
Supplemental Appendix for
A Learning Model of Financial Instability

By Noah Williams*

This appendix contains additional calculations, extensions, and
illustrations for the paper.

I. Convergence Results

Marcet and Sargent (1989), Evans and Honkapohja (2001), and others have
adapted the theory of stochastic approximation to show that in the limit as the
gain gets small, the evolution of beliefs can be approximated by a deterministic
ordinary differential equation. Recall the belief updating equations:

mt+1 = mt + ε(log(Zt)−mt),(1)

s2t+1 = s2t + ε([log(Zt)−mt]
2 − s2t ).(2)

The basic idea is that we can rewrite (1) as:

mt+1 −mt

ε
= logZ(θt, θt−1, ωt−1, χt)−mt.

The left side of the equation can be interpreted as a finite-difference approximation
of a time derivative, where ε is the notional “time” between observations. Then
as ε → 0 the left side of the equation converges to that time derivative. Also in
this limit, more and more observations are packed into any finite interval of time,
so the dynamics of outcomes are fast relative to beliefs. Thus the belief dynamics
effectively average over the shock realizations and we can apply a law of large
numbers.

Following Theorem 8.5.1 in Kushner and Yin (1997), as ε → 0, under some
regularity conditions, the beliefs converge weakly to the trajectories of the mean
dynamics ODEs:

ṁ = E[logZ(θ, θ, ω, χ)]−m,(3)

ṡ2 = E[logZ(θ, θ, ω, χ)−m]2 − s2.(4)

Here the expectation is with respect to the unconditional distribution of ωt for
fixed θ, and the distribution of the dividend growth shocks χ.

* Williams: Miami Herbert Business School, University of Miami, noahwilliams@miami.edu.
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The self-confirming equilibrium is clearly an equilibrium point of the mean
dynamics, as seen by setting ṁ = ṡ2 = 0:

m = µ = E[logZ(θ, θ, ω, χ)]

s2 = σ2 = E[(logZ(θ, θ, ω, χ)− µ)2]

I now show that the SCE is a locally stable equilibrium point of the mean dynam-
ics, and therefore of the learning rule. As in Evans and Honkapohja (2001), the
SCE is locally expectationally stable if all of the eigenvalues of the Jacobian ma-
trix of the mean dynamics have negative real parts when evaluated at the SCE.
So for small enough gain ε, and (at least) for beliefs that start near the SCE,
over time beliefs will converge to the SCE. The condition on the risk aversion
coefficient is sufficient but stronger than necessary, as discussed in the proof. The
baseline calibration has larger risk aversion, but I verified numerically (evaluating
the eigenvalues of the Jacobian with the specified parameters) that stability still
holds.

THEOREM 1: When γ ≤ 2, the self-confirming equilibrium beliefs θ = (µ, σ)
are a locally stable fixed point of the learning dynamics (1)-(2). Therefore as
ε→ 0 and t→ ∞, the stochastic belief process {θt} will converge weakly to θ.

PROOF:
The convergence result follows from Kushner and Yin (1997). Apart from the

stability conditions established below, the regularity conditions are satisfied as the
shocks are bounded, and the portfolio constraints imply that beliefs and outcomes
are bounded.
Tedious but straightforward calculations verify that v(θ) = 1 and c(θ) = 1/(1+

δ). Therefore δ(θ) = δ∗, q(θ) = 0. In particular, using the relations above we
have:

µ = log(1 + δ∗)− log(δ∗) + d = − log β − log ϕ+ γd = logR+ log(ϕ/ϕ).

Therefore, defining ψ = ϕ/ϕ, we have:

ZH −R = (eσψ − 1)R, R− ZL =
(
1− e−σψ

)
R.

Then we can write:

v(θ) =
1− Γ

1− Γ + ψ(Γeσ − e−σ)

where:

Γ =

(
Zh −R

R− ZL

)− 1
γ

=

(
e(1+γ)σ − e−(1−γ)σ

e(1−γ)σ − e−(1+γ)σ

)− 1
γ

= e−2σ.

Therefore:
Γeσ − e−σ = e−2σeσ − e−σ = 0,
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which then gives:

v(θ) =
1− Γ

1− Γ
= 1.

Furthermore, this implies

c(θ) = 1− β
1
γ

2

(
Z1−γ
L + Z1−γ

H

)
= 1− β

1
γ e

1−γ
γ

µ
ϕ

1
γ = 1− βϕe(1−γ)d =

1

1 + δ∗
.

Thus we have q(θ) = 0 so ωt ≡ 1. This means that we only need evaluate the
dynamics locally around ωt = ωt−1 = 1. Recalling the definition of logZt =
logZ(θt, θt−1, ωt−1, χt), we can evaluate:

logZ(θ, θ, 1, χ) = log(1 + δ(θ))− log(δ(θ))− logχt.

Then we have:

E logZ(θ, θ, 1, χ) = log(1 + δ∗)− log(δ∗)− d = µ,

and therefore:
E[
(
logZ(θ, θ, 1, χ)− µ

)2
] = E(σWt)

2 = σ2.

Thus θ is a fixed point of the ODEs (3), and therefore of the learning dynamics.

To establish local stability, we need to evaluate the Jacobian of the mean dy-
namics at the SCE θ. Since the variance estimate s2 is of second order, it does
matter for the local stability. Thus it is enough to simply verify the local stability
of the mean estimate. To see this explicitly, we can stack (3) into a vector, and
write the dynamics as:

θ̇ = b(θ),

where I abuse notation set and θ = (m, s2). Simple calculations establish:

∂b

∂θ
(θ) =

[
∂E logZ

∂m − 1 ∂E logZ
∂s2

0 −1

]
.

So for local stability, we simply require:

∂

∂m
E logZ(θ, θ, 1, χ))

∣∣∣∣
θ=θ

< 1.

From above we have:

E logZ(θ, θ, 1, χ) = log(1 + δ(θ))− log(δ(θ))− d,
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so that:

∂E logZ

∂m
=

(
1

1 + δ∗
− 1

δ∗

)
∂δ

∂m
(θ) = − 1

δ∗(1 + δ∗)

∂δ

∂m
(θ).

Then letting κ = 1− c, we have:

∂δ

∂m
(θ) =

(
κ

1− κ
+

κ2

(1− κ)2

)
∂v

∂m
(θ) +

(
1

1− κ
− 1

)
∂κ

∂m
(θ)

=
κ

(1− κ)2
∂v

∂m
(θ) +

κ

1− κ

∂κ

∂m
(θ)

= δ∗
[
(1 + δ∗)

∂v

∂m
(θ) +

∂κ

∂m
(θ)

]
.

Then since ∂ZH
∂m = ZH and ∂ZL

∂m = ZL, we can write:

∂v

∂m
(θ) =

ZL

[
R(R− ZL)

−1−γ
γ + (γ − 1)(R− ZL)

−1
γ

]
+ ZH

[
R(ZH −R)

−1−γ
γ − (γ − 1)(ZH −R)

−1
γ

]
γ
[
(R− ZL)

γ−1
γ + (ZH −R)

γ−1
γ

] .

But above we established that at θ:

(ZH −R)
−1
γ = e−2σ(R− ZL)

−1
γ ,

so therefore at the SCE:

ZL(R− ZL)
−1
γ − ZH(ZH −R)

−1
γ = (R− ZL)

−1
γ (ZL − e−2σZH) = 0.

Thus we can simplify the above to:

∂v

∂m
(θ) =

R
[
ZL(R− ZL)

−1−γ
γ + ZH(ZH −R)

−1−γ
γ

]
γ
[
(R− ZL)

γ−1
γ + (ZH −R)

γ−1
γ

] > 0.

Then using the definition of c(θ) we have:

∂κ

∂m
(θ) = (1−γ)β

1
γ

2

(
Z−γ
L

(
(ZL −R)

∂v

∂m
+ ZL

)
+ Z−γ

H

(
(ZH −R)

∂v

∂m
+ ZH

))
.
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Similar to above, at the SCE we have:

Z−γ
H (ZH −R)− Z−γ

L (R− ZL) =
(
Z−γ
H e2γσ − Z−γ

L

)
(R− ZL) = 0,

so that we can simplify to:

∂κ

∂m
(θ) = (1− γ)

β
1
γ

2

(
Z1−γ
L + Z1−γ

H

)
= (1− γ)κ(θ) = (1− γ)

δ∗

1 + δ∗
.

Thus we have
∂E logZ

∂m
(θ) = − ∂v

∂m
(θ)− (1− γ)

δ∗

(1 + δ∗)2
.

When γ < 1 this is clearly negative. More generally, we require:

∂v

∂m
(θ) > (γ − 1)

δ∗

(1 + δ∗)2
− 1.

For γ ≤ 2, since δ∗ > 0 the right side of the above inequality is negative. Since
∂v
∂m(θ) > 0 the condition is guaranteed to hold.

These conditions are stronger than necessary, but the relatively complicated
formulas make weaker conditions difficult to establish. For example, with γ = 3
a sufficient condition would be ∂v

∂m(θ) > 1. Such a condition is easy to verify
with given parameters, as in the calibrated model. But it is harder to provide
conditions on primitives. In the Merton continuous time analogue of the model,
the portfolio decision rule is v = (m− r)/(γs2), so ∂v

∂m(θ) = 1
γσ2 . Then as long as

σ2 < 1/γ we know that ∂v
∂m(θ) < 1.

II. Averaging and the Bifurcation Theorem

The paper shows that for small shocks, we can approximate the dynamics of
the mean of the stochastic system by the averaged dynamics. Figure 1 shows the
averaged dynamics for mt and st, along with quantiles of the belief distribution
from 1,000 simulations. In both cases the time paths are initialized near the self-
confirming equilibrium values. The figure clearly illustrates that the averaging
in the small noise approximation provides a good characterization of the belief
distribution for the baseline parameterization.

I now show how to verify the conditions in the bifurcation theorem. The key is
to calculate the Jacobian J(ε), whose eigenvalues determine the stability of the
SCE X̄. The higher-order derivatives needed for the higher-order approximations
B and C follow similarly. Explicitly, we have Xt = [mt, s

2
t ,mt−1, s

2
t−1, ωt−1]

′ so
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Figure 1. Beliefs mt and st from the averaged dynamics.

Note: The solid and dashed lines also show quantiles from the simulated distribution.

that the averaged dynamics are:

Ḡ(Xt) =


mt + ε(E logZ(θt, θt−1, ωt−1, χt)−mt)

s2t + ε(E(logZ(θt, θt−1, ωt−1, χt)−mt)
2 − s2t )

mt

s2t
1 + q(θt−1)ωt−1E(χt)

 .

In the following, all expressions and functions are evaluated at the SCE, so I
suppress the arguments. First, since Zt is binomial, we can write E logZ =
0.5(logZL+logZH) where ZL is associated with shock realization χL = exp(µ−σ)
and ZH with χH = exp(µ + σ). Similarly, E(logZ − m)2 = .5(logZL − m)2 +

.5(logZH −m)2. Therefore for any x ∈ X, ∂E logZ
∂x = 0.5(∂ logZL

∂x + ∂ logZH
∂x ) and

so on. Also let χ̄ = Eχt = .5(χL + χH). Then we have:

J1(ε) =
∂Ḡ1(X̄)

∂X

= ε

[
1

ε
+
∂E logZ

∂mt
− 1,

∂E logZ

∂s2t
,
∂E logZ

∂mt−1
,
∂E logZ

∂s2t−1

,
∂E logZ

∂ωt−1

]
= ε

[
1

ε
+

1

1 + δ

∂δ

∂m
,

1

1 + δ

∂δ

∂s2
, χ̄

δ

1 + δ

∂q

∂m
− 1

δ

∂δ

∂m
, χ̄

δ

1 + δ

∂q

∂s2
− 1

δ

∂δ

∂s2
,−1

]
.
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Then we can also write:

J2(ε) = ε



(logZL −m)
(
∂ logZL
∂mt

− 1
)
+ (logZH −m)

(
∂ logZH
∂mt

− 1
)

1
ε + (logZL −m)∂ logZL

∂s2t
+ (logZH −m)∂ logZH

∂s2t
− 1

(logZL −m)∂ logZL
∂mt−1

+ (logZH −m)∂ logZH
∂mt−1

(logZL −m)∂ logZL

∂s2t−1
+ (logZH −m)∂ logZH

∂s2t−1

(logZL −m)∂ logZL
∂ωt−1

+ (logZH −m)∂ logZH
∂ωt−1



′

where the logZ derivative expressions can be evaluated as in J1(ε). Similarly, we
have:

J3(ε) = [1, 0, 0, 0, 0], J4(ε) = [0, 1, 0, 0, 0],

and finally:

J5(ε) =

[
0, 0, χ̄

∂q

∂m
, χ̄

∂q

∂s2
, 0

]
.

It remains to evaluate the additional derivatives in the expressions ∂q
∂θi

and ∂δ
∂θi

,

for θi = m, s2. For δ and the case of θi = m, these explicit calculations are
given in the proof of Theorem 2, where embedded in these expressions are further
derivatives ∂v

∂m and ∂κ
∂m . The derivatives for θi = s2 follow similarly. For q, the

derivatives at the SCE are given by:

∂q

∂θi
= −Rκδ ∂v

∂θi
,

which can be evaluated given the expressions above.

III. Additional Quantitative Results

A. Predictability of Returns

In this section, I discuss the time series predictability of returns. In the model,
returns are strongly positively autocorrelated over one- and two-year horizons.
In addition, a strong positive return in a current period makes a crash more
likely several periods in the future. In the data, there is little or no evidence
of autocorrelations in annual market returns, and weak evidence of time series
reversals.1 In Table 1, I report time regressions of the form:

Rt+f−1,t+f = af + bfRt−1,t + ϵt+f−1,t+f

where t indexes the current date and f ∈ {1, 2, 3, 4, 5} is the number of years
ahead. The table reports the results from the Shiller (2023) data, along with

1These facts are distinct from the well-documented cross-sectional momentum and reversal.
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simulations of my baseline model. The simulated return data use the same 1,000
simulated time series as in the main text, and I report the mean coefficient and
t-statistic from the regressions in each simulation run.

Table 1— Results from return predictability regressions

Data Simulations
Years Coefficient t-Stat Coefficient t-Stat
1 0.0181 0.22 0.6509 27.75
2 -0.1889 -2.32 0.1345 4.32
3 0.0934 1.13 -0.1309 -4.19
4 -0.0613 -0.73 -0.2086 -6.75
5 -0.1302 -1.56 -0.2056 -6.65

Note: Coefficients from return predictability regressions in the data along with average regression coef-
ficients and t-statistics from 1000 simulations of the calibrated model.

The model generates return predictability from persistent changes in beliefs θt
and net asset positions ωt. Moreover, the dynamics of the cycles in my model
mean that a market boom today predicts a crash in the future. Both the au-
tocorrelation and the reversal are much stronger in the model than in the data.
The data shows some evidence of reversal at two years and very weak evidence of
longer-term reversal.

B. Intermediate Between Open and Closed Economies

The baseline small open economy model has very different properties from a
standard closed economy version. Here I report some simulations from alternative
intermediate specifications, where interest rates adjust each period but enough to
ensure that there is zero debt. I find that the qualitative features of the closed
economy model persist in many intermediate cases. This suggests that the debt
dynamics and asset allocations features of the open economy are more crucial for
asset pricing implications than the lack of interest rate variation.

Using the results above we can write the demand for bonds (scaled by dividends)
as:

Bt

Dt
= (1 + δ(R))(1− c(R))(1− v(R))

(
1 +R

Bt−1

Dt−1
χt

)
,

where I emphasize the dependence on the interest rate R. In the small open
economy case R is a fixed constant, while in the closed economy case R adjusts to
level, say R∗

t , so that Bt = 0. For an intermediate case, I suppose that bonds are
supplied with an interest elasticity which is finite (unlike the small open economy)
and positive (unlike the open economy).

Rather than specifying an explicit supply curve, I analyze cases where the
equilibrium interest rate Rt is a weighted average of the open and closed economy
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interest rates:
Rt = αR+ (1− α)R∗

t .

Varying the weight α between zero and one effectively traces out the implications
of different supply elasticities.

Table 2— Summary statistics for variations on the model.

Statistic Data α = 1 α = 0.8 α = 0.6 α = 0.4 α = 0.2 α = 0
α = 0.5
(Opt)

E(logP/D) 3.25 3.16 3.31 3.46 3.59 3.68 3.70 3.20
σ(logP/D) 0.46 0.46 0.40 0.33 0.24 0.15 0.15 0.38

100× E(logZ) 6.51 6.44 5.56 4.91 4.40 4.11 4.10 5.95
100× σ(logZ) 16.90 16.93 15.30 13.97 12.71 11.70 11.17 15.47

Crash Frequency 25.25 38.30 41.16 46.30 59.82 266.18 – 36.19
Note: Statistics from data and simulations of the baseline model (α = 1), the closed economy version
with the baseline parameters (α = 0), and a range of intermediate cases (0 < α < 1).

The results from the simulations for different α values are reported in Table 2.
The setting is the same as in Table 1 in the paper, where I fix the baseline pa-
rameters and consider the same shock realizations, iterations, and sample length
as above. Thus α = 1 repeats the data from Table 1 for the baseline case while
α = 0 is the closed economy with the baseline parameterization. As expected, the
statistics for the asset pricing data vary continuously with the weighting α, with
the mean P/D ratio increasing and its volatility falling with α. However the crash
frequency is relatively insensitive to α, increasing only slightly until the weight on
the closed economy interest rate drops to 0.2. The last column shows the results
for the case of α = 0.5 where now I re-optimize over the parameter vector (which
yielded a larger gain of 0.01 and slightly larger risk aversion of nearly 4). The
results come close to the baseline small open economy parameterization both in
terms of the fit to the asset price statistics (the error is 0.204) and roughly match
the timing of market crashes.

IV. Beliefs and Survey Expectations

As discussed in the paper, several papers have shown that survey measures of
expected returns are positively correlated with price-dividend ratios. The top
row of Table 3 reports a such a finding, using the subjective expectations data
series from Nagel and Xu (2022).2 Consistent with the previous literature, the
correlation between the survey expected excess return and the empirical price-
dividend ratio is positive, at 0.476.

2This series combines and imputes subjective survey expectations from multiple sources, and is avail-
able quarterly from 1987:2 to 2021:4.
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Table 3— Correlations between subjective beliefs and the log price-dividend ratio.

Data Sources Correlation
Nagel-Xu (2022): excess return, Shiller logP/D 0.476
Baseline model: m, logP/D -0.027
Baseline model: (m− logR)/s, logP/D 0.472
Model with (εm, εs): m, logP/D 0.257

Note: The first line uses the Nagel and Xu (2022) subjective expected excess returns and the price-
dividend ratio from the Shiller data set. The others use simulated data from 1,000 simulations of the
baseline model or variations of it.

However in my model, the subjective excess return is essentially uncorrelated
with the price-dividend ratio. Table 3 reports the correlations from 1,000 sim-
ulations of 2,000 periods, discarding the first 1,000 periods. For the baseline
calibration of the model from above, the correlation between expected returns
mt and the log price-dividend ratio is -0.027. Thus the baseline model misses the
positive correlation between survey expected returns and the price dividend ratio.
What really matters for agents in the model is the subjective risk-return trade-
off, which determines their portfolio position, and hence drives asset flows and
returns. The third row of Table 3 reports the correlation between the subjective
Sharpe ratio and the log-price dividend ratio in the model. The value of 0.472
nearly matches the procyclical correlation observed in the survey expectations.

In fact, many of the surveys ask for positive or negative outlooks rather than
quantitative predictions, and so could reflect investors’ subjective risk-adjusted
assessments rather than simply their expected return forecast. For example, four
of the six sources of survey beliefs analyzed by Greenwood and Shleifer (2014)
report subjective measures of stock market optimism, rather than quantitative
predictions of market returns. In addition, one of the main Gallup surveys asks
respondents about expected returns on their own portfolios, which would combine
the endogenous portfolio weight (vt in the model) with beliefs.

The largest movements in beliefs in the model come as a consequence of the
collapse of prices during a market crash. In the simulations, the largest realized
returns occur in the immediate aftermath of a crash, as the stock price first
falls to a very low level during the crash and then rebounds to a higher (but
still historically low) value shortly thereafter. The volatility in returns before and
after the crash leads to a spike in the estimated volatility st, while the large return
after the collapse leads a large upward revision in both the expected return mt.
Both of these changes in beliefs take a long time to fade away. A variation in the
model that would dampen the collapse of prices in a crash, such as having pool of
outside investors willing to buy at low prices, would lead to less dramatic changes
in beliefs after a crash and increase the correlation between expected returns and
prices.

Variations in the belief specification alter the model dynamics and hence its
predictions. In the baseline model, the gain ε governs the speed of adjustment of
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both the expected return mt and the subjective variance s2t . While this is a useful
benchmark, the belief components could drift at different rates, with gain εm for
the mean and εs for the variance.3 The fourth row of Table 3 considers a version
of the model that separates (εm, εs), where the calibration includes the previous
asset pricing moments but also aims to match the correlation between mt and
logPt/Dt, with a target of 0.476. The other statistics and the parameter values
for this specification are given in the last column of Table 4. For comparison,
the table repeats the columns for the data and baseline model from Table 1 in
the paper. With this minor change in the belief dynamics, the model is able to
generate a larger correlation of 0.257, and the duration between crashes (which
was un-targeted) decreases to 27.3 years, which is closer to the empirical value.
But the fit of the model on the asset pricing moments worsens, with the relative
error increasing from 0.031 to 0.234. This model variation that separates learning
speeds improves along some dimensions, but is not a complete fix.

Table 4— Summary statistics from data and simulations.

Statistic Data Baseline
Two
Gains

E(logP/D) 3.25 3.16 3.43
σ(logP/D) 0.46 0.46 0.50

100× E(logZ) 6.51 6.44 5.32
100× σ(logZ) 16.90 16.93 18.43

Error – 0.031 0.234
β – 0.979 0.975
γ – 3.259 1.174

ε – 0.0051
0.0010
0.0103

Crash Frequency 25.25 38.30 27.30
100× E(log∆C) 0.86 1.57 1.58
100× σ(log∆C) 1.27 16.99 17.43

Note: US data and simulations of the baseline model and a version with two learning gains.

My main focus in the paper was to analyze the dynamics of a learning model
developed as an interpretation of Minsky’s theory. As such, it was kept simple
in order to aid the analysis. If we interpret survey measures as capturing risk-
adjusted subjective beliefs, then my model also fits with this survey evidence. But
to directly fit the survey measures of expected returns, variations on the baseline
model seem necessary. The more general belief specification gets part of the
way there, but other sources of shocks or belief specifications may be required.

3The limit theory would go with a simple scale factor adjustment. For example, we could specify
εm = ε and εs = ksε and let ε → 0 as in the theory. Then the limit dynamics for s2t would be scaled by
ks.



12 AMERICAN ECONOMIC JOURNAL MONTH YEAR

For example, Adam, Marcet and Beutel (2017) introduce labor income shocks
and subjective beliefs with persistent and transitory components in order to fit
moments of asset prices and survey expectations.
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