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B Online Appendix

This appendix contains additional examples, results, and proofs that are supplementary
to the main text. The sections are ordered by the order they are referenced in the main
text.

B.1 Empirical Examples of Nested Bundling

Figure 10 documents some empirical examples of nested bundling.

(a) Netflix’s menu (Netflix 2023). (b) Slack’s menu (Slack 2023).

(c) Shopify’s menu (Shopify 2023). (d) OpenAI’s menu (OpenAI 2024).

Figure 10: Empirical Examples of Nested Bundling

B.2 General Procedure to Find the Optimal Menu

In practice, it might not be feasible to estimate the sold-alone quantities for all bundles
when the seller must o↵er some base bundle (e.g., a “freemium” tier) to all consumers. In
this section, we generalize our nesting condition to allow more ways to exclude bundles
from consideration when finding the optimal menu.
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For three bundles b0 Ä b1 Ä b2, we say that b1 is dominated by b2 conditional on b0 if

Qpb1 | b0q § Qpb2 | b0q ,

where for any b Ä b
1, recall that Qpb1 | bq denotes the incremental quantity of b1 given

b, i.e., the quantity at which the incremental profit function ⇡pb1
, qq ´ ⇡pb,qq reaches its

maximum in the interval r0,maxtQpb1q,Qpbqus.
A bundle b is strongly undominated if for all b1

, b
2 such that b1 Ä b Ä b

2, we have

Qpb | b1q ° Qpb2 | b1q .

Clearly, a strongly undominated bundle must be an undominated bundle.

Theorem 4 (General Nesting). Suppose that assumptions (A1) and (A2) hold. If the menu of

strongly undominated bundles is nested, then it is a minimal optimal menu.

Theorem 4 provides the following conditional sieve algorithm:

Step 1. Pick any three bundles b0 Ä b1 Ä b2.

Step 2. Remove b1 from consideration if Qpb1 | b0q § Qpb2 | b0q.

Step 3. Repeat Steps 1-2 until the remaining bundles are nested.

Theorem 4 implies that when Step 3 stops, the remaining bundles always form an op-
timal menu regardless of how the bundles are chosen in Step 1. One can further apply
Proposition 1 to the remaining bundles to find the minimal optimal menu. Theorem 4
generalizes Theorem 1 by allowing the removal of more bundles when checking the nest-
ing condition. The proof again relies on Theorem 2 (monotone construction theorem) and
Lemma 2 (switching lemma). In fact, the strongly undominated bundles are exactly the
chain-essential elements in Theorem 2, when the partially ordered choice set is pB,Ñq,
and the objective function is the virtual surplus function.

Proof of Theorem 4. We follow the same proof strategy as in Theorem 1 and Proposition 1.
In particular, we apply themonotone construction theorem (with the local single-crossing
property), Theorem 3, to the partially ordered set pB,Ñq and virtual surplus function
�pb, tq.

The result follows if we show that the strongly undominated bundles are exactly the
chain-essential elements in Theorem 3 (see the proof of Theorem 1 and Proposition 1).
We follow the notation as in the proof of Theorem 1. Because by assumptionQpbq P p0,1q,
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we have that tpbq P pt, tq for all b , ?. Therefore, for any ? Ä b1 Ä b2, by Lemma 3, we
have

tpb2 | b1q • minttpb1q, tpb2qu ° 0 .

Thus, for any b1 Ä b2, we have tpb2 | b1q ° 0.
Fix any strongly undominated bundle b. We show that b is chain essential. If b “ ?

or b “ b, then we have that b is a chain-essential element because (i) t † tpb1q for all
b

1 Å ? and (ii) tpb | b1q † t for all b1 Ä b (see the proof of Proposition 3). Thus, suppose
that ? Ä b Ä b. Suppose for contradiction that b is not chain essential. Then there exists
b1 Ä b Ä b2 such that

tpb | b1q • tpb2 | bq .

Since tpb2 | b1q ° 0, by Lemma 6, this implies

tpb | b1q • tpb2 | b1q .

Now, by Lemma 3 and the proof of Proposition 1, we have

Qpb | b1q § Qpb2 | b1q ,

contradicting to that b is strongly undominated.
Now, fix any chain-essential element b. We show that b is strongly undominated. Note

that, for all b1 Ä b Ä b2, by the definition of chain-essential elements, we have

tpb | b1q † tpb2 | bq .

Since tpb2 | b1q ° 0, by Lemma 6, this implies that

tpb | b1q † tpb2 | b1q .

Then, by Lemma 3 and the proof of Proposition 1, we have

Qpb | b1q ° Qpb2 | b1q .

Since this holds for all b1 Ä b Ä b2, we have that b is strongly undominated.
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t1 t2 t3

t1,2u 4 12 25

t1u 2 6 8
t2u 3 3 6

(a) Nesting condition fails

t1 t2 t3

t1,2u 4 12 20

t1u 2 6 8
t2u 3 3 6

(b) Nesting condition holds

Table 2: Bundle values by types for Example 3. Circled are sold-alone monopoly prices.
In case (a), the nesting condition fails and the optimal mechanism is stochastic. In case
(b), the nesting condition holds, and the optimal mechanism is deterministic and given
by the menu of undominated bundles.

B.3 Additional Example

We provide an additional example that shows totally ordered types are not su�cient for
the optimality of nested bundling. This example further illustrates our nesting condition.
For simplicity, the example is discrete, but it can be made continuous by approximation.

Example 3. Suppose that there are two items t1,2u and three types of consumers tt1, t2, t3u
with mass 1{3 each. Suppose that the costs are zero. We consider two cases.

Case (a). The values are given by Table 2a. One can verify that the sold-alone quanti-
ties are given by Qpt1,2uq “ 1{3, Qpt1uq “ 2{3, and Qpt2uq “ 1 (the sold-alone prices are
circled in Table 2a). Thus, none of the bundles are dominated. So the nesting condition
fails. Note that the nested menu

 
t1u,t1,2u

(
yields a profit 29{3 (by pricing t1,2u at 23,

and t1u at 6), and the nested menu
 

t2u,t1,2u
(
yields a profit 28{3 (by pricing t1,2u at

22, and t2u at 3). The optimal deterministic menu in this case is not nested: it prices the
bundle t1,2u at 22, t1u at 6, and t2u at 3, which results in a profit

1
3

ˆ
`
22` 6` 3

˘
“ 31

3
° 29

3
.

Moreover, the fully optimal mechanism is stochastic:

• price 22 for bundle t1,2u

• price 72{11 for a lottery that puts probability 10{11 on bundle t1u and probability
1{11 on bundle t1,2u

• price 3 for bundle t2u

which yields a profit
1
3

ˆ
´
22` 72

11
` 3

¯
“ 347

33
° 31

3
.
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The suboptimality of nested bundling can be understood using Corollary 4 since the
nested menu

 
t2u,t1,2u

(
that includes the best-selling bundle t2u yields a strictly lower

profit than the other nested menu
 

t1u,t1,2u
(
.

Case (b). The values are given by Table 2b, which is exactly the same as Table 2a except
that type t3’s value for bundle t1,2u is lowered from 25 to 20. Given this change, when
bundle t1,2u is sold alone, the monopoly price would be 12 and the quantity Qpt1,2uq
would be 2{3 rather than 1{3. Then, bundle t1u is dominated, and the nesting condi-
tion holds. The optimal mechanism in this case is deterministic and given by the nested
menu

 
t2u,t1,2u

(
, which coincides with the undominated bundles. The optimality of

nested bundling and the construction of optimal menu follow directly from Theorem 1
and Proposition 1.

B.4 Implementability Lemma

For completeness, we also prove the following lemma about implementability which is
used in Section III.

Lemma 7. Suppose that assumption (A1) holds. Then, for any deterministic, monotone alloca-

tion rule bptq, there exists a payment rule pptq such that pb,pq satisfies all IC and IR constraints

and that the lowest type t receives zero payo↵ under pb,pq.

Proof of Lemma 7. Let B “ tbptqutPT which is a nested menu. Without loss of generality,
let B “ t?, b1, . . . , bmu where b1 Ä ¨ ¨ ¨ Ä bm. For all i “ 1, . . . ,m, let

spbiq :“ inf
 
t P T : bptq Ö bi

(
.

We construct the bundle prices tp:pbqubPB by the following di↵erence equation: for all
i “ 1, . . . ,m,

p
:pbiq ´ p

:pbi´1q :“ vpbi , spbiqq ´ vpbi´1, spbiqq ,

where we put b0 “ ? and p
:pb0q “ vpb0, tq “ 0. To prove the result, it su�ces to show that

for all t P T , we have
bptq P argmax

b1PB

 
vpb1

, tq ´ p
:pb1q

(
.

By assumption (A1), note that

Upb, tq :“ vpb, tq ´ p
:pbq

has increasing di↵erences, and hence single-crossing property, in pb, tq. Moreover, by
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construction, spbiq is a crossing point of Upbi , tq and Upbi´1, tq. Since bp ¨ q is monotone,
we also have

spb1q § spb2q § ¨ ¨ ¨ § spbmq .

Now fix any i “ 0, . . . ,m and any t P pspbiq, spbi`1qq. For the edge cases, put spb0q “ t and
spbm`1q “ t. Now, observe that we have

Upbptq, tq “ Upbi , tq • Upbi`1, tq • Upbi`2, tq • ¨ ¨ ¨ • Upbm, tq ,

and
Upbptq, tq “ Upbi , tq • Upbi´1, tq • Upbi´2, tq • ¨ ¨ ¨ • Upb0, tq .

Hence, for any such t, we have

Upbptq, tq “ max
b1PB

tUpb1
, tqu .

Now, if t “ spbiq for some i “ 1, . . . ,m ` 1, then by definition, we have that (i) bptq “ bi or
bptq “ bi´1, and (ii) Upbi , tq “ Upbi´1, tq. Hence, the above argument also implies that

Upbptq, tq “ max
b1PB

tUpb1
, tqu .

Finally, suppose t “ spb0q. If spb0q † spb1q, then the above argument holds for t. If spb0q “
spb1q, then the above argument also holds for t when applying to i “ 1.

Thus, for all t P T , we have Upbptq, tq “ maxb1PBtUpb1
, tqu. Then, the payment rule

defined by pptq :“ p
:pbptqq implements the allocation rule bptq, proving the result.

B.5 Proof of Proposition 4

Suppose for contradiction that there are two elements x1 and x2 that are both chain es-
sential but cannot be ordered. Then, we have

x1 ^ x2 † x1, x2 † x1 _ x2 .

Since x1,x2 are chain essential, we have

tpx1 | x1 ^ x2q † tpx1 _ x2 | x1q ,

tpx2 | x1 ^ x2q † tpx1 _ x2 | x2q .
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Suppose without loss of generality that

tpx1 | x1 ^ x2q § tpx2 | x1 ^ x2q .

Fix any s such that
tpx2 | x1 ^ x2q † s † tpx1 _ x2 | x2q.

Then we have
tpx1 | x1 ^ x2q § tpx2 | x1 ^ x2q † s † tpx1 _ x2 | x2q ,

which implies that
gpx1, sq • gpx1 ^ x2, sq

and
gpx1 _ x2, sq † gpx2, sq ,

contradicting that gp ¨ , sq is quasisupermodular in x.

B.6 Necessity of the Chain Condition

The chain condition is not only su�cient for monotone comparative statics but also nec-

essary if one requires that the maximizer at each parameter can be found using only com-
parisons of the objective with ordered pairs (i.e., the pairs that satisfy the single-crossing
property). That is, the iterative improvement arguments provided in Section II.D succeed
if and only if the chain-essential elements are totally ordered.

Proposition 11. Let pX ,§q be a finite partially ordered set and g : Xˆr0,1s ÑR be a function

that is continuous in t and satisfies the strict single-crossing property in px, tq. The chain-

essential elements for g are totally ordered if and only if:

(i) There exists a monotone selection xp ¨ q such that xptq P argmax
xPX gpx, tq for all t.

(ii) For all t and x0, there exists a sequence px0, . . . ,xnq such that gpxi , tq § gpxi`1, tq for all i,
xn “ xptq, and each pair pxi ,xi`1q satisfies either xi ° xi`1 or xi † xi`1.

Proof of Proposition 11. ( ùñ ) Suppose that the chain-essential elements are totally or-
dered. By Theorem 2, the existence of a monotone selection xp ¨ q is immediate. We now
show that for every t P r0,1s and every x0 P X , there exists an improvement sequence
px0, . . . ,xnq such that (i)

gpx0, tq § gpx1, tq § ¨ ¨ ¨ § gpxn, tq

where xn “ xptq and that (ii) every pair pxi ,xi`1q satisfies either xi † xi`1 or xi ° xi`1.
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We first prove this claim for all s < ttpx2 | x1qux1†x2 . Fix any such s. Let Y denote the
set of chain-essential elements. Recall that Y is non-empty by definition. By Step 2 in
the proof of Theorem 2, we know that if x0 P Y , then there exists such an improvement
sequence (moreover, the objective value is strictly increasing along the sequence). Now
suppose x0 < Y . By Step 1 in the proof of Theorem 2, there exists x1 P X such that (i)

gpx0, tq † gpx1, tq .

and that (ii) either x1 ° x0 or x1 † x0.
If x1 is in Y , then we have found an improvement sequence by concatenating px0,x1q

with an improvement sequence that starts with x1 (which always exists since x1 P Y ).
If x1 is not in Y , then by Step 1 in the proof of Theorem 2 again, there exists x2 P X

such that (i)
gpx1, tq † gpx2, tq .

and that (ii) either x2 ° x1 or x2 † x1.
Because X is a finite set, this process can be repeated at most |X | number of times

until we find a sequence px0,x1, . . . ,xnq such that (i)

gpx0, tq † gpx1, tq † ¨ ¨ ¨ † gpxn, tq .

and that (ii) every pair pxi ,xi`1q satisfies either xi † xi`1 or xi ° xi`1, and that (iii) xn P Y .
But then we may concatenate this improvement sequence with an improvement sequence
that starts with xn (which always exists since xn P Y ). Moreover, the improvement se-
quence that starts with xn always ends with xptq by Step 2 in the proof of Theorem 2.
Hence, our claim holds for all s < ttpx2 | x1qux1†x2 .

To show that this claim holds for all s P r0,1s, we use a convergence argument as
follows. LetN “ |X | which is a finite number. Each improvement sequence can be viewed
as a point in the finite-dimensional space t1, . . . ,NuN which is a compact subset of RN .

Fix any s P r0,1s and any x0 P X . First, there exists a sequence sk converging to s

where sk < ttpx2 | x1qux1†x2 (since ttpx2 | x1qux1†x2 has measure 0 in r0,1s). For each sk ,
there exists an improvement sequence Zk P t1, . . . ,NuN by our previous step. Now, by the
Bolzano-Weierstrass theorem, we know that there exists a converging subsequence Zkj

such that Zkj
Ñ Z P t1, . . . ,NuN as j Ñ 8, where the convergence is with respect to the

usual distance metric of RN . This implies that there exists some J such that for all j • J ,
Zkj

“ Z . Therefore, for all j • J , each skj
has the same improvement sequence Z . Denote
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the improvement sequence by px0,x1, . . . ,xnq. Then, for all j • J , we have

gpx0, skj q § gpx1, skj q § ¨ ¨ ¨ § gpxn, skj q

and xn “ xpskj q. By continuity of g in t, we have

gpx0, sq § gpx1, sq § ¨ ¨ ¨ § gpxn, sq .

To ensure that xn “ xpsq, note that xp ¨ q by construction is right-continuous at all t P r0,1q
and left-continuous at t “ 1. Hence, we may choose the approximating sequence sk to
approximate s from the right if s † 1 and to approximate s from the left if s “ 1. Then,
we have xn “ xpsq, and hence px0,x1, . . . ,xnq is a desired improvement sequence.

( ù ) Suppose for contradiction that the chain-essential elements cannot be totally
ordered. Let

W :“
 
xptq

(
tPr0,1s

which is totally ordered since xp ¨ q is monotone. This implies that there must exist some
chain-essential element x: that is not inW . By the definition of chain-essential elements,
we have

max
x1:x1†x:

tpx: | x1q † min
x2:x2°x:

tpx2 | x:q ,

where we put the left-hand side to be 0 if no x
1 † x

: exists and the right-hand side to be 1
if no x

2 ° x
: exists. Therefore, there exists some s P r0,1s such that for all x1 † x

:, we have

gpx:
, sq ° gpx1

, sq

and for all x2 ° x
:, we have

gpx:
, sq ° gpx2

, sq .

However, for such s and x0 “ x
:, we also know that there exists an improvement sequence.

In particular, there exists some x1 such that (i) either x1 ° x
: or x1 † x

: and that (ii)

gpx:
, sq § gpx1, sq .

But that is a contradiction.
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B.7 Proof of Proposition 5

Since costs are zero, the price elasticity for any bundle b at quantity Qpbq must satisfy

⌘pb,Qpbqq “ ´1 .

Recall that
MRpb,qq “ Ppb,qq

“
1` 1

⌘pb,qq
‰
.

This implies that the elasticity curve ⌘pb, ¨ q single-crosses ´1 from below because the MR
curve MRpb, ¨ q single-crosses 0 from above.

We claim that, under zero costs, the union elasticity condition implies the union quan-
tity condition. Indeed, under zero costs and the union elasticity condition, for any b1, b2,
because

⌘
`
b1 Y b2,Qpb1 Y b2q

˘
“ ´1 ,

we have
⌘

`
b1,Qpb1 Y b2q

˘
• ´1 or ⌘

`
b2,Qpb1 Y b2q

˘
• ´1 ,

and hence
Qpb1 Y b2q • min

 
Qpb1q,Qpb2q

(
.

Thus, the union quantity condition holds. Thus, the nesting condition holds by Proposi-
tion 2.

B.8 Proof of Proposition 6

Let B be the proposed menu. By Proposition 5, the nesting condition holds. Hence, by
Theorem 1, it su�ces to show that any (non-empty) bundle b < B is dominated. We start
by showing that for all i, we have

Qpb‹
1 Y ¨¨ ¨ Y b

‹
i
q • Qpb‹

i
q .

We prove this by induction on i. The base case i “ 1 is trivial. For the inductive step,
suppose that the claim holds for i ´ 1. Now, observe that

Qpb‹
1 Y ¨¨ ¨ Y b

‹
i
q • min

!
Qpb‹

1 Y ¨¨ ¨ Y b
‹
i´1q, Qpb‹

i
q
)

• min
!
Qpb‹

i´1q, Qpb‹
i
q
)

“ Qpb‹
i
q ,

where (i) the first inequality follows from that the union elasticity condition implies the
union quantity condition (as shown in the proof of Proposition 5), (ii) the second in-
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equality follows from the inductive hypothesis, and (iii) the last equality follows from
the definition of b‹

i
and b

‹
i´1. This proves the inductive step.

Now, fix any b < B. There exists some index j such that b “ b
‹
j
. Since b < B, we have

b “ b
‹
j

Ä b
‹
1 Y ¨¨ ¨ Y b

‹
j
.

But, by the previous step, we also have

Qpbq “ Qpb‹
j
q § Qpb‹

1 Y ¨¨ ¨ Y b
‹
j
q .

Thus, bundle b is dominated, completing the proof.

B.9 Proof of Proposition 7

Without loss of generality, suppose that there is a sequence of demand rotations for item
2. By Proposition 6, nested bundling is always optimal at any parameter s. By Propo-
sition 1, the minimal optimal menu B

OPT psq equals the set of undominated bundles.
To prove claim (i), observe that it su�ces to show that if BOPT psq “

 
t1u,t1,2u

(
, then

B
OPT ps1q must be

 
t1u,t1,2u

(
for any s † s

1. Suppose not. Then, for some s † s
1, we have

Qpt1,2u;s1q • Qpt1u;s1q “ Qpt1u;sq ° Qpt1,2u;sq ,

which is impossible by our notion of demand rotations.
To prove claim (ii), observe that it su�ces to show that if BOPT ps1q “

 
t2u,t1,2u

(
, then

B
OPT psq must be

 
t2u,t1,2u

(
for any s † s

1. Suppose not. Then, for some s † s
1, we have

Qpt2u;sq § Qpt1,2u;sq , Qpt2u;s1q ° Qpt1,2u;s1q ,

which is impossible by our notion of demand rotations.
To prove claim (iii), observe that it su�ces to show that it cannot be |BOPT psq| “

1, |BOPT ps1q| “ 2, |BOPT ps2q| “ 1 for any s † s
1 † s

2. To see why this is impossible, note
that: if BOPT ps1q “

 
t1u,t1,2u

(
, then r2pBOPT p ¨ qq cannot be nondecreasing, contradicting

claim (i); if BOPT ps1q “
 

t2u,t1,2u
(
, then r1pBOPT p ¨ qq cannot be nonincreasing, contra-

dicting claim (ii).
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B.10 Proof of Proposition 8

By Theorem 1, it su�ces to show that if x: < X‹, then x
: is dominated by another quality

level x , x:. Fix any x
: < X‹. Then pQpx:q ° Qpx:q. Suppose, for contradiction, that there

does not exist any x ° x
: such that Qpxq • Qpx:q. Then, we have

max
x°x:

 pQpxq
(

“ max
x°x:

 
Qpxq

(
† Qpx:q .

Let

rQpxq :“

$
&

%
pQpxq if x , x: ;

Qpxq otherwise .

Then note that rQpxq is also nonincreasing and everywhere above Qpxq. Moreover, rQpxq is
everywhere below pQpxq with rQpx:q † pQpx:q. Contradiction.

B.11 Proof of Proposition 9

Note that since Qpxq P p0,1q, we must have

MRpQpxqq ¨ x ´Cpxq “ 0 ,

where the quality-adjusted marginal revenue curve MRpqq :“ d
dq pF´1p1´qq¨qq is a strictly

decreasing, continuous function. Therefore, we have

Qpxq “ MR´1
´
Cavgpxq

¯
.

Now, observe that for any function h : X Ñ R and any strictly decreasing function � :
RÑR, we have

U´“
� ˝ h

‰
“ � ˝L`“

h
‰
,

whereU´r ¨ s denotes the upper decreasing envelope operator and L`r ¨ s denotes the lower
increasing envelope operator. Thus, we have

pQpxq “ MR´1
´

qCavgpxq
¯

because MR´1p ¨ q is strictly decreasing. The claim follows from Proposition 8.
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B.12 Proof of Proposition 10

We map this problem into a bundling problem as follows. Consider a bundling problem
with n ` m many items, where the first n items represent quality upgrades exactly as
in Section IV.B, and the remaining m items represent the passes to avoid each of the m

costly activities. Specifically, for any pxi ,yjq, we define

v

´ 
1, . . . , i

(
Y tn` 1, . . . ,n`m

(
z
 
n` j

(
, t

¯
:“ upxi , tq ´ cpyj , tq ,

with v
` 
1, . . . , i

(
Y tn`1, . . . ,n`m

(
, t

˘
:“ upxi , tq being the value of quality xi without any

costly action. We can map the production costs accordingly and let vpb, tq “ Cpbq “ 0 for
bundles b that are not of the above form. With a slight abuse of notation, we also write
px,yq as the bundle of quality x and costly action y, and writeQpx,yq as the corresponding
sold-alone quantity for this damaged bundle, i.e., the unique quantity maximizing the
profit function ⇡px,qq ´⇡py,qq.

p ù q Suppose that miny°0Qpyq † maxx°0Qpxq. Suppose for contradiction that there
exists an optimal mechanism (among deterministic mechanisms) that does not use any
costly instruments. Then, by Proposition 8, it is without loss of optimality to consider a
menu B such that

x
‹ :“ max

!
argmax

x°0
Qpxq

)

is the base-tier quality in menu B. Let y
‹ :“ min

 
argmin

y°0Qpyq
(
. By assumption,

Qpy‹q † Qpx‹q. Because ⇡px‹
, qq, ⇡py‹

, qq, and ⇡px‹
, qq ´⇡py‹

, qq are strictly quasiconcave,
we have

Qpy‹q † Qpx‹q ùñ Qpy‹q † Qpx‹q † Qpx‹
, y

‹q .

But this implies that
tpx‹

, y
‹q † tpx‹q ,

where, as in the proof of Theorem 1, tp ¨ q denotes the type at which the associated virtual
surplus function crosses zero.1 By Proposition 8 and the construction of Theorem 1, all
types below tpx‹q consumes ? under the optimal mechanism. However, consider the per-
turbation of assigning the types s P rtpx‹

, y
‹q, tpx‹qq the damaged bundle px‹

, y
‹q. Because

upx‹
, tq ´ pupx‹

, tq ´ cpy‹
, tqq “ cpy‹

, tq

1For any bundle px,yq, the associated virtual function is given by upx, tq´Cpxq´cpy, tq´ 1´Fptq
f ptq

`
utpx, tq´

ctpy, tq
˘

“ �px, tq ´�py, tq where �px, tq :“ d
dq⇡px,qq |q“1´Fptq and �py, tq :“ d

dq⇡py,qq |q“1´Fptq.
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is strictly increasing in t, there exist prices to implement this change of the allocation.
This change must increase the total profit by Lemma 1 since the virtual surplus function
associated with bundle px‹

, y
‹q is strictly positive for all types s ° tpx‹

, y
‹q. Contradiction.

p ùñ q Suppose that miny°0Qpyq • maxx°0Qpxq. We show that there exists an optimal
mechanism that does not use any costly instruments. Note that for all x1 ° 0 and y

1 ° 0,

Qpy1q • min
y°0

Qpyq • max
x°0

Qpxq • Qpx1q .

Because ⇡px1
, qq, ⇡py1

, qq, and ⇡px1
, qq ´⇡py1

, qq are strictly quasiconcave, this implies that

Qpy1q • Qpx1q • Qpx1
, y

1q .

Therefore, each damaged bundle px1
, y

1q is dominated by the undamaged version x
1. Now,

note that, by the quasiconcavity assumptions, (i) the virtual surplus function �px1
, tq

single-crosses �px1
, tq ´�py1

, tq from below, (ii) both virtual surplus functions �px1
, tq and

�px1
, tq ´ �py1

, tq single-crosses 0 from below. Therefore, by the proof of Theorem 1, we
have that �px1

, tq ´�py1
, tq § maxt�px1

, tq,0u for all t P T .
Then, by Lemma 1, the optimal value of this screening problem is bounded from

above by
E

”
max
xPX

�px, tq
ı
.

Since assumptions (A1) and (A2) hold for tupx, tq,Cpxq,Fptqu, by the proof of Theorem 1,
the seller can attain the above profit by selling a deterministic menu of di↵erent qualities.
Thus, costly screening is suboptimal.
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