
Supplemental Appendix of

Cursed Sequential Equilibrium

Meng-Jhang Fong∗ Po-Hsuan Lin† Thomas R. Palfrey‡

July 1, 2025

1 Pooling Equilibria in Signaling Games

Proof of Proposition 6

Here we provide a characterization of χ-CSE of Game BH 3 and Game BH 4. In the following,

we denote µI ≡ µχ
2 (θ1|m = I) and µS ≡ µχ

2 (θ1|m = S).

Part 1 (Analysis of BH 3): At information set S, given µS, the expected payoffs of C,

D, E are 90µS, 30 − 15µS and 15, respectively. Therefore, for any µS, E is never a best

response. Moreover, C is the best response if and only if 90µS ≥ 30 − 15µS or µS ≥ 2
7
.

Similarly, at information set I, given µI , the expected payoffs of C, D, E are 30, 45− 45µI

and 15, respectively. Therefore, E is strictly dominated, and C is the best response if and

only if 30 ≥ 45− 45µI or µI ≥ 1
3
. Now we consider four cases.

Case 1 [m(θ1) = I,m(θ2) = S]: By Lemma 1, µI = 1 − χ
2
and µS = χ

2
. Moreover, since

µI = 1 − χ
2
≥ 1

2
for any χ, player 2 will choose C at information set I. To support this

equilibrium, player 2 has to choose C at information set S. In other words, [(I, S); (C,C)]

is separating χ-CSE if and only if µS ≥ 2
7
or χ ≥ 4

7
.

Case 2 [m(θ1) = S,m(θ2) = I]: By Lemma 1, µI = χ
2
and µS = 1 − χ

2
. Because µS ≥

1− χ
2
≥ 1

2
, it is optimal for player 2 to choose C at information set S. To support this as an
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equilibrium, player 2 has to choose D at information set I. Yet in this case, type θ2 player

1 will deviate to S. Therefore, this profile cannot be supported as an equilibrium.

Case 3 [m(θ1) = I,m(θ2) = I]: Since player 1 follows a pooling strategy, player 2 will

not update his belief at information set I, i.e., µI = 1
2
. Moreover, χ-dampened updating

property implies χ
2
≤ µS ≤ 1 − χ

2
. Since µI > 1

3
, player 2 will choose C at information set

I. To support this profile to be an equilibrium, player 2 has to choose D at information

set S, and hence, it must be the case that µS ≤ 2
7
. Coupled with the requirement from

χ-dampened updating, the off-path belief has to satisfy χ
2
≤ µS ≤ 2

7
. That is, [(I, I); (C,D)]

is pooling χ-CSE if and only if χ
2
≤ 2

7
or χ ≤ 4

7
.

Case 4 [m(θ1) = S,m(θ2) = S]: Similar to the previous case, since player 1 follows a

pooling strategy, player 2 will not update his belief at information set S, i.e., µS = 1
2
. Also,

the χ-dampened updating property suggests χ
2
≤ µI ≤ 1− χ

2
. Because µS > 2

7
, it is optimal

for player 2 to choose C at information set S. To support this as an equilibrium, player 2

has to choose D at information set I. Therefore, it must be that µI ≤ 1
3
. Combined with

the requirement of χ-dampened updating, the off-path belief has to satisfy χ
2
≤ µI ≤ 1

3
. As

a result, [(S, S); (D,C)] is a pooling χ-CSE if and only if χ ≤ 2
3
.

Part 2 (Analysis of BH 4): At information set I, given µI , the expected payoffs of C, D,

E are 30, 45− 45µI and 35µI . Hence, D is the best response if and only if µI ≤ 1
3
while E

is the best response if µI ≥ 6
7
. For 1

3
≤ µI ≤ 6

7
, C is the best response. On the other hand,

since player 2’s payoffs at information set S are the same as in BH 3, player 2 will adopt the

same decision rule—player 2 will choose C if and only if µS ≥ 2
7
, and choose D if and only

if µS ≤ 2
7
. Now, we consider the following four cases.

Case 1 [m(θ1) = I,m(θ2) = S]: In this case, by Lemma 1, µI = 1 − χ
2
and µS = χ

2
. To

support this profile to be an equilibrium, player 2 has to choose E and C at information set

I and S, respectively. To make it profitable for player 2 to choose E at information set I, it

must be that: µI = 1 − χ
2
≥ 6

7
⇐⇒ χ ≤ 2

7
. On the other hand, player 2 will choose C at

information set S if and only if χ
2
≥ 2

7
or χ ≥ 4

7
, which is not compatible with the previous

inequality. Therefore, this profile cannot be supported as an equilibrium.

Case 2 [m(θ1) = S,m(θ2) = I]: In this case, by Lemma 1, µI = χ
2
and µS = 1 − χ

2
. To

support this as an equilibrium, player 2 has to choose D at both information sets. Yet,

µS = 1− χ
2
> 2

7
, implying that it is not a best reply for player 2 to choose D at information

set S. Hence this profile also cannot be supported as an equilibrium.
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Case 3 [m(θ1) = I,m(θ2) = I]: Since player 1 follows a pooling strategy, player 2 will not

update his belief at information set I, i.e., µI = 1
2
. The χ-dampened updating property

implies χ
2
≤ µS ≤ 1− χ

2
. Because 1

3
< µI =

1
2
< 6

7
, player 2 will choose C at information set

I. To support this profile as an equilibrium, player 2 has to choose D at information set S,

and hence, it must be the case that µS ≤ 2
7
. Coupled with the requirement of χ-dampened

updating, the off-path belief has to satisfy χ
2
≤ µS ≤ 2

7
. That is, [(I, I); (C,D)] is pooling

χ-CSE if and only if χ
2
≤ 2

7
or χ ≤ 4

7
.

Case 4 [m(θ1) = S,m(θ2) = S]: Similar to the previous case, since player 1 follows a

pooling strategy, player 2 will not update his belief at information set S, i.e., µS = 1
2
. Also,

the χ-dampened updating property implies χ
2
≤ µI ≤ 1 − χ

2
. Because µS > 2

7
, it is optimal

for player 2 to choose C at information set S. To support this as an equilibrium, player 2

can choose either C or D at information set I.

Case 4.1: To make it a best reply for player 2 to choose D at information set I, it must

be that µI ≤ 1
3
. Combined with the requirement from χ-dampened updating, the off-path

belief has to satisfy χ
2
≤ µI ≤ 1

3
. As a result, [(S, S); (D,C)] is a pooling χ-CSE if and only

if χ ≤ 2
3
.

Case 4.2: To make it a best reply for player 2 to choose C at information set I, it must be

that 1
3
≤ µI ≤ 6

7
. Combined with the requirement from χ-dampened updating, the off-path

belief has to satisfy

max

{
1

2
χ,

1

3

}
≤ µI ≤ min

{
6

7
, 1− 1

2
χ

}
.

For any χ ∈ [0, 1], one can find µI that satisfies both inequalities. Hence [(S, S); (C,C)] is a

pooling χ-CSE for any χ. ■

2 Reputation Building, Entry Deterrence, and Preda-

tory Pricing

Proof of Proposition 7

In this proof, we characterize the strategies of entrants and the weak monopolist in the χ-

CSE. We start with the analysis of period 2, developing the backward induction argument

underlying the χ-CSE.

Step 1: In period 2, the strong monopolist will fight and the weak monopolist will play soft.

Let µχ be the entrant’s posterior belief about the monopolist being a strong type in period

2, and it is profitable for an entrant to enter if and only if −µχ+(1−µχ) ≥ 0 ⇐⇒ µχ ≤ 1
2
.
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Therefore, if an entrant doesn’t enter in period 1, µχ = q ≤ 1
4
and an entrant will enter in

period 2.

Step 2: Let σχ be the probability of the weak monopolist to fight in period 1 if there is

entry. Given the weak monopolist adopting σχ, if an entrant enters in period 1 and the

monopolist fights, then by Lemma 1, an entrant’s posterior belief in period 2 is

µχ = χq + (1− χ)

(
q

q + (1− q)σχ

)
.

Yet if the monopolist plays soft in period 1, an entrant’s posterior belief in period 2 becomes

µχ = χq < 1
2
, and an entrant will enter the market. Moreover, if the weak monopolist thinks

σχ can deter an entrant from entering in period 2, the weak monopolist’s expected payoff in

period 1 is σχ, indicating that the weak monopolist will choose σχ such that µχ = 1
2
. Hence,

χq + (1− χ)

(
q

q + (1− q)σχ

)
=

1

2
⇐⇒ σχ =

[
1− 2(1− q)χ

1− 2qχ

](
q

1− q

)
.

When χ > 1
2(1−q)

, the weak monopolist believes that an entrant will enter in period 2 for all

σχ ∈ [0, 1], and hence the weak monopolist will adopt σχ = 0. In contrast, when χ < 1
2(1−q)

,

the weak monopolist will play a mixed strategy in period 1.

Step 3: To support the mixed strategy equilibrium, the weak monopolist has to be indifferent

between fighting and playing soft if there is entry in period 1. Let τχ be the probability

of an entrant entering the market in period 2 upon seeing the monopolist fight in period 1.

Therefore, in equilibrium, −1+ 2(1− τχ) = 0 ⇐⇒ τχ = 1
2
. Note that when χ > 1

2(1−q)
, the

weak monopolist will never fight, and as seeing the monopolist fight in period 1, an entrant

will still enter in period 2 because µχ = χq + (1− χ) < 1
2

⇐⇒ χ > 1
2(1−q)

.

Step 4: Lastly, for χ > 1
2(1−q)

, the weak monopolist will play soft if there is entry in period

1 and an entrant will enter in period 1 as q ≤ 1
4
. Additionally, for χ < 1

2(1−q)
, given that the

weak monopolist will fight in period 1 with probability σχ, an entrant will enter in period 1

if and only if

− [q + (1− q)σχ] + (1− q)(1− σχ) = 1− 4q − 4qχ

1− 2qχ
≥ 0 ⇐⇒ q ≤ 1

2(2− χ)

which holds for any χ ∈ [0, 1] because q ≤ 1
4
. We can hence conclude that an entrant will

enter in period 1 for any χ ∈ [0, 1]. ■
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Reputation Building Game Experiment by Jung et al. (1994)

Table OA.1: Stage Game Payoffs in the Reputation Building Game (Table 1, Jung et al.
1994)

Payoffs

E’s strategy M ’s strategy E Weak M Strong M

In Fight 80 70 160

Play Soft 150 160 70

Out — 95 300 300

The reputation building game in Jung et al. (1994) consists of one monopolist (M) and

eight entrants (E) over eight consecutive periods, all with the same stage game payoffs.

At the beginning, the monopolist is randomly assigned a private type, either “strong” or

“weak,” with the prior probability of being a strong type set at 1
3
. In each period, one of the

eight E’s first decides whether to enter the market or not. If E does not enter the market,

the period ends. Otherwise, it’s M ’s turn to decide whether to fight or play soft. The payoffs

are summarized in Table OA.1 above.

Proposition 11 in the main text summarizes the properties of the χ-CSE of this game.

The formal characterization is provided in Proposition OA.1 below.

Proposition OA.1. The unique χ-CSE of the reputation building game in Jung et al. (1994)

has the following properties:

• let µχ
t be E’s posterior belief about M being a strong type in period t, and E will enter

the market if and only if

µχ
t ≤ 11

14

(
11

14− 3χ

)8−t

≡ rχt ;

• a strong M will fight with probability 1 whenever there is entry;

• a weak M will fight with probability 0 in period 8 if there is entry, and will fight with
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probability σχ
t in period t ≤ 7 if there is entry where

σχ
t =


1 if µχ

t ≥ rχt+1[
(1−rχt+1)−χ(1−µχ

t )

rχt+1−χµχ
t

] (
µχ
t

1−µχ
t

)
if µχ

t ∈
[
1−

(
1−rχt+1

χ

)
, rχt+1

]
;

0 if µχ
t ≤ 1−

(
1−rχt+1

χ

)
• once a weak M starts playing a mixed strategy, in periods after M fights, E will enter

the market with probability 5
14
.

Proof: In the reputation building game in Jung et al. (1994), a strong M does not have any

reputation concern and will always fight whenever there is entry since this is a strong M ’s

dominant strategy. In the following, we characterize the strategies of E’s and a weak M in

χ-CSE. We start with the analysis of the last period of play first, developing the backward

induction argument underlying the χ-CSE.

Step 1: In period 8, a strong M will fight and a weak M will play soft. Let µχ
8 be E’s

posterior belief about M being a strong type in period 8, and it is profitable for E to enter

the market if and only if 80µχ
8 + 150(1− µχ

8 ) ≥ 95 ⇐⇒ µχ
8 ≤ 11

14
.

Step 2: Let µχ
t be E’s posterior belief about M being a strong type in period t. In this step,

we derive the upper bound of µχ
t for E to be willing to enter the market in period t. First,

in period 7, let σχ
7 be the probability of a weak M to fight, and E will enter if and only if

80 [µχ
7 + σχ

7 (1− µχ
7 )] + 150 (1− σχ

7 ) (1− µχ
7 ) ≥ 95 ⇐⇒ µχ

7 + σχ
7 (1− µχ

7 ) ≤
11

14
.

If E enters, a weak M believes that using σχ
7 would induce µχ

8 to be

µχ
8 = χµχ

7 + (1− χ)

[
µχ
7

µχ
7 + σχ

7 (1− µχ
7 )

]
(1)

by Lemma 1. Therefore, if a weak M thinks σχ
7 can deter E from entering in the next period,

a weak M ’s expected payoff in period 7 is σχ
7 (70 + 300) + (1− σχ

7 )(160 + 160) = 320 + 50σχ
7

which increases with σχ
7 , indicating that in the entry phase of χ-CSE, a weak M will choose

σχ
7 such that µχ

8 = 11
14
. Combined with (1), we can obtain that

χµχ
7 + (1− χ)

[
µχ
7

µχ
7 + σχ

7 (1− µχ
7 )

]
=

11

14
⇐⇒ σχ

7 =

[ 3
14

− χ(1− µχ
7 )

11
14

− χµχ
7

](
µχ
7

1− µχ
7

)
. (2)
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Note that if µχ
7 ≤ 1 − 3

14χ
, then a weak M believes that E will enter in period 8 no matter

how small σχ
7 is. Hence, a weak M will choose σχ

7 = 0. On the other hand, if µχ
7 ≥ 11

14
, then

E will not enter in period 8 unless M plays soft in period 7. Therefore, if E enters in period

7, a weak M will fight with probability 1. Lastly, for µχ
7 ∈

[
1− 3

14χ
, 11
14

]
, combined with (2),

we can obtain that E will enter in period 7 if and only if

µχ
7 + σχ

7 (1− µχ
7 ) ≤

11

14
⇐⇒ µχ

7 ≤ 11

14

(
11

14− 3χ

)
, (3)

which is the upper bound of µχ
7 for E to be willing to enter the market in period 7.

In the following, we prove by induction that in any period 8− t, E is willing to enter the

market if and only if

µχ
8−t ≤

11

14

(
11

14− 3χ

)t

≡ rχ8−t.

Suppose there is t′ ≤ 7 such that the statement is true for any 1 ≤ t ≤ t′ − 1. In period

8− t′, E will enter if and only if

80
[
µχ
8−t′ + σχ

8−t′

(
1− µχ

8−t′

)]
+ 150

(
1− σχ

8−t′

) (
1− µχ

8−t′

)
≥ 95

⇐⇒ µχ
8−t′ + σχ

8−t′

(
1− µχ

8−t′

)
≤ 11

14
.

where σχ
8−t′ is the probability of a weak M to fight in period 8− t′. By a similar argument as

before, in the entry phase of the χ-CSE, a weak M will choose σχ
8−t′ such that µχ

9−t′ = rχ9−t′

if E enters. By Lemma 1, we can obtain that in the entry phase,

χµχ
8−t′+(1− χ)

[
µχ
8−t′

µχ
8−t′ + σχ

8−t′(1− µχ
8−t′)

]
= rχ9−t′

⇐⇒ σχ
8−t′ =

[
(1− rχ9−t′)− χ(1− µχ

8−t′)

rχ9−t′ − χµχ
8−t′

](
µχ
8−t′

1− µχ
8−t′

)
. (4)

If µχ
8−t′ ≤ 1−

(
1−rχ

9−t′

χ

)
, then a weakM believes that E will enter in the next period no matter

how small σχ
8−t′ is, so a weakM will choose σχ

8−t′ = 0. On the other hand, if µχ
8−t′ ≥ rχ9−t′ , then

E will not enter in the next period unless M plays soft in period 8− t′. Thus, if E enters in

period 8−t′, a weakM will fight with probability 1. Lastly, for µχ
8−t′ ∈

[
1−

(
1−rχ

9−t′

χ

)
, rχ9−t′

]
,

combined with (4), we can obtain that E will enter in period 8− t′ if and only if

µχ
8−t′ + σχ

8−t′

(
1− µχ

8−t′

)
≤ 11

14
⇐⇒ µχ

8−t′ ≤
(
11

14

)(
11

14− 3χ

)t′

= rχ8−t′ . (5)
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In summary, we have shown in this step that E will enter the market if and only if µχ
t ≤ rχt ,

and in any period t ≤ 7, if there is entry, a weak M will fight with probability

σχ
t =


1 if µχ

t ≥ rχt+1[
(1−rχt+1)−χ(1−µχ

t )

rχt+1−χµχ
t

] (
µχ
t

1−µχ
t

)
if µχ

t ∈
[
1−

(
1−rχt+1

χ

)
, rχt+1

]
.

0 if µχ
t ≤ 1−

(
1−rχt+1

χ

)
An immediate implication of this step is that there is a cutoff period

t∗χ = min

{
t

∣∣∣∣∣ 11

14

(
11

14− 3χ

)8−t

≥ 1

3

}

which is the earliest period that E will enter the market on the equilibrium path. In periods

1 to t∗χ − 1, E will not enter the market on the equilibrium path. In any period t ≥ t∗χ, if

there is entry and M fights in period t−1, µχ
t = rχt and a weak M will fight with probability

σχ
t =

[
(1− rχt+1)− χ(1− rχt )

rχt+1 − χrχt

](
rχt

1− rχt

)
=

11(14− 3χ)8−t − 119−t

14(14− 3χ)8−t − 119−t

if there is entry in period t.

Step 3: In this step, we show that E will enter the market with probability τχ = 5
14

in each

period after a weak M starts playing a mixed strategy and M fights. First, suppose a weak

M uses a mixed strategy in period 7. In this case, E has to enter the market in period 8

with probability τχ such that a weak M is indifferent between fighting and playing soft in

period 7 if E enters. That is,

70 + [160τχ + 300(1− τχ)] = 160 + 160 ⇐⇒ τχ =
5

14
.

More generally, suppose a weak M adopts a mixed strategy in period 8− t. In period 9− t,

E has to enter with probability τχ such that a weak M is indifferent between fighting and

playing soft in period 8− t if E enters. That is,

70 + [160tτχ + (300 + 160(t− 1))(1− τχ)] = 160(t+ 1) ⇐⇒ τχ =
5

14
.

Step 4: To complete the proof, this step characterizes the equilibrium strategies in off-path

events. By Step 2, we know that E will not enter in period 1 to t∗χ. If E enters in period

t∗χ − 1, a weak monopolist will mix so that E is indifferent between entering or not in period
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t∗χ. Yet in periods t < t∗χ − 1, if E goes off-path and enters the market, a weak M will fight

with probability 1. It is profitable for a weak M to fight in these events because if a weak M

deviates to play soft, E’s belief about M being a strong type becomes 1
3
χ due to dampened

updating and 1
3
χ ≤ rχt for all t ≤ 8. In other words, whenever E sees M plays soft, E will

enter the market, making this deviation unprofitable for a weak M . More generally, if M

plays soft in any period t, E’s belief about M being a strong type becomes χµχ
t and E will

enter in all later periods. ■

Notice that for any t ≤ 7, the reputation cutoff rχt increases with χ, suggesting that

the entry phase starts earlier for higher χ. Additionally, to see how cursedness affects the

behavior of a weak M , we characterize the probability of fighting for a weak M in the entry

phase (conditional on entry in the previous period) in Corollary OA.1.

Corollary OA.1. In χ-CSE of the reputation building game in Jung et al. (1994),

• in any period t ≤ 7, for χ ≥ χ̄t such that χ̄t solves r
χ
t+1 = 1− 2

3
χt, a weak M will fight

with probability 0 if there is entry;

• in any period t ≥ t∗χ, if there is entry and M fights in period t − 1, a weak M fights

with probability

σχ
t =

11(14− 3χ)8−t − 119−t

14(14− 3χ)8−t − 119−t

if there is entry in period t.

proof: We first prove by induction that in any period t ≤ 7, a weak M will fight with

probability 0 if χ ≥ χ̄t where χ̄t solves r
χ
t+1 = 1− 2

3
χt. If there is entry in period 1, a weak

M will fight with probability

σχ
1 =

1

2

[
(1− rχ2 )− 2

3
χ

rχ2 − 1
3
χ

]
and σχ

1 ≤ 0 ⇐⇒ rχ2 ≥ 1 − 2
3
χ. Because rχ2 strictly increases with χ, we can obtain that

σχ
1 ≤ 0 ⇐⇒ χ ≤ χ̄1 where χ̄1 solves rχ2 = 1− 2

3
χ. This proves the base case.

Suppose there is t′ ≤ 7 such that the statement is true for all period t ≤ t′ − 1. By

induction hypothesis, if χ ≥ χ̄t′ > χ̄t′−1, a weak M will fight with probability 0 if there is

entry in period t ≤ t′ − 1. Therefore, by Lemma 1, µχ
t′ ≤ 1 − 2

3
χt′−1 where the maximum

is attained when there is entry in all previous periods and M always fights. By Proposition

OA.1, if there is entry in period t′, a weak M will fight with probability 0 if

1− 2

3
χt′−1 ≤ 1−

(
1− rχt′+1

χ

)
⇐⇒ rχt′+1 ≥ 1− 2

3
χt′ ,
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which is equivalent to that χ ≥ χ̄t′ where χ̄t′ solves r
χ
t′+1 = 1− 2

3
χt′ .

Lastly, by Proposition OA.1, we know a weak M starts mixing in period t∗χ − 1. In any

period t ≥ t∗χ, if there is entry and M fights in the previous period, E’s posterior belief

becomes µχ
t = rχt , and a weak M will fight with probability

σχ
t =

[
(1− rχt+1)− χ(1− rχt )

rχt+1 − χrχt

](
rχt

1− rχt

)
=

11(14− 3χ)8−t − 119−t

14(14− 3χ)8−t − 119−t

if there is entry in period t. ■

3 Durable Goods Monopoly and the Coase Conjecture

Proof of Proposition 9

Step 1 (Pricing Strategy in Period 2): Consider any cutoff value ṽ. Let µχ(v|ṽ, 2) be
the χ-cursed posterior belief density about the buyer’s value given that the cutoff value is ṽ

and the buyer does not buy in period 1. By Lemma 1, we can obtain that

µχ(v|ṽ, 2) =

(1− χ)
(
1
ṽ

)
+ χ if v ≤ ṽ

χ if v > ṽ.

In this case, the χ-cursed seller’s expected profit of choosing p2, Π
χ
2 (p2), is simply

Πχ
2 (p2) =

p2 − χp22 −
(
1−χ
ṽ

)
p22 if p2 ≤ ṽ

χp2 − χp22 if p2 > ṽ.

If the seller chooses p2 ≤ ṽ, then the optimal pχ2 satisfies that

d

dp2
Πχ

2 (p
χ
2 ) = 1− 2χpχ2 − 2

(
1− χ

ṽ

)
pχ2 = 0 ⇐⇒ pχ2 =

ṽ

2(χṽ + (1− χ))
, (6)

which is an interior solution if and only if ṽ ≥ 1− 1
2χ
. In this case, the expected profit is

ṽ

2(χṽ + (1− χ))
−
(
χ+

1− χ

ṽ

)[
ṽ

2(χṽ + (1− χ))

]2
=

ṽ

4(χṽ + (1− χ))
.
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On the other hand, if the seller chooses p2 > ṽ, then the optimal pχ2 satisfies that

d

dp2
Πχ

2 (p
χ
2 ) = χ− 2χpχ2 = 0 ⇐⇒ pχ2 =

1

2
,

which is an interior solution if and only if ṽ ≤ 1
2
, yielding an expected profit of χ

4
. Note that

ṽ

4(χṽ + (1− χ))
≥ χ

4
⇐⇒ ṽ ≥ χ

1 + χ
≥ 1− 1

2χ
,

implying that if the equilibrium cutoff value v̄χ ≥ χ
1+χ

, then we know pχ2 = v̄χ

2(χv̄χ+(1−χ))
.

Step 2 (Lower Bound of the Equilibrium Cutoff Value): In this step, we show that

in χ-CSE, the cutoff value v̄χ ≥ χ
1+χ

by contradiction. If not, then v̄χ < χ
1+χ

< 1
2
and pχ2 = 1

2
.

For the buyer with value v̄χ, he is indifferent between accepting pχ1 and accepting pχ2 = 1
2
in

period 2. Therefore, in χ-CSE, v̄χ satisfies that

v̄χ − pχ1 = δ

(
v̄χ − 1

2

)
⇐⇒ v̄χ =

pχ1 − δ
2

1− δ
<

1

2
,

implying that pχ1 < 1
2
= pχ2 . This yields a contradiction because the buyer with value v̄χ

strictly prefers to buy in period 1 rather than in period 2.

Step 3 (Pricing Strategy in Period 1): From step 1 and 2, we can conclude that in

χ-CSE, given p1, the cutoff value ṽχ(p1) is an implicit function defined by

ṽχ(p1)− p1 = δ

[
ṽχ(p1)−

ṽχ(p1)

2(χṽχ(p1) + (1− χ))

]
. (7)

Because the expected profit in period 2 is ṽχ(p1)
4(χṽχ(p1)+(1−χ))

, the seller’s optimization price in

period 1 satisfies that

pχ1 = argmax
p1

p1 (1− ṽχ(p1)) + ρṽχ(p1)

[
ṽχ(p1)

4(χṽχ(p1) + (1− χ))

]
.

Once we pin down pχ1 , we can plug it into (7) to obtain v̄χ and then plug v̄χ into (6) to

obtain pχ2 . ■
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Proof of Corollary 3

By Proposition 9, we know in the fully cursed sequential equilibrium, pχ=1
2 = 1

2
and pχ=1

1 ≥ 1
2
.

Therefore, given any p1, the cutoff value ṽχ=1(p1) satisfies that

ṽχ=1(p1)− p1 = δ

(
ṽχ=1(p1)−

1

2

)
⇐⇒ ṽχ=1(p1) =

p1 − δ
2

1− δ
. (8)

This implies that when choosing p1, the seller’s expected profit Πχ=1(p1) is

Πχ=1(p1) = p1
(
1− ṽχ=1(p1)

)
+

ρ

4
ṽχ=1(p1) = p1 −

(
p1 − δ

2

1− δ

)
p1 +

ρ

4

(
p1 − δ

2

1− δ

)
.

By taking the derivative, we can obtain that

d

dp1
Πχ=1(p1) = 1−

(
2

1− δ

)
p1 +

δ

2(1− δ)
+

ρ

4(1− δ)
≥ 0 ⇐⇒ p1 ≤

4− 2δ + ρ

8
.

Combined with the constraint that pχ=1
1 ≥ 1

2
, we can obtain that pχ=1

1 = max
{

4−2δ+ρ
8

, 1
2

}
,

and pχ=1
1 = 1

2
⇐⇒ δ ≥ ρ

2
. Plugging pχ=1

1 into (8) gives us v̄χ=1 = max
{

4−6δ+ρ
8(1−δ)

, 1
2

}
.

As derived by Güth et al. (1995), the sequential equilibrium price in period 1 is p∗1 =
(2−δ)2

2(4−2δ−ρ)
. We can first notice that (2−δ)2

2(4−2δ−ρ)
≥ 4−2δ+ρ

8
for any δ and ρ, implying that p∗1 ≥ pχ=1

1

for any δ < ρ
2
. On the other hand, if δ ≥ ρ

2
, then pχ=1

1 = 1
2
and

(2− δ)2

2(4− 2δ − ρ)
≤ 1

2
⇐⇒ δ2 − 2δ + ρ ≤ 0 ⇐⇒ δ ≥ 1−

√
1− ρ ≥ ρ

2
.

Therefore, we know pχ=1
1 ≥ p∗1 ⇐⇒ δ ≥ 1−

√
1− ρ. Finally, because 2−δ

2(4−2δ−ρ)
≤ 1

2
for any

δ and ρ, we can conclude that pχ=1
2 ≥ p∗2 for any δ and ρ. ■

CSE Analysis for Three-Period Durable Goods Monopolistic Mar-

kets

Similar to the analysis of two-period games, χ-CSE of the three-period games are character-

izes by the sales prices in each period {pχt }t=1,2,3 and the cutoff values {v̄χt }t=1,2. The buyer

with value v ∈ [v̄χ1 , 1] purchases in period 1, the buyer with value v ∈ [v̄χ2 , v̄
χ
1 ] purchases in

period 2, and the buyer with value v ∈ [pχ3 , v̄
χ
2 ] purchases in period 3. Here we characterize

the fully cursed sequential equilibrium (χ = 1) in Proposition OA.2.

Proposition OA.2. In the three-period durable goods monopolistic market, in the fully

12



cursed sequential equilibrium, the prices
{
pχ=1
t

}
t=1,2,3

and the cutoff values
{
v̄χ=1
t

}
t=1,2

are

pχ=1
1 = max

{
1

2
,

8− 4δ + 2ρ+ ρ2

16
,

8− 4δ − 2δ2 + δρ+ 8ρΠ̄

16

}
,

pχ=1
2 = max

{
4− 2δ + ρ

8
,

1

2

}
,

pχ=1
3 =

1

2

v̄χ=1
1 = max

{
1

2
,

8− 12δ + 2ρ+ ρ2

16(1− δ)
,

8− 12δ + 2δ2 − δρ+ 8ρΠ̄

16(1− δ)

}
v̄χ=1
2 = max

{
4− 6δ + ρ

8(1− δ)
,
1

2

}
where Π̄ =

4δ2 − 12δρ− 16δ + ρ2 + 8ρ+ 16

64(1− δ)
.

Proof: When χ = 1, the seller never updates their belief about the buyer’s value, and we

can solve for pχ=1
2 , pχ=1

3 and v̄χ=1
2 using a similar argument as in Corollary 3. Therefore, if

δ ≤ ρ
2
, the fully cursed seller’s expected profit at period 2 is

pχ=1
2 (1− v̄χ=1

2 ) +
ρ

4
v̄χ=1
2 =

(
4− 2δ + ρ

8

)[
1− 4− 6δ + ρ

8(1− δ)

]
+

ρ

4

[
4− 6δ + ρ

8(1− δ)

]
=

4δ2 − 12δρ− 16δ + ρ2 + 8ρ+ 16

64(1− δ)
≡ Π̄.

On the other hand, if δ > ρ
2
, pχ=1

2 = 1
2
and the expected profit at period 2 is simply 1

4
+ ρ

8
.

In the following, we separate the discussion into two cases.

Case 1
(
δ > ρ

2

)
: In this case, pχ=1

2 = pχ=1
3 = 1

2
, and when choosing p1, the cutoff value

ṽχ=1
1 (p1) satisfies that

ṽχ=1
1 (p1)− p1 = δ

(
ṽχ=1
1 (p1)−

1

2

)
⇐⇒ ṽχ=1

1 (p1) =
p1 − δ

2

1− δ
. (9)

Therefore, when choosing p1, the seller’s expected profit Πχ=1(p1) is

Πχ=1(p1) = p1
(
1− ṽχ=1

1 (p1)
)
+ ρ

(
1

4
+

ρ

8

)
ṽχ=1
1 (p1)

= p1 −

(
p1 − δ

2

1− δ

)
p1 + ρ

(
1

4
+

ρ

8

)(
p1 − δ

2

1− δ

)
.
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As we take the derivative, we can obtain that

d

dp1
Πχ=1(p1) = 1−

(
2

1− δ

)
p1 +

δ

2(1− δ)
+

(
ρ

1− δ

)(
1

4
+

ρ

8

)
≥0

⇐⇒ p1 ≤
8− 4δ + 2ρ+ ρ2

16
.

Since in equilibrium, pχ=1
1 ≥ pχ=1

2 = 1
2
, if δ > δ

2
, pχ=1

1 = max
{

1
2
, 8−4δ+2ρ+ρ2

16

}
.

Case 2
(
δ ≤ ρ

2

)
: In this case, pχ=1

2 = 4−2δ+ρ
8

, pχ=1
3 = 1

2
, and when choosing p1, the cutoff

value ṽχ=1
1 (p1) satisfies that

ṽχ=1
1 (p1)− p1 = δ

[
ṽχ=1
1 (p1)−

(
4− 2δ + ρ

8

)]
⇐⇒ ṽχ=1

1 (p1) =
p1 − δ

(
4−2δ+ρ

8

)
1− δ

, (10)

and in equilibrium, pχ=1
1 ≥ pχ=1

2 = 4−2δ+ρ
8

. Thus, the seller’s optimization problem becomes

max
p1

p1

[
1−

p1 − δ
(
4−2δ+ρ

8

)
1− δ

]
+ ρΠ̄

[
p1 − δ

(
4−2δ+ρ

8

)
1− δ

]
.

As we take the first order condition, we can obtain that pχ=1
1 = 1

2
− δ

4
− δ2

8
+ δρ

16
+ ρ

2
Π̄, and it

is an interior solution because

1

2
− δ

4
− δ2

8
+

δρ

16
+

ρ

2
Π̄ ≥ 1

2
− δ

4
− δ2

8
+

δρ

16
+

ρ

2

(
1

4
+

ρ

8

)
=

1

2
− δ

4
+

ρ

8
+

[
−δ2

8
+

δρ

16
+

ρ2

16

]
︸ ︷︷ ︸

≥ ρ2

16
for δ≤ ρ

2

≥ 1

2
− δ

4
+

ρ

8
+

ρ2

16
.

Finally, as we plug pχ1 into ṽχ=1(p1), we can obtain the cutoff value

v̄χ=1
1 = max

{
1

2
,

8− 12δ + 2ρ+ ρ2

16(1− δ)
,

8− 12δ + 2δ2 − δρ+ 8ρΠ̄

16(1− δ)

}
. ■

4 The Dirty Faces Game

Proof of Proposition 10

When observing a clean face, a player will know that he has a dirty face immediately.

Therefore, choosing 1 (i.e., claiming in period 1) when observing a clean face is a strictly
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dominant strategy. In other words, for any χ ∈ [0, 1], σ̂χ(O) = 1. The analysis of the case

where the player observes a dirty face is separated into two cases.

Case 1: χ > ᾱ = α
(1+α)(1−p)

. In this case, we show that σ̂χ(X) = T + 1 is the only χ-

CE. If not, suppose σ̂χ(X) = t where t ≤ T can be supported as a χ-CE. First, observe

that σ̂χ(X) = 1 cannot be a χ-CE because it is strictly dominated by σ̂χ(X) = T + 1

when observing a dirty face. For 2 ≤ t ≤ T , given the other player −i plays the strategy

σ̂χ
−i(X) = t, we can find player −i’s average strategy is

σ̄−i(j) =


1− p if j = 1

p if j = t

0 if j ̸= 1, t.

Therefore, the other player −i’s χ-cursed strategy is:

σχ
−i(j|xi = O) =


χ(1− p) + (1− χ) if j = 1

χp if j = t

0 if j ̸= 1, t,

and

σχ
−i(j|xi = X) =


χ(1− p) if j = 1

χp+ (1− χ) if j = t

0 if j ̸= 1, t.

In this case, given (player i perceives that) player −i chooses the χ-cursed strategy, player

i’s expected payoff from using any strategy σ̂χ(X) = j with 2 ≤ j ≤ t when observing a

dirty face is:

(1− p)
[
−δj−1χp

]
+ p

{
δj−1α [χp+ (1− χ)]

}
= pδj−1 [α− χ(1 + α)(1− p)]︸ ︷︷ ︸

<0 ⇐⇒ χ>ᾱ

< 0.

Hence, if the other player uses the strategy σ̂χ
−i(X) = t when observing a dirty face, σ̂χ

i (X) =

j is strictly dominated for i by σ̂χ
i (X) = T + 1 for all j ≤ t. Therefore, the only χ-CE is

σ̂χ(X) = T + 1.

Case 2: χ < ᾱ = α
(1+α)(1−p)

. In this case, we show that σ̂χ(X) = 2 is the only χ-CE. Again,

first notice that σ̂(X) = 1 is strictly dominated by σ̂(X) = T + 1 when observing a dirty

face. To show that σ̂χ(X) = 2 is the only χ-CE, by way of contradiction suppose σ̂(X) = t

for some t ≥ 3 can be supported as a χ-CE. Moreover, given player −i chooses σ̂χ(X) = t,
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the expected payoff to choose 2 ≤ j ≤ t is:

pδj−1 [α− χ(1 + α)(1− p)]︸ ︷︷ ︸
>0 ⇐⇒ χ<ᾱ

> 0,

which is decreasing in j. Therefore, the best response to σ̂χ(X) = t is to choose 2 when

observing a dirty face. As a result, the only χ-CE in this case is σ̂χ(X) = 2. ■

Proof of Proposition 11

When observing a clean face, a player will know that he has a dirty face immediately.

Therefore, choosing C in period 1 when observing a clean face is a strictly dominant strategy,

and thus σ̃χ(O) = 1 for all χ ∈ [0, 1]. On the other hand, the analysis for the case where the

player observes a dirty face consists of several steps.

Step 1: Suppose that both players choose C in some period t̄ when seeing a dirty face. Let

µχ(X|t,X) be the χ-cursed belief about having a dirty face conditional on seeing a dirty face

and the game reaching period t. In this step, we prove that in period t ≤ t̄, the cursed belief

µχ(X|t,X) = 1− (1− p)χt−1 by induction. In period t = 1, the belief about having a dirty

face is simply the prior belief p. This establishes the base case. Now suppose the statement

holds for any period 1 ≤ t ≤ t′ (and t′ < t̄). In period t′ + 1, by Lemma 1,

µχ(X|t′ + 1, X) = χµχ(X|t′, X) + (1− χ)

= χ
[
1− (1− p)χt′−1

]
+ (1− χ) = 1− (1− p)χt′

where the second equality holds by the induction hypothesis.

Step 2: Given the cursed belief, the expected payoff to choose C in period t is:

µχ(X|t,X)α− [1− µχ(X|t,X)] =
[
1− (1− p)χt−1

]
α−

[
(1− p)χt−1

]
= α− (1− p)(1 + α)χt−1,

which increases with t. Note that in period 1, the expected payoff is α− (1− p)(1 + α) < 0

by Assumption (1), so choosing C in period 1 is strictly dominated. Furthermore, suppose

the opponent chooses to always wait when seeing a dirty face, the player would wait in every

period when seeing a dirty face if and only if

µχ(X|T,X)α− [1− µχ(X|T,X)] ≤ 0 ⇐⇒ α− (1− p)(1 + α)χT−1 ≤ 0 ⇐⇒ χ ≥ ᾱ
1

T+1 .
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As a result, both players choosing σ̃χ(X) = T + 1 is a χ-CSE if and only if χ ≥ ᾱ
1

T−1 .

Step 3: In this step, we show that both players choosing σ̃χ(X) = 2 is a χ-CSE if and only

if χ ≤ ᾱ. Suppose that the opponent will choose C in period 2 when seeing a dirty face. In

this case, it is optimal to choose C in period 2 as long as the expected payoff of C in period 2

is positive because the game can never proceed beyond period 2. Consequently, both players

choosing σ̃χ(X) = 2 is a χ-CSE if and only if

µχ(X|2, X)α− [1− µχ(X|2, X)] ≥ 0 ⇐⇒ α− (1− p)(1 + α)χ ≥ 0 ⇐⇒ χ ≤ ᾱ.

Step 4: Suppose the opponent chooses σ̃χ(X) > t. In this case, when the game reaches

period t, the belief about the other player choosing W in period t is:

µχ(X|t,X)︸ ︷︷ ︸
prob. of dirty

[χµχ(X|t,X) + (1− χ)] + [1− µχ(X|t,X)]︸ ︷︷ ︸
prob. of clean

[χµχ(X|t,X)] = µχ(X|t,X).

Furthermore, we denote the expected payoff of choosing C in period t as

E [uχ(C|t,X)] ≡ µχ(X|t,X)α− (1− µχ(X|t,X)) .

In the following, we claim that in any period 2 ≤ t ≤ T − 2, given the opponent will claim

in some period later than period t+2 or never claim, if it is optimal for the player to choose

W in period t+ 1, then it is also optimal for the player to choose W in period t. That is,

E [uχ(C|t+ 1, X)] < δµχ(X|t+ 1, X)E [uχ(C|t+ 2, X)]

=⇒ E [uχ(C|t,X)] < δµχ(X|t,X)E [uχ(C|t+ 1, X)] .

To prove this claim, we can first observe that

E [uχ(C|t+ 1, X)] < δµχ(X|t+ 1, X)E [uχ(C|t+ 2, X)]

⇐⇒ (1 + α)µχ(X|t+ 1, X)− 1 < δµχ(X|t+ 1, X) [(1 + α)µχ(X|t+ 2, X)− 1] .

After rearrangement, the inequality is equivalent to

δχ [µχ(X|t+ 1, X)]2 +

[
δ(1− χ)− δ

1 + α
− 1

]
µχ(X|t+ 1, X) +

1

1 + α
> 0.
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Consider a function F : [0, 1] → R where

F (y) = δχy2 +

[
δ(1− χ)− δ

1 + α
− 1

]
y +

1

1 + α
.

Since µχ(X|j,X) = 1− (1− p)χj−1 increases with j, it suffices to complete the proof of the

claim by showing there exists a unique y∗ ∈ (0, 1) such that F is single-crossing on [0, 1]

where F (y∗) = 0, F (y) < 0 for all y > y∗, and F (y) > 0 for all y < y∗. Because F is

continuous, 1
1+α

> 0 and F (1) = −α(1−δ)
1+α

< 0, by the intermediate value theorem, there

exists a y∗ ∈ (0, 1) such that F (y∗) = 0. Moreover, y∗ is the unique root of F on [0, 1]

because F is a strictly convex parabola and F (1) < 0. This establishes the claim.

Step 5: For any 3 ≤ t ≤ T , in this step, we find the conditions to support both players

choosing σ̃χ(X) = t as a χ-CSE. We can first note that both players choosing σ̃χ(X) = t is

a χ-CSE if and only if

1. E [uχ(D|t,X)] ≥ 0, and

2. E [uχ(D|t− 1, X)] ≤ δµχ(X|t− 1, X)E [uχ(D|t,X)].

Condition 1 is necessary because if it fails, then it is better for the player to choose W in

period t and get at least 0. Condition 2 is also necessary because if the condition doesn’t

hold, it would be profitable for the player to choose C before period t. Furthermore, these

two conditions are jointly sufficient to support σ̃χ(X) = t as a χ-CSE by the same argument

as step 3. From condition 1, we can obtain that

E [uχ(C|t,X)] ≥ 0 ⇐⇒ (1 + α)µχ(X|t,X)− 1 ≥ 0 ⇐⇒ χ ≤ ᾱ
1

t−1 .

In addition, by the calculation of step 4, we know

E [uχ(C|t− 1, X)] ≤ δµχ(X|t− 1, X)E [uχ(C|t,X)] ⇐⇒ F (µχ(X|t− 1, X)) ≥ 0,

which is equivalent to

µχ(X|t− 1, X) ≤

[
1 + δ

1+α
− δ(1− χ)

]
−
√[

1 + δ
1+α

− δ(1− χ)
]2 − 4δχ

(
1

1+α

)
2δχ

=
[(1 + α)(1 + δχ)− αδ]−

√
[(1 + α)(1 + δχ)− αδ]2 − 4δχ(1 + α)

2δχ(1 + α)
≡ κ(χ).
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Therefore, condition 2 holds if and only if

1− (1− p)χt−2 ≤ κ(χ) ⇐⇒ χ ≥
(
1− κ(χ)

1− p

) 1
t−2

.

In summary, both players choosing σ̃χ(X) = t is a χ-CSE if and only if

(
1− κ(χ)

1− p

) 1
t−2

≤ χ ≤ ᾱ
1

t−1 . ■

Estimation of Quantal Cursed Sequential Equilibrium

This section presents the estimation results of the Quantal Cursed Sequential Equilibrium

(QCSE) based on the pooled data from Lin (2023). Specifically, in QCSE, players are

assumed to make logit quantal responses, with precision governed by the parameter λ ∈
[0,∞). When λ = 0, players become insensitive to the payoffs and choose randomly at every

information set. As λ increases, players’ behavior becomes more sensitive to the payoffs.

In the limit as λ → ∞, players become fully rational and make best responses, and QCSE

reduces to χ-CSE. In addition, when χ = 0, players make perfect Bayesian inferences and

QCSE simplifies to the agent quantal response equilibrium (AQRE) proposed by McKelvey

and Palfrey (1998).

Table OA.2 presents the estimation results for QCSE and AQRE. From the table, we

observe that the estimated value χ̂ = 1, suggesting that players are fully cursed, and their

deviation from the unique Nash equilibrium cannot be solely attributed to quantal responses.

The estimated level of cursedness is statistically significant, as indicated by the likelihood

ratio test (χ2 = 79, p-value < 0.001).

Table OA.2: Estimation Results for QCSE and AQRE (Lin 2025)

QCSE AQRE

Parameters χ 1.00

S.E. (0.11)

λ 7.67 4.69

S.E. (0.56) (0.32)

Fit lnL -1823 -1863

AIC 3651 3728

BIC 3662 3733
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5 Information Transmission in Sender-Receiver Games

In this appendix, we characterize the equilibrium conditions for K-partition χ-CSE in Propo-

sition OA.3 with a sketch of the proof. Since the formulation of χ-CSE coincides with formu-

lation of prior-biased inferences proposed by Lee et al. (2023) in this environment, interested

readers can refer to their appendix for a detailed proof.

Proposition OA.3. A K-partition χ-CSE where K ≥ 2 is characterized by K +1 cutpoints

{θχk}Kk=0 such that 0 = θχ0 < θχ1 < ... < θχK = 1 and can be supported by:

1. For any 1 ≤ k ≤ K − 1, the following condition holds:

(1− χ)θχk+1 = 2(1 + χ)θχk − (1− χ)θχk−1 − 2χ+ 4b. (11)

2. For any 1 ≤ k ≤ K, if θ ∈ [θχk−1, θ
χ
k ], the sender will send mk drawn uniformly from

the interval [θχk−1, θ
χ
k ], and for all mk ∈ [θχk−1, θ

χ
k ], the receiver will choose

aχ(mk) = χ

(
1

2

)
+ (1− χ)

(
θχk + θχk−1

2

)
. (12)

Proof: Given that the sender will send messagemk uniformly on [θχk−1, θ
χ
k ] when θ ∈ [θχk−1, θ

χ
k ],

by Lemma 1, when the receiver receives mk, his χ-cursed belief density becomes:

µχ(θ|mk) =

χ if θ ̸∈ [θχk−1, θ
χ
k ]

χ+ (1− χ)
(

1
θχk−θχk−1

)
if θ ∈ [θχk−1, θ

χ
k ].

Therefore, the receiver’s conditional expectation about the true state if mk ∈ [θk−1, θk] is

Eµχ [θ|mk] =

∫ θχk−1

0

θχdθ +

∫ θχk

θχk−1

θ

[
χ+ (1− χ)

(
1

θχk − θχk−1

)]
dθ +

∫ 1

θχk

θχdθ

= χ

(
1

2

)
+ (1− χ)

(
θχk + θχk−1

2

)
.

In other words, if the sender sends mk ∈ [θχk−1, θ
χ
k ], the receiver’s induced expectation is

Eµχ [θ|mk] = χ

(
1

2

)
+ (1− χ)

(
θχk + θχk−1

2

)
,

which is the receiver’s optimal action. Moreover, at the boundary between two intervals of

the partition, the sender must be indifferent between the action induced at the lower interval
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and the action induced at the higher interval. That is, for any 1 ≤ k ≤ K − 1,[
χ

2
+ (1− χ)

(
θχk + θχk−1

2

)
− (θχk + b)

]2
=

[
χ

2
+ (1− χ)

(
θχk + θχk+1

2

)
− (θχk + b)

]2
. (∗)

Similar to the proof in Crawford and Sobel (1982) and Lee et al. (2023), we can find that

for any 1 ≤ k ≤ K − 1,

χ

(
1

2

)
+ (1− χ)

(
θχk + θχk−1

2

)
≤ θχk + b ≤ χ

(
1

2

)
+ (1− χ)

(
θχk + θχk+1

2

)
.

Consequently, we can simplify Equation (∗) as:

(θχk + b)− χ

2
− (1− χ)

(
θχk + θχk−1

2

)
=

χ

2
+ (1− χ)

(
θχk + θχk+1

2

)
− (θχk + b)

⇐⇒ (1− χ)θk+1 = 2(1 + χ)θk − (1− χ)θk−1 − 2χ+ 4b.

This completes the proof. ■

Illustrative Example: 2-Partition χ-CSE

To illustrate the effect of cursedness, we characterize the 2-partition χ-CSE in this example,

which consists of three cutpoints: {0, θχ1 , 1}. By Proposition OA.3, we know that the cutpoint

θχ1 satisfies:

1− χ = 2(1 + χ)θχ1 − 2χ+ 4b ⇐⇒ θχ1 =
1

2
− 2

1 + χ
b.

Therefore, this 2-partition χ-CSE exists if and only if θχ1 ∈ (0, 1), which is equivalent to

1

2
− 2

1 + χ
b > 0 ⇐⇒ b <

1 + χ

4
.

When b = 0.25, sequential equilibrium predicts that the only equilibrium is the 1-partition

babbling equilibrium. However, for any χ > 0, there exists a 2-partition χ-CSE, illustrating

how cursedness can make the sender send more informative messages. Moreover, if χ = 0.2,

θχ1 = 1
12
, aχ(m1) = 2

15
and aχ(m2) = 8

15
. It can be verified that both the sender and the

receiver are better off in this equilibrium than the babbling equilibrium. This example shows

that cursedness could also potentially improve welfare. □
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