
defined by p(t) := p'(b(t)) implements the allocation rule b(t), proving the result. O

B.5 Proof of Proposition 4

Suppose for contradiction that there are two elements x; and x, that are both chain es-

sential but cannot be ordered. Then, we have
X1 A Xy < X1, X3 < X1V Xy,
Since x1, x, are chain essential, we have
txy [ X1 A x) <t(xp v ixp | xp),

t(xy | X1 Axp) < t(x1 v Xy |Xp).



Suppose without loss of generality that
txy [ X1 A x) < (x| X1 A X2).

Fix any s such that

t(xy | X1 AXp) <s <t(x;Vxy|xp).

Then we have
txy [ X1 Axp) St(xa [ X1 Axp) <s <t(x;vxp|x),
which implies that
g(x1,8) = g(x1 A x,8)
and
g(x1 v xp,8) < g(x2,5),

contradicting that g(-,s) is quasisupermodular in x.

B.6 Necessity of the Chain Condition

The chain condition is not only sufficient for monotone comparative statics but also nec-
essary if one requires that the maximizer at each parameter can be found using only com-
parisons of the objective with ordered pairs (i.e., the pairs that satisfy the single-crossing
property). That is, the iterative improvement arguments provided in Section II.D succeed

if and only if the chain-essential elements are totally ordered.

Proposition 11. Let (X, <) be a finite partially ordered set and g : X x [0,1] — R be a function
that is continuous in t and satisfies the strict single-crossing property in (x,t). The chain-

essential elements for g are totally ordered if and only if:

(i) There exists a monotone selection x(-) such that x(t) € argmax,_y g(x,t) for all t.
(ii) For all t and x, there exists a sequence (X, ...,X,) such that g(x;,t) < g(x;j,1,t) for all i,
x, = x(t), and each pair (x;,x; 1) satisfies either x; > X1 0F X; < Xj ;1.

Proof of Proposition 11. ( = ) Suppose that the chain-essential elements are totally or-
dered. By Theorem 2, the existence of a monotone selection x(-) is immediate. We now
show that for every t € [0,1] and every x, € X, there exists an improvement sequence

(xg,--.,%,) such that (i)
g(xo 1) <g(x1,t) <+ < g(xp t)

where x,, = x(t) and that (ii) every pair (x;,x;,1) satisfies either x; < x;, 1 or x; > x; 1.
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We first prove this claim for all s ¢ {t(x” | ')}, .. Fix any such s. Let ) denote the
set of chain-essential elements. Recall that ) is non-empty by definition. By Step 2 in
the proof of Theorem 2, we know that if x; € ), then there exists such an improvement
sequence (moreover, the objective value is strictly increasing along the sequence). Now

suppose xg € V. By Step 1 in the proof of Theorem 2, there exists x; € X such that (i)

g(xo,t) < g(x1,t).

and that (ii) either x; > x( or x; < x.

If x; is in ), then we have found an improvement sequence by concatenating (xg, x;)
with an improvement sequence that starts with x; (which always exists since x; € )).

If x; is not in ), then by Step 1 in the proof of Theorem 2 again, there exists x, € X’
such that (7)

g(xy,t) <g(xp,t).

and that (ii) either x, > x7 or x, < x;.
Because X is a finite set, this process can be repeated at most |X| number of times

until we find a sequence (xg, x1,...,x,) such that (i)

g(xo,1) < glxy,t) <--- < g(xpt).

and that (ii) every pair (x;,x; 1) satisfies either x; < x;; or x; > x;,1, and that (iii) x,, € ).
But then we may concatenate this improvement sequence with an improvement sequence
that starts with x, (which always exists since x, € }). Moreover, the improvement se-
quence that starts with x,, always ends with x(t) by Step 2 in the proof of Theorem 2.
Hence, our claim holds for all s & {t(x" | x')} /<y

To show that this claim holds for all s € [0,1], we use a convergence argument as
follows. Let N = | X| which is a finite number. Each improvement sequence can be viewed
as a point in the finite-dimensional space {1,...,N}N which is a compact subset of RN,

Fix any s € [0,1] and any x; € X. First, there exists a sequence s; converging to s
where s; & {t(x" | x')} oy (since {t(x" | ')}~ has measure 0 in [0,1]). For each sy,
there exists an improvement sequence Z; € {1,..., N}¥ by our previous step. Now, by the
Bolzano-Weierstrass theorem, we know that there exists a converging subsequence Zy,
such that Zi, > Z€ {1,...,N}N as j — oo, where the convergence is with respect to the
usual distance metric of RN. This implies that there exists some J such that for all j > J,

Zy; = Z. Therefore, for all j > ], each s); has the same improvement sequence Z. Denote



the improvement sequence by (xg,x1,...,%,). Then, for all j > J, we have

8(xo,sx;) < g(x1,5¢;) < -+ < gy, 5;)

and x, = x(si,). By continuity of g in ¢, we have

g(x0,8) < g(x1,8) <--- < g(x,,8).

To ensure that x,, = x(s), note that x(-) by construction is right-continuous at all ¢t € [0,1)
and left-continuous at t = 1. Hence, we may choose the approximating sequence s; to
approximate s from the right if s < 1 and to approximate s from the left if s = 1. Then,
we have x,, = x(s), and hence (x,x,...,x,) is a desired improvement sequence.

( <= Suppose for contradiction that the chain-essential elements cannot be totally
ordered. Let

W= {x<t)}te[0,1]

which is totally ordered since x(-) is monotone. This implies that there must exist some
chain-essential element x' that is not in W. By the definition of chain-essential elements,
we have

max t(x'|x') < min t(x"|x7),
x'ix! <xf xix! >t

where we put the left-hand side to be 0 if no x’ < x' exists and the right-hand side to be 1

if no x” > x' exists. Therefore, there exists some s € [0,1] such that for all x’ < x, we have

g(x!,s) > g(x's)

and for all x” > x', we have
g(xf,s) > g(x",s).

However, for such s and x, = xT, we also know that there exists an improvement sequence.

In particular, there exists some x; such that (i) either x; > x"or x| < x and that (ii)

g(xl,s) < g(xy,s).

But that is a contradiction. O]



B.7 Proof of Proposition 5

Since costs are zero, the price elasticity for any bundle b at quantity Q(b) must satisfy

(b, Q(b)) = —1.

Recall that .

ik

This implies that the elasticity curve #(b, - ) single-crosses —1 from below because the MR

MR(b,q) = P(b,q)[1 +

curve MR(J, -) single-crosses 0 from above.
We claim that, under zero costs, the union elasticity condition implies the union quan-

tity condition. Indeed, under zero costs and the union elasticity condition, for any by, b,,

because
(b1 Uby, Q(by L by)) =—1,
we have
1 (b1, Q(by Uby)) = —1 or 1(by, Q(by Uby)) = -1,
and hence

Q(by U by) = min {Q(by), Q(by)}.

Thus, the union quantity condition holds. Thus, the nesting condition holds by Proposi-

tion 2.

B.8 Proof of Proposition 6

Let B be the proposed menu. By Proposition 5, the nesting condition holds. Hence, by
Theorem 1, it suffices to show that any (non-empty) bundle b ¢ B is dominated. We start

by showing that for all i, we have
Qbyv---wbi) = Q(b;).

We prove this by induction on i. The base case i = 1 is trivial. For the inductive step,

suppose that the claim holds for i — 1. Now, observe that
Q(b% -+ Ub}) > min {Q(b; U ubl), Q(b;)} > min {Q(bi*_l), Q(b;)} —Q(bY),

where (i) the first inequality follows from that the union elasticity condition implies the

union quantity condition (as shown in the proof of Proposition 5), (ii) the second in-
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equality follows from the inductive hypothesis, and (iii) the last equality follows from
the definition of b} and b} ;. This proves the inductive step.

Now, fix any b ¢ B. There exists some index j such that b = b;. Since b ¢ B, we have
be;CbIU‘”Ub;.
But, by the previous step, we also have
Q(b) = Q(b}) < Qb L~ U BY).

Thus, bundle b is dominated, completing the proof.

B.9 Proof of Proposition 7

Without loss of generality, suppose that there is a sequence of demand rotations for item
2. By Proposition 6, nested bundling is always optimal at any parameter s. By Propo-
sition 1, the minimal optimal menu BOP7(s) equals the set of undominated bundles.
To prove claim (i), observe that it suffices to show that if BOT(s) = {{1},{1,2}}, then

BOPT(s') must be {{1},{1,2}} for any s < s’. Suppose not. Then, for some s < s’, we have

Q({L,2}s") = Q({1}s) = Q({1};s) > Q({1,2}5),

which is impossible by our notion of demand rotations.
To prove claim (ii), observe that it suffices to show that if BOPT(s') = {{2},{1,2}}, then
BOPT(s) must be {{2},{1,2}} for any s < s". Suppose not. Then, for some s < s’, we have

Q({2hs) <Q({L2hs),  Q({2hs) > Q(f1,2}5),

which is impossible by our notion of demand rotations.

To prove claim (iii), observe that it suffices to show that it cannot be |BOPT(s)| =
1,|BOPT(s")| = 2,|BOPT(s")| = 1 for any s < s’ < s". To see why this is impossible, note
that: if BOPT(s') = {{1},{1,2}}, then r,(BOPT(-)) cannot be nondecreasing, contradicting
claim (i); if BOPT(s') = {{2},{1,2}}, then r;(BY?T(-)) cannot be nonincreasing, contra-

dicting claim (ii).
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B.10 Proof of Proposition 8

By Theorem 1, it suffices to show that if xT ¢ X*, then x' is dominated by another quality
level x # x'. Fix any x' ¢ X*. Then Q(xh) > Q(x"). Suppose, for contradiction, that there

does not exist any x > x' such that Q(x) > Q(x'). Then, we have

max {Q(x)} = max {Q(x)} < Q(x").

x>xt

Let

~

Qx) ifx=xl;

Q(x) otherwise.

~

Then note that Q(x) is also nonincreasing and everywhere above Q(x). Moreover, Q(x) is
everywhere below é(x) with Q(xT) < (j(xT). Contradiction.

B.11 Proof of Proposition 9

Note that since Q(x) € (0,1), we must have

MR(Q(x)) - x — C(x) = 0,

where the quality-adjusted marginal revenue curve MR(g) := % (F71(1—q)-q) is a strictly

decreasing, continuous function. Therefore, we have

Qx) = MR (Cug())

Now, observe that for any function 4 : X — R and any strictly decreasing function @ :
R — R, we have
U_[(Doh] = CI)oL+[h],

where U™ [ -] denotes the upper decreasing envelope operator and L*[ -] denotes the lower

increasing envelope operator. Thus, we have
Olx) = MR (Cug())

because MR ™! (-) is strictly decreasing. The claim follows from Proposition 8.
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B.12 Proof of Proposition 10

We map this problem into a bundling problem as follows. Consider a bundling problem
with 7 + m many items, where the first n items represent quality upgrades exactly as
in Section IV.B, and the remaining m items represent the passes to avoid each of the m

costly activities. Specifically, for any (x;,y;), we define

v({l,...,i} u{n+ 1,...,n+m}\{n+j},t> = u(x;,t) —c(yj,t),

with v({l,..., i} uf{n+1,...,n+ m}, t) :=u(x;,t) being the value of quality x; without any
costly action. We can map the production costs accordingly and let v(b,t) = C(b) = 0 for
bundles b that are not of the above form. With a slight abuse of notation, we also write
(x,v) as the bundle of quality x and costly action y, and write Q(x, y) as the corresponding
sold-alone quantity for this damaged bundle, i.e., the unique quantity maximizing the
profit function 7nt(x,q) — 1t(y, q).

(<= ) Suppose that miny. o Q(y) < max,-oQ(x). Suppose for contradiction that there
exists an optimal mechanism (among deterministic mechanisms) that does not use any
costly instruments. Then, by Proposition 8, it is without loss of optimality to consider a

menu B such that

x* 1= max { argmax Q(x)}

x>0
is the base-tier quality in menu B. Let y* := min{argmin,_,Q(y)}. By assumption,
Q(y*) < Q(x*). Because 1t(x*,q), ©(y*,q), and m(x*,q) — 7 (y*,q) are strictly quasiconcave,
we have

Qy") <Q(") = Q) < Q") <Q(x"y").

But this implies that
tH(x®,p*) < t(x¥),

where, as in the proof of Theorem 1, t(-) denotes the type at which the associated virtual
surplus function crosses zero.! By Proposition 8 and the construction of Theorem 1, all
types below #(x*) consumes @ under the optimal mechanism. However, consider the per-

turbation of assigning the types s € [t(x*,p*),t(x*)) the damaged bundle (x*,y*). Because

u(x, 1) = (u(x* 1) —c(y*, 1)) = c(y”, 1)

'For any bundle (x, ), the associated virtual function is given by u(x,t)—C(x)—c(y,t)— l;g()t) (1 (x, 1) —

c(y,1)) = p(x,1) = p(y,1) where ¢ (x,t) := £7(x,9) |g=1-F() and (@, 1) := $7(9,9) [g=1-F(1)-
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is strictly increasing in ¢, there exist prices to implement this change of the allocation.
This change must increase the total profit by Lemma 1 since the virtual surplus function
associated with bundle (x*,y*) is strictly positive for all types s > t(x*,y*). Contradiction.

(=) Suppose that min,. o Q(y) = max,.o Q(x). We show that there exists an optimal

mechanism that does not use any costly instruments. Note that for all x' > 0 and y’ > 0,

Q(¥') = minQ(y) > max Q(x) > Q(x').

>0 x>0

Because 7t(x',q), n(v’,q), and 7 (x’,q) — 7 (v’, q) are strictly quasiconcave, this implies that
Q') = Q(x) = Q(x.y").

Therefore, each damaged bundle (x/,7’) is dominated by the undamaged version x". Now,
note that, by the quasiconcavity assumptions, (i) the virtual surplus function ¢(x/,t)
single-crosses ¢(x',t) — ¢ (', t) from below, (ii) both virtual surplus functions ¢(x’, t) and
o(x',t) — ¢p(v',t) single-crosses 0 from below. Therefore, by the proof of Theorem 1, we
have that ¢(x/,t) — ¢ (v, ) < max{¢p(x,t),0} forall te 7.

Then, by Lemma 1, the optimal value of this screening problem is bounded from

above by
E [max o (x, t)] .

xeX
Since assumptions (A1) and (A2) hold for {u(x,t),C(x),F(t)}, by the proof of Theorem 1,
the seller can attain the above profit by selling a deterministic menu of different qualities.

Thus, costly screening is suboptimal.
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