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A. Omitted Proofs

A1. Proof of Theorem 2

We adapt our second proof of Theorem 1 and break down the proof of Theorem
2 into the same three steps: (i) employing a change of variables to map the problem
into an appropriate functional space; (ii) endowing this space with a partial order and
characterizing its extremal functions; and (iii) mapping the solution back to the original
problem. We define 𝐷̃ (𝜋) = 𝐴(𝐷 (𝐵−1(𝜋))) and 𝜋 = 𝐵(𝑝), so that

𝐷̃′′(𝜋) = d
d𝜋

[
𝐴′(𝐷 (𝐵−1(𝜋)))𝐷′(𝐵−1(𝜋))

𝐵′(𝐵−1(𝜋))

]
=

1
𝐵′(𝑝)

d
d𝑝

[
𝐴′(𝐷 (𝑝))𝐷′(𝑝)

𝐵′(𝑝)

]
∈ [𝛾, 𝛾] for 𝜋 ∈ [𝜋0, 𝜋1] .

Throughout, we focus on the bounds implied by 𝐷̃′′(𝜋) ≥ 𝛾; the bounds implied by
𝐷̃′′(𝜋) ≤ 𝛾 can be similarly derived.

Step 1: Changing variables.

Instead of choosing a demand curve to maximize or minimize the loss in consumer
surplus, we choose the function ℎ : [𝐵(𝑝0), 𝐵(𝑝1)] → R defined by

ℎ(𝜋) ≔ 𝐷̃′(𝜋) − 𝛾𝜋 for 𝜋 ∈ [𝜋0, 𝜋1] .

Given ℎ, 𝐷̃ is completely determined, and vice versa:

𝐷̃ (𝜋) = 𝐴(𝑞0) +
∫ 𝜋

𝜋0

[
ℎ(𝑠) + 𝛾𝑠

]
d𝑠 for 𝜋 ∈ [𝜋0, 𝜋1] .

This is obtained via integration by parts. Next, for some given ℎ and ℎ, define

ℋ0 =

{
ℎ : [𝜋0, 𝜋0] → [ℎ, ℎ] is non-decreasing

}
.
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We can thus define the set of feasible functions ℎ that are consistent with Assumption 2:

ℋ ≔

{
ℎ ∈ ℋ0 : ℎ(𝜋) ≤ 𝛾𝜋,

∫ 𝜋1

𝜋0

ℎ(𝑠) d𝑠 = 𝐴(𝑞1) − 𝐴(𝑞0) − 1
2
𝛾
(
𝜋2

1 − 𝜋2
0

)}
.

Here, we have assumed that ℎ ≤ min
{
−𝛾𝜋0,−𝛾𝜋1,− [𝐴(𝑞0) − 𝐴(𝑞1)] /[𝜋1 − 𝜋0]

}
and

ℎ = −𝛾𝜋1, with the goal of eventually taking the limit ℎ → −∞. Thus, we arrive at the
equivalent problem:

(A1)


ΔCS = sup

ℎ∈ℋ

∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝜋0

[
ℎ(𝑠) + 𝛾𝑠

]
d𝑠
)

d𝑝,

ΔCS = inf
ℎ∈ℋ

∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝜋0

[ℎ(𝑠) + 𝛾𝑠] d𝑠
)

d𝑝.

Step 2: Characterizing the set ℋ.

We now endow the set ℋ with a partial order. Formally, for any two functions
ℎ1, ℎ2 ∈ ℋ, we write

ℎ1 ⪰ ℎ2 ⇐⇒
∫ 𝜋

𝜋0

ℎ1(𝑠) d𝑠 ≥
∫ 𝜋

𝜋0

ℎ2(𝑠) d𝑠 for 𝜋 ∈ [𝜋0, 𝜋1] .

Analogous to Lemma 1, we show:

LEMMA A.1: Any function ℎ ∈ ℋ satisfies ℎ∗ ⪰ ℎ ⪰ ℎ∗, where:

(i) if 0 ≤ 𝛾 ≤ 2 [𝐴(𝑞0) − 𝐴(𝑞1)] /[𝐴(𝑝1) − 𝐴(𝑝0)]2, then

ℎ∗(𝑠) ≔ − 𝐴(𝑞0) − 𝐴(𝑞1)
𝜋1 − 𝜋0

−
𝛾

2
(𝜋0 + 𝜋1) ,

ℎ∗(𝑠) ≔

ℎ if 𝑠 > ℎ𝜋1−ℎ𝜋0+𝐴(𝑞0 )−𝐴(𝑞1 )+

𝛾

2 (𝜋2
1 −𝜋2

0 )
ℎ−ℎ ,

ℎ if 𝑠 ≤ ℎ𝜋1−ℎ𝜋0+𝐴(𝑞0 )−𝐴(𝑞1 )+
𝛾

2 (𝜋2
1 −𝜋2

0 )
ℎ−ℎ ;

(ii) if −2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2 ≤ 𝛾 < 0, then

ℎ∗(𝑠) ≔ − 𝐴(𝑞0) − 𝐴(𝑞1)
𝜋1 − 𝜋0

−
𝛾

2
(𝜋0 + 𝜋1) ,

ℎ∗(𝑠) ≔

−𝛾𝑠 if 𝑠 > − ℎ+

√︃
ℎ2+𝛾2𝜋2

0+2𝛾[ℎ𝜋0−𝐴(𝑞0 )+𝐴(𝑞1 )]
𝛾 ,

ℎ if 𝑠 ≤ − ℎ+
√︃
ℎ2+𝛾2𝜋2

0+2𝛾[ℎ𝜋0−𝐴(𝑞0 )+𝐴(𝑞1 )]
𝛾 ;
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(iii) if 𝛾 < −2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2, then

ℎ∗(𝑠) ≔

−𝛾

[
𝜋1 −

√︂
2[𝐴(𝑞1 )−𝐴(𝑞0 ) ]

𝛾

]
if 𝑠 > 𝜋1 −

√︂
2[𝐴(𝑞1 )−𝐴(𝑞0 ) ]

𝛾 ,

−𝛾𝑠 if 𝑠 ≤ 𝜋1 −
√︂

2[𝐴(𝑞1 )−𝐴(𝑞0 ) ]
𝛾 ,

ℎ∗(𝑠) ≔

−𝛾𝑠 if 𝑠 > − ℎ+

√︃
ℎ2+𝛾2𝜋2

0+2𝛾[ℎ𝜋0−𝐴(𝑞0 )+𝐴(𝑞1 )]
𝛾 ,

ℎ if 𝑠 ≤ − ℎ+
√︃
ℎ2+𝛾2𝜋2

0+2𝛾[ℎ𝜋0−𝐴(𝑞0 )+𝐴(𝑞1 )]
𝛾 ;

PROOF:
When the constraint ℎ(𝜋) ≤ −𝛾𝜋 is slack, results from the information design literature

(e.g., Kang and Vondrák, 2019; Kleiner, Moldovanu and Strack, 2021) imply that ℎ∗ ⪰
ℎ ⪰ ℎ∗ for any ℎ ∈ ℋ, where

ℎ∗(𝑠) ≔ − 𝐴(𝑞0) − 𝐴(𝑞1)
𝜋1 − 𝜋0

−
𝛾

2
(𝜋0 + 𝜋1) ,

ℎ∗(𝑠) ≔

ℎ if 𝑠 > ℎ𝜋1−ℎ𝜋0+𝐴(𝑞0 )−𝐴(𝑞1 )+ 1

2 𝛾(𝜋2
1 −𝜋2

0 )
ℎ−ℎ ,

ℎ if 𝑠 ≤ ℎ𝜋1−ℎ𝜋0+𝐴(𝑞0 )−𝐴(𝑞1 )+ 1
2 𝛾(𝜋2

1 −𝜋2
0 )

ℎ−ℎ .

To verify that the constraint ℎ(𝜋) ≤ −𝛾𝜋 is slack, we require:

(a) In order for ℎ∗(𝑠) to be as stated above,

− 𝐴(𝑞0) − 𝐴(𝑞1)
𝜋1 − 𝜋0

−
𝛾

2
(𝜋0 + 𝜋1) ≤ min

{
−𝛾𝜋0,−𝛾𝜋1

}
.

Equivalently, 
𝛾 (𝜋1 − 𝜋0) ≥ −2 [𝐴(𝑞0) − 𝐴(𝑞1)]

𝜋1 − 𝜋0
,

−𝛾 (𝜋1 − 𝜋0) ≥ −2 [𝐴(𝑞0) − 𝐴(𝑞1)]
𝜋1 − 𝜋0

.

Clearly, these inequalities hold when

−2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2 ≤ 𝛾 ≤ 2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2 .

We therefore conclude that, when these inequalities hold,

ℎ∗(𝑠) = − 𝐴(𝑞0) − 𝐴(𝑞1)
𝜋1 − 𝜋0

−
𝛾

2
(𝜋0 + 𝜋1) .
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(b) In order for ℎ∗(𝑠) to be as stated above,

ℎ𝜋1 − ℎ𝜋0 + 𝐴(𝑞0) − 𝐴(𝑞1) +
𝛾

2
(
𝜋2

1 − 𝜋2
0
)

ℎ − ℎ
∈ [𝜋0, 𝜋1]

and

ℎ ≤ −𝛾𝑠 if 𝑠 > −
ℎ +

√︃
ℎ2 + 𝛾2𝜋2

0 + 2𝛾
[
ℎ𝜋0 − 𝐴(𝑞0) + 𝐴(𝑞1)

]
𝛾

.

Equivalently,

ℎ︸︷︷︸
=−𝛾𝜋1

(𝜋1 − 𝜋0) + 𝐴(𝑞0) − 𝐴(𝑞1) +
𝛾

2

(
𝜋2

1 − 𝜋2
0

)
≥ 0,

ℎ︸︷︷︸
≤−𝛾𝜋0

(𝜋1 − 𝜋0) + 𝐴(𝑞0) − 𝐴(𝑞1) +
𝛾

2

(
𝜋2

1 − 𝜋2
0

)
≤ 0,

and 𝛾 ≥ 0.

These inequalities hold when 0 ≤ 𝛾 ≤ 2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2. We there-
fore conclude that, for 0 ≤ 𝛾 ≤ 2[𝐴(𝑞0 )−𝐴(𝑞1 ) ]

(𝜋1−𝜋0 )2 ,

ℎ∗(𝑠) ≔

ℎ if 𝑠 > ℎ𝜋1−ℎ𝜋0+𝐴(𝑞0 )−𝐴(𝑞1 )+

𝛾

2 (𝜋2
1 −𝜋2

0 )
ℎ−ℎ ,

ℎ if 𝑠 ≤ ℎ𝜋1−ℎ𝜋0+𝐴(𝑞0 )−𝐴(𝑞1 )+
𝛾

2 (𝜋2
1 −𝜋2

0 )
ℎ−ℎ .

The above argument thus proves part (i) of Lemma A.1.
Given the form of ℎ∗ stated in parts (ii) and (iii) of Lemma A.1, we next prove that

ℎ ⪰ ℎ∗ for any ℎ ∈ ℋ. Let 𝜋∗ ≔ −
[
ℎ +

√︃
ℎ2 + 𝛾2𝜋2

0 + 2𝛾
[
ℎ𝜋0 − 𝐴(𝑞0) + 𝐴(𝑞1)

] ] /𝛾.

Observe that ℎ ≤ min
{
−𝛾𝜋0,−𝛾𝜋1

}
implies:

𝜋∗ ≥ 𝜋0 ⇐⇒ ℎ +
√︃
ℎ2 + 𝛾2𝜋2

0 + 2𝛾
[
ℎ𝜋0 − 𝐴(𝑞0) + 𝐴(𝑞1)

] ≥ −𝛾𝜋0

⇐⇒ 𝐴(𝑞0) − 𝐴(𝑞1) ≥ 0,

𝜋∗ ≤ 𝜋1 ⇐⇒ ℎ +
√︃
ℎ2 + 𝛾2𝜋2

0 + 2𝛾
[
ℎ𝜋0 − 𝐴(𝑞0) + 𝐴(𝑞1)

] ≤ −𝛾𝜋1

⇐⇒ ℎ ≤ − 𝐴(𝑞0) − 𝐴(𝑞1)
𝜋1 − 𝜋0

.

These inequalities hold; hence 𝜋∗ ∈ [𝜋0, 𝜋1]. Then, to complete the proof of part (ii) of
Lemma A.1:
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• If 𝜋 ∈ [𝜋0, 𝜋∗], then the inequality
∫ 𝜋

𝜋0
ℎ(𝑠) d𝑠 ≥

∫ 𝜋

𝜋0
ℎ∗(𝑠) d𝑠 holds trivially from

the fact that ℎ(𝑠) ≥ ℎ = ℎ∗(𝑠) for 𝑠 ≤ 𝜋∗.

• If 𝜋 ∈ [𝜋∗, 𝜋1], then the inequality
∫ 𝜋1
𝜋

ℎ(𝑠) d𝑠 ≤
∫ 𝜋1
𝜋

ℎ∗(𝑠) d𝑠 holds from the
fact that ℎ(𝑠) ≤ −𝛾𝑠 = ℎ∗(𝑠) for 𝑠 ≥ 𝜋∗. Since

∫ 𝜋1
𝜋0

ℎ(𝑠) d𝑠 =
∫ 𝜋1
𝜋0

ℎ∗(𝑠) d𝑠, we
conclude that

∫ 𝜋

𝜋0
ℎ(𝑠) d𝑠 ≥

∫ 𝜋

𝜋0
ℎ∗(𝑠) d𝑠.

Finally, given the form of ℎ∗ as stated above in part (iii) of Lemma A.1, we assume that
𝛾 < −2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2 and prove that ℎ∗ ⪰ ℎ for any ℎ ∈ ℋ. Now, because

𝛾 < −2 [𝐴(𝑞0) − 𝐴(𝑞1)] /(𝜋1 − 𝜋0)2, we must have 𝜋1 −
√︃

2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾 ∈
[𝜋0, 𝜋1]. Then:

• If 𝜋 ∈ [𝜋0, 𝜋1 −
√︃

2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾], then the inequality
∫ 𝜋

𝜋0
ℎ∗(𝑠) d𝑠 ≥∫ 𝜋

𝜋0
ℎ(𝑠) d𝑠 holds trivially from the fact that ℎ∗(𝑠) = −𝛾𝑠 ≥ ℎ(𝑠) for 𝑠 ≤ 𝜋1 −√︃

2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾.

• If 𝜋 ∈ [𝜋1 −
√︃

2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾, 𝜋1], then suppose there exists 𝜋̂ satisfying

𝜋̂ ∈ (𝜋1 −
√︃

2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾, 𝜋1) and
∫ 𝜋̂

𝜋0

ℎ(𝑠) d𝑠 >
∫ 𝜋̂

𝜋0

ℎ∗(𝑠) d𝑠.

Then ℎ(𝜋̂) > ℎ∗(𝜋̂) = −𝛾
[
𝜋1 −

√︃
2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾

]
; otherwise, ℎ(𝑠) ≤

ℎ∗(𝑠) for every 𝑠 ∈ [𝜋0, 𝜋̂], contradicting our assumption that
∫ 𝜋̂

𝜋0
ℎ(𝑠) d𝑠 >∫ 𝜋̂

𝜋0
ℎ∗(𝑠) d𝑠. Because ℎ is non-decreasing, this implies that ℎ(𝑠) ≥ ℎ(𝜋̂) >

−𝛾
[
𝜋1 −

√︃
2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾

]
= ℎ∗(𝑠) for every 𝑠 ∈ (𝜋̂, 𝜋1). Then:∫ 𝜋1

𝜋0

ℎ(𝑠) d𝑠 =
∫ 𝜋̂

𝜋0

ℎ(𝑠) d𝑠 +
∫ 𝜋1

𝜋̂
ℎ(𝑠) d𝑠

>

∫ 𝜋̂

𝜋0

ℎ∗(𝑠) d𝑠 +
∫ 𝜋1

𝜋̂
ℎ(𝑠) d𝑠

≥
∫ 𝜋̂

𝜋0

ℎ∗(𝑠) d𝑠 +
∫ 𝜋1

𝜋̂
ℎ∗(𝑠) d𝑠 =

∫ 𝜋1

𝜋0

ℎ∗(𝑠) d𝑠.

This contradicts the fact that
∫ 𝜋1
𝜋0

ℎ(𝑠) d𝑠 =
∫ 𝜋1
𝜋0

ℎ∗(𝑠) d𝑠 = 𝐴(𝑞1) − 𝐴(𝑞0) −
𝛾
(
𝜋2

1 − 𝜋2
0
) /2 since ℎ, ℎ∗ ∈ ℋ. Here, the first inequality follows by the definition

of 𝜋̂, while the second inequality follows from our observation that ℎ(𝑠) > ℎ∗(𝑠) for
every 𝑠 ∈ (𝜋̂, 𝜋1). Consequently, our initial supposition was wrong: no such 𝜋̂ ex-
ists; so,

∫ 𝜋

𝜋0
ℎ∗(𝑠) d𝑠 ≥

∫ 𝜋

𝜋0
ℎ(𝑠) d𝑠 for any 𝜋 ∈ [𝜋1 −

√︃
2 [𝐴(𝑞1) − 𝐴(𝑞0)] /𝛾, 𝜋1].
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This completes the proof of part (iii) of Lemma A.1.
It is easy to check that ℎ∗, ℎ∗ ∈ ℋ. Therefore, Lemma A.1 characterizes the largest

and smallest elements of the partially ordered set (ℋ, ⪰).

Step 3: Mapping back to the original problem.

Having characterized the largest and smallest elements of (ℋ, ⪰), it remains to map
these back to the original problem. To this end, we define the functional ΔCS : ℋ → R
by

ΔCS(ℎ) ≔
∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝜋0

[
ℎ(𝑠) + 𝛾𝑠

]
d𝑠
)

d𝑝.

Our problem (A1) is equivalent to maximizing and minimizing this functional over the
family ℋ. The following lemma shows that this can be done with the aid of the partial
order ⪰ defined in our previous step:

LEMMA A.2: The functional ΔCS(·) is increasing in the partial order ⪰; that is, for
any ℎ1 ⪰ ℎ2, ∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝜋0

[
ℎ1(𝑠) + 𝛾𝑠

]
d𝑠
)

d𝑝

≥
∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝜋0

[
ℎ2(𝑠) + 𝛾𝑠

]
d𝑠
)

d𝑝.

PROOF:
The result follows straightforwardly from the definition of the partial order ⪰, the fact

that 𝐴 (and hence 𝐴−1) is increasing, and a pointwise comparison of the two integrands.
Together, Lemmas 1 and 2 imply that the functional ΔCS(·) is maximized at ℎ∗ and

minimized at ℎ∗:
ΔCS = ΔCS(ℎ∗) and ΔCS = ΔCS(ℎ∗).

Through straightforward computation and taking the limit ℎ → −∞, we obtain the result
of Theorem 2.

A2. Proof of Proposition 1

Similar to the proofs of Theorems 1 and 2, we prove Proposition 1 in three steps. We
focus on part (a) of Proposition 1.

Step 1: Changing variables.

Let 𝜋 = 𝐵(𝑝) be defined on [𝜋0, 𝜋1] = [𝐵(𝑝0), 𝐵(𝑝1)], and consider 𝐷̃ : [𝜋0, 𝜋1] → R
be defined by 𝐷̃ (𝐵(𝑝)) = 𝐴(𝐷 (𝑝)). We choose the gradient function 𝛽(·):

𝛽(𝜋) ≔ 𝐷̃′(𝜋) for 𝜋 ∈ [𝜋0, 𝜋1] .
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Given 𝛽(·), 𝐷̃ (·) is completely determined, and vice versa:

𝐷̃ (𝜋) = 𝐴(𝑞0) +
∫ 𝜋

𝜋0

𝛽(𝑠) d𝑠 for 𝜋 ∈ [𝜋0, 𝜋1] .

This is obtained via integration by parts, which assumes that 𝐷̃ (·) is absolutely continuous
on [𝜋0, 𝜋1]. Analogous to the family of demand curves 𝒟, we define the set of feasible
gradient functions:

ℬ ≔

{
𝛽 : [𝜋0, 𝜋1] → [𝛽, 𝛽] s.t.

∫ 𝜋1

𝜋0

𝛽(𝑠) d𝑠 = 𝐴(𝑞1) − 𝐴(𝑞0)
}
.

Thus we arrive at the equivalent problem:

(A2)


𝑞 = sup

𝛽∈ℬ
𝐴−1

(
𝐴(𝑞0) +

∫ 𝐵( 𝑝̂)

𝜋0

𝛽(𝑠) d𝑠
)
,

𝑞 = inf
𝛽∈ℬ

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵( 𝑝̂)

𝜋0

𝛽(𝑠) d𝑠
)
.

Step 2: Characterizing the set ℬ.

Recall that, in Lemma 1, we showed that 𝛽∗ ⪰ 𝛽 ⪰ 𝛽∗ for any 𝛽 ∈ ℬ, thereby
characterizing the largest and smallest elements of the partially ordered set (ℬ, ⪰). Here,
𝛽∗ and 𝛽∗ are as defined in the statement of Theorem 1.

Step 3: Mapping back to the original problem.

Having characterized the largest and smallest elements of (ℬ, ⪰), it remains to map
these back to the original problem. To this end, we define the functional 𝑞 : ℬ → R by

𝑞(𝛽) ≔ 𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵( 𝑝̂)

𝜋0

𝛽(𝑠) d𝑠
)
.

Our problem (A2) is equivalent to maximizing and minimizing this functional over the
family ℬ. The following lemma shows that this can be done with the partial order defined
previously:

LEMMA A.3: The functional 𝑞(·) is increasing in the partial order ⪰:

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵( 𝑝̂)

𝜋0

𝛽1(𝑠) d𝑠
)
≥ 𝐴−1

(
𝐴(𝑞0) +

∫ 𝐵( 𝑝̂)

𝜋0

𝛽2(𝑠) d𝑠
)

for any 𝛽1 ⪰ 𝛽2.

PROOF:
The result follows straightforwardly from the definition of the partial order ⪰, the fact

that 𝐴 (and hence 𝐴−1) is increasing, and a pointwise comparison of the two integrands.
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Together, Lemma 1 and Lemma A.3 imply that the functional 𝑞(·) is maximized at 𝛽∗
and minimized at 𝛽∗: 𝑞 = 𝑞(𝛽∗) and 𝑞 = 𝑞(𝛽∗). This completes the proof of part (a)
of Proposition 1; part (b) of Proposition 1 can be proven very similarly and is therefore
omitted.

B. Extensions of Robustness Measures

In this supplemental appendix, we show how our robustness measures can be extended
when more complexity is allowed for. Motivated by applications in Section IV, we focus
on four extensions: (i) counterfactual exercises; (ii) more observations; (iii) measurement
error; and (iv) other welfare measures.

B1. Counterfactual Exercises

Our robustness measures can be extended to counterfactual exercises where only one
point on the demand curve is observed. So far, we have assumed that two points on the
demand curve are observed: (𝑝0, 𝑞0) and (𝑝1, 𝑞1). However, in counterfactual exercises
such as our application in Section IV.B, the quantity that would be demanded at 𝑝1 is not
known.

To illustrate, we focus on extending our robustness measure 𝑟∗ to this setting. Following
our approach in Section III, it suffices to establish the analog of Theorem 1:

THEOREM B.1: Suppose that only (𝑝0, 𝑞0) and 𝑝1 are observed. Under Assumption 1,
the largest and smallest possible losses in consumer surplus between 𝑝0 and 𝑝1, ΔCS
and ΔCS, are respectively:

ΔCS ≔

∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) + 𝛽 [𝐵(𝑝) − 𝐵(𝑝0)]

)
d𝑝,

ΔCS ≔

∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) + 𝛽 [𝐵(𝑝) − 𝐵(𝑝0)]

)
d𝑝.

Theorem B.1 can be shown using our earlier geometric argument for Theorem 1,
illustrated in Figure B.1. The largest possible value of 𝐴(𝑞1) that is consistent with
Assumption 1 can be found by drawing the (blue) straight line with gradient 𝛽 that passes
through the point (𝐵(𝑝0), 𝐴(𝑞0)), and then finding the (red) point on the line at 𝐵(𝑝1).
It is clear that this value of 𝑞1 must also yield the maximal ΔCS; hence ΔCS must be
attained by the red curve. A symmetric argument shows that ΔCS must be attained by
the green curve.

B2. More Observations

Our robustness measures can also be extended to settings where more than two points
on the same demand curve are observed, as is the case in some empirical applications.
Doing so requires a generalization of our robustness measures to an arbitrary (finite)
number of observations, which we denote by (𝑝0, 𝑞0), . . . , (𝑝𝑛−1, 𝑞𝑛−1).
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0
𝐴(𝑞)

𝐵(𝑝)

𝐵(𝑝1)

𝐵(𝑝0)

𝐴(𝑞0)

Figure B.1. Illustration of bounds when only (𝑝0, 𝑞0 ) and 𝑝1 are observed.

To illustrate, we again focus on extending our robustness measure 𝑟∗ to this setting.
The generalization of Theorem 1 to this setting is:

THEOREM B.2: Suppose that (𝑝0, 𝑞0), . . . , (𝑝𝑛−1, 𝑞𝑛−1) are observed. Define the aux-
iliary functions 𝛽∗, 𝛽∗ : [𝐵(𝑝0), 𝐵(𝑝1)] → R as follows: for each 𝑗 ∈ {0, 1, . . . , 𝑛 − 1},

𝛽∗(𝑠) ≔

𝛽 if

𝛽𝐵(𝑝 𝑗 )−𝛽𝐵(𝑝 𝑗+1 )−𝐴(𝑞 𝑗 )+𝐴(𝑞 𝑗+1 )
𝛽−𝛽 < 𝑠 ≤ 𝐵(𝑝 𝑗+1),

𝛽 if 𝐵(𝑝 𝑗) < 𝑠 ≤ 𝛽𝐵(𝑝 𝑗 )−𝛽𝐵(𝑝 𝑗+1 )−𝐴(𝑞 𝑗 )+𝐴(𝑞 𝑗+1 )
𝛽−𝛽 ;

𝛽∗(𝑠) ≔

𝛽 if

𝛽𝐵(𝑝 𝑗+1 )−𝛽𝐵(𝑝 𝑗 )+𝐴(𝑞 𝑗 )−𝐴(𝑞 𝑗+1 )
𝛽−𝛽 < 𝑠 ≤ 𝐵(𝑝 𝑗+1),

𝛽 if 𝐵(𝑝 𝑗) < 𝑠 ≤ 𝛽𝐵(𝑝 𝑗+1 )−𝛽𝐵(𝑝 𝑗 )+𝐴(𝑞 𝑗 )−𝐴(𝑞 𝑗+1 )
𝛽−𝛽 .

Under Assumption 1, the largest and smallest possible losses in consumer surplus between
𝑝0 and 𝑝1, ΔCS and ΔCS, are respectively:

ΔCS =

∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝐵(𝑝0 )
𝛽∗(𝑠) d𝑠

)
d𝑝,

ΔCS =

∫ 𝑝1

𝑝0

𝐴−1
(
𝐴(𝑞0) +

∫ 𝐵(𝑝)

𝐵(𝑝0 )
𝛽∗(𝑠) d𝑠

)
d𝑝.

Theorem B.2 can be shown by applying Theorem 1 between every two adjacent points.
Figure B.2 illustrates the geometric argument for the case of 𝑛 = 3 observations, where
both the largest (in red) and smallest (in green) possible losses in consumer surplus are
depicted.
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log 𝑝0
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Figure B.2. Illustration of bounds with 𝑛 = 3 observations.

B3. Measurement Error

Our robustness measures can be extended to account for uncertainty due to measure-
ment error. Following our discussion in Section I, we focus on the uncertainty in the
treatment effect estimate, 𝛽. By propagating this uncertainty into the bounds implied by
Assumptions 1 and 2—for example, by applying a bootstrap procedure to equations (4)
and (5)—we can extend Theorems 1 and 2 to account for measurement error in 𝛽. This
is straightforward because equations (4) and (5) are explicit expressions of 𝛽. It can be
readily verified that these expressions are monotone with respect to 𝛽, which implies that
more precise measurements of 𝛽 would lead to narrower bounds. In turn, we can derive
corresponding confidence intervals for our robustness measures.1

B4. Other Welfare Measures

We have so far focused on measures of robustness for estimates of consumer surplus,
defined as the integral of the Marshallian demand curve. To conclude this section, we
discuss how our analysis extends to various alternative welfare measures: (i) deadweight
loss; (ii) equivalent variation (EV) and compensating variation (CV); and (iii) supply-side
welfare measures such as producer surplus.

1In some empirical applications, it may be possible that measurement error leads to a confidence interval for 𝛽 that
includes 0. In the spirit of our framework, nonnegative estimates of 𝛽 correspond to 𝑟∗ = 1 and 𝜅∗ = ∞: all curves that
pass through the implied points (𝑝0, 𝑞̂0 ) and (𝑝1, 𝑞̂1 ) cannot overturn the welfare conclusion.
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𝐷 (𝑝)

𝐻1 (𝑝) 𝐻0 (𝑝)

0
𝑞

𝑝

𝑝1

𝑞1

𝑝0

𝑞0

Figure B.3. Illustration of EV and CV relative to ΔCS for a normal good.

Deadweight loss.

Under additional supply-side assumptions, our results can be extended when the welfare
measure of interest is deadweight loss. For example, when the supply curve is flat and
producers are price takers (see Section IV.A for an empirical application), the change in
deadweight loss due to a tariff 𝜏 = 𝑝1 − 𝑝0 is

ΔDWL =

∫ 𝑝1

𝑝0

𝐷 (𝑝) d𝑝 − (𝑝1 − 𝑝0) 𝑞1 = ΔCS− (𝑝1 − 𝑝0) 𝑞1.

Since (𝑝0, 𝑞0) and (𝑝1, 𝑞1) are observed, maximizing or minimizing ΔDWL is equivalent
to maximizing or minimizing ΔCS. As such, analogs of Theorems 1 and 2 continue to
hold.

EV and CV.

When consumer utility is quasilinear in money, there are no income effects and the
change in consumer surplus coincides exactly with the EV and CV. However, for markets
in which income effects are significant, our framework can be adapted to examine the EV
and CV directly. To see this, note that the EV and CV can be defined as follows for a
normal good:

EV ≔

∫ 𝑝1

𝑝0

𝐻1(𝑝) d𝑝 and CV ≔

∫ 𝑝1

𝑝0

𝐻0(𝑝) d𝑝,

where 𝐻1 and 𝐻0 respectively denote the Hicksian demand curves at the utility levels
obtained at 𝑝1 and 𝑝0. Figure B.3 plots an illustration of the Hicksian demand curves
relative to the Marshallian demand curve considered in Sections II and III. The EV
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corresponds to the most darkly shaded area, left of 𝐻1; the change in consumer surplus
corresponds to the shaded area left of 𝐷 as before; and the CV is the entire shaded area,
left of 𝐻0.

As noted by Willig (1976), the change in consumer surplus offers a one-sided bound to
EV and CV. As Figure B.3 illustrates, when 𝑝1 > 𝑝0, EV ≥ ΔCS ≥ CV (as these welfare
measures are negative). This suggests that the robustness measures for ΔCS discussed in
Section III can apply as conservative measures of robustness for EV (if in the benchmark,
ΔCS ≥ 𝐺) or CV (otherwise) as well. When this is not sufficient, Theorems 1 and 2 can
be applied directly to the Hicksian demand curves 𝐻0 and 𝐻1 instead. Note, however,
that since the counterfactual expenditures—𝑒(𝑝0, 𝑢1) for EV and 𝑒(𝑝1, 𝑢0) for CV—are
not observed, the points (𝑝0, 𝐻1(𝑝0)) for CV and (𝑝1, 𝐻0(𝑝1)) for EV must be treated
as counterfactuals as in Supplemental Appendix B.B1.

Producer surplus.

Our results also extend straightforwardly to supply-side welfare measures like producer
surplus when producers are price takers. Section IV.C considers such an empirical
application where individuals supply labor. In this case, the relevant integrals are with
respect to an upward-sloping supply curve, rather than a downward-sloping demand
curve; but the remainder of the exercise is much the same.

C. Shape Constraints

C1. Common Shape Constraints

Different literatures in economics employ a variety of constraints on the shape of
demand that capture other intuitions pertaining to their fields of interest. To be compre-
hensive, we consider a range of shape constraints that are considered standard in different
fields. Each shape constraint (abbreviated by “SC”) restricts ΔCS in a different way. We
detail these assumptions below and provide some examples of how they are invoked in
different fields.

(SC1) Marshall’s second law. Demand is said to satisfy Marshall’s second law if its
price elasticity 𝜀(𝑝) = 𝑝𝐷′(𝑝)/𝐷 (𝑝) is decreasing in 𝑝. This was introduced by
Marshall (1890) and is widely used in international trade, macroeconomics, and
microeconomics, including by Krugman (1979), Bishop (1968), Johnson (2017),
and Melitz (2018), who also provides some empirical justification for this shape
constraint in the context of trade models.

(SC2) Decreasing marginal revenue. Let 𝑃(𝑞) ≔ 𝐷−1(𝑞) denote the inverse de-
mand curve. Demand exhibits decreasing marginal revenue if marginal revenue
MR(𝑞) ≔ 𝑃(𝑞) + 𝑞𝑃′(𝑞) is decreasing in 𝑞. This shape constraint is standard
in microeconomics (see Robinson, 1933, for example) and ensures that a profit-
maximizing price exists for a monopolist who faces a convex cost function.
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(SC3) Log-concave demand. Demand is log-concave if 𝐷′(𝑝)/𝐷 (𝑝) is decreasing in
𝑝. The comprehensive surveys of Bagnoli and Bergstrom (2005) and An (1998)
demonstrate that many common demand curves are log-concave. Log-concave
demand also has a simple economic interpretation, as Amir, Maret and Troege
(2004) show: the pass-through rate of a change in a monopolist’s marginal cost is
less than one if and only if demand is log-concave (see also Weyl and Fabinger,
2013). It is also well-known that log-concavity is a sufficient condition for a unique
equilibrium to exist in common models of Cournot competition (Dixit, 1986) and
differentiated products Bertrand competition (Caplin and Nalebuff, 1991a).

(SC4) Concave demand. Demand is concave if 𝐷′(𝑝) is decreasing in 𝑝. Robinson
(1933) shows that concave demand has a simple economic interpretation: total
output increases when third-degree price discrimination by a monopolist causes
prices to rise in markets with concave demands (see also Malueg, 1994 and Inaki
Aguirre, Simon Cowan and John Vickers, 2010 for variations and generalizations
of this result).

(SC5) 𝜌-concave demand. For any given real number 𝜌 ∈ R, demand is 𝜌-concave
if 𝐷′(𝑝) [𝐷 (𝑝)]𝜌−1 is decreasing in 𝑝. Based on the work of Prékopa (1973),
this shape constraint was introduced to the economics literature by Caplin and
Nalebuff (1991b,a) as a generalization of log-concavity (𝜌 = 0) and concavity
(𝜌 = 1). Different values of 𝜌 parametrize the restrictiveness of this constraint: a
𝜌′-concave demand curve is 𝜌′′-concave for any 𝜌′′ < 𝜌′.

(SC6) Convex demand. Demand is convex if 𝐷′(𝑝) is increasing in 𝑝. Similar to
concave demand (SC4), Robinson (1933) shows that total output increases when
third-degree price discrimination by a monopolist causes prices to fall in markets
with convex demands (see also Malueg, 1994 and Inaki Aguirre, Simon Cowan
and John Vickers, 2010 for variations and generalizations of this result).

(SC7) Log-convex demand. Demand is log-convex if 𝐷′(𝑝)/𝐷 (𝑝) is increasing in 𝑝.
Similar to log-concave demand (SC3), Amir, Maret and Troege (2004) show that
the pass-through rate of a change in a monopolist’s marginal cost is more than one
if and only if demand is log-convex.

(SC8) 𝜌-convex demand. For any given real number 𝜌 ∈ R, demand is 𝜌-convex if
𝐷′(𝑝) [𝐷 (𝑝)]𝜌−1 is increasing in 𝑝. Similar to 𝜌-concave demand (SC5), 𝜌-
convexity generalizes convexity (𝜌 = 1) and log-convexity (𝜌 = 0); a 𝜌′-convex
demand curve is 𝜌′′-convex for any 𝜌′′ > 𝜌′.

These shape constraints can be divided into two categories: concave-like shape constraints
(SC1)–(SC5) and convex-like shape constraints (SC6)–(SC8). Concave-like and convex-
like shape constraints, respectively, bound the curvature of the demand curve from above
and from below.

These shape constraints are not mutually disjoint. For example, it is well known that
concave demand curves are log-concave, and that log-convex demand curves are convex.
In fact:
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(SC1)

(SC4) (SC3) and (SC7) (SC6).

(SC2)

These relationships are proven below in Supplemental Appendix C.C2. In Supplemental
Appendix C.C3, we provide examples of common demand curves that satisfy each shape
constraint.

C2. Relationships Between Assumptions

(SC4) =⇒ (SC3)

PROOF:
Given a concave demand curve 𝐷 (·), suppose on the contrary that there exist 𝑝𝐻 > 𝑝𝐿

such that

𝐷′(𝑝𝐻)
𝐷 (𝑝𝐻) >

𝐷′(𝑝𝐿)
𝐷 (𝑝𝐿) =⇒ 𝐷 (𝑝𝐿)𝐷′(𝑝𝐻) > 𝐷 (𝑝𝐻)𝐷′(𝑝𝐿).

Since 𝐷 (·) is concave, 𝐷′(𝑝𝐻) ≤ 𝐷′(𝑝𝐿); since 𝐷 (·) is decreasing, 𝐷′(·) ≤ 0 and
𝐷 (𝑝𝐿) ≥ 𝐷 (𝑝𝐻). Thus,

𝐷 (𝑝𝐿)𝐷′(𝑝𝐻) ≤ 𝐷 (𝑝𝐻)𝐷′(𝑝𝐻) ≤ 𝐷 (𝑝𝐻)𝐷′(𝑝𝐿).

This is a contradiction. Hence 𝐷 (·) is log-concave.

(SC3) =⇒ (SC1)

PROOF:
For any 𝑝𝐻 > 𝑝𝐿 , log-concavity implies that

𝐷′(𝑝𝐻)
𝐷 (𝑝𝐻) ≤ 𝐷′(𝑝𝐿)

𝐷 (𝑝𝐿) =⇒ 𝑝𝐻𝐷′(𝑝𝐻)
𝐷 (𝑝𝐻) ≤ 𝑝𝐿𝐷

′(𝑝𝐻)
𝐷 (𝑝𝐻) ≤ 𝑝𝐿𝐷

′(𝑝𝐿)
𝐷 (𝑝𝐿) .

Here, we have used the fact that 𝐷′(·) ≤ 0 as 𝐷 (·) is decreasing. Since the above
inequalities hold for any 𝑝𝐻 > 𝑝𝐿 , it follows that 𝐷 (·) satisfies Marshall’s second law.
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(SC3) =⇒ (SC2)

PROOF:
For any 𝑝𝐻 > 𝑝𝐿 , log-concavity implies that

𝐷′(𝑝𝐻)
𝐷 (𝑝𝐻) ≤ 𝐷′(𝑝𝐿)

𝐷 (𝑝𝐿) =⇒ 𝑝𝐻 + 𝐷 (𝑝𝐻)
𝐷′(𝑝𝐻) ≥ 𝑝𝐿 + 𝐷 (𝑝𝐿)

𝐷′(𝑝𝐿) .

Since this holds for any 𝑝𝐻 > 𝑝𝐿 , it follows that 𝐷 (·) has a decreasing marginal revenue
curve.

(SC7) =⇒ (SC6)

PROOF:
For any 𝑝𝐻 > 𝑝𝐿 , log-convexity implies that

𝐷′(𝑝𝐻)
𝐷 (𝑝𝐻) ≥ 𝐷′(𝑝𝐿)

𝐷 (𝑝𝐿) =⇒ 𝐷 (𝑝𝐿)𝐷′(𝑝𝐻) ≥ 𝐷 (𝑝𝐻)𝐷′(𝑝𝐿).

Since 𝐷 (·) is decreasing, 𝐷′(·) ≤ 0 and 𝐷 (𝑝𝐿) ≥ 𝐷 (𝑝𝐻). Thus

𝐷 (𝑝𝐻)𝐷′(𝑝𝐻) ≥ 𝐷 (𝑝𝐿)𝐷′(𝑝𝐻) ≥ 𝐷 (𝑝𝐻)𝐷′(𝑝𝐿) =⇒ 𝐷′(𝑝𝐻) ≥ 𝐷′(𝑝𝐿).

Since this holds for any 𝑝𝐻 > 𝑝𝐿 , it follows that 𝐷 (·) is convex.

C3. Common Demand Curves

We now review some common demand curves that satisfy these shape constraints.

(i) Isoelastic demand curves. Each isoelastic demand curve is parametrized by its
elasticity 𝜀 ≤ 0:

𝐷 (𝑝) = 𝑞0

(
𝑝

𝑝0

) 𝜀
.

Because elasticity is constant, it must also be trivially decreasing. Hence any
isoelastic demand curve satisfies Marshall’s second law (SC1).

(ii) Constant marginal revenue demand curve. Analogous to a CES demand curve,
each constant marginal revenue demand curve is parametrized by its marginal
revenue 0 ≤ 𝜇 < 𝑝0:

𝐷 (𝑝) = 𝑞0 (𝑝0 − 𝜇)
𝑝 − 𝜇

.

Because marginal revenue is constant, it must also be trivially decreasing. Hence
each constant marginal revenue demand curve exhibits decreasing marginal revenue
(SC2).
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(iii) Exponential demand curves. Each exponential demand curve is parametrized by
𝜆 ≥ 0:

𝐷 (𝑝) = 𝑞0 exp [−𝜆 (𝑝 − 𝑝0)] .
Observe that the logarithm of any exponential demand curve is linear in 𝑝:

log 𝐷 (𝑝) = log 𝑞0 − 𝜆 (𝑝 − 𝑝0) .

Hence each exponential demand curve is both log-concave (SC3) and log-convex
(SC7).

(iv) Linear demand curves. Each linear demand curve is parametrized by 𝜆 ≥ 0:

𝐷 (𝑝) = 𝑞0 − 𝜆 (𝑝 − 𝑝0) .

Each linear demand curve is both concave (SC4) and convex (SC6).

(v) 𝜌-linear demand curves. Each 𝜌-linear demand curve is parametrized by 𝜆 ≥ 0:

𝐷 (𝑝) = [𝑞0 − 𝜆 (𝑝 − 𝑝0)]1/𝜌 .

Each 𝜌-linear demand curve is both 𝜌-concave (SC5) and 𝜌-convex (SC8).

D. Empirical Application Details

We now provide additional details on our empirical applications in Section IV.

D1. Trade Tariffs

In this section, we provide the technical details behind our application to the deadweight
loss of trade tariffs. To obtain the data for our exercise, we follow Amiti, Redding and
Weinstein’s (2019) data appendix to obtain a comprehensive dataset of products hit by
new tariffs during 2018. Products are denoted by a ten-digit Harmonized Tariff Schedule
(HTS10) product code and by country or origin. The dataset contains a unit quantity and
total import value for each product, along with a tariff amount for each month in 2017
and 2018.

As the first step of our exercise, we replicate Amiti, Redding and Weinstein’s log-log
regression used to estimate the relationship between prices and quantities, assuming that
prices change proportionally to tariffs within the same market (product-calendar month)
between 2017 and 2018. Following Amiti, Redding and Weinstein, we estimate the
regression:

(D1) log
(

𝑞𝑖 𝑗𝑡

𝑞𝑖 𝑗 (𝑡−12)

)
= Δ log(1 + 𝜏𝑖 𝑗𝑡 ) + FE𝑖 + FE 𝑗 + 𝜂𝑖 𝑗𝑡 ,

where 𝑖 denotes an HTS10 product code, 𝑗 denotes a country-year, 𝑡 denotes a month
and Δ log(1 + 𝜏𝑖 𝑗𝑡 ) denotes the log change in the relevant tariff. This yields the elasticity

https://www.aeaweb.org/articles?id=10.1257/jep.33.4.187
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estimate 𝜀 = −5.89 with standard error 0.59, as reported in column (3) of Table 1 in their
paper. We then follow Amiti, Redding and Weinstein in imputing the potential outcome
for each 𝑞0 based on an isoelastic curve:

(D2) log(𝑞𝑖 𝑗 (𝑡−12) ) = log(𝑞𝑖 𝑗𝑡 ) − 𝜀Δ log((1 + 𝜏𝑖 𝑗𝑡 )).

To compute the deadweight loss under the linear, exponential, and isoelastic curves in
Figure 6, we compute the change in consumer surplus directly using the formulas in Table
1 and subtract 𝑞1×(𝑝1− 𝑝0) as discussed in Supplemental Appendix B.B4.2 In each case,
we treat 𝑞1, 𝑝1 for each good using the calendar month in 2018 as period 1 and the same
month in 2017 as period 0. We then impute 𝑝0 =

𝑝1
1+𝜏 and 𝑞0 based on equation (D2) and

plug these values into the formulas directly. Following Amiti, Redding and Weinstein,
we compute the deadweight loss for each market separately and then aggregate across
all markets in our sample. To compute the deadweight loss under a 𝜌-linear demand
curve, we integrate over the curve 𝐷 (𝑝) = [𝑞0 − 𝜆 (𝑝 − 𝑝0)]1/𝜌 for each value of 𝜌. The
formula for this is given by:

DWL𝜌 =

𝜌 (𝑝1 − 𝑝0)
(
𝑞

1+𝜌
0 − 𝑞

1+𝜌
1

)
(1 + 𝜌)

(
𝑞
𝜌
0 − 𝑞

𝜌
1

) − 𝑞1 (𝑝1 − 𝑝0) .

To compute standard confidence bands, we apply the delta method with respect to the
standard error in 𝑞0 due to 𝜀 as in the motivating example. Finally, to calculate the
bounds with respect to elasticity relaxations in Figure 7, we compute the lower bound on
the change in consumer surplus for the isoelastic benchmark, as in the third column of
Table 1 and subtract 𝑞1 × (𝑝1 − 𝑝0). We compute standard errors using the delta method
with respect to the standard error of 𝑞0.

D2. Energy Subsidies

In this subsection, we provide a detailed derivation of our robustness exercise with
respect to the welfare conclusion in Hahn and Metcalfe (2021). Following the description
of the setting in Section IV.B,3 the welfare effect of the CARE program is given by:

Δ𝑊 = 𝑁𝐶

∫ 𝑞𝐶

𝑞∗
𝐶

[𝑃𝐶 (𝑞) − MSC] d𝑞 + 𝑁𝑁

∫ 𝑞𝑁

𝑞∗
𝑁

[𝑃𝑁 (𝑞) − MSC] d𝑞 − 𝐴.

2Note that Amiti, Redding and Weinstein apply an additional approximation argument before imputing a linear demand
curve for each market. As they explain in footnote 9 (pp. 199–200), they make use of a second Taylor approximation in
computing deadweight loss:

− log(𝑚1/𝑚0 ) ≈ (𝑚0 − 𝑚1 )/𝑚1,

where 𝑚𝑡 is the total import value of a product in year 𝑡 . In general, it can be shown that this approximation will
underestimate deadweight loss: − log 𝑧 ≤ 1/𝑧 − 1 for any 𝑧 ∈ R. As the magnitudes of the tariffs are substantial, we find
that this approximation shrinks the deadweight loss estimates substantially and makes the comparison across assumptions
more difficult to interpret. As such, we skip this approximation step in our calculations and instead present the deadweight
loss estimates from linear (and other) interpolations using just the quantities and prices produced in their first step.

3See also equation (A3) in Hahn and Metcalfe’s online appendix.
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Here 𝑁𝐶 and 𝑁𝑁 are the numbers of CARE and non-CARE consumers, respectively;
𝑃𝐶 (·) and 𝑃𝑁 (·) are their respective inverse demand curves; and 𝐴 is the administrative
cost of the program. We assume that 𝑞𝑁 and 𝑞𝐶 are observed and that 𝑝∗ = 𝑃𝑁 (𝑞𝑁 ) =
𝑃𝐶 (𝑞𝐶). Moreover, we use Hahn and Metcalfe’s equation (5) to relate 𝑝∗ to the observed
prices 𝑝𝑁 and 𝑞𝑁 and the observed quantities 𝑞𝑁 and 𝑞𝐶 :

𝑝∗ =
𝑁𝑁 𝑝𝑁𝑞𝑁 + 𝑁𝐶 𝑝𝐶𝑞𝐶 − 𝐴

𝑁𝑁𝑞𝑁 + 𝑁𝐶𝑞𝐶
.

Summarizing:

1) We observe 𝑝∗ and the points (𝑝𝑁 , 𝑞𝑁 ) and (𝑝𝐶 , 𝑞𝐶).
2) Hahn and Metcalfe estimate 𝜀𝐶 and take 𝜀𝑁 from Auffhammer and Rubin (2018).

3) We wish to examine how robust Δ𝑊 is to the functional form assumptions imposed
by Hahn and Metcalfe and Auffhammer and Rubin. We therefore introduce two
parameters, 𝑟𝐶 and 𝑟𝑁 , and consider

𝜀𝐶
1 − 𝑟𝐶

≤ 𝜀𝐶 ≤ (1 − 𝑟𝐶) 𝜀𝐶 ,
𝜀𝑁

1 − 𝑟𝑁
≤ 𝜀𝑁 ≤ (1 − 𝑟𝑁 ) 𝜀𝑁 .

Note that because Hahn and Metcalfe assume linear demand, it would be natural to
consider relaxations of gradient variability, rather than elasticity variability. This would
allow us to test the robustness of their linear benchmark directly. However, Hahn and
Metcalfe provide elasticity estimates, not gradients. As such, we must decide which
benchmark to use: (i) a linear benchmark using gradients inferred from elasticity estimates
through the linear function or (ii) an isoelastic benchmark using the estimated elasticities
directly. For our application, we choose the latter option. Our reasoning is that an
isoelastic benchmark prioritizes the decisions that the authors made with respect to their
exposition of price treatment effects. Hahn and Metcalfe chose to present their results
in terms of an elasticity; although they could have extrapolated to a linear curve directly,
interpreting their LATE estimate as a gradient, they did not do so. This decision may
reflect important considerations that we would like our robustness measures to preserve.4

The largest possible Δ𝑊 is attained when the welfare gains from CARE households are
maximized and the welfare losses from non-CARE households are minimized. Symmetri-
cally, the smallest possible Δ𝑊 is attained when the welfare gains from CARE households
are minimized and the welfare losses from non-CARE households are maximized. Impor-
tantly, we can consider these welfare effects separately since the counterfactual quantities
𝑞∗𝐶 and 𝑞∗𝑁 are independent of each other (as they lie on separate demand curves). Notice

4For instance, the LATE estimator in Hahn and Metcalfe’s example uses different baseline usage numbers for CARE
consumers (22.9 therms/month) than their counterfactual welfare exercise (310 therms/year), which considers a different
program duration and accounts for the full CARE consumer base. Using an elasticity estimate, which is unitless, may
therefore reflect an intention to accommodate the difference in magnitudes between the two quantities.
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also that the additional costs, MSC and 𝐴, do not change our earlier analysis. This is
because: (i) instead of prices 𝑝∗, 𝑝𝐶 , and 𝑝𝑁 , we can perform our earlier analysis on net
prices 𝑝∗ −MSC, 𝑝𝐶 −MSC, and 𝑝𝑁 −MSC; and (ii) the administrative cost 𝐴 is simply
an additive constant.

CARE Households.

Let the welfare gains for CARE households be denoted by

Δ𝑊𝐶 = 𝑁𝐶

∫ 𝑞𝐶

𝑞∗
𝐶

[𝑃𝐶 (𝑞) − MSC] d𝑞.

We want to find the largest possible values of welfare gains for CARE households, Δ𝑊𝐶 .
We proceed in two steps: (1) we consider the problem for a given 𝑞∗𝐶 ; and (2) we
optimize over the possible values of 𝑞∗𝐶 . Throughout, we maintain the assumption that
𝜀 ≤ 𝜀(·) ≤ 𝜀 on 𝑝 ∈ [𝑝𝐶 , 𝑝∗].

Step #1: Fixing 𝑞∗𝐶 .

For a given 𝑞∗𝐶 , the upper bound of Δ𝑊𝐶 is given by:

Δ𝑊𝐶 (𝑞∗𝐶) = 𝑁𝐶 max
𝑃∈𝒫

∫ 𝑞𝐶

𝑞∗
𝐶

[𝑃𝐶 (𝑞) − MSC] d𝑞.

Our previous results (cf. Theorem 1) imply that the extremal demand curves are 2-
piecewise isoelastic, with elasticities equal to 𝜀 and 𝜀 and an average elasticity of
log(𝑞𝐶/𝑞∗𝐶)/log(𝑝𝐶/𝑝∗). The upper bound is attained by the inverse demand curve:

𝑃𝐶 (𝑞; 𝑞∗𝐶) =


𝑝∗

(
𝑞

𝑞∗𝐶

)1/𝜀
for 𝑞∗𝐶 ≤ 𝑞 ≤ 𝑞,

𝑝𝐶

(
𝑞

𝑞𝐶

)1/𝜀
for 𝑞 ≤ 𝑞 ≤ 𝑞𝐶 ,

where
𝑞 = exp

[
𝜀𝜀 log (𝑝𝐶/𝑝∗) + 𝜀 log 𝑞∗𝐶 − 𝜀 log 𝑞𝐶

𝜀 − 𝜀

]
.

To obtainΔ𝑊𝐶 (𝑞∗𝐶) at a given level of 𝑟𝐶 , we can integrate 𝑃𝐶 (𝑞; 𝑞∗𝐶) over 𝑞 ∈ [𝑞∗𝐶 , 𝑞𝐶],
substituting in 𝜀 = 𝜀𝐶 (1 − 𝑟𝐶) and 𝜀 = 𝜀𝐶/(1 − 𝑟𝐶).
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Step #2: Optimizing over 𝑞∗𝐶 .

To optimize over 𝑞∗𝐶 , we first determine the range of values [𝑞∗𝐶 , 𝑞∗𝐶] that 𝑞∗𝐶 can take,
given 𝑝∗, 𝑝𝐶 , 𝑞𝐶 , 𝜀𝐶 , and 𝑟𝐶 :

𝑞∗𝐶 = 𝑞𝐶

(
𝑝∗

𝑝𝐶

) 𝜀̂𝐶/(1−𝑟𝐶 )
,

𝑞∗𝐶 = 𝑞𝐶

(
𝑝∗

𝑝𝐶

) 𝜀̂𝐶 (1−𝑟𝐶 )
.

The largest value of welfare losses for non-CARE households is attained by maximizing
Δ𝑊𝐶 (𝑞∗𝐶) over 𝑞∗𝐶 ∈ [𝑞∗𝐶 , 𝑞∗𝐶]. Notice, however, that the objective function is concave

in 𝑞∗𝐶 ; hence 𝑞∗𝐶 = 𝑞∗𝐶 or 𝑞∗𝐶 = 𝑞∗𝐶 . The largest value of welfare gains for CARE

households is therefore attained by maximizing Δ𝑊𝐶 (𝑞∗𝐶) over 𝑞∗𝐶 ∈ [𝑞∗𝐶 , 𝑞∗𝐶]. For each
value of 𝑟𝐶 , we can find the maximizing value of Δ𝑊𝐶 (𝑞∗𝐶) through a standard numerical
optimization procedure (e.g., through a grid search).

Non-CARE Households.

Let the welfare losses for non-CARE households be denoted by

Δ𝑊𝑁 = 𝑁𝑁

∫ 𝑞𝑁

𝑞∗
𝑁

[𝑃𝑁 (𝑞) − MSC] d𝑞.

We want to find the smallest possible values of welfare losses for non-CARE households,
Δ𝑊𝑁 . We proceed in two steps: (1) we consider the problem for a given 𝑞∗𝑁 ; and (2) we
optimize over the possible values of 𝑞∗𝑁 . Throughout, we maintain the assumption that
𝜀 ≤ 𝜀(·) ≤ 𝜀 on 𝑝 ∈ [𝑝𝐶 , 𝑝∗].

Step #1: Fixing 𝑞∗𝑁 .

For a given 𝑞∗𝑁 , the lower bound of Δ𝑊𝑁 is given by

Δ𝑊𝑁 (𝑞∗𝑁 ) = 𝑁𝑁 min
𝑃∈𝒫

∫ 𝑞∗
𝑁

𝑞𝑁

[𝑃𝑁 (𝑞) − MSC] d𝑞.

Again, our previous results (cf. Theorem 1) imply that the extremal demand curves are
2-piecewise isoelastic, with elasticities equal to 𝜀 and 𝜀 and an average elasticity of
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log(𝑞𝑁/𝑞∗𝑁 )/log(𝑝𝑁/𝑝∗). The lower bound is attained by the inverse demand curve:

𝑃𝑁 (𝑞; 𝑞∗𝑁 ) =


𝑝𝑁

(
𝑞

𝑞𝑁

)1/𝜀
for 𝑞𝑁 ≤ 𝑞 ≤ 𝑞,

𝑝∗
(
𝑞

𝑞∗𝑁

)1/𝜀
for 𝑞 ≤ 𝑞 ≤ 𝑞∗𝑁 ,

where
𝑞 = exp

[
𝜀𝜀 log (𝑝𝑁/𝑝∗) − 𝜀 log 𝑞𝑁 + 𝜀 log 𝑞∗𝑁

𝜀 − 𝜀

]
.

As in the CARE case, we can obtain Δ𝑊𝑁 (𝑞∗𝑁 ) by integrating 𝑃𝑁 (𝑞; 𝑞∗𝑁 ) over 𝑞 ∈
[𝑞𝑁 , 𝑞

∗
𝑁 ] and substituting in 𝜀 = 𝜀𝑁 (1 − 𝑟𝑁 ) and 𝜀 = 𝜀𝑁/(1 − 𝑟𝑁 ).

Step #2: Optimizing over 𝑞∗𝑁 .

To optimize over 𝑞∗𝑁 , we first determine the range of values [𝑞∗𝑁 , 𝑞∗𝑁 ] that 𝑞∗𝑁 can take,
given 𝑝∗, 𝑝𝑁 , 𝑞𝑁 , 𝜀𝑁 , and 𝑟𝑁 :

𝑞∗𝑁 = 𝑞𝑁

(
𝑝∗

𝑝𝑁

) 𝜀̂𝑁 /(1−𝑟𝑁 )
,

𝑞∗𝑁 = 𝑞𝑁

(
𝑝∗

𝑝𝑁

) 𝜀̂𝑁 (1−𝑟𝑁 )
.

The largest value of welfare losses for non-CARE households is attained by maximizing
Δ𝑊𝑁 (𝑞∗𝑁 ) over 𝑞∗𝑁 ∈ [𝑞∗𝑁 , 𝑞∗𝑁 ]. Notice, however, that the objective function is convex

in 𝑞∗𝑁 ; hence 𝑞∗𝑁 = 𝑞∗𝑁 or 𝑞∗𝑁 = 𝑞∗𝑁 . The smallest value of welfare losses for non-CARE

households is there attained by minimizing Δ𝑊𝑁 (𝑞∗𝑁 ) over 𝑞∗𝑁 ∈ [𝑞∗𝑁 , 𝑞∗𝑁 ], and we can
solve for the lower bound at each 𝑟𝑁 through a standard bounded numerical optimization
procedure like grid search, as well.

Combining Bounds for Analysis.

In order to create Figure 9, we compute the upper bound on welfare gains for CARE
consumers Δ𝑊𝐶 and the lower bound of welfare losses for non-CARE consumers Δ𝑊𝑁

for each pair of indices (𝑟𝐶 , 𝑟𝑁 ) ∈ [0, 1] × [0, 1]. We then plot Δ𝑊 = 𝑁𝐶 · Δ𝑊𝐶 +
𝑁𝑁 · Δ𝑊𝑁 − 𝐴. In each case, we use the numbers from Online Appendix B in Hahn and
Metcalfe: 𝑁𝑁 = 3.85M, 𝑁𝐶 = 1.6M, 𝑞𝑁 = 490, 𝑞𝐶 = 310, 𝑝𝑁 = 0.95, 𝑝𝐶 = 0.75, and
𝑝∗ = 0.90.
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D3. Old-Age Pensions

In this subsection, we provide the technical details behind our application to the MVPF
of the Old-Age Pensions Act based on Giesecke and Jäger (2021). The key empirical
result underlying our analysis is the marginal propensity to retire early, estimated by
Giesecke and Jäger through a regression discontinuity design. As a first step to our
analysis, we derive a micro-foundation for interpreting this as a casual response to an
increase in the pension amount through the supply curves of the eligible population.

Neoclassical Labor-Leisure Model.

We begin by considering the neoclassical labor-leisure model. Suppose that an individ-
ual 𝑖 has utility over 𝐶 and 𝐿, where 𝐶 is consumption of goods (measured in dollars) and
𝐿 is hours of leisure. We assume that utility is quasilinear with respect to consumption
(as in Diamond, 1998):

𝑢𝑖 (𝐿) + 𝐶.

The individual’s budget constraint is

𝐶 ≤ 𝑤𝑖 (𝑇𝑖 − 𝐿) +𝑉𝑖 ,

where 𝑇𝑖 is total hours available, 𝑤𝑖 is the wage rate, and 𝑉𝑖 is other income for that
individual.

To allow for the possibility of retiring in exchange for a pension, we augment this model
by assuming that each individual can choose either to work (𝑦𝑖 = 1) or not (𝑦𝑖 = 0), but
(for simplicity) cannot choose how much time they work. Therefore, if an individual
chooses to work (𝑦𝑖 = 1), they work for 𝑇𝑖 − 𝐿𝑖 hours. However, if an individual chooses
not to work (𝑦𝑖 = 0), they receive a pension 𝑝. This changes the individual’s budget
constraint:

𝐶 ≤
{
𝑤𝑖 (𝑇𝑖 − 𝐿𝑖) +𝑉𝑖 if 𝑦𝑖 = 1,
𝑝 +𝑉𝑖 if 𝑦𝑖 = 0.

Summarizing, each individual faces the utility maximization problem:

max {𝑢𝑖 (𝐿𝑖) + 𝑤𝑖 (𝑇𝑖 − 𝐿𝑖) +𝑉𝑖 , 𝑢𝑖 (𝑇𝑖) + 𝑝 +𝑉𝑖} .

Labor Supply.

Under this model, an individual chooses to retire (𝑦𝑖 = 0) if and only if

𝑢𝑖 (𝑇𝑖) + 𝑝 ≥ 𝑢𝑖 (𝐿𝑖) + 𝑤𝑖 (𝑇𝑖 − 𝐿𝑖) ⇐⇒ 𝑝 ≥ 𝑢𝑖 (𝐿𝑖) − 𝑢𝑖 (𝑇𝑖) + 𝑤𝑖 (𝑇𝑖 − 𝐿𝑖)︸                                 ︷︷                                 ︸
=:𝜀𝑖

.

Let the aggregate distribution of 𝜀𝑖 in the population be denoted by 𝐹. In theory, a
fraction 𝑞𝑡 of people retires when the pension is 𝑝𝑡 , where

𝑞𝑡 = E
[
1𝑝𝑡≥𝜀𝑖

]
= 𝐹 (𝑝𝑡 ).
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We interpret 𝐹 as a supply curve for retirement: 𝜀𝑖 is the pension that individual 𝑖 would
have to be paid in order for him to be indifferent to retiring.

Welfare Impact of a Pension Increase.

Suppose that the pension increases from 𝑝0 to 𝑝1. The change in each individual’s
surplus is then given by

Δ𝑊𝑖 = max {𝑢𝑖 (𝐿𝑖) + 𝑤𝑖 (𝑇𝑖 − 𝐿𝑖) , 𝑢𝑖 (𝑇𝑖) + 𝑝1}
− max {𝑢𝑖 (𝐿𝑖) + 𝑤𝑖 (𝑇𝑖 − 𝐿𝑖) , 𝑢𝑖 (𝑇𝑖) + 𝑝0}

= max {0, 𝑝1 − 𝜀𝑖} − max {0, 𝑝0 − 𝜀𝑖} .

Integrating over the population with 𝑄0 individuals yields

Δ𝑊 = 𝑄0

∫ ∞

−∞
[max {0, 𝑝1 − 𝜀𝑖} − max {0, 𝑝0 − 𝜀𝑖}] d𝐹 (𝜀𝑖)

= 𝑄0

∫ 𝑝1

−∞
(𝑝1 − 𝜀𝑖) d𝐹 (𝜀𝑖) −

∫ 𝑝0

−∞
(𝑝0 − 𝜀𝑖) d𝐹 (𝜀𝑖)

= 𝑄0

∫ 𝑝1

−∞
𝐹 (𝜀𝑖) d𝜀𝑖 −

∫ 𝑝0

−∞
𝐹 (𝜀𝑖) d𝜀𝑖 =⇒ Δ𝑊 = 𝑄0

∫ 𝑝1

𝑝0

𝐹 (𝜀𝑖) d𝜀𝑖 .

Robustness With Respect to Gradients.

Our analysis builds on Giesecke and Jäger’s baseline result (Section 4.1) that labor
supply dropped by 6 percentage points, from 46% to 40%, at the eligibility cutoff age upon
the introduction of old-age pensions in the U.K. Mapping this result to our framework,
these estimates correspond to measurements of 𝐹 (·) at two points, namely, 𝑞0 = 𝐹̂ (0𝑠) =
0.54 and 𝑞1 = 𝐹̂ (260𝑠) = 0.60. Because 𝑄0 is a constant (and cancels out in the MVPF
calculation), we focus only on the supply curve 𝐹.

The authors include a welfare analysis in their online appendix, in which they take
the extreme stance that any worker who was willing to retire at the observed pension
would have been willing to retire at any non-zero pension. This assumption corresponds
to the lower bound of any welfare measure in our framework at the limiting measure of
variability (e.g., 𝑟 = 1). As such, we conduct our robustness analysis with respect to a
benchmark that is calibrated to their empirical exercise.

Because the treatment effects estimated by the regression discontinuity design are
in levels-space, we focus on a linear benchmark and consider variability in gradients.
Theorem 1 allows us to derive the upper and lower bounds at each 𝑟; hence we can apply
the formulas from Table 1 to compute the bounds. Finally, to compute the MVPF at each
𝑟, we follow Giesecke and Jäger’s Online Appendix D and divide the welfare gain at 𝑟
by 1.13 to account for the net government cost of supplying each pension. To obtain
confidence bands, we apply the delta method to each MVPF bound with respect to the
standard error on the 6 percentage point treatment effect estimate as provided by Giesecke
and Jäger.
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