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1 Pooling Equilibria in Signaling Games

Proof of Proposition 6

Here we provide a characterization of y-CSE of Game BH 3 and Game BH 4. In the following,
we denote py = pd(61|m = 1I) and pg = p3(01lm = S).

Part 1 (Analysis of BH 3): At information set S, given ug, the expected payoffs of C,
D, E are 90ug, 30 — 15us and 15, respectively. Therefore, for any pg, F is never a best
response. Moreover, C' is the best response if and only if 90ug > 30 — 1bug or ug > %
Similarly, at information set I, given uy, the expected payoffs of C', D, E are 30, 45 — 45u;
and 15, respectively. Therefore, F is strictly dominated, and C' is the best response if and
only if 30 > 45 — 45u; or py > % Now we consider four cases.

Case 1 [m(61) = I,m(0y) = S]: By Lemma 1, uy = 1 — 5 and pug = 5. Moreover, since
pr=1-—35 > % for any x, player 2 will choose C at information set I. To support this

equilibrium, player 2 has to choose C' at information set S. In other words, [(I,S); (C,C)]
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is separating y-CSE if and only if pug >

Case 2 [m(0,) = S,m(0;) = I]: By Lemma 1, p;y = § and pg = 1 — %. Because pug >

1 — % > 1 it is optimal for player 2 to choose C' at information set S. To support this as an
2 = 2 y
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equilibrium, player 2 has to choose D at information set I. Yet in this case, type 6, player

1 will deviate to S. Therefore, this profile cannot be supported as an equilibrium.

Case 3 [m(#,) = I,m(0;) = I]: Since player 1 follows a pooling strategy, player 2 will
not update his belief at information set I, i.e., uy = % Moreover, y-dampened updating
property implies § < ug < 1— %. Since p; > %, player 2 will choose C' at information set
I. To support this profile to be an equilibrium, player 2 has to choose D at information
set S, and hence, it must be the case that pug < % Coupled with the requirement from
x-dampened updating, the off-path belief has to satisty 5 < pug < % That is, [(Z,1); (C, D)]

. . . . 2 4
is pooling x-CSE if and only if ¥ < = or y < =.

Case 4 [m(0,) = S,m(f) = S]: Similar to the previous case, since player 1 follows a
pooling strategy, player 2 will not update his belief at information set S, i.e., us = % Also,
the x-dampened updating property suggests ¥ < pu; <1 — %. Because pg > %, it is optimal
for player 2 to choose C' at information set S. To support this as an equilibrium, player 2
has to choose D at information set I. Therefore, it must be that p; < % Combined with
the requirement of y-dampened updating, the off-path belief has to satisfy § < p; < % As
a result, [(S,5); (D, ()] is a pooling x-CSE if and only if y < %

Part 2 (Analysis of BH 4): At information set I, given py, the expected payoffs of C, D,
E are 30, 45 — 45u; and 35u;. Hence, D is the best response if and only if p; < % while F
is the best response if u; > g. For % <pur < g, C' is the best response. On the other hand,

since player 2’s payoffs at information set S are the same as in BH 3, player 2 will adopt the
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%, and choose D if and only

same decision rule—player 2 will choose C' if and only if pug >
if ug < % Now, we consider the following four cases.

Case 1 [m(61) = I,m(02) = S]: In this case, by Lemma 1, y; = 1 — % and pus = %. To
support this profile to be an equilibrium, player 2 has to choose E and C' at information set
I and S, respectively. To make it profitable for player 2 to choose E at information set I, it
must be that: p; =1 -5 > g <— x < % On the other hand, player 2 will choose C at
information set S if and only if § > % or y > %, which is not compatible with the previous
inequality. Therefore, this profile cannot be supported as an equilibrium.

Case 2 [m(61) = S,m(02) = I]: In this case, by Lemma 1, gy = ¥ and pug =1 —%. To
support this as an equilibrium, player 2 has to choose D at both information sets. Yet,
ps=1—-%> %, implying that it is not a best reply for player 2 to choose D at information

set S. Hence this profile also cannot be supported as an equilibrium.



Case 3 [m(#;) = I,m(6y) = I]: Since player 1 follows a pooling strategy, player 2 will not

update his belief at information set I, i.e., u;y = 1. The y-dampened updating property

2
implies 5 < pug <1 — 3. Because % <y = % < g, player 2 will choose C' at information set
1. To support this profile as an equilibrium, player 2 has to choose D at information set .S,
and hence, it must be the case that pug < % Coupled with the requirement of y-dampened
updating, the off-path belief has to satisfy § < pg < % That is, [(I,]); (C, D)] is pooling

x-CSE if and only if § < % or y < %.

Case 4 [m(0,) = S,m(f) = S]: Similar to the previous case, since player 1 follows a
pooling strategy, player 2 will not update his belief at information set S, i.e., us = % Also,
the y-dampened updating property implies § < puy <1 — 5. Because pug > %, it is optimal
for player 2 to choose C' at information set S. To support this as an equilibrium, player 2
can choose either C' or D at information set I.

Case 4.1: To make it a best reply for player 2 to choose D at information set I, it must
be that p; < % Combined with the requirement from y-dampened updating, the off-path
belief has to satisfy § <y < % As a result, [(S,S); (D, ()] is a pooling x-CSE if and only
if x < %

Case 4.2: To make it a best reply for player 2 to choose C' at information set I, it must be

that % <pur < g. Combined with the requirement from y-dampened updating, the off-path

1 1 < < 1 6 1 1
m — — min § — —_ = .
ax 2X7 3 > MU > 77 2X

For any x € [0, 1], one can find p; that satisfies both inequalities. Hence [(S, S); (C,C)] is a

belief has to satisfy

pooling y-CSE for any y. B

2 Reputation Building, Entry Deterrence, and Preda-
tory Pricing

Proof of Proposition 7

In this proof, we characterize the strategies of entrants and the weak monopolist in the x-
CSE. We start with the analysis of period 2, developing the backward induction argument
underlying the y-CSE.

Step 1: In period 2, the strong monopolist will fight and the weak monopolist will play soft.
Let pX be the entrant’s posterior belief about the monopolist being a strong type in period

2, and it is profitable for an entrant to enter if and only if —pX 4+ (1 —pX) > 0 <= p* < 1.
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and an entrant will enter in

Therefore, if an entrant doesn’t enter in period 1, pX = ¢ < 1

period 2.

Step 2: Let oX be the probability of the weak monopolist to fight in period 1 if there is
entry. Given the weak monopolist adopting oX, if an entrant enters in period 1 and the

monopolist fights, then by Lemma 1, an entrant’s posterior belief in period 2 is

q
X=~yqg+ (1— —_ .
= xq+(1-x) (q+<1_q)ax)
Yet if the monopolist plays soft in period 1, an entrant’s posterior belief in period 2 becomes
W =xq < % , and an entrant will enter the market. Moreover, if the weak monopolist thinks
oX can deter an entrant from entering in period 2, the weak monopolist’s expected payoff in

period 1 is X, indicating that the weak monopolist will choose oX such that uX = % Hence,

o0 ) - = o [ 15

When y > ﬁ, the weak monopolist believes that an entrant will enter in period 2 for all
1

oX € [0, 1], and hence the weak monopolist will adopt oX = 0. In contrast, when y < =9

the weak monopolist will play a mixed strategy in period 1.

Step 3: To support the mixed strategy equilibrium, the weak monopolist has to be indifferent
between fighting and playing soft if there is entry in period 1. Let 7X be the probability

of an entrant entering the market in period 2 upon seeing the monopolist fight in period 1.

Therefore, in equilibrium, —142(1 —7X) =0 <= 71X = % Note that when y > ﬁ, the
weak monopolist will never fight, and as seeing the monopolist fight in period 1, an entrant
1

will still enter in period 2 because puX = xq+ (1 — x) < % = X> g

Step 4: Lastly, for y > ﬁ, the weak monopolist will play soft if there is entry in period

1 and an entrant will enter in period 1 as ¢ < }L. Additionally, for y < , given that the

1
2(1-q)
weak monopolist will fight in period 1 with probability oX, an entrant will enter in period 1

if and only if

4q — 4qx

—lg+ (=g +(1-g(1-0%) =1~ 1 —2gx

>0 < ¢< ———
2(2 - x)

which holds for any y € [0, 1] because ¢ < We can hence conclude that an entrant will

1
Z.
enter in period 1 for any y € [0,1]. B



Reputation Building Game Experiment by Jung et al. (1994)

Table OA.1: Stage Game Payoffs in the Reputation Building Game (Table 1, Jung et al.
1994)

Payoffs

E’s strategy  M'’s strategy E  Weak M Strong M

In Fight 80 70 160
Play Soft 150 160 70
Out — 05 300 300

The reputation building game in Jung et al. (1994) consists of one monopolist (M) and
eight entrants (F) over eight consecutive periods, all with the same stage game payoffs.
At the beginning, the monopolist is randomly assigned a private type, either “strong” or
“weak,” with the prior probability of being a strong type set at % In each period, one of the
eight E’s first decides whether to enter the market or not. If £ does not enter the market,
the period ends. Otherwise, it’s M’s turn to decide whether to fight or play soft. The payofts
are summarized in Table OA.1 above.

Proposition 11 in the main text summarizes the properties of the x-CSE of this game.

The formal characterization is provided in Proposition OA.1 below.

Proposition OA.1. The unique x-CSE of the reputation building game in Jung et al. (1994)

has the following properties:

o let uf be E’s posterior belief about M being a strong type in period t, and E will enter
the market if and only if
o1 Y
My <
14 \ 14 — 3x

e a strong M will fight with probability 1 whenever there is entry;

X.
to

r

o o weak M will fight with probability 0 in period 8§ if there is entry, and will fight with



probability o in period t < 7 if there is entry where

! if o>
1—7X Y=y (1—uX x . -
o = [ () o e i (S5)
_TX
! o< - ()

e once a weak M starts playing a mized strategy, in periods after M fights, E will enter
the market with probability ﬁ.

Proof: In the reputation building game in Jung et al. (1994), a strong M does not have any
reputation concern and will always fight whenever there is entry since this is a strong M’s
dominant strategy. In the following, we characterize the strategies of E’s and a weak M in
x-CSE. We start with the analysis of the last period of play first, developing the backward
induction argument underlying the y-CSE.

Step 1: In period 8, a strong M will fight and a weak M will play soft. Let u§ be E’s
posterior belief about M being a strong type in period 8, and it is profitable for E to enter
the market if and only if 80ug + 150(1 — pf) > 95 <= uf < 1.

Step 2: Let ) be E’s posterior belief about M being a strong type in period ¢. In this step,
we derive the upper bound of u) for E to be willing to enter the market in period ¢. First,

in period 7, let 0% be the probability of a weak M to fight, and F will enter if and only if

11
80[u7 + 07 (L= 7)) +150 (1 —07) (1 = p7) 295 = py +o7 (L —p7) < -
If E enters, a weak M believes that using 0¥ would induce u¥ to be
i
X X
ps = xp7 +(I—x { } 1
* =) oy + 0¥ (1= ) @

by Lemma 1. Therefore, if a weak M thinks o5 can deter E from entering in the next period,
a weak M’s expected payoff in period 7 is X (70 + 300) + (1 — o) (160 + 160) = 320 + 500>
which increases with o, indicating that in the entry phase of x-CSE, a weak M will choose

o such that p¥ = 1. Combined with (1), we can obtain that

X 3 X X
N s 11 Y i1 — x(1—p7) H7
XH +(1—X)[ }:_@U:[ )
! piFor(l—pg)] 14 ! =i 1— i}




Note that if gy <1 — %, then a weak M believes that E will enter in period 8 no matter

how small o7 is. Hence, a weak M will choose o = 0. On the other hand, if ¥ > 13, then

E will not enter in period 8 unless M plays soft in period 7. Therefore, if E enters in period

7, a weak M will fight with probability 1. Lastly, for u¥ € [1 — %, ﬁ], combined with (2),

we can obtain that F will enter in period 7 if and only if

11 11 11
X X 1 — X\ < & — X < = 3

which is the upper bound of ¥ for E to be willing to enter the market in period 7.

In the following, we prove by induction that in any period 8 — ¢, E is willing to enter the

11 11 t
X < = =rX .
lugft —= 14 (14_3X) T87t

Suppose there is ¢’ < 7 such that the statement is true for any 1 < ¢ <t — 1. In period
8 —t/, E will enter if and only if

market if and only if

80 [Mg—t’ + o3y (1 - Mg—t')} + 150 (1 - U?f—t’) (1 - ”g—t') > 95
= pyp+ oy (1= s y) < 570
where oy _,, is the probability of a weak M to fight in period 8 —t'. By a similar argument as

before, in the entry phase of the x-CSE, a weak M will choose oy ,, such that py , =y,

if F enters. By Lemma 1, we can obtain that in the entry phase,

X
Hg_p
X X
Xu_/+(1—x){ }zr_,
5 ey +og_ (L= pg_y) o

(1-7§) —x(1- ug&t,)} ( : o ) .

X X X
To_y — XHg_y — Ky

(4)

= oy = {

1-rX ’ . . . .
If ,ué‘ft, <1-— (%) , then a weak M believes that E will enter in the next period no matter
how small o3 ,, is, so a weak M will choose oy, = 0. On the other hand, if 4§ ,, > rg ,,, then
E will not enter in the next period unless M plays soft in period 8 —t’. Thus, if E enters in

period 8—t', a weak M will fight with probability 1. Lastly, for u¥ ,, € [1 - (1_2?*’5') ,r;{t,} :

combined with (4), we can obtain that F will enter in period 8 — ¢’ if and only if

11 11 1\
— = ul ., <= =7rX . 5
14 He—v = (14) (14—3x) Ta—t (5)

[y p o8 (1 - M?S(—t’) <



In summary, we have shown in this step that E will enter the market if and only if pf <Y,

and in any period t < 7, if there is entry, a weak M will fight with probability

! T
X = (L=ri ) —x(—p) By . 1—rX
o= (e () e[ ().
_TX
0 if o < 1- (ITM)

An immediate implication of this step is that there is a cutoff period

- AR 11\ 1
= min — =
X 14\14-3y) ~3

which is the earliest period that £ will enter the market on the equilibrium path. In periods

1 to t}, — 1, E/ will not enter the market on the equilibrium path. In any period ¢ > 7, if
there is entry and M fights in period ¢ — 1, uf = ¥ and a weak M will fight with probability

X {(1—7“311)—%1—@‘)} ( r ) 11(14 — 3y)5* — 119

g g
t X X X
T — XT¢ L—r

14(14 — 3x)8t — 1191
if there is entry in period t.

Step 3: In this step, we show that E will enter the market with probability 7% = % in each
period after a weak M starts playing a mixed strategy and M fights. First, suppose a weak
M uses a mixed strategy in period 7. In this case, E' has to enter the market in period 8
with probability 7X such that a weak M is indifferent between fighting and playing soft in

period 7 if E enters. That is,

)
70 + [1607X + 300(1 — 7%)] = 160 + 160 <—= 7% = 7R

More generally, suppose a weak M adopts a mixed strategy in period 8 —¢. In period 9 — ¢,
E has to enter with probability 7% such that a weak M is indifferent between fighting and
playing soft in period 8 — ¢ if E enters. That is,

5
70 4 [160t7X + (300 + 160(t — 1))(1 — 7X)] = 160(t + 1) < 7¢ = 7

Step 4: To complete the proof, this step characterizes the equilibrium strategies in off-path
events. By Step 2, we know that £ will not enter in period 1 to ¢}. If E enters in period

% — 1, a weak monopolist will mix so that F' is indifferent between entering or not in period

8



ty. Yet in periods ¢ < ¢} — 1, if ' goes off-path and enters the market, a weak M will fight
with probability 1. It is profitable for a weak M to fight in these events because if a weak M
deviates to play soft, E’s belief about M being a strong type becomes % x due to dampened
updating and %X < 7} for all t < 8. In other words, whenever F sees M plays soft, E will
enter the market, making this deviation unprofitable for a weak M. More generally, if M
plays soft in any period ¢, E’s belief about M being a strong type becomes xuy and E will

enter in all later periods. W

Notice that for any ¢t < 7, the reputation cutoff r) increases with y, suggesting that
the entry phase starts earlier for higher y. Additionally, to see how cursedness affects the
behavior of a weak M, we characterize the probability of fighting for a weak M in the entry

phase (conditional on entry in the previous period) in Corollary OA.1.
Corollary OA.1. In x-CSE of the reputation building game in Jung et al. (1994),

e in any period t <7, for x > X such that x; solves r)f,; =1 — %Xt, a weak M will fight
with probability 0 if there is entry;

e in any period t > ¢}, if there is entry and M fights in period t — 1, a weak M fights

with probability
11(14 — 3y)®t — 1197

14(14 — 3y)8~t — 119

X
;=

g

if there is entry in period t.

proof: We first prove by induction that in any period ¢t < 7, a weak M will fight with
probability 0 if x > x; where y; solves r; =1 — %Xt. If there is entry in period 1, a weak
M will fight with probability

and 0f <0 <= ry > 1— 2x. Because ry strictly increases with x, we can obtain that
of <0 < x < x1 where x; solves ry =1 — %X- This proves the base case.

Suppose there is ¢ < 7 such that the statement is true for all period t < ¢’ — 1. By
induction hypothesis, if x > x» > Xxr_1, a weak M will fight with probability 0 if there is
entry in period ¢t < ¢/ — 1. Therefore, by Lemma 1, py < 1 — %Xt/_l where the maximum
is attained when there is entry in all previous periods and M always fights. By Proposition

OA.1, if there is entry in period ', a weak M will fight with probability 0 if

zxt',

2 1—T>§
1—§XH§1—(—”1> = 7“;5“21—3

X



which is equivalent to that x > xp where yu solves 7y, =1 — %Xt'.

Lastly, by Proposition OA.1, we know a weak M starts mixing in period ¢} — 1. In any
period t > ¢}, if there is entry and M fights in the previous period, E’s posterior belief
becomes u) = 1), and a weak M will fight with probability

X (1—rSy) —x(1—1F) rx _ 11(14 — 3x)%t — 1171
! X — Xl 1—r) 14(14 — 3x)8~t — 1191

if there is entry in period t. Il

3 Durable Goods Monopoly and the Coase Conjecture

Proof of Proposition 9

Step 1 (Pricing Strategy in Period 2): Consider any cutoff value 0. Let pX(v|0,2) be
the x-cursed posterior belief density about the buyer’s value given that the cutoff value is v

and the buyer does not buy in period 1. By Lemma 1, we can obtain that

(1—x)(

X if v> 0.

=

+ ifo<wo
X0}, 2) = )T

In this case, the y-cursed seller’s expected profit of choosing po, TI3(ps), is simply

T (py) = pe—xp3— (5X)p3 ifpa <
X(py) =

XP2 — XD if pp > 0.
If the seller chooses py < 0, then the optimal py satisfies that

2(x0 4 (1 —x))’

(6)

d 1—x
d—H%‘(p§)=1—2xp§—2(—~ )pé‘:O = p; =
D2 v

which is an interior solution if and only if v > 1 — i In this case, the expected profit is

2(x® +{E1 -X) <X+ ;X> [Q(Xff +121 - X))}2 e +?El -x))
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On the other hand, if the seller chooses ps > 0, then the optimal p3 satisfies that

d 1
—I IX X)) — — 2 X — 0 P X = _
dps 2 (pz) X XD3 V%) 9

which is an interior solution if and only if v < %, yielding an expected profit of ¥. Note that

v SX s Xy
~ = = (% = - = - _7
4xv+(1—x)) 4 1+ x 2x
implying that if the equilibrium cutoff value vX > ﬁ, then we know py = WM

Step 2 (Lower Bound of the Equilibrium Cutoff Value): In this step, we show that
in y-CSE, the cutoff value vX > ﬁ by contradiction. If not, then vX < % < gandp; =
For the buyer with value X, he is indifferent between accepting py and accepting py = % in
period 2. Therefore, in x-CSE, vX satisfies that

1 pi—5 1
X —pl=6(0X—< ] < ¥= 2 < =
v h (” 2) YT T

implying that p} < % = p. This yields a contradiction because the buyer with value X

strictly prefers to buy in period 1 rather than in period 2.

Step 3 (Pricing Strategy in Period 1): From step 1 and 2, we can conclude that in
x-CSE, given py, the cutoff value 9X(p;) is an implicit function defined by

X — — DX _ f}x(pl)
o) == [0 - s | v

X (p1)

oD+’ the seller’s optimization price in

Because the expected profit in period 2 is

period 1 satisfies that

Py = argpmax p1 (1= 0X(p1)) + po*(p1) [4(X17X(;1);<i121 - X))} .

Once we pin down py, we can plug it into (7) to obtain #X and then plug #* into (6) to

obtain py. W

11



Proof of Corollary 3

By Proposition 9, we know in the fully cursed sequential equilibrium, p%‘zl = % and p’le > %
Therefore, given any py, the cutoff value ©X=!(p;) satisfies that

~x=1 ~x=1 1 ~x=1 p1— g

T (p1) —pr =0 |0 (pl)_§ v (p1>:1_5~ (8)

This implies that when choosing p;, the seller’s expected profit IIX=!(p,) is

9 1
_ e P ore P1— 3 pPlPL— 3
11X 1(p1)=p1(1—1)x 1(p1))_|_zvx l(pl):pl_(1_52>p1+1<—1_52>'

By taking the derivative, we can obtain that

d . _ 2 ) p
=t — ~ + + > () < —
dp: () =1 <1—5)p1 2(1—9) 4(1—5)—0 pr= )

Combined with the constraint that p}X=' > %, we can obtain that pX=! = max {%‘Hp, i},

and p)~' =1 <= §> L. Plugging p{~' into (8) gives us X~ = max {t_(ffg)p, %}
As derived by Giith et al. (1995), the sequential equilibrium price in period 1 is p} =
(2—9)2 (2—0)2 =1

We can first notice that 57 > 4_286+p for any 0 and p, implying that p} > py

2(4—20—p)" 1-25—p)
for any ¢ < £. On the other hand, if § > £, then p=h = 1 and

(2-0)°
2(4—26 — p)

IN

1
5 = 2 —20+p<0 <= 6§>1— 1—ng.

Therefore, we know p’f:l >p; < 0>1—+/1—p. Finally, because 2(43%5‘5_1)) < % for any

0 and p, we can conclude that pg‘zl > ps for any 6 and p. B

CSE Analysis for Three-Period Durable Goods Monopolistic Mar-
kets

Similar to the analysis of two-period games, y-CSE of the three-period games are character-
izes by the sales prices in each period {p\},_, , 5 and the cutoff values {v;'},_, ,. The buyer
with value v € [07, 1] purchases in period 1, the buyer with value v € [0}, 71| purchases in

period 2, and the buyer with value v € [p}, 5| purchases in period 3. Here we characterize

the fully cursed sequential equilibrium (y = 1) in Proposition OA.2.

Proposition OA.2. In the three-period durable goods monopolistic market, in the fully

12



cursed sequential equilibrium, the prices {pi‘zl}tzl o5 and the cutoff values {@tX:l}t:l , are

=1 {1 8 — 45 + 2p + p? 8—45—252+5p+8pﬁ}
max ;

2’ 16 ’ 16
=1 — max —4—25+p !
p2 - 8 ) 2 )
_ 1
x=1_ —
p3 2 i
=1 1 8—125+2p+p? 8—120+25% —dp+ 8pll
Ul = max > 9
2 16(1 —9) 16(1 —9)
=1 4—-65+p 1 _ 462 —120p — 165 + p> +8p + 16
Uy  =max§ ———= = where IT =
8(1—9) "2 64(1 —0)

Proof: When y = 1, the seller never updates their belief about the buyer’s value, and we
can solve for pY=", p¥=' and 7}~ using a similar argument as in Corollary 3. Therefore, if

d < £, the fully cursed seller’s expected profit at period 2 is

_ _ L [(4-25+ 466+ 466+
x=1 1 — —x=1 B—X—l _ 1Y 1 — P E 14
pr (1= ) 4% ( 8 ) { 81—0) | "1 |301=9)

_46% —126p — 166 + p* +8p+ 16

64(1 — o) =1L

On the other hand, if 6 > £, p;<:1 = % and the expected profit at period 2 is simply }l + £.

In the following, we separate the discussion into two cases.

Case 1 (0 > £): In this case, =t = £, and when choosing pi, the cutoff value
=" (py) satisfies that

1

W7 - =0 (8700 - 5) = A = D=2, ()

Therefore, when choosing p;, the seller’s expected profit IIX=!(p,) is

4 8

J [
R L p\(P1—3
—h (1—5)p1+p<4+8><1—5>‘

=Y (p1) = py (1 — 771621(]01)) +p <1 + B) 5 (p1)

13



As we take the derivative, we can obtain that

in:l(pl):l_(135>p1+2(16—5)+(1f5) Gﬁg) =0

dp;

_ 2
<8 45+2,0—|—p.
- 16

— D1

Since in equilibrium, pf~ > py~ =

: § o x=1 _ 1 8—454+2p+p>
,if 0 > 3, py max{g, —

Case 2 (5 g) In this case, py~ = 4=204p p§:1 = 1 and when choosing p;, the cutoff

value o)~ (p) satisfies that

N

o e 4 —26 + e pL—0 4=204p
0 - =0 [0 - (2] = e = 2T g

and in equilibrium, p¥=" > p¥=' = %‘Hp. Thus, the seller’s optimization problem becomes

2 —5(%‘”")]

- (5 (4—25+P> + pH

b1 ]
1—
maxpll 1—35

1—-90

As we take the first order condition, we can obtain that p}~' =1 — & — 582 + —p + 11, and it

is an interior solution because

1§ 6 6 1 5§ 6 6 1
Lo 8, 0 ryy _____+_ﬂ+£( P)

2 4 8 16 2 2 4 8 16 2\4 8
1 5 »p 2 sp  p? 1 & p p?
I N I Tl I i
2 4+8+[ 8+16+16 -2 4+8+16

Finally, as we plug py into 9X=(p;), we can obtain the cutoff value

=1 1 8—125+2p+p> 8—125+26%— dp+ 8pll
v = max<{ —
! 2’ 16(1—05) 16(1 — 9)

4 The Dirty Faces Game

Proof of Proposition 10

When observing a clean face, a player will know that he has a dirty face immediately.

Therefore, choosing 1 (i.e., claiming in period 1) when observing a clean face is a strictly

14



dominant strategy. In other words, for any x € [0,1], 6X(O) = 1. The analysis of the case

where the player observes a dirty face is separated into two cases.

Case 1: y > a = In this case, we show that 6%(X) = T + 1 is the only x-

(1+a§¥(1*p)'
CE. If not, suppose ¢X(X) = t where ¢ < T can be supported as a x-CE. First, observe
that 6X(X) = 1 cannot be a x-CE because it is strictly dominated by ¢X(X) = T + 1
when observing a dirty face. For 2 < ¢t < T, given the other player —i plays the strategy
X.(X) =t, we can find player —i’s average strategy is

1—p if j=1
o-i(j)=4qp if j=t

0 if j7#1,t.

Therefore, the other player —i’s y-cursed strategy is:

p

XA=p)+(1—-x) if j=1
oX,(jlzi = O) =  xp if j=t and

0 it £ 1,1,

((1-p) it j=1
oX;(jlzi = X) = {xp+ (1—x) if j=t

0 if £ 1,t.

\

In this case, given (player ¢ perceives that) player —i chooses the y-cursed strategy, player
i’s expected payoff from using any strategy 6X(X) = j with 2 < j < ¢ when observing a
dirty face is:

(1=p) [=0"""xp] +p{& " alxp+ 1 =)} =p" " o —x(1+a)(1 —p)] <0.

~
<0 <= x>a

Hence, if the other player uses the strategy 6*,(X) = t when observing a dirty face, 6X(X) =
Jj is strictly dominated for ¢ by 6X(X) = T + 1 for all j < ¢. Therefore, the only x-CE is
oX(X)=T+1.

Case 2: y <a= ey~ 10 this case, we show that 6X(X) = 2 is the only x-CE. Again,
first notice that ¢(X) = 1 is strictly dominated by 6(X) = T + 1 when observing a dirty
face. To show that 6X(X) = 2 is the only x-CE, by way of contradiction suppose ¢(X) =t

for some ¢ > 3 can be supported as a x-CE. Moreover, given player —i chooses 6X(X) = t,

15



the expected payoff to choose 2 < 57 <t is:

po ! Jo = (1 + 0)(1 = p)] > 0,

-

~
>0 <= x<a&

which is decreasing in j. Therefore, the best response to 6X(X) = t is to choose 2 when

observing a dirty face. As a result, the only x-CE in this case is 6¥(X) = 2. B

Proof of Proposition 11

When observing a clean face, a player will know that he has a dirty face immediately.
Therefore, choosing C' in period 1 when observing a clean face is a strictly dominant strategy,
and thus 6X(0) =1 for all x € [0,1]. On the other hand, the analysis for the case where the

player observes a dirty face consists of several steps.

Step 1: Suppose that both players choose C' in some period ¢ when seeing a dirty face. Let
X (X|t, X) be the x-cursed belief about having a dirty face conditional on seeing a dirty face
and the game reaching period ¢. In this step, we prove that in period ¢t < ¢, the cursed belief
pX(X|t,X)=1—(1—-p)x*! by induction. In period ¢ = 1, the belief about having a dirty
face is simply the prior belief p. This establishes the base case. Now suppose the statement
holds for any period 1 < ¢ < (and ¢’ < ¢). In period ¢’ + 1, by Lemma 1,

P (X[ + 1, X) = xpX (X[, X) + (1= x)

=x[1-Q-pX"H+1-x)=1-1-px"

where the second equality holds by the induction hypothesis.

Step 2: Given the cursed belief, the expected payoff to choose C' in period ¢ is:

(Xt X )o = [1 = pX (X6, X)) = [1 = (1T=p)x" ] a—[(1-p)x"]
=a—(1-p)(1+a)x !,

which increases with ¢. Note that in period 1, the expected payoff is a — (1 — p)(1 + a) < 0
by Assumption (1), so choosing C' in period 1 is strictly dominated. Furthermore, suppose
the opponent chooses to always wait when seeing a dirty face, the player would wait in every

period when seeing a dirty face if and only if
pX(X|T, X)a = [1 = pX(X|T, X) <0 = a—(1-p)(1+a)" ' <0 <= x >ar.

16



As a result, both players choosing 6X(X) =T + 1 is a x-CSE if and only if y > aT-,

Step 3: In this step, we show that both players choosing 6¥(X) = 2 is a x-CSE if and only
if x < @. Suppose that the opponent will choose C' in period 2 when seeing a dirty face. In
this case, it is optimal to choose C'in period 2 as long as the expected payoff of C' in period 2
is positive because the game can never proceed beyond period 2. Consequently, both players
choosing 6X(X) = 2 is a x-CSE if and only if

X2, X)a —[1 — p(X]2,X)] >0 <= a—(1—-p)(1+a)y >0 <= x <a.
Step 4: Suppose the opponent chooses 6X(X) > t. In this case, when the game reaches
period ¢, the belief about the other player choosing W in period ¢ is:

(Xt X) - Do (X [t X)) 4 (1 =)+ [1 = p (X8 X)) Do (X[t X)) = (Xt X)),
—_——

(. J/

prob. of dirty prob. of clean
Furthermore, we denote the expected payoff of choosing C' in period t as
E [uX(C’ta X)] = ILLX(X|t7 X)Oé - (1 - :uX(X’ta X)) :

In the following, we claim that in any period 2 <t < T — 2, given the opponent will claim
in some period later than period ¢+ 2 or never claim, if it is optimal for the player to choose

W in period t 4+ 1, then it is also optimal for the player to choose W in period t. That is,

E[uX(Clt + 1, X)] < pX(X|t + 1, X)E [uX(Ct + 2, X))]
—  ENC|t, X)) < S (X|t, X)E[uX(C|t + 1, X))].

To prove this claim, we can first observe that

E[uX(Clt+ 1, X)] < opX (X[t + 1, X)E [WX(C|t + 2, X)]
= (L+a)X(X[E+1,X) — 1< S (Xt + 1, X) [(1+ )X (X]t +2,X) — 1].

After rearrangement, the inequality is equivalent to

1
— 1 XXt 41, X) + —— > 0.

S (Xt + 1L, X0 + 61 =) = —
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Consider a function F : [0,1] — R where

1

5
_ 2 _ T
Fy)=dxy”+ [6(1 —x) Wyt oo

1+«

Since pX(X |7, X) =1— (1 — p)x?! increases with 7, it suffices to complete the proof of the
claim by showing there exists a unique y* € (0,1) such that F is single-crossing on [0, 1]
where F(y*) = 0, F(y) < 0 for all y > y*, and F(y) > 0 for all y < y*. Because F is
continuous, 14+a > 0 and F(1) = —% < 0, by the intermediate value theorem, there
exists a y* € (0,1) such that F'(y*) = 0. Moreover, y* is the unique root of F' on [0, 1]

because F is a strictly convex parabola and F'(1) < 0. This establishes the claim.

Step 5: For any 3 < ¢t < T, in this step, we find the conditions to support both players
choosing 6X(X) =t as a x-CSE. We can first note that both players choosing 6X(X) =t is
a x-CSE if and only if

1. E[uwX(D|t,X)] > 0, and
2. EwX(D|t — 1, X)] < opX(X|t — 1, X)E [uX(D|t, X)].

Condition 1 is necessary because if it fails, then it is better for the player to choose W in
period t and get at least 0. Condition 2 is also necessary because if the condition doesn’t
hold, it would be profitable for the player to choose C before period t. Furthermore, these
two conditions are jointly sufficient to support 6X(X) =t as a x-CSE by the same argument

as step 3. From condition 1, we can obtain that
Euw(Ct,X)] >0 < (14+a)pX(X[t,X)—1>0 <= x <ar1.
In addition, by the calculation of step 4, we know
E[uX(Clt —1,X)] <opX(X[t— 1, X)E[uX(C|t,X)] — F(p*(X|t—1,X)) >0,

which is equivalent to

14 22— 80— 0] =/ [1+ 2 =601 — 0] — 46x ()
20x
(14 a)(1+dx) — ad) — /[(1 + a)(1 + 6x) — ad]2 — 46x(1 + )

- 20x(1 4+ «) = #00:
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Therefore, condition 2 holds if and only if

1

L (- < () = x> (11%;*’)

In summary, both players choosing X(X) =t is a x-CSE if and only if

1

1_—K(X) t_2<X<@ﬁ. [
1—0p -

Estimation of Quantal Cursed Sequential Equilibrium

This section presents the estimation results of the Quantal Cursed Sequential Equilibrium
(QCSE) based on the pooled data from Lin (2023). Specifically, in QCSE, players are
assumed to make logit quantal responses, with precision governed by the parameter A\ €
[0,00). When A = 0, players become insensitive to the payoffs and choose randomly at every
information set. As A increases, players’ behavior becomes more sensitive to the payoffs.
In the limit as A — oo, players become fully rational and make best responses, and QCSE
reduces to y-CSE. In addition, when xy = 0, players make perfect Bayesian inferences and
QCSE simplifies to the agent quantal response equilibrium (AQRE) proposed by McKelvey
and Palfrey (1998).

Table OA.2 presents the estimation results for QCSE and AQRE. From the table, we
observe that the estimated value y = 1, suggesting that players are fully cursed, and their
deviation from the unique Nash equilibrium cannot be solely attributed to quantal responses.
The estimated level of cursedness is statistically significant, as indicated by the likelihood
ratio test (x? = 79, p-value < 0.001).

Table OA.2: Estimation Results for QCSE and AQRE (Lin 2025)

QCSE AQRE
Parameters | 1.00
S.E. (0.11)

A 7.67 4.69

S.E. (0.56) (0.32)

Fit InL -1823  -1863

AIC 3651 3728

BIC 3662 3733
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5 Information Transmission in Sender-Receiver Games

In this appendix, we characterize the equilibrium conditions for K-partition y-CSE in Propo-
sition OA.3 with a sketch of the proof. Since the formulation of y-CSE coincides with formu-
lation of prior-biased inferences proposed by Lee et al. (2023) in this environment, interested

readers can refer to their appendix for a detailed proof.

Proposition OA.3. A K-partition x-CSE where K > 2 is characterized by K + 1 cutpoints
{0X3E ) such that 0 = 0f < 0F < ... < 0% =1 and can be supported by:

1. For any 1 < k < K — 1, the following condition holds:

(1= )0 =21+ x)0% — (1 = x)05_, — 2x + 4b. (11)

2. For any 1 <k < K, if 0 € [0 ,,0], the sender will send my, drawn uniformly from

the interval [0F_,,05], and for all my € [0)_,0)], the receiver will choose
1 Oy + 0
aX(my) = x (5) +(1=x) (%) . (12)

Proof: Given that the sender will send message my, uniformly on [0} ,, 6] when 8 € [0} _,,6;],

by Lemma 1, when the receiver receives my, his y-cursed belief density becomes:

v+ (=) (5 ) i 0 € 105,,0),

k—1

X (0my) =

Therefore, the receiver’s conditional expectation about the true state if my, € [0x_1, 0] is

0x 0 1 1
0 — 6
0 6 k k—1 0y

k—1

() eon(5)

In other words, if the sender sends my, € [0 ,, 0], the receiver’s induced expectation is

Eyx[0]m] = x G) +(1—y) (%) ’

which is the receiver’s optimal action. Moreover, at the boundary between two intervals of

the partition, the sender must be indifferent between the action induced at the lower interval

20



and the action induced at the higher interval. That is, for any 1 < k < K — 1,

X 0r + 05 2 X 0x + 0 2
Yea-o(BE) @] = [Fra-o (P @] o
Similar to the proof in Crawford and Sobel (1982) and Lee et al. (2023), we can find that

forany 1 <k < K —1,

HX ex HX ex
w(3) +a-0 () saansa(5) +a-0 (R,

Consequently, we can simplify Equation () as:

X 0F + 60X X 0r + 0
Ban -3 -0 () <X a0 (B ) e

= (1= x)0ks1 =2(1+ x)0k — (1 = x)0k—1 — 2x + 4b.

This completes the proof. B

Illustrative Example: 2-Partition y-CSE

To illustrate the effect of cursedness, we characterize the 2-partition y-CSE in this example,
which consists of three cutpoints: {0, 6}, 1}. By Proposition OA.3, we know that the cutpoint

0Y satisfies:
1 2

1—x=2(1 0f —2 4 <= 0 = - — ——b.
X =2(1+x)0 —2x + 5 Ty

Therefore, this 2-partition y-CSE exists if and only if 8F € (0, 1), which is equivalent to

1 2 1

———b>0 <= b< ﬂ.

2 1+4x 4

When b = 0.25, sequential equilibrium predicts that the only equilibrium is the 1-partition

babbling equilibrium. However, for any x > 0, there exists a 2-partition y-CSE, illustrating
how cursedness can make the sender send more informative messages. Moreover, if x = 0.2,
0f = 55, aX(m1) = & and aX(my) = . It can be verified that both the sender and the
receiver are better off in this equilibrium than the babbling equilibrium. This example shows

that cursedness could also potentially improve welfare. [
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