## A Theory of Fair CEO Pay

Pierre Chaigneau Alex Edmans Daniel Gottlieb

October 2024

## Standard CEO Pay Models

- CEO only cares about consumption utility
- Edmans, Gosling, and Jenter (2023) survey: "Fairness concerns play an important role in both the level and structure of CEO pay"
  - CEOs "assess their pay against their expectation of a fair reward, rather than based only on the consumption utility it provides"

## Standard CEO Pay Models

- CEO only cares about consumption utility
- Edmans, Gosling, and Jenter (2023) survey: "Fairness concerns play an important role in both the level and structure of CEO pay"
  - CEOs "assess their pay against their expectation of a fair reward, rather than based only on the consumption utility it provides"

#### What is Fair?

- Firm value is a key reference point
  - 75%/76%: flow pay should rise if "good recent CEO performance"
    - \* "The retrospective acknowledgement of exceptional performance is important"
  - 79%/84%: incentive pay is "so that the CEO shares risks with investors and stakeholders, even if out of the CEO's control"
    - \* Most popular reason for no RPE is "the CEO should benefit from an industry upswing, since investors and stakeholders do"

#### Other Evidence on Fairness

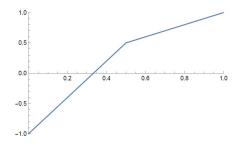
- Ultimatum game
- Hertzberg (1959): pay is a hygiene factor; unfair pay is a demotivator
- Fehr, Kirchsteiger, and Riedl (1993), Rabin (1993), Fehr and Schmidt (1999), Charness and Rabin (2002), Sobel (2005), Fehr, Klein, and Schmidt (2007): fairness models where agents are
  - All paid in the same units
  - Concerned with others' utility
  - Dislike inequity

### The Model

- Standard one-period principal-agent model
- Timeline:
  - t = 0: manager exerts  $e \in [0, \bar{e}]$  at cost C(e)
  - -t=1:  $q\in [0,\overline{q}]$  realized; manager paid  $w\left(q
    ight)$  where  $0\leq w\left(q
    ight)\leq q\ orall q$
- Principal minizes cost of contract s.t.
  - IC: manager exerts at least  $e^T$
  - IR: manager accepts contract; outside option is U
  - LL and monotonicity:  $0 \le w(q) \le q \ \forall q$  and  $w'(q) \ge 0 \ \forall q$
- Manager's utility function is u(w,q)

### The Model

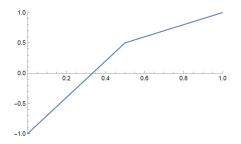
- Standard one-period principal-agent model
- Timeline:
  - -t=0: manager exerts  $e\in[0,\bar{e}]$  at cost C(e)
  - t=1:  $q\in [0,\overline{q}]$  realized; manager paid  $w\left(q
    ight)$  where  $0\leq w(q)\leq q\ orall q$
- Principal minizes cost of contract s.t.
  - IC: manager exerts at least  $e^T$
  - IR: manager accepts contract; outside option is  $\overline{U}$
  - LL and monotonicity:  $0 \le w(q) \le q \ \forall q$  and  $w'(q) \ge 0 \ \forall q$
- Manager's utility function is u(w, q)


#### Linear Model

•  $u(w, q) \equiv w - \gamma \max\{w^*(q) - w, 0\}$ •  $w^*(q) \equiv \rho q$  is the perceived fair wage •  $q = 1, \rho = 0.5, \gamma = 2$ 

- Similar to loss aversion, but reference point depends on output
  - De Meza and Webb (2007): median of wage distribution
  - Dittmann, Maug, and Spalt (2010): last salary (+ inherited equity)

### Linear Model


- $u(w, q) \equiv w \gamma \max\{w^*(q) w, 0\}$ -  $w^*(q) \equiv \rho q$  is the perceived fair wage
- q = 1,  $\rho = 0.5$ ,  $\gamma = 2$



- Similar to loss aversion, but reference point depends on output
  - De Meza and Webb (2007): median of wage distribution
  - Dittmann, Maug, and Spalt (2010): last salary (+ inherited equity)

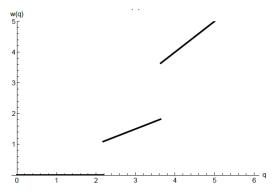
### Linear Model

- $u(w, q) \equiv w \gamma \max\{w^*(q) w, 0\}$ -  $w^*(q) \equiv \rho q$  is the perceived fair wage
- q = 1,  $\rho = 0.5$ ,  $\gamma = 2$



- Similar to loss aversion, but reference point depends on output
  - De Meza and Webb (2007): median of wage distribution
  - Dittmann, Maug, and Spalt (2010): last salary (+ inherited equity)

- Fix  $e^T = 0$ . If  $\overline{U}$  is sufficiently high and  $C(\hat{e})$  is sufficiently low, the principal implements  $e^* > 0$ 
  - Contract involves financial incentives even if they're unnecessary
  - Principal obtains effort for free
- In Holmström (1979), higher effort is always costly to the principal
  - Any  $e \in [0, \bar{e}]$  can in principle be optimal
- With fairness concerns, low effort levels may never be optimal. Requires either:
  - Unfair wages for high outputs (violates IR)
  - Above fair wage for low outputs (costly)
- Without fairness concerns, it's costly to incentivize high effort; with fairness concerns, it can be costly to incentivize low effort
- Oyer (2004) retention model: sensitivity on upside but not downside


- Fix  $e^T=0$ . If  $\overline{U}$  is sufficiently high and  $C(\hat{e})$  is sufficiently low, the principal implements  $e^*>0$ 
  - Contract involves financial incentives even if they're unnecessary
  - Principal obtains effort for free
- In Holmström (1979), higher effort is always costly to the principal
  - Any  $e \in [0, \bar{e}]$  can in principle be optimal
- With fairness concerns, low effort levels may never be optimal. Requires either:
  - Unfair wages for high outputs (violates IR)
  - Above fair wage for low outputs (costly)
- Without fairness concerns, it's costly to incentivize high effort; with fairness concerns, it can be costly to incentivize low effort
- Oyer (2004) retention model: sensitivity on upside but not downside

- Fix  $e^T = 0$ . If  $\overline{U}$  is sufficiently high and  $C(\hat{e})$  is sufficiently low, the principal implements  $e^* > 0$ 
  - Contract involves financial incentives even if they're unnecessary
  - Principal obtains effort for free
- In Holmström (1979), higher effort is always costly to the principal
  - Any  $e \in [0, \bar{e}]$  can in principle be optimal
- With fairness concerns, low effort levels may never be optimal.
   Requires either:
  - Unfair wages for high outputs (violates IR)
  - Above fair wage for low outputs (costly)
- Without fairness concerns, it's costly to incentivize high effort; with fairness concerns, it can be costly to incentivize low effort
- Oyer (2004) retention model: sensitivity on upside but not downside

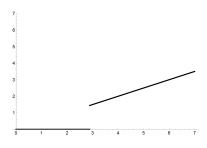
- Fix  $e^T=0$ . If  $\overline{U}$  is sufficiently high and  $C(\hat{e})$  is sufficiently low, the principal implements  $e^*>0$ 
  - Contract involves financial incentives even if they're unnecessary
  - Principal obtains effort for free
- In Holmström (1979), higher effort is always costly to the principal
  - Any  $e \in [0, \bar{e}]$  can in principle be optimal
- With fairness concerns, low effort levels may never be optimal.
   Requires either:
  - Unfair wages for high outputs (violates IR)
  - Above fair wage for low outputs (costly)
- Without fairness concerns, it's costly to incentivize high effort; with fairness concerns, it can be costly to incentivize low effort
- Oyer (2004) retention model: sensitivity on upside but not downside

- Fix  $e^T = 0$ . If  $\overline{U}$  is sufficiently high and  $C(\hat{e})$  is sufficiently low, the principal implements  $e^* > 0$ 
  - Contract involves financial incentives even if they're unnecessary
  - Principal obtains effort for free
- In Holmström (1979), higher effort is always costly to the principal
  - Any  $e \in [0, \bar{e}]$  can in principle be optimal
- With fairness concerns, low effort levels may never be optimal.
   Requires either:
  - Unfair wages for high outputs (violates IR)
  - Above fair wage for low outputs (costly)
- Without fairness concerns, it's costly to incentivize high effort; with fairness concerns, it can be costly to incentivize low effort
- Oyer (2004) retention model: sensitivity on upside but not downside

$$\bullet \ w(q) = \left\{ \begin{array}{ll} 0 & \text{for } q < q_m \\ w^*(q) & \text{for } q \in [q_m, q_M) \\ q & \text{for } q \geq q_M \end{array} \right.$$



- ullet Might think fairness concerns motivate fair wages:  $w^*(q) \ orall \ q$ 
  - But threat of unfair wages is a powerful motivator. Punish manager with most unfair possible wage for low output (negative LR)
  - For high output, pay the entire output even though more than fair.
     Concentrate rewards in the highest LR state
- With  $\gamma=0$ ,  $q_m=q_M$  so contract is "live-or-die" as in Innes (1990)
- With  $\gamma > 0$ , suboptimal
  - Doesn't satisfy IR efficiently: manager sometimes receives unfair wage
  - Doesn't satisfy IC efficiently: manager receives an unfair wage for outputs with positive LR
- Threshold  $q_m$  is decreasing in  $\gamma$ : manager receives fair wages over a larger range of outputs


- ullet Might think fairness concerns motivate fair wages:  $w^*(q) \ orall \ q$ 
  - But threat of unfair wages is a powerful motivator. Punish manager with most unfair possible wage for low output (negative LR)
  - For high output, pay the entire output even though more than fair.
     Concentrate rewards in the highest LR state
- ullet With  $\gamma=0$ ,  $q_m=q_M$  so contract is "live-or-die" as in Innes (1990)
- With  $\gamma > 0$ , suboptimal
  - Doesn't satisfy IR efficiently: manager sometimes receives unfair wage
  - Doesn't satisfy IC efficiently: manager receives an unfair wage for outputs with positive LR
- Threshold  $q_m$  is decreasing in  $\gamma$ : manager receives fair wages over a larger range of outputs

- ullet Might think fairness concerns motivate fair wages:  $w^*(q) \ orall \ q$ 
  - But threat of unfair wages is a powerful motivator. Punish manager with most unfair possible wage for low output (negative LR)
  - For high output, pay the entire output even though more than fair.
     Concentrate rewards in the highest LR state
- With  $\gamma=0$ ,  $q_m=q_M$  so contract is "live-or-die" as in Innes (1990)
- With  $\gamma > 0$ , suboptimal
  - Doesn't satisfy IR efficiently: manager sometimes receives unfair wage
  - Doesn't satisfy IC efficiently: manager receives an unfair wage for outputs with positive LR
- Threshold  $q_m$  is decreasing in  $\gamma$ : manager receives fair wages over a larger range of outputs

- ullet Might think fairness concerns motivate fair wages:  $w^*(q) \ orall \ q$ 
  - But threat of unfair wages is a powerful motivator. Punish manager with most unfair possible wage for low output (negative LR)
  - For high output, pay the entire output even though more than fair.
     Concentrate rewards in the highest LR state
- With  $\gamma=0$ ,  $q_m=q_M$  so contract is "live-or-die" as in Innes (1990)
- With  $\gamma > 0$ , suboptimal
  - Doesn't satisfy IR efficiently: manager sometimes receives unfair wage
  - Doesn't satisfy IC efficiently: manager receives an unfair wage for outputs with positive LR
- Threshold  $q_m$  is decreasing in  $\gamma$ : manager receives fair wages over a larger range of outputs

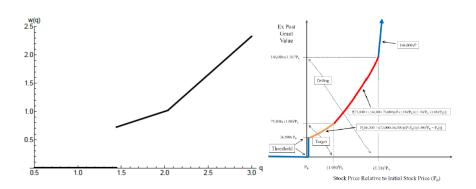
# Optimal Contract (cont'd)

ullet If  $\gamma$  is sufficiently high  $w(q)=\left\{egin{array}{ll} 0 & ext{for } q < q_m \ w^*(q) & ext{for } q \geq q_m \end{array}
ight.$ 



• Manager receives **performance shares**: shares worth  $\rho q$ , forfeited if  $q < q_m$ 

- In standard models where LR is continuous in output (e.g. Holmström, 1979), optimal contract is continuous in output
- In Innes (1990), optimal contract is discontinuous if no monotonicity constraint, but all-or-nothing
- In Innes (1990) with a monotonicity constraint
  - PPS is 1
  - No discontinuities
- Contract involves discontinuities without a monotonicity constraint, and realistic discontinuities


- In standard models where LR is continuous in output (e.g. Holmström, 1979), optimal contract is continuous in output
- In Innes (1990), optimal contract is discontinuous if no monotonicity constraint, but all-or-nothing
- In Innes (1990) with a monotonicity constraint
  - PPS is 1
  - No discontinuities
- Contract involves discontinuities without a monotonicity constraint, and realistic discontinuities

- In standard models where LR is continuous in output (e.g. Holmström, 1979), optimal contract is continuous in output
- In Innes (1990), optimal contract is discontinuous if no monotonicity constraint, but all-or-nothing
- In Innes (1990) with a monotonicity constraint
  - PPS is 1
  - No discontinuities
- Contract involves discontinuities without a monotonicity constraint, and realistic discontinuities

- In standard models where LR is continuous in output (e.g. Holmström, 1979), optimal contract is continuous in output
- In Innes (1990), optimal contract is discontinuous if no monotonicity constraint, but all-or-nothing
- In Innes (1990) with a monotonicity constraint
  - PPS is 1
  - No discontinuities
- Contract involves discontinuities without a monotonicity constraint, and realistic discontinuities

### Nonlinear Model

 Utility function that is weakly concave above the fair wage and weakly convex below



#### Conclusion

- First step in introducing fairness into CEO pay, where reference point is proportional to firm value
- Fairness concerns may motivate unfair pay to induce effort
- Optimal contract resembles performance shares: discontinuous without monotonicity constraint; not live-or-die
- Incentive pay is justifiable even without incentive concerns; some effort levels can be induced for free

### Other Potential Reference Points

 How important are the following factors in determining the level of pay for a new CEO?

|                                              | Directors | Investors |
|----------------------------------------------|-----------|-----------|
| The new CEO's ability                        | 1.28      | 1.49      |
| CEO pay at peer firms                        | 0.83      | 0.46      |
| How attractive our firm is to run            | 0.76      | 0.61      |
| The new CEO's other employment options       | 0.55      | 0.26      |
| The new CEO's pay in their previous position | 0.28      | -0.21     |
| How financially motivated the new CEO is     | 0.06      | -0.23     |
| The outgoing CEO's pay                       | -0.01     | -0.55     |

• DeMarzo and Kaniel (2023) and Liu and Sun (2023): relative wealth concerns

#### Other Extensions

- Last year's pay as a reference point
  - May be similar to costly adjustment models
- Shareholders have fairness concerns
  - Inequity aversion would have no bite as shareholders would always want to lower pay, as in a standard model