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A General Setup
As in the main text, we consider beliefs B ∈ B ⊆ ∆(Ω) and use ϕ ∈ R to index scalar
features. However, we now explicitly allow for the consideration of multiple features Φ =
(ϕ1, . . . , ϕK)′ ∈ RK . If Ω ⊆ R, then we may have K = 2 and Φ(B) = (µ(B), σ2(B))′. If
Ω = ×L

ℓ=1Ωℓ ⊆ RL, then we may have K = L and Φ(B) = (µ1(B), . . . , µL(B))′, where
µℓ(B) =

∫
ωℓdBℓ(ωℓ) and Bℓ ∈ ∆(Ωℓ) is the marginal distribution of B for states ωℓ ∈ Ωℓ.

For instance, the latter with L = 2 accommodates Cullen and Perez-Truglia (2022), in which
there are two relevant features: expectations of manager wages and expectations of coworker
wages.

• We assume that functions of interest are appropriately measurable wherever necessary.
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• In some places, we abbreviate partial derivatives in the manner ∂xf(x) = ∂f(x)/∂x.

Experiment. The information provision experiment proceeds as in the main text, but now
we allow more than two groups: z ∈ Z, where |Z| ≥ 2.

• The prior features are Φi0 ≡ Φ(Bi0) = (ϕki0)K
k=1, where ϕki0 ≡ ϕk(Bi0).

• The posterior features are Φz
i1 ≡ Φ(Bz

i1) = (ϕz
ki1)K

k=1, where ϕz
ki1 ≡ ϕk(Bz

i1).

• In the realized experiment, we have Φi1 ≡ ΦZi
i1 and ϕki1 ≡ ϕZi

ki1.

Instrumental Variables. As in Assumption 1 in the main text, we assume group assignment
Zi is a valid instrument, now stated for the general set of groups Z.

Assumption A1 (Valid Instrument, General Form). Zi satisfies

(i) IV independence: Zi ⊥⊥ (Xi, Bi0, {Sz
i , B

z
i1, Y

z
i (B)}z∈Z,B∈B);

(ii) IV exclusion: Y z
i (B) = Yi(B) for all z ∈ Z and B ∈ B.

Belief Exclusion. We assume actions depend on beliefs through a finite number of features
Φ = (ϕ1, . . . , ϕK)′, similar to Assumption 2 from the main text for the scalar feature case.
Let Φ(B) = {Φ(B) : B ∈ B} denote the set of possible feature values.

Assumption A2 (Belief Exclusion, General Form). Φ(B) is convex, and there exist continu-
ously differentiable functions Yi(Φ) defined over it satisfying Yi(B) = Yi(Φ(B)).

• We use Yi(·) to refer to both a function that inputs beliefs (i.e., B 7→ Yi(B)) and to a
function that inputs features of beliefs (i.e., Φ 7→ Yi(Φ)).

• Convexity holds when B is sufficiently rich; see Appendix A.1 below.

• In practice, to recover interpretable causal effects, we will need pairs of groups {z, z′}
that shift only one feature of interest. This is consistent with Assumption 2 from the
main text; see also the active control discussion in Section V.A. We formalize this
“ceteris paribus” condition in Appendix A.2.

Partial Effects. Given agent i, features Φ ∈ RK , and feature of interest ϕk ∈ R, we formulate
the causal effects of beliefs in terms of the partial effects ∂Yi(Φ)/∂ϕk; see Appendix A.3 for
alternative formulations.
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A.1 Primitive Conditions for Belief Exclusion

To give primitive conditions for Assumption A2, we consider a (net) utility/profit function
ui(ω, y) that depends on states ω and actions y ∈ Y. We can motivate the action function
Yi(B) as agent i’s utility-maximizing map from beliefs to actions:

Yi(B) = argmax
y∈Y

∫
ui(ω, y)dB(ω), ∀B ∈ B. (A1)

If agent i has beliefs B, then
∫
ui(ω, y)dB(ω) is their subjective expected utility from taking

action y. In particular, Yi ≡ Yi(Bi1) is the utility-maximizing action taken under i’s posterior
beliefs Bi1. We can use representation (A1) to motivate action functions Yi(Φ) that depend
on beliefs through a finite number of features Φ ∈ RK .

Restrictions on Preferences. Let mi(Y) = {mi(y) : y ∈ Y} denote the image of Y under
a strictly monotonic and continuously differentiable function mi : Y → R.

Proposition A1. Consider functions φk : Ω → R and features ϕk(B) =
∫
φk(ω)dB(ω). Let

B be the set of beliefs such that
∫

|φk(ω)|2dB(ω) < ∞ for each k and B ∈ B. If Yi(B) satisfies
(A1) with squared-error loss function

−ui(ω, y) = (∑K
k=1 θkiφk(ω) −mi(y))2,

and ∑K
k=1 θkiϕk(B) ∈ mi(Y) for each B ∈ B, then Yi(B) = m−1

i (∑K
k=1 θkiϕk(B)). In particular,

Assumption A2 is satisfied for Yi(Φ) = m−1
i (∑K

k=1 θkiϕk).

Proposition A1 considers squared error loss functions −ui(ω, y). To give intuition, consider
the setting of Jäger et al. (2024), as in Example 1 from the main text. Let mi(y) = y, and
suppose there is a latent function ω 7→ fi(ω) that maps potential wages ω to the optimal
rate at which worker i should search for a new job. However, this function is complicated or
imperfectly known, and so i uses the approximation ω 7→ ∑K

k=1 θkiφk(ω), where φk(ω) = ωk−1.
In this case, Yi(B) = ∑K

k=1 θkiϕk(B) is worker i’s minimum mean squared error approximation
to their optimal rate of job search. K = 2 gives a linear approximation, whereas K = 3 gives
a quadratic approximation. In the linear case, we obtain Yi(B) = θ1i + θ2iµ(B), and θ2i gives
the partial effects of expectations on actions—this specification is considered in Balla-Elliott
(2023). In the quadratic case, the agents are allowed to be risk averse, which is relevant for
some applications (Kumar, Gorodnichenko, and Coibion 2023b; Coibion et al. 2021).

When mi(y) = y, the partial effects of feature ϕk above are homogeneous across Φ ∈ RK :

ϕk 7→ ∂Yi(Φ)
∂ϕk

= θki.
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However, some models may allow for heterogeneity across Φ ∈ RK (Cullen and Perez-Truglia
2022, Section II.A). To accommodate heterogeneity, we can consider nonlinear mi:

ϕk 7→ ∂Yi(Φ)
∂ϕk

=
(
∂mi(Yi(Φ))

∂y

)−1

θki,

where the equality follows from the inverse function theorem.

Restrictions on Beliefs. In some cases, B is a set of parametric belief distributions. A
leading class of parametric distributions are exponential families (Lehmann and Casella
2006, Section 3.4). This class includes the set of Normal distributions often considered in
models from the information provision literature (Armantier et al. 2016; Cavallo, Cruces, and
Perez-Truglia 2017; Armona, Fuster, and Zafar 2019; Cullen and Perez-Truglia 2022; Fuster
et al. 2022; Balla-Elliott et al. 2022). There are also classes of parametric distributions that
are useful for belief elicitation. For example, Kumar, Gorodnichenko, and Coibion (2023b)
and Coibion et al. (2021) consider triangular distributions.

• Formally, consider an open and convex “parameter space” Θ ∈ RK , where Φ(B) ⊆ Θ.

• Each B ∈ B has density b(ω) = dB(ω)/dν with respect to some common sigma-finite
measure ν ∈ ∆(Ω).

• Y is an open and convex subset of R.

Proposition A2. Consider beliefs B ∈ B parameterized by Φ ∈ Θ in the sense that there
exists (ω,Φ) 7→ f(ω|Φ) ≥ 0 such that b(ω) = f(ω|Φ(B)) for all B ∈ B. If Φ 7→ f(ω|Φ) is
continuously differentiable over Θ ν-almost surely, Φ(B) = Θ, and Yi(B) satisfies (A1) with
y 7→ ui(ω, y) that is strictly concave and twice continuously differentiable ν-almost surely,
and such that for each y ∈ Y and Φ ∈ Θ, there exists δ > 0 for which

(i)
∫

|ui(ω, y)|f(ω|Φ)dν(ω) < ∞;

(ii)
∫

supỹ:|ỹ−y|≤δ |∂n
y ui(ω, ỹ)|f(ω|Φ)dν(ω) < ∞ for each n ∈ {1, 2}; and

(iii)
∫

supϕ̃k:|ϕ̃k−ϕk|≤δ |∂yui(ω, y)∂ϕk
f(ω|ϕ̃k, ϕ−k)|dν(ω) < ∞ for each k,

then Assumption A2 is satisfied for

Yi(Φ) = argmax
y∈Y

Ui(y,Φ), Ui(y,Φ) =
∫
ui(ω, y)f(ω|Φ)dν(ω).
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Note that, by the implicit function theorem, Yi(Φ) has partial effects of the form

ϕk 7→ ∂Yi(Φ)
∂ϕk

= ∂ϕk
∂yUi(Yi(Φ),Φ)

|∂2
yUi(Yi(Φ),Φ)| .

For intuition, consider agent i’s optimal behavior at feature Φ ∈ Θ—or equivalently, at the
belief corresponding to density ω 7→ f(ω|Φ). At Φ, the optimal action is Yi(Φ). The marginal
change in beliefs along feature ϕk leads to a marginal change ∂ϕk

Ui(Yi(Φ),Φ) in i’s subjective
expected utility, so Yi(Φ) is no longer optimal. To re-optimize, i can either increase or decrease
the intensity of their action. This choice of direction depends on the sign of the marginal
expected utility ∂ϕk

∂yUi(Yi(Φ),Φ) at Yi(Φ). The magnitude of the change in actions depends
on the curvature |∂2

yUi(Yi(Φ),Φ)| of the expected utility function at Yi(Φ).

A.2 Conditional TSLS and Aggregation

We consider TSLS specifications that condition on pairs of comparison groups {z, z′} ⊆ Z.
Throughout we maintain Assumptions A1-A2.

Equations. Given feature of interest ϕk, consider outcome and first-stage equations

Yi = W ′
iγ

z:z′ + βz:z′
ϕki1 + εi, (A2)

ϕki1 = W ′
iδ

z:z′ + 1{Zi = z′}I ′
iπ

z:z′ + ζi, (A3)

where the superscripts mean that we condition to the set of agents with Zi ∈ {z, z′}. Aside
from this conditioning, everything else is analogous to Section II.A of the main text.

• Wi is a covariate vector (containing a constant 1) that may include components and/or
functions of (Xi,Φi0, (Sz

i )z∈Z), and Ii is a scalar component of Wi. As we saw in the
main text, valid sign corrections are generally scalars, so we focus on the case where Ii

is scalar for ease of exposition: πz:z′ ∈ R.

• The conditional TSLS estimand corresponding to equations (A2)-(A3) is the vector of
coefficients from the population conditional OLS regression of Yi on Wi and the fitted
values from the population conditional OLS regression of ϕki1 on Wi and Ii1{Zi = z′}.

• We consider the causal interpretation of βz:z′
TSLS, which is the component of the conditional

TSLS estimand corresponding to the coefficient on ϕki1 from outcome equation (A2).

• Technically, the above coefficients and estimand depend on k—and so could the choice
of covariates—but we suppress these dependencies in the notation.
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Proposition A3. If E[WiW
′
i |Zi ∈ {z, z′}] is full-rank, P(Zi = z) > 0,P(Zi = z′) > 0, and

E[Iiϕki1|Zi = z′] − E[Iiϕki1|Zi = z] ̸= 0, then

βz:z′

TSLS = E[Ii(Yi(Φz′
i1) − Yi(Φz

i1))]
E[Ii(ϕz′

ki1 − ϕz
ki1)]

.

Moreover, if the group pair {z, z′} is such that ϕz′
k′i1 = ϕz

k′i1 for all k′ ̸= k, then

βz:z′

TSLS = E[wI,z:z′

i β̄z:z′

i ], wI,z:z′

i = Ii(ϕz′
ki1 − ϕz

ki1)
E[Ii(ϕz′

ki1 − ϕz
ki1)]

,

β̄z:z′

i =
∫
λz:z′

i (ϕk)∂Y
z:z′

i (ϕk)
∂ϕk

dϕk,

where λz:z′
i (ϕk) is the density of the uniform distribution on the range of ϕk between ϕz

ki1 and
ϕz′

ki1 and Y z:z′
i (ϕk) ≡ Yi(ϕk, (ϕz

k′i1)k′ ̸=k).

Ceteris Paribus Variation. The condition that ϕz′
k′i1 = ϕz

k′i1 for all k′ ̸= k requires the pair
of groups {z, z′} to generate ceteris paribus variation in ϕk (c.f. the active control discussion
in Section V.A of the main text). This allows βz:z′

TSLS to make a proper normalization in terms
of ϕki1.

Aggregation. If multiple pairs of comparison groups {z, z′} recover positive-weighted APEs
for a given feature of interest ϕk, then we can aggregate over these APEs. Formally, consider

βz:z′

APE = E[wz:z′

i β̄z:z′

i ], wz:z′

i = |Iz:z′
i (ϕz′

ki1 − ϕz
ki1)|

E[|Iz:z′
i (ϕz′

ki1 − ϕz
ki1)|]

.

We can view βz:z′
APE as the parameter that βz:z′

TSLS recovers when using an interaction Iz:z′
i that

is a valid sign correction for the contrast ϕz′
ki1 − ϕz

ki1. For example, suppose z = C is a control
group and z′ ̸= C are various treatment groups designed to shift the same feature ϕk, as in
Coibion, Gorodnichenko, and Weber (2022). Then, given a choice of weights αz′ ≥ 0 such
that ∑z′ ̸=C αz′ = 1, we can aggregate to recover

∑
z′ ̸=C

αz′βC:z′

TSLS =
∑

z′ ̸=C

αz′βC:z′

APE =
∑

z′ ̸=C

αz′E[wC:z′

i β̄C:z′

i ].

This pairwise approach avoids complications that arise when interpreting TSLS with multiple
instruments (Mogstad, Torgovitsky, and Walters 2021).
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A.3 Alternative Formulations for the Causal Effects

Let K = 1 so that Yi(B) = Yi(ϕ(B)) for a single feature ϕ ∈ R. Moreover, suppose the set of
groups is Z = {C, T}. We have thus far formulated the causal effects of interest in terms of
partial effects ∂Yi(ϕ)/∂ϕ. Here we discuss two other potential formulations.

Behavioral Elasticities. If Yi(B) ̸= 0 and ϕ(B) ̸= 0, then we can formulate the causal
parameters of interest in terms of partial elasticities—these behavioral elasticities generate
unit-free measures, which facilitates comparisons across applications (Haaland, Roth, and
Wohlfart 2023, Section 8). We therefore consider TSLS specifications that replace Yi and ϕi1

with log(Y n
i ) and log(ϕn

i1), for some chosen power n ∈ N such that Yi(B)n > 0 and ϕ(B)n > 0.
If Yi(B) > 0 and ϕ(B) > 0, then we can take n = 1 and the logarithm will be well-defined.
Taking n = 2 allows actions and features to take negative values. The analogues of equations
(A2)-(A3) and Proposition A3 (or equivalently in this case, equations (1)-(2) and Proposition
1 from the main text) for this setup produce

βTSLS = E[Ii(log[Yi(ϕT
i1)n] − log[Yi(ϕC

i1)n])]
E[Ii(log[(ϕT

i1)n] − log[(ϕC
i1)n])] .

The fundamental theorem of calculus gives

log[Yi(ϕT
i1)n] − log[Yi(ϕC

i1)n] = ψi

∫ 1
Yi(v)n

nYi(v)n−1∂Yi(v)
∂ϕ

1{v ∈ Vi}dv

log[(ϕT
i1)n] − log[(ϕC

i1)n] = ψi

∫ 1
vn
nvn−11{v ∈ Vi}dv,

where ψi = sign(ϕT
i1 − ϕC

i1) and Vi = {(1 − α)ϕC
i1 + αϕT

i1 : α ∈ [0, 1]} is the range of feature
values v between ϕC

i1 and ϕT
i1. Therefore, we obtain

βTSLS = E
[∫

Λi(v) β̃i(v)dv
]
, β̃i(v) = v

Yi(v)
∂Yi(v)
∂ϕ

,

Λi(v) = ψiIi v
−11{v ∈ Vi}

E
[∫

ψiIi v
−11{v ∈ Vi}dv

] ,

which is a weighted average of partial elasticities β̃i(v) with weights Λi(v) that integrate to
one across v and i; see also Angrist, Graddy, and Imbens (2000, Corollary 1).

Note that a valid sign correction Ii gives Iiψi = |Iiψi|, in which case |Iiψi|1{v ∈ Vi} =
|Ii||ψi|1{v ∈ Vi} = |Ii|1{v ∈ Vi} so that Λi(v) ≥ 0 for all i and v.
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Discrete Actions. To consider the case of discrete actions, we modify Assumption A2 so
that we can take well-defined partial effects. We continue to assume that {ϕ(B) : B ∈ B} is
a convex set, but now assume there exist continuously differentiable ϕ 7→ Ȳi(ϕ) defined over
it such that B 7→ E[Yi(B)|Ri] = Ȳi(ϕ(B)), where Ri is some random vector. This formulation
takes actions (which are discrete) and considers “average actions” (which are assumed to be
continuous). We assume Ii is a component or function of Ri, so then

E[Ii(Yi(BT
i1) − Yi(BC

i1))] = E[IiE[(Yi(BT
i1) − Yi(BC

i1))|Ri]]

= E[Ii(Ȳi(ϕT
i1) − Ȳi(ϕC

i1))],

where the first equality follows from iterated expectations. Thus, the analogue of Proposition
A3 (or equivalently in this case, Proposition 1 from the main text) for this setup produces

βTSLS = E[wI
i β̄i], wI

i = π′Ii(ϕT
i1 − ϕC

i1)
E[π′Ii(ϕT

i1 − ϕC
i1)]

, β̄i =
∫
λi(ϕ)∂Ȳi(ϕ)

∂ϕ
dϕ.

We arrive similar expressions to Proposition 1 from the main text, except now the partial effects
of features on actions ∂ϕYi(ϕ) are replaced by the partial effects of features on (conditional
on Ri) average actions ∂ϕȲi(ϕ). The random vector Ri could entirely consist of the observed
“pre-determined” variables in the experiment (i.e., prior features ϕi0, signals Sz

i , and agent
characteristics Xi). However, we also allow for latent unobserved components. In the following
example, the action is binary y ∈ {0, 1} and the “average action” is the probability of taking
action y = 1.

Let Ω = R and consider binary actions B 7→ Yi(B) ∈ {0, 1} that satisfy

Yi(B) = argmax
y∈{0,1}

∫
yω + (1 − y)ξi dB(ω), ∀B ∈ B.

In particular, agents i with beliefs B choose Yi(B) to maximize their subjective expected
utility, as in representation (A1); we can think of ξi as some outside option, and ω as the
benefit to choosing y = 1. The above leads to

Yi(B) = 1{µ(B) ≥ ξi}.

If ξi has absolutely continuous CDF conditional on Ri, then we can choose

Ȳi(µ(B)) = P(Yi(B) = 1|Ri) = P(ξi ≤ µ(B)|Ri),

and so the marginal effect of expectations on the probability of choosing y = 1 is given by
the conditional PDF ∂Ȳi(µ)/∂µ. For example, ξi|Ri ∼ N (θi,Σi) for (θi,Σi) ≡ (θ(Ri),Σ(Ri))
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gives

∂Ȳi(µ)
∂µ

= 1√
2πΣi

exp
(

−(µ− θi)2

2Σi

)
.

We can think of Ri as a set of determinants for the outside options.

B General Model of Posterior Formation
In Section III of the main text, we derived sign corrections Ii in stylized models of posterior
formation that specified (i) what agents assume about the signals and (ii) how agents update
their priors. Here we consider a general approach to (i) and (ii). Appendix B.1 covers (i) and
Appendix B.2 covers (ii). Appendix B.3 derives the sign corrections of interest, and Appendix
B.4 illustrates the general approach in an extension of the stylized Normal-Normal setup.

In what follows, we consider ω ∈ Ω ⊆ R and suppose beliefs B ∈ B ⊆ ∆(Ω) have densities
b(ω) = dB(ω)/dν with respect to a common dominating measure ν ∈ ∆(Ω), such as Lebesgue
measure, counting measure, or mixtures of the two.

The experiment provides signals Sz
i ∈ S to agents i assigned to group z ∈ Z, where S

is a set of signals. Agent i assumes that when the true state is ω, their signal was drawn
from distribution Qi(·|ω) ∈ ∆(S). Given i, we suppose each Qi(·|ω) has density qi(·|ω) with
respect to a dominating measure that is common to all ω.

Given signal s ∈ S, agent i forms posterior beliefs Bi1(·|s). In particular, s 7→ Bi1(·|s) is
an agent-specific mapping from signals s ∈ S to beliefs B ∈ B that implicitly depends on i’s
prior beliefs Bi0. In the realized experiment, Bz

i1 ≡ Bi1(·|Sz
i ).

B.1 MLR Property

Agents assume the set of signal distributions Qi = {Qi(·|ω) : ω ∈ Ω} ⊆ ∆(S) is informative for
the states. In particular, Qi satisfies the following monotone likelihood ratio (MLR) property:
Agents assume the experiment tends to provide larger signals s under larger realizations of
the state ω ∈ Ω. In what follows, let ≥i be a potentially agent-specific partial order on S.

Definition B1 (MLR). Qi ⊆ ∆(S) satisfies the monotone likelihood ratio (MLR) property
in (S,≥i) if for each ω, ω′ ∈ Ω and s′, s ∈ S such that ω′ > ω and s′ >i s, we have

qi(s′|ω′)
qi(s′|ω) ≥ qi(s|ω′)

qi(s|ω) .

If signals are quantitative, S ⊆ R, and ≥i is the standard order on R, then Definition B1
(c.f. Casella and Berger (2021, Definition 8.3.16)) is satisfied for many signal distributions of
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interest, including the set of Normal signal distributions from the main text. More generally,
numerous exponential families satisfy Definition B1 in their respective sufficient statistics.

Null Signal. Definition B1 accommodates passive control experiments: If S = R ∪ {s∅},
then agent i’s ranking of information s ∈ R relative to null signal s∅ (i.e., no information)
may depend on their initial prior beliefs Bi0 in a manner that is known to the researcher. We
use this structure to derive passive control sign corrections in Appendix B.3.

Qualitative Signals. Definition B1 permits qualitative signals, such as educational videos
(Alesina, Ferroni, and Stantcheva 2021; Dechezleprêtre et al. 2022). For example, if S =
{sL, sH} are two videos, then we may have sH ≥i s

L in the sense that video sH conveys more
pessimistic information than video sL, which makes the order ≥i on S = {sL, sH} common
across i.

Multiple States. For settings with multi-dimensional states Ω = ×L
ℓ=1Ωℓ ⊆ RL, L > 1, we

can apply the arguments that follow to the marginals ωℓ ∈ Ωℓ of interest. For example, Cullen
and Perez-Truglia (2022) consider employees i whose effort depends on beliefs B1 ∈ ∆(Ω1)
over peer wages ω1 ∈ Ω1 and beliefs B2 ∈ ∆(Ω2) over manager wages ω2 ∈ Ω2. The signal
space S embeds Sℓ ⊆ S, which gives information pertaining to just ωℓ. If we are interested in
deriving sign corrections for expectations µℓ over ωℓ, then ≥i may allow agents to compare
signals within each Sℓ (though not necessarily across them). In particular, the MLR structure
and the arguments that follow can be argued for at each margin. Thus, for ease of notation,
we develop arguments for the case of Ω ⊆ R.

B.2 Belief Updating Rules

Before we can leverage the above MLR property to derive sign corrections, we must consider
agents’ belief updating rules in greater detail. Recall that the density of B ∈ B is b(ω) =
dB(ω)/dν. In particular, the prior and posterior densities are bi1(ω|s) = dBi1(ω|s)/dν and
bi0(ω) = dBi0(ω)/dν, respectively. We first consider Bayesian rules.

Definition B2 (Bayesian). s 7→ Bi1(·|s) is Bayesian if

bi1(ω|s) = qi(s|ω)bi0(ω)∫
qi(s|ω)bi0(ω)dν(ω)

, ∀s ∈ S.

These Bayesian rules are prevalent in models from the information provision literature.
However, our framework also accommodates non-Bayesian learning.
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Definition B3 (Anchored). s 7→ Bi1(·|s) is anchored if there exist τi ∈ [0, 1] and Bs
i ∈ B

such that

bi1(ω|s) = τib
s
i (ω) + (1 − τi)

qi(s|ω)bi0(ω)∫
qi(s|ω)bi0(ω)dν(ω)

, ∀s ∈ S.

Anchored rules distort agents’ posteriors away from the Bayesian baseline and towards some
anchor belief Bs

i that may depend on s. Anchored rules accommodate numerous behavioral
biases from the behavioral economics literature (Gabaix 2019, Section 2.3), including the
anchoring-and-adjustment heuristics discussed in Tversky and Kahneman (1974). For instance,
choosing the anchors to be the prior beliefs Bs

i = Bi0 corresponds to conservatism, wherein
agents insufficiently update their beliefs relative to the Bayesian baseline (Edwards 1968).
In the language of Clippel and Zhang (2022), the anchored rules are “affine” distortions of
Bayesian updating. Our framework also accommodates “nonlinear” distortions. The following
class of nonlinear distortions was developed in Grether (1980).

Definition B4 (Grether). s 7→ Bi1(·|s) is Grether if there exist θi0, θi1 > 0 such that

bi1(ω|s) = qi(s|ω)θi1bi0(ω)θi0∫
qi(s|ω)θi1bi0(ω)θi0dν(ω)

, ∀s ∈ S.

The “inference” and “base-rate” parameters, θi1, θi0 > 0, allow for flexible deviations from
Bayesian updating. The following discussion closely follows the language in Benjamin (2019,
page 103). On the one hand, θi1 < 1 (θi1 > 1) reflects under-inference (over-inference) in that
agents update as if the signals s ∈ S are less (more) informative for the states ω ∈ Ω than in
the Bayesian baseline of θi1 = 1. On the other hand, θi0 < 1 (θi0 > 1) reflects base-rate neglect
(over-use) in the sense that agents update as if their priors Bi0 are less (more) informative
for the states ω ∈ Ω than in the Bayesian baseline of θi0 = 1.

Remark B1. If Bi0 is a conjugate parametric prior belief distribution for the set of signal
distributions Qi, then Bayesian updating implies Bi1 belongs to the same parametric family
as Bi0. In this case, if Bi0 belongs to the same parametric family for each i, then we can take
B to be that parametric family. If this family is parametrized by the feature of interest ϕ,
then Yi(B) = Yi(ϕ(B)) for each B ∈ B, which gives us belief exclusion in ϕ; see Proposition
A2. If we allow for richer patterns of heterogeneity, either via non-conjugate belief/signal
distributions, or via non-Bayesian learning, then the above argument generally fails. This
highlights one sense in which arguments for belief exclusion based on parametric restrictions
can be fragile.
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Remark B2. Allowing for non-Bayesian learning has practical relevance, since the information
provision literature often acknowledges the potential for behavioral biases in belief formation.
For example, there is concern that agents may numerically anchor their posterior expectations
at values of quantitative signals (Cavallo, Cruces, and Perez-Truglia 2017). This behavior
corresponds to anchored rules with Bs

i as the distribution that places probability one on the
provided signal s. There is also concern that information provision may induce emotional
responses that affect belief updating (Haaland, Roth, and Wohlfart 2023). If such responses
are suggestive of motivated reasoning, then we can microfound the anchoring parameters
τi ∈ [0, 1] with a model of utility-maximization (Clippel and Zhang 2022, Example 2); similar
arguments apply for the inference and base-rate parameters θi1, θi0 in the Grether case.

B.3 General Sign Corrections

We can derive sign corrections Ii by exploiting the first-order stochastic dominance (FOSD)
ordering implied by (S,≥i) and the above updating rules.

Proposition B1. For each i, suppose the set of signal distributions Qi ⊆ ∆(S) satisfies
the MLR property in (S,≥i) and that belief updating rule s 7→ Bi1(·|s) is either Bayesian,
anchored (with an anchor Bs

i that increases in the sense of FOSD when s′ >i s), or Grether.
Then, for any feature ϕ(B) =

∫
φ(ω)dB(ω) such that ω 7→ φ(ω) is increasing, we have that

s′ >i s implies

ϕ(Bi1(·|s′)) =
∫
φ(ω)dBi1(ω|s′) ≥

∫
φ(ω)dBi1(ω|s) = ϕ(Bi1(·|s)). (B1)

Proposition B1 exploits the FOSD ordering in posterior beliefs that arises when (i) s′, s

can be ordered in (S,≥i) and (ii) the belief updating rules respect the orderings—in principle,
our framework accommodates any belief updating rule that induces “signal monotonicity” in
the sense of condition (B1).

Remark B3. Proposition B1 covers expectations and second moments, which correspond
to φ(ω) = ω and φ(ω) = ω2, respectively. However, it does not cover the variance, which is
the difference of second moments and the squared expectations. That said, it is important
to note that this MLR framework only gives a set of sufficient conditions for deriving sign
corrections. In particular, sign corrections can still be intuited for the variance, as discussed
in Section III.C from the main text.

Sign Corrections. Consider an experiment with two groups Z = {C, T}, and corresponding
signals SC

i , S
T
i taking values in some signal space S. The feature of interest is the mean µ. If
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a researcher knows i’s ordering between SC
i and ST

i , then the generalized sign interaction

I∗
i = 1{ST

i >i S
C
i } − 1{ST

i <i S
C
i }

is a valid sign correction for µT
i1 − µC

i1, given condition (B1). In particular,

I∗
i (µT

i1 − µC
i1) = (1{ST

i >i S
C
i } − 1{ST

i <i S
C
i })(1{µT

i1 > µC
i1} − 1{µT

i1 < µC
i1})|µT

i1 − µC
i1|

= (1{ST
i >i S

C
i }1{µT

i1 > µC
i1} + 1{ST

i <i S
C
i }1{µT

i1 < µC
i1})|µT

i1 − µC
i1|

= (1{ST
i >i S

C
i } + 1{ST

i <i S
C
i })|µT

i1 − µC
i1|

= 1{I∗
i ̸= 0}|µT

i1 − µC
i1|,

where the second equality follows from condition (B1), and the third equality follows from

1{ST
i >i S

C
i }1{µT

i1 > µC
i1}|µT

i1 − µC
i1| = 1{ST

i >i S
C
i }1{µT

i1 > µC
i1}1{µT

i1 ̸= µC
i1}|µT

i1 − µC
i1|

= 1{ST
i >i S

C
i , µ

T
i1 ̸= µC

i1}1{µT
i1 > µC

i1}|µT
i1 − µC

i1|

= 1{ST
i >i S

C
i , µ

T
i1 ̸= µC

i1}|µT
i1 − µC

i1|

= 1{ST
i >i S

C
i }1{µT

i1 ̸= µC
i1}|µT

i1 − µC
i1|

= 1{ST
i >i S

C
i }|µT

i1 − µC
i1|,

and likewise for 1{ST
i <i S

C
i }1{µT

i1 < µC
i1}|µT

i1 −µC
i1|. Thus, TSLS with interaction I∗

i recovers
βTSLS = E[wI

i β̄i] with weights

w∗
i = 1{I∗

i ̸= 0}|µT
i1 − µC

i1|
E[1{I∗

i ̸= 0}|µT
i1 − µC

i1|]
≥ 0.

If µT
i1 ̸= µC

i1 implies I∗
i ̸= 0, as with Isign

i from the Normal-Normal setup in the main text (or
if I∗

i ̸= 0 for all i), then 1{I∗
i ̸= 0} can be omitted from the above expression.

Example B1. If S = {sL, sH} are two videos, and (SC
i , S

T
i ) = (sL, sH) for all i, then we

may have sH >i s
L in the sense that video sH conveys more pessimistic information than

video sL, which makes the order ≥i on S = {sL, sH} common across i. In this case, I∗
i = 1

for all i. The same logic applies for Example 2 from the main text.

Passive Control. S contains the null signal s∅ corresponding to no information, and agents
in control receive SC

i = s∅. The generalized sign interaction

I∗
i = 1{ST

i >i s
∅} − 1{ST

i <i s
∅}
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is a valid sign correction for µT
i1 − µC

i1, given condition (B1), as above.
Alternatively, in the case where ST

i ∈ R and ≥i respects the ordering on R, one approach
is to assume ST

i > µi0 =⇒ ST
i >i s

∅ and ST
i < µi0 =⇒ ST

i <i s
∅. In this case,

Isign
i = 1{ST

i > µi0} − 1{ST
i < µi0} = sign(ST

i − µi0)

is a valid sign correction, since

Isign
i (µT

i1 − µC
i1) = 1{ST

i > µi0}(µT
i1 − µC

i1) − 1{ST
i < µi0}(µT

i1 − µC
i1)

= 1{ST
i > µi0}1{ST

i >i s
∅}(µT

i1 − µC
i1) − 1{ST

i < µi0}1{ST
i <i s

∅}(µT
i1 − µC

i1)

= 1{ST
i > µi0}1{ST

i >i s
∅}1{µT

i1 > µC
i1}|µT

i1 − µC
i1|

+ 1{ST
i < µi0}1{ST

i <i s
∅}1{µT

i1 < µC
i1}|µT

i1 − µC
i1|

= 1{ST
i > µi0}1{ST

i >i s
∅}1{µT

i1 ̸= µC
i1}|µT

i1 − µC
i1|

+ 1{ST
i < µi0}1{ST

i <i s
∅}1{µT

i1 ̸= µC
i1}|µT

i1 − µC
i1|

= 1{ST
i > µi0}|µT

i1 − µC
i1| + 1{ST

i < µi0}|µT
i1 − µC

i1|

= 1{ST
i ̸= µi0}|µT

i1 − µC
i1|,

where the third and fourth equalities follow from condition (B1) and analogous arguments to
the above correction for I∗

i . From here, the perception gap Igap
i = ST

i − µi0 is also a valid sign
correction. Thus, TSLS with interactions Isign

i and Igap
i recover βTSLS = E[wI

i β̄i] with weights

wsign
i = 1{ST

i ̸= µi0}|µT
i1 − µC

i1|
E[1{ST

i ̸= µi0}|µT
i1 − µC

i1|]
≥ 0, wgap

i = |µT
i1 − µC

i1||ST
i − µi0|

E[|µT
i1 − µC

i1||ST
i − µi0|]

≥ 0.

The above argument assumes signals that are larger than i’s prior mean are also larger
than the null signal when viewed from the perspective of i’s subjective ordering of the signals.
In practice, this requires the content of the quantitative information to be comparable to the
values of the prior means; Section V.B from the main text provides a related discussion and
example.

B.4 Supplementary Results for Normal-Normal Setup

Consider an experiment with two groups Z = {C, T}, where each group has positive assign-
ment probability: P(Zi = T ),P(Zi = C) > 0.

As in the main text, agents are Bayesian with Normal prior beliefs Bi0 = N (µi0, σ
2
i0). If the

experiment provides information s, then agent i assumes s|ω ∼ N (ω, ς2
i ), where now agents

14



differ in perceptions of the signal variance ς2
i . We have Bi1(·|s) = N (µ(Bi1(·|s)), σ2(Bi1(·|s))),

where

µ(Bi1(·|s)) = ris+ (1 − ri)µi0, σ2(Bi1(·|s)) = (1 − ri)σ2
i0, ri = σ2

i0
σ2

i0 + ς2
i

. (B2)

If agents maintain their priors when the experiment provides the null signal, Bi1(·|s∅) = Bi0,
then the analysis from the main text is unchanged for both passive and active control cases.

TSLS First-Stage Coefficients. In this Normal-Normal setup, the validity of the passive
control interactions I1,gap

i = (1, ST
i − µi0)′ and I1,prior

i = (1, µi0)′ depends on the relationship
between prior means µi0 and variances σ2

i0. Let ∆i = ST
i − µi0 denote the perception gap.

Proposition B2. Let Assumption A1(i) and rule (B2) be satisfied with (ST
i , µi0) ⊥⊥ (σ2

i0, ς
2
i )

and µC
i1 = µi0. Suppose E[WiW

′
i ] is full-rank, P(Zi = z) > 0 for each z ∈ {C, T}, and consider

the first-stage population OLS regression

µi1 = W ′
iδ + 1{Zi = T}I ′

iπ + ζi.

Given Ii = I1,gap
i , we have
π1

π2

 =
 1 E[∆i]
E[∆i] E[∆2

i ]

−1 E[ri∆i]
E[ri∆2

i ]

 , π′I1,gap
i = E[ri]∆i.

On the other hand, given Ii = I1,prior
i and constant ST

i , we have

π1

π2

 =
 1 E[µi0]
E[µi0] E[µ2

i0]

−1  E[ri∆i]
E[ri∆iµi0]

 , π′I1,prior
i = E[ri]∆i.

Suppose that signals and signal variances are homogeneous: (ST
i , ς

2
i ) = (ST , ς2). In this

case, Proposition B2 shows that, when prior means are independent of prior variances, we
obtain π′Ii = E[ri]∆i for both I1,gap

i and I1,prior
i . Thus, in this special case, these specifications

are both valid sign corrections in the Normal-Normal setup; they recover positive-weighted
APEs with weights wgap

i that match those of interaction Igap
i . However, outside of such special

cases, I1,gap
i and I1,prior

i can generate negative weights; see Section IV.A of the main text for
a simulation. By contrast, Igap

i always produces wgap
i .

Exogenous Information Arrival. Now suppose that, after the experiment provides s ∈
R ∪ {s∅}, the agent receives information ξi|ω ∼ N (ω, τ 2

i ), regardless of group assignment
z, and independent of s conditional on ω. In this case, the passive control corrections are
generally invalid, while the active control corrections are robust.
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Exogenous Information: Passive Control Case. If SC
i = s∅ and ST

i ∈ R, then rule (B2)
implies

µC
i1 = κP

i ξi + (1 − κP
i )µi0, κP

i = σ2
i0

σ2
i0 + τ 2

i

µT
i1 = κA

i ξi + (1 − κA
i )[riS

T
i + (1 − ri)µi0], κA

i = (1 − ri)σ2
i0

(1 − ri)σ2
i0 + τ 2

i

.

In general, sign(µT
i1 − µC

i1) ̸= sign(ST
i − µi0). Intuitively, agents in the treatment group, who

have already received information from the experiment, will update less on the new exogenous
information than if they had been assigned to the control group. Therefore, even though the
exogenous information is the same in both groups, the updating occurs at different rates
κA

i , κ
P
i . The situation is less dire when τ 2

i is very large, which reflects cases where it is difficult
to acquire relevant information; see Section V.B for a related discussion.

Exogenous Information: Active Control Case. If SC
i , S

T
i ∈ R, then rule (B2) implies

µC
i1 = κA

i ξi + (1 − κA
i )[riS

C
i + (1 − ri)µi0],

µT
i1 = κA

i ξi + (1 − κA
i )[riS

T
i + (1 − ri)µi0],

so then µT
i1 − µC

i1 = (1 − κA
i )ri(ST

i − SC
i ). Therefore, sign(µT

i1 − µC
i1) = sign(ST

i − SC
i ), so the

active control sign correction continues to be valid. Intuitively, since agents in treatment and
control both received an initial signal, they respond to the new exogenous information at
rates κA

i that do not depend on the group. In conclusion, active control designs are robust to
exogenous information arrival in the Normal-Normal setup.

C Proofs for Appendix Results
Proof of Proposition A1.
Consider the problem of choosing a ∈ mi(Y) to minimize

∫
(∑K

k=1 θkiφk(ω) − a)2dB(ω). This
is solved by ai(B) = ∑K

k=1 θkiϕk(B). Note that the inverse of mi exists by strict monotonicity.
Therefore, for each y ̸= m−1(ai(B)), we have∫

ui(ω,m−1
i (ai(B)))dB(ω) <

∫
ui(ω, y)dB(ω), ∀B ∈ B.

Thus, Yi(B) = m−1
i (∑K

k=1 θkiϕk(B)). The inverse function theorem implies that Φ 7→ Yi(Φ)
is continuously differentiable over RK with derivatives ∂ϕk

Yi(Φ) = (∂ymi(Yi(Φ)))−1θki. Now
we show that Φ(B) is convex. By definition, for each Φ,Φ′ ∈ Φ(B), there exist BΦ, BΦ′ ∈ B
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such that Φ = (ϕk(BΦ))K
k=1 and Φ′ = (ϕk(BΦ′))K

k=1. By definition of B and ϕk(B), we have
(1 − α)BΦ + αBΦ′ ∈ B for each α ∈ [0, 1]. Thus, (1 − α)Φ + αΦ′ ∈ Φ(B), and so Assumption
A2 is satisfied.

Proof of Proposition A2.
By assumption, for all B ∈ B we have∫

ui(ω, y)dB(ω) =
∫
ui(ω, y)b(ω)dν(ω) =

∫
ui(ω, y)f(ω|Φ(B))dν(ω) = Ui(y,Φ(B)).

Conditions (i)-(iii) allow us to exchange differentiation and integrals (i.e., appealing to Leibniz
integral rule—and fundamental theorem of calculus for the dominating functions). Since Yi(B)
satisfies representation (A1), we obtain ∂yUi(Yi(Φ),Φ) =

∫
∂yui(ω, Yi(Φ))f(ω|Φ)dν(ω) = 0.

Strict concavity implies ∂2
yUi(y,Φ) =

∫
∂2

yui(ω, y)f(ω|Φ)dν(ω) < 0 for all y. By the implicit
function theorem,

∂Yi(Φ)
∂ϕk

= ∂ϕk
∂yUi(Yi(Φ),Φ)

|∂2
yUi(Yi(Φ),Φ)| ,

which is continuous over convex Θ = Φ(B). Thus, Assumption A2 is satisfied.

Proof of Proposition A3.
Analogous to Proposition 1 from the main text (see also Blandhol et al. (2022, Proposition
6)), Assumption A1 implies

βz:z′

TSLS = E[(1{Zi = z′} − P(Zi = z′|Zi ∈ {z, z′}))IiYi|Zi ∈ {z, z′}]
E[(1{Zi = z′} − P(Zi = z′|Zi ∈ {z, z′}))Iiϕki1|Zi ∈ {z, z′}]

= E[IiYi|Zi = z′] − E[IiYi|Zi = z]
E[Iiϕki1|Zi = z′] − E[Iiϕki1|Zi = z] × var(1{Zi = z′}|Zi ∈ {z, z′})

var(1{Zi = z′}|Zi ∈ {z, z′})

= E[Ii(Yi(Bz′
i1) − Yi(Bz

i1))]
E[Ii(ϕz′

ki1 − ϕz
ki1)]

.

Assumption A2 gives Yi(Bz′
i1) − Yi(Bz

i1) = Yi(Φz′
i1) − Yi(Φz

i1).

Proof of Proposition B1.
If ω′ > ω, then qi(s′|ω′)/qi(s′|ω) ≥ qi(s|ω′)/qi(s|ω) when s′ >i s. In particular, if Bi1(·|s) is a
Bayesian rule, then s′ >i s implies

bi1(ω′|s′)
bi1(ω|s′) = qi(s′|ω′)

qi(s′|ω)
bi0(ω′)
bi0(ω) ≥ qi(s|ω′)

qi(s|ω)
bi0(ω′)
bi0(ω) = bi1(ω′|s)

bi1(ω|s) ,

which implies Bi1(·|s′) is greater than Bi1(·|s) in the sense of first-order stochastic dominance.
In particular, since ω 7→ φ(ω) is increasing in ω, then ϕ(Bi1(·|s′)) ≥ ϕ(Bi1(·|s)).
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If Bi1(·|s) is instead an anchored rule, then the form of ϕ implies

s 7→ ϕ(Bi1(·|s)) = τiϕ(Bs
i ) + (1 − τi)

∫
φ(ω) qi(s|ω)bi0(ω)∫

qi(s|ω)bi0(ω)dν(ω)
dν(ω).

The latter is an attenuated value of ϕ at a Bayesian rule, and so is increasing in s′ >i s by the
above arguments from the Bayesian case. The additional assumption for the anchor Bs

i implies
ϕ(Bs

i ) is increasing in s′ >i s as well. Altogether, then, we have ϕ(Bi1(·|s′)) ≥ ϕ(Bi1(·|s)) for
the anchored case.

If Bi1(ω|s) is instead a Grether rule, then s′ >i s implies

bi1(ω′|s′)
bi1(ω|s′) =

(
qi(s′|ω′)
qi(s′|ω)

)θi1 (bi0(ω′)
bi0(ω)

)θi0

≥
(
qi(s|ω′)
qi(s|ω)

)θi1 (bi0(ω′)
bi0(ω)

)θi0

= bi1(ω′|s)
bi1(ω|s) ,

which implies Bi1(·|s′) is greater than Bi1(·|s) in the sense of first-order stochastic dominance,
as in the Bayesian case. Therefore, ϕ(Bi1(·|s′)) ≥ ϕ(Bi1(·|s)) for the Grether case.

Proof of Proposition B2.
The first-stage coefficients are identified and

π = E[IiI
′
i]−1(E[Iiµi1|Zi = T ] − E[Iiµi1|Zi = C])

= E[IiI
′
i]−1E[Iiri∆i],

where the second equality follows from updating rule (B2), µC
i1 = µi0, and IV independence.

Therefore, given Ii = I1,gap
i and (ST

i , µi0) ⊥⊥ (σ2
i0, ς

2
i ), we have

π′I1,gap
i =

 1
∆i

′

var(∆i)−1

 E[∆2
i ] −E[∆i]

−E[∆i] 1

E[∆i]
E[∆2

i ]

E[ri]

=
 1
∆i

′

var(∆i)−1

 0
var(∆i)

E[ri]

= E[ri]∆i

On the other hand, given Ii = I1,prior
i , (ST

i , µi0) ⊥⊥ (σ2
i0, ς

2
i ), and ST

i = ST constant, we have

π′I1,prior
i =

 1
µi0

′

var(µi0)−1

 E[µ2
i0] −E[µi0]

−E[µi0] 1

 ST − E[µi0]
STE[µi0] − E[µ2

i0]

E[ri]
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= var(µi0)−1

E[µ2
i0] − µi0E[µi0]
µi0 − E[µi0]

′  ST − E[µi0]
STE[µi0] − E[µ2

i0]

E[ri]

= E[ri]∆i.

D Empirical Applications

D.1 Interpreting the Simulation Results

In this section, we examine which agents have negative weights, and why negative weights
result in an attenuated estimated coefficient. We follow the simulation design from Section
IV.A of the main text. Because the partial effects ∂Yi(µ)/∂µ = exp(−3µi0) are homogeneous
across µ, TSLS with interaction Ii recovers

βTSLS = E[wI
i exp(−3µi0)], wI

i = π′Ii(µT
i1 − µC

i1)
E[π′Ii(µT

i1 − µC
i1)]

= π′Iiri(1 − µi0)
E[π′Iiri(1 − µi0)]

(D1)

We characterize which agents have negative weights by using formula (D1). First, we can
examine the distribution of weights from the contaminated interactions I1,gap

i and I1,prior
i in

Figure D1. 14% of agents have negative weight; these weights are close to 0, relative to the
positive right tail.

Figure D1: Histogram of weights w1,gap
i or w1,prior

i

Fraction negative: 0.1411
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Note: This figure plots the distribution of weights produced by the TSLS specification corresponding to the
I1,gap

i or I1,prior
i interactions. Negative weights are highlighted in red. I1,gap

i and I1,prior
i produce the same

weights, since the signal is constant. The formula for the weights is in formula (D1).

Which agents have negative weights? Examine the relationship between the prior and
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the weights in Figure D2; agents with negative weights are highlighted in red. Agents with
negative weights are concentrated among those whose priors are below and near the signal
ST

i = 1.

Figure D2: Prior vs. weight w1,gap
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Note: This figure is a scatterplot of the prior against the weights produced by the TSLS specification
corresponding to the I1,gap

i or I1,prior
i interactions. Negative weights are highlighted in red. I1,gap

i and I1,prior
i

produce the same weights, since the signal is constant. The formula for the weights is in formula (D1).

In contrast, these agents do not have negative weight when using Isign
i and Igap

i . The
relationship between the prior and weights in the uncontaminated specifications are shown in
Figure D3; agents who had negative weights in the contaminated specifications are highlighted
in red. Qualitatively, the relationship between the weights and the priors are similar in Igap

i

and I1,gap
i . The weights for those with priors less than the signal ST

i = 1 are simply “shifted
up” from Figure D2 to Figure D3 such that there are no more negative weights. In contrast,
the weights produced by Isign

i in Figure D3 are qualitatively different from those produced
by Igap

i . In particular, wsign
i ranges from 0 to 3.5, whereas wgap

i ranges from 0 to 5.5, due to
the up-weighting of those with the largest perception gaps. Up-weighting leads the relative
contributions of those with large perception gaps to be greater, especially for agents who
substantially update their beliefs—here, agents with large priors.

How do these negative weights generate differences in the coefficients? Figure D4 plots each
agent’s partial effect against their prior. The action function Yi(µ) = exp(−3µi0)×µ generates
positive partial effects for all agents. However, the agents with negative weights enter negatively
into the weighted average, thus attenuating the weighted average partial effect. Moreover,
because this action function generates partial effects that are exponentially decreasing in
the prior, the agents with negative weights have relatively large partial effects, compared
to those with priors above the signal. Therefore, the attenuation is substantial, generating
large differences between the contaminated and uncontaminated estimated weighted average
partial effects.

20



Figure D3: Prior vs. weight in uncontaminated specifications
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(a) Prior vs. wsign
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(b) Prior vs. wgap
i

Note: This figure shows scatterplots of the prior against the weights produced by the TSLS specification
corresponding to the Isign

i and Igap
i interactions, respectively. Agents who have negative weights when the

contaminated I1,gap
i or I1,prior

i specifications are used are highlighted in red. The formula for the weights is
in formula (D1).

Figure D4: Prior vs. partial effect
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Note: This figure shows a scatterplot of the prior against the partial effect β̄i = exp(−3µi0) for each agent.
Agents who have negative weights when the contaminated I1,gap

i or I1,prior
i specifications are used are

highlighted in red. The formula for the weights is in formula (D1).

D.2 Additional Estimated Coefficients for Kumar, Gorodnichenko,
and Coibion (2023b)

Figures D5 displays coefficients from the Kumar, Gorodnichenko, and Coibion (2023b)
application that are not shown in the main text.
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Figure D5: Estimates of weighted average partial effects using data from Kumar, Gorod-
nichenko, and Coibion (2023b)
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Note: The figure presents point estimates and 95% confidence intervals for the four prominent passive control
specifications in the literature using data from two arms in Kumar, Gorodnichenko, and Coibion (2023b).
The outcomes are defined as the difference between the planned change and the actualized change in the
outcome variable over six months, i.e., the planned change in price versus the actualized changed in price. The
outcome variables are the capital stock of the firm, the wages of the firm, the R&D budget of the firm, and
the profit margin of the firm. The feature of interest is GDP growth expectations, and the signal is 4% GDP
growth. Sign refers to Isign

i , which regresses the outcome on the sign of the perception gap and posterior GDP
growth expectations, instrumenting the posterior by the treatment indicator times the sign of the perception
gap ST

i − µi0. Gap refers to Igap
i , which regresses the outcome on the perception gap and the posterior,

instrumenting the posterior by the treatment indicator times the perception gap. “1, Gap” refers to I1,gap
i ,

which regresses the outcome on the perception gap and the posterior, instrumenting the posterior by the
treatment indicator and the treatment indicator times the perception gap. “1, Prior” refers to I1,prior

i , which
regresses the outcome on the prior and the posterior, instrumenting the posterior by the treatment indicator
and the treatment indicator times the prior. I1,gap

i and I1,prior
i produce the same estimate because the signal

is constant. In all specifications, the coefficient of interest is the coefficient on the posterior expectation.

22



D.3 Application to Jäger et al. (2024)

Jäger et al. (2024) study how information about workers’ outside options—that is, workers’
wages if they left their current job to find a new one—affects their labor market decisions.
First, Jäger et al. (2024) elicit workers’ prior expectations of their outside options. Next,
they split their sample into a control group and a single treatment group. The control arm
receives no information; those in the treatment group are told the mean wage of workers
similar to themselves (based on gender, age, occupation, labor market region, and education
level). Then, Jäger et al. (2024) elicit workers’ posterior expectations of their outside options.

Figure D6 displays estimated coefficients from all four passive control interactions on
the outcomes intended negotiation probability, intended quit probability, intended search
probability, intended negotiation magnitude where no negotiation is coded as 0, intended
negotiation magnitude where no negotiation is coded as missing, and reservation wage cut.
For most outcomes, there are few systematic differences across the specifications.

In general, the difference in the estimated coefficient for Isign
i versus Igap

i tends to be larger
than the difference between Igap

i and the contaminated interactions I1,gap
i and I1,prior

i . For
example, the Isign

i coefficient for the intended negotiation probability outcome is 30-40% larger
(though not statistically significantly so) than the coefficients from interactions Igap

i , I1,gap
i ,

and I1,prior
i , which are similar to each other. This pattern indicates that in this setting, the

up-weighting of workers with larger perception gaps may have a greater impact on estimates
than possible negative weights.

We can further investigate effects of up-weighting by characterizing the average weight
that TSLS gives to workers for each decile of the perception gap: E[wI

i |(ST
i − µi0) ∈ [aj, bj]],

where aj, bj are the bounds of the deciles and wI
i denotes the weights on worker i when the

interaction is Ii. Given Xi ⊥⊥ Zi and Assumption 1 from the main text, we have

E[wI
i f(Xi)] = E[I ′

iπf(Xi)µi1|Zi = T ] − E[I ′
iπf(Xi)µi1|Zi = C]

E[I ′
iπµi1|Zi = T ] − E[I ′

iπµi1|Zi = C] , (D2)

where f is some function of Xi. For example, if Xi ∈ [xmin, xmax], then

fa,b(Xi) := 1{Xi ∈ [a, b]}
P(Xi ∈ [a, b]) , xmin ≤ a < b ≤ xmax,

gives

E[wI
i fa,b(Xi)] = E[wI

i |Xi ∈ [a, b]].

In this example, if we have a collection of intervals [aj, bj ] such that ∪J
j=1[aj, bj ] = [xmin, xmax],

then ranging E[wI
i faj ,bj

(Xi)] over j = 1, . . . , J allows us to compute the average weight of
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Figure D6: Estimates of weighted average partial effects using data from Jäger et al. (2024)
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Note: The figure presents point estimates and 95% confidence intervals for the four prominent passive control
specifications in the literature using data from Jäger et al. (2024). The outcomes are the worker’s intended
probability of negotiating with their current employer, intended probability of quitting their current job,
intended probability of finding another job, intended negotiation magnitude (no negotiations coded as 0),
intended negotiation magnitude (no negotiations coded as missing), and the reservation wage cut as a percent
of their current wage. The signal is the mean wage of similar workers, and the feature of interest is workers’
expectations of how much their wages would change, as a percentage of their current wage, if they switched
jobs. Sign refers to interaction Isign

i , which regresses the outcome on the sign of the perception gap and the
posterior, instrumenting the posterior by the treatment indicator times the sign of the perception gap. Gap
refers to interaction Igap

i , which regresses the outcome on the perception gap and the posterior, instrumenting
the posterior by the treatment indicator times the perception gap. “1, Gap” refers to I1,gap

i , which regresses
the outcome on the perception gap and the posterior, instrumenting the posterior by the treatment indicator
and the treatment indicator times the perception gap. Following Jäger et al. (2024), we normalize agents’
perception gaps ST

i − µi0 to be a percentage of ST
i for Igap

i and I1,gap
i . “1, Prior” refers to I1,prior

i , which
regresses the outcome on the prior and the posterior, where the posterior is instrumented by the treatment
indicator, the treatment indicator times the prior, and the treatment indicator times the signal. We estimate
the version of interaction I1,prior

i that includes both the signal and the prior because signals are personalized
to each worker—see the discussion under Interaction 5 of the main text. In all specifications, the coefficient of
interest is the coefficient on the posterior expectation.

group [aj, bj]. We can also consider

βTSLS = E[wI
i β̄i] =

J∑
j=1

P(Xi ∈ [aj, bj])E[wI
i β̄i|Xi ∈ [aj, bj]],
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where each E[wI
i β̄i|Xi ∈ [aj, bj]] is identified as

E[wI
i β̄i|Xi ∈ [aj, bj]] =

E[I ′
iπfaj ,bj

(Xi)Yi|Zi = T ] − E[I ′
iπfaj ,bj

(Xi)Yi|Zi = C]
E[I ′

iπµi1|Zi = T ] − E[I ′
iπµi1|Zi = C] .

Figure D7 plots the weights against the perception gap. Compared to interactions Igap
i ,

I1,gap
i , and I1,prior

i , Isign
i places relatively less weight on those in the lowest decile, and relatively

more weight on those in the middle deciles. Therefore, if workers with moderate perception
gaps have larger within-agent APEs β̄i, then the Isign

i coefficient will be larger than those for
interactions Igap

i , I1,gap
i , and I1,prior

i , which would rationalize the estimates in Figure D6.

Figure D7: Perception Gap Characterization of Weights—Data from Jäger et al. (2024)
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Note: Each point represents the characterized TSLS weight for the corresponding decile bin, using intended
negotiation probability as the outcome. For example, the leftmost point corresponds to the characterized
weight for those in the lowest decile bin, (-0.572,-0.228]. For a description of the characterization procedure,
see the text.

We can also characterize the contribution of each decile of perception gap to the estimated
TSLS coefficients; for this exercise, we focus on the intended negotiation probability outcome.
Denote the contribution as E[wI

i β̄i|(ST
i − µi0) ∈ [aj, bj]]. Figure D8 plots these contributions

against the perception gaps. Comparing the shape of the plot in Figure D8 against that of
Figure D7 shows where the differences in the APEs are. For example, small differences in
Figure D7 weight contributions across the interactions for the lowest decile translates to
large differences in the analogous Figure D8 TSLS estimate contributions. This is evidence
of heterogeneous partial effects—if these effects were constant, then the relative location of
each point in Figures D7 and D8 would be identical. Comparing the shape of the plot in
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Figure D8: Perception Gap Characterization of TSLS—Data from Jäger et al. (2024)
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Note: Each point represents the characterized TSLS estimate for the corresponding decile bin, using intended
negotiation probability as the outcome. For example, the leftmost point corresponds to the characterized
estimate for those in the lowest decile bin, (-0.572,-0.228]. For a description of the characterization procedure,
see the text.

Figure D8 against that of Figure D7 suggests where large APEs are: Across all specifications,
the relative contributions of the second and seventh deciles are larger than their relative
weight. These deciles have perception gaps of (-0.228, -0.0931] and (0.162, 0.216], respectively.
Since the contribution is a weighted average of workers’ weights and APEs, the APEs of
workers in the second and seventh deciles must be large as well. That is, workers whose priors
are 10%-20% off from the signal are the more likely to change their intended negotiation
probability following treatment. In contrast, workers in the lowest decile bin of (-0.572, -0.228]
have smaller contributions relative to their weight. Therefore, their APEs are relatively
smaller than other workers.

One explanation for why workers whose priors are near—but not very close to—the signal
are the most likely to change their intended negotiation probability following treatment is
endogenous information acquisition, such as in Balla-Elliott (2023). Workers who are more
responsive to information are more likely to seek it out, and therefore have more accurate
priors. At the same time, workers that are very accurate will not respond much to the
information treatment; their actions are already near-optimal. Therefore, the workers that
are most responsive are those that have medium-sized perception gaps, and the workers that
are least responsive are those that have large or no perception gap. Interactions Igap

i , I1,gap
i ,

and I1,prior
i will up-weight workers with large perception gaps—and thus those who are least

responsive—attenuating causal effects towards zero.
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