Supplemental Appendix

Effects of Enhanced Legal Aid in Child Welfare: Evidence from a Randomized Trial of Mi Abogado

Ryan Cooper, University of Chicago and Experimental, ryancooperb@uchicago.edu Joseph J. Doyle, MIT Sloan and NBER, jjdoyle@mit.edu Andrés Hojman, Pontificia Universidad Católica de Chile, andreshojman@uc.cl

A	Size Distribution of Residences	5
В	Mi Abogado Detailed Description B.1 Budget Components	6 6 7 9 9
\mathbf{C}	Randomization by Region	11
D	Data Sources	12
\mathbf{E}	Mi Abogado Processes: Event Studies	14
\mathbf{F}	Hospitalization Diagnosis Results	17
G	Heterogeneity G.1 Subgroup Heterogeneity for Exposure and Participation G.2 Balance by Region	18 18 19 20 21
н	Robustness Checks H.1 Balanced-panel DD models absorb time-invariant controls, child fixed effects, and quarterly fixed effects	23 23 24
Ι	Exploring Mechanisms I.1 Heterogeneity by Predicted Usage of Services from Different Mi Abogado Team Members I.2 Mediation Analysis I.3 Crime Reports Around Entry and Exit from Foster Care	26 31 32
J	Dynamics: Complier Characteristics Over Time	34
\mathbf{K}	Cost-Benefit Analysis with Crime Outcomes	36

Appendix Figures

A. 1	Number of Children in Each Residence	Ę
B.1	Number of Cases Assigned in the Last 12 Months at Endline, Mi Abo-	
	gado vs Non-Mi Abogado	8
E.1	Mi Abogado Processes by Stakeholders	14
E.2	Mi Abogado Processes by Team Members	15
E.3	Impacts on Quarterly Writs Submitted	16
I.1	Event Study on Entering Residences	32
I.2	Event Study on Exiting Residences	33

Appendix Tables

B.1	Processes share, by team member	10
C.1	Randomization by Region	11
D.1	Data Description	13
F.1	Hospitalization cases in 2019 Cross-Section Estimates	17
G .1	Participation Impacts by subgroups	18
G.2	Balance by Region	19
G.3	Treatment effects Across Subgroups	20
G. 4	Models to Calculate Predicted Outcomes	22
H.1	Robustness to individual and time fixed effects	23
H.2	Robustness Checks (Diff-Diff Estimates)	24
H.3	Robustness Checks (Cross-Section Estimates)	25
I.1	Models to Predict Share of Processes by Mi Abogado Team Member	27
I.2	Heterogeneity by Share of Predicted Processes by Mi Abogado Team	
	Member, Living with Family	28
I.3	Heterogeneity by Share of Predicted Processes by Mi Abogado Team	
	Member, Crime Reports	29
I.4	Heterogeneity by Share of Predicted Processes by Mi Abogado Team	
	Member, School Attendance	30
I.5	Days in Residence as a Mediator	31
J.1	Complier Characteristics Q1 2020	34
J.2	Complier Characteristics Q1 2021	35
K.1	Cost Benefit Analysis with Crime Outcomes	36

A Size Distribution of Residences

These figures display the distribution of the number of children in each residence at the time of randomization. Panel (a) is weighted by the number of children in each residence; Panel (b) is unweighted.

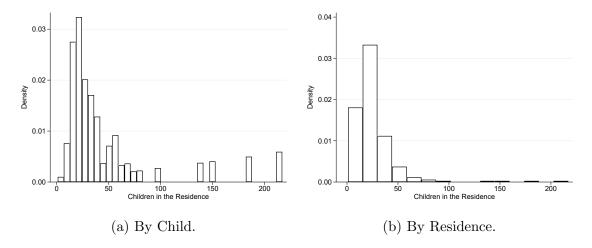


Figure A.1: Number of Children in Each Residence

Note: This figure shows the distribution of the number of children in residence. Panel (a) is built using children as the unit of observation. Panel (b) is built using the residence as the unit of observation.

B Mi Abogado Detailed Description

This section describes the Mi Abogado program based on qualitative interviews with program administrators and staff along with a qualitative assessment of the program (FOCUS 2020; Cooper, Doyle and Hojman 2022). The description highlights the interdisciplinary team's actions, the program's public and open recruitment process, its flexible criteria for lawyer selection, and its emphasis on psychological evaluation.

The Mi Abogado program is designed to carry out tasks to speed family reunification. These tasks include:

- Diagnosis of Children's Situations: Each child is diagnosed by the psychosocialjudiciary team, focusing on the urgency and prioritization of legal decisions. This includes interviewing or observing the child within the first month.
- Legal Strategy Development: Incorporating psychosocial aspects, the team develops a strategy for legal representation, ensuring:
 - Establishment of case-specific legal objectives.
 - Incorporation of feedback from relevant actors.
 - Comprehensive documentation of the strategy in the child's file.
- Family Engagement: Actions with the child's family or significant adults are guided by the legal strategy, including communication about legal plans and collaboration in monitoring and decision-making processes.
- Intersectoral Coordination: Teams ensure that responsible parties for the child's care access other relevant public services. This duty is supervised by the program's Regional Coordination leadership.
- **Procedural Processes**: Execution of the legal strategy in family and other courts, with all actions recorded in the child's file.
- Post-Care Follow-Up: The Technical Unit ensures regional teams supervise the implementation of court decisions, with follow-up extending for a minimum of three months after discharge from substitute care.
- **Program Exit Criteria**: Assessment of whether legal strategy objectives have been met and cases processed is conducted, with reasons for discharge such as family reunification, adoption or reaching adulthood.

B.1 Budget Components

According to regional reports of the program, the largest component of costs is allocated to the lawyers at 47%, growing to 53% if we include the regional coordinator who is also a lawyer; next is office space (14%); social workers and psychologists (12% for each category); other staff (6%); and travel (3%).

B.2 Role of the Lawyer

Lawyers, selected through a competitive process, are responsible for processing cases, developing legal strategies in collaboration with the psychosocial team, and ensuring judicial efficiency. Their caseloads are managed to allow for focused attention on each child, reflecting the program's adaptation to the realities of expansion and regional diversity.

B.2.1 Functions

- Legal strategy development and management of legal actions.
- Attendance at hearings and conducting interviews.
- Striving for decisions favorable to the child's interests.
- Informing the child and relevant adults about case progress.
- Participation in case analysis meetings and supporting complementary projects.
- Maintaining detailed records of all procedures.

B.2.2 Training and Experience

The program looks for qualified lawyers to lead the child's team. Ideal candidates will have a specialization in human rights, child and adolescent rights, criminal law, criminal procedural law, family law, or similar. With experience in litigation before family courts, in ordinary and extraordinary procedures; before criminal courts; and before the superior courts of justice, with knowledge in prevention, promotion, protection, and restitution of rights, threat, and violation of rights and crimes committed against children. With experience in work, coordination, and articulation in the inter-institutional and intersectoral network. With skills for conflict resolution and interventions in crises. Experience in interviews with children in situations of high complexity is desirable.

B.2.3 Case Assignment Comparison

One goal of Mi Abogado is to limit the caseload for lawyers in its program. Our data include high-quality measures of case assignment, but the end of legal representation is not well recorded. This complicates measurement of caseload for any lawyer at a point in time. This appendix shows the distribution of the number of cases assigned in the last 12 months of our data for the Mi Abogado lawyers and non-Mi Abogado lawyers. The mean number of case assignments over this period among Mi Abogado lawyers is 130; for non-Mi Abogado lawyers the mean is 309.

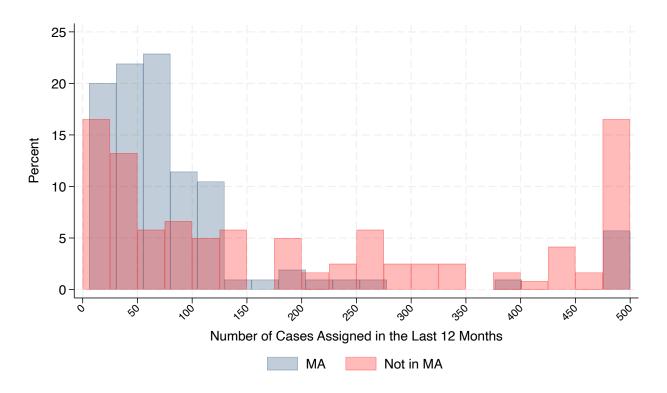


Figure B.1: Number of Cases Assigned in the Last 12 Months at Endline, Mi Abogado vs Non-Mi Abogado

Note: This figure shows the annual case-assignment distribution for lawyers in the Mi Abogado (MA) program and lawyers not in the MA program. This proxy for caseload is built with the number of new cases that lawyers were assigned in last twelve months of our sample period. This variable is truncated at 500 cases. The mean number of cases assigned to MA lawyers over the course of the year is 130 compared to 309 for non-MA lawyers.

B.3 Role of the Social worker

The program employed professional social workers hired full time with the goal is to cap their caseload at 200 children.

B.3.1 Functions

- Responsible for delivering social support to the program team in problems associated with serious violations of rights.
- Conduct home visits, interviews, and works with the child's networks, as strictly required by the legal strategy, and in permanent coordination with professionals of complementary projects to the program, when appropriate.
- Conduct interviews or observations with the children, family, or others involved.
- Contribute to the elaboration of the diagnosis of the judicial situation and the development and execution of the legal strategy of each child. Record all the actions performed.

B.3.2 Training and Experience

A qualified social worker with specialized training in family and childhood matters, desirable training in criminal law or child abuse, experience working with children in violation of rights, and health and education networks. Desirable experience in interviews with children in situations of high complexity.

B.4 Role of the Psychologist

The program employed professional psychologists hired full time with the goal is to cap their caseload at 200 children.

B.4.1 Functions

- Assess the child's mental health is entering the program by pre-existing reports.
- Assistance in emergencies or crises of the child in the context of the hearing, when appropriate.
- Contribute to elaborating the diagnosis of the judicial situation and legal strategy
 of each child.
- Permanent coordination with the network involved. Conduct interviews or observations with the children, family, or others involved that correspond and must move if necessary.
- Record all the actions performed and incorporated required verifiers.
- Other functions specific to the work methodology and legal strategy adopted by the program.

B.4.2 Training and Experience

Qualified psychologist with specialized training in family and childhood matters, desirable training in the field of criminal law to child abuse, and experience in working with children in situations of violation of rights.

B.5 Distribution of Mi Abogado Services across Team Members

Table B.1: Processes share, by team member

Type of Processes	Share
Interdisciplinary	0.574
Judicial (only lawyer participates)	0.293
Only psychologist participates	0.066
Only social worker participates	0.067
Psychologist or Social Worker	0.134

Note: This table reports the share of processes among Mi Abogado participants. The Interdisciplinary category is used whenever two or more of the members of the team participate in the process.

C Randomization by Region

The Mi Abogado program was rolled out as a stratified randomized trial. The strata were sex, age group (above and below 12 years old), and each of the four most populous regions in Chile. This was a pragmatic trial that aimed to spread the limited number of Mi Abogado lawyers across the cases via randomization. Each region had a different number of eligible children and a different number of available lawyers. As a result, the share of the eligible children assigned to the treatment group varied widely across regions ranging from 7% to 92% as shown in the Table C.1. The paper describes the concerns that arise when the share treated varies across regions and offers a set of robustness checks in Appendix Section H.2.

Table C.1: Randomization by Region

	N Total	N Treatment	Share Treatment
Valparaíso	419	42	0.10
Maule	451	413	0.92
Biobío	378	28	0.07
Metropolitan	623	200	0.32

Note: This table shows the number and share of children randomized to the treatment group across the four regions.

D Data Sources

A feature of the pragmatic randomized trial in Chile is the ability to link subjects to a wide range of outcomes throughout the country's registry data. We were able to secure linkages from the Judiciary Registry, including crime report outcomes and victimization as a measure of child safety; SENAME (child protection) data to measure days in care and identify when children leave care to live in a permanent family; Mi Abogado program data, which allows us to measure program participation and describe the program's processes in detail; and Ministry of Education data, which provides measures of attendance and school performance in the form of overall grade percentiles.

In addition, SENAME collects hospitalization data from the Ministry of Health of Chile (MINSAL). Each year, they collect data on all hospitalizations of children in their care and construct a dataset that includes the last hospitalization for each child. We obtained data for hospitalizations after March 31, 2019, the date of the randomization. We also obtained 2019 data that includes the type of diagnosis, but only for the subset of children who were in care in 2020.

Below is a table that describes the years of data we use in the analysis, along with the number of children in the study represented in each data source.

Table D.1: Data Description

Source	Variable	Period use	Obs
	Crime reports	April 2014 - June 2021	1871
	Protection Cases	April 2014 - December 2020	1871
	Missing	April 2014 - June 2021	1871
Judiciary	Victimization	April 2014 - June 2021	1871
Registry	Allegations	April 2014 - June 2021	1871
	Writs	January 2010 - December 2020	1871
	Hearings	January 2010 - December 2020	1871
	Lawyer Assignment	January 2018 - February 2021	1871
	Days living with family	January 2017 - June 2021	1871
	Days living in residence	January 2017 - June 2021	1871
	Days living in family foster care	January 2017 - June 2021	1871
	Age at entry in residence	January 2017 - June 2021	1871
SENAME	Allegations	January 2017 - June 2021	1871
(SENAINFO)	Dispositions (exit reasons)	January 2017 - June 2021	1871
	Length of stay in residence	January 2017 - June 2021	1871
	Delay in School	January 2017 - June 2021	1871
	Hospitalization Dates (via Ministry of Health)	April 2019 - December 2019	1871
	Hospitalization Diagnoses (via Ministry of Health)	April 2019 - December 2019	1345
Mi	Participation in Mi Abogado program	October 2018 - December 2020	1871
Abogado	Days in Mi Abogado program	October 2018 - December 2020	1871
Abogado	Mi Abogado processes	October 2018 - December 2020	1871
Ministry of	Grades	March 2017 - December 2019 (annual measure)	1616
Education	School Attendance	March 2017 - December 2019	1871
Budget Office	Treatment Status	March 2019	1871

Note: This table shows the sources of information used to construct each variable, the period available for each set of information, and the number of observations (children) that each source includes. Hospitalization dates are for the last hospitalization in the calendar year; diagnoses are available for children who remained in SENAME care into 2020.

E Mi Abogado Processes: Event Studies

The Mi Abogado program data provide detailed measures of each process delivered. We do not observe such detailed information for those who are not part of the program. The figures below show event studies that represent the difference between treatment and control in the average number of each process type per child over time. In the two quarters after randomization, the largest relative increase in services is documentary work, followed by interactions with residence staff, interactions with family, and then interactions with the child. Similarly, we show an event study regarding the average number of processes by different team members, and for the number of writs issued.

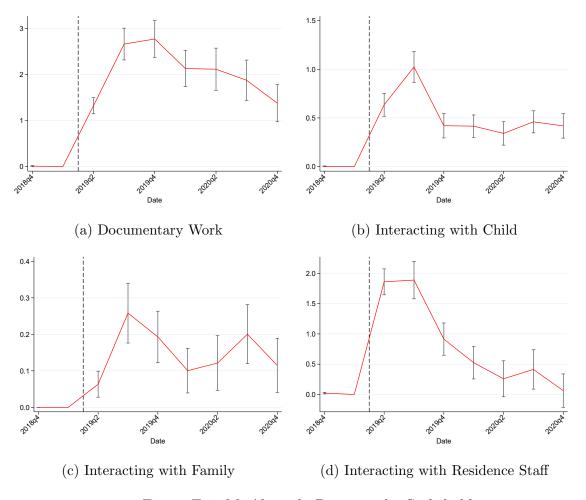


Figure E.1: Mi Abogado Processes by Stakeholders

Note: These figures report event-study estimates described in Equation 1 of differences between the treatment and control groups for measures of the number of Mi Abogado process by type of process. Confidence intervals are calculated using standard errors clustered at the child level. The vertical line shows the time of randomization.

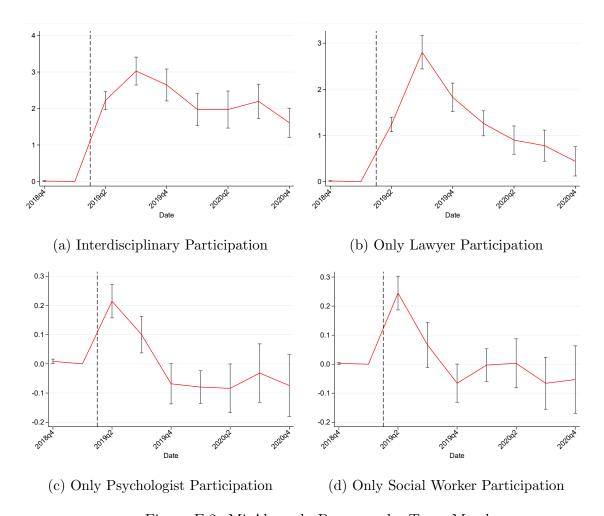


Figure E.2: Mi Abogado Processes by Team Members

Note: These figures report event-study estimates described in Equation 1 of differences between the treatment and control groups for measures of the number of Mi Abogado process by team member. Confidence intervals are calculated using standard errors clustered at the child level. The vertical line shows the time of randomization.

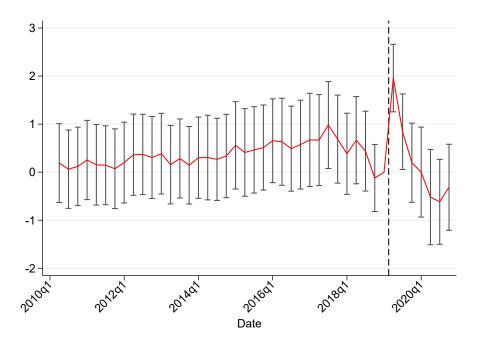


Figure E.3: Impacts on Quarterly Writs Submitted

Note: These figures report event-study estimates described in Equation 1 of differences between the treatment and control groups for measures of the number of writs submitted to the court. Confidence intervals are calculated using standard errors clustered at the child level. The vertical line shows the time of randomization.

F Hospitalization Diagnosis Results

Recall that we obtained data on the last hospitalization for each child during 2019, as well as data on diagnoses for those who remain in care in 2020. We observe that the treatment group is 4.5 percentage points (s.e.=3.0) less like to be in care in 2020. As a result, we focus on hospitalization in 2019 in the main results.

Table F.1 reports results by type of diagnosis. We do not observe statistically significant differences in hospitalization across these different types of admissions.

Table F.1: Hospitalization cases in 2019 Cross-Section Estimates

D 1 4	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent Variable:	Child Hospit.	Infection Diseases	Chronic Diseases	Respiratory Diseases	Child Injuries	Mental Diseases	Addiction Diseases	Other Diseases
variabic.	1105pit.	Discuses	Discuses	Discases	Injuries	Discuses	Discases	Discusci
Treatment Group	0.0000 (0.0049)	-0.0015 (0.0020)	-0.0007 (0.0006)	0.0002 (0.0011)	0.0027 (0.0023)	-0.0001 (0.0027)	-0.0004 (0.0015)	-0.0000 (0.0021)
N	1,871	1,871	1,871	1,871	1,871	1,871	1,871	1,871
N of children	1,871	1,871	1,871	1,871	1,871	1,871	1,871	1,871
N Control Group	1,188	1,188	1,188	1,188	1,188	1,188	1,188	1,188
Control Group Mean	0.022	0.003	0.001	0.001	0.002	0.009	0.003	0.003

Note: This table presents linear regression results. Heteroskedastic-robust standard errors are reported in parentheses. Each column show estimates for a model of a dummy indicating if there is a case within the period of interest on treatment variable. Data includes the last hospitalization case that occurred in 2019 after randomization, and whose diagnosis was available in dataset "Atenciones2020", i.e. it considers the period 04/01/2019 to 12/31/2019. All models include strata indicators.

G Heterogeneity

G.1 Subgroup Heterogeneity for Exposure and Participation

Table 7 reports heterogeneous treatment effects across subgroups of interest for the main outcomes; this table demonstrates that exposure to the program is higher for the subgroups as well.

Table G.1: Participation Impacts by subgroups

Heterogeneity Variable		Expos	ure			Participation			
	Mean	ITT	SE	p	Mean	ITT	SE	p	
Male	36.65	17.26	2.73	0.00	31.07	10.24	2.63	0.00	
Female	30.04	22.66	2.35	0.00	25.25	15.16	2.23	0.00	
Difference	-6.60	5.40	3.60	0.13	-5.82	4.92	3.45	0.15	
Age Older than 12	32.54	23.93	2.18	0.00	27.93	14.03	2.01	0.00	
Age Younger than 12	48.22	10.93	3.08	0.00	43.23	8.43	3.07	0.01	
Difference	15.68	-13.00	3.77	0.00	15.30	-5.59	3.67	0.13	
Metropolitan	35.45	19.41	3.12	0.00	29.72	14.02	3.04	0.00	
Region 5 Valparaíso	27.57	13.02	6.47	0.04	25.71	13.83	6.44	0.03	
Difference	-7.88	-6.39	7.18	0.37	-4.01	-0.19	7.12	0.98	
Region 7 Maule	36.57	14.13	6.49	0.03	28.61	9.99	6.00	0.10	
Difference	1.12	-5.28	7.20	0.46	-1.11	-4.03	6.73	0.55	
Region 8 BioBío	31.34	11.46	7.92	0.15	28.37	0.06	8.78	0.99	
Difference	-4.11	-7.95	8.51	0.35	-1.35	-13.96	9.29	0.13	
Low Predicted Crime	39.54	19.71	2.45	0.00	34.47	15.05	2.40	0.00	
High Predicted Crime	33.72	20.18	2.60	0.00	28.60	9.85	2.38	0.00	
Difference	-5.82	0.47	3.57	0.90	-5.88	-5.21	3.38	0.12	
Low Predicted Permanency	38.92	23.47	2.84	0.00	33.38	18.79	2.98	0.00	
High Predicted Permanency	24.32	26.29	2.38	0.00	18.53	18.16	2.17	0.00	
Difference	-14.60	2.83	3.71	0.45	-14.84	-0.63	3.68	0.86	
Smaller Residences	37.93	17.85	2.43	0.00	32.53	11.14	2.31	0.00	
Larger Residences	35.29	22.93	2.63	0.00	28.95	14.65	2.54	0.00	
Difference	-2.64	5.08	3.58	0.16	-3.58	3.51	3.43	0.31	
Pre-Covid Period	24.75	25.18	1.65	0.00	21.49	21.58	1.63	0.00	
Covid Period	48.42	13.69	1.94	0.00	40.09	1.48	2.15	0.49	
Difference	23.67	-11.48	0.98	0.00	18.59	-20.10	1.38	0.00	

Note: Exposure is the number of days since first entering the Mi Abogado program each quarter, while participation is the number of days actually in the program each quarter. This table presents linear regression results using the longitudinal data. All models include strata indicators. Standard errors are clustered at the child level and used to calculate the p-values. The differences are reported using a fully saturated triple interaction model as the coefficient on treatment*post*subgroup-indicator. Our prediction models using baseline characteristics for Crime and Permanency are presented in Table G.4. Permanency is an indicator that the child is living with family (biological or adoptive) within one year of the randomization.

G.2 Balance by Region

Table 7 reports heterogeneous treatment effects across regions, and this table demonstrates that covariates appear to be well balanced in each of the regions, as designed.

Table G.2: Balance by Region

	\mathbf{F}	p-value
All regions	.85	.62
Region=5 (Valparaíso)	.85	.62
Region=7 (Maule)	1.17	.29
Region=8 (Bío-Bío)	1.31	.19
Region=13 (Metropolitan)	.97	.48

Note: This table shows, for all regions together, and for each of them separately, the F-statistic and associated p-value for the test of joint significance of the baseline characteristics predicting treatment, controlling for randomization-strata indicators. The table is analogous to Table 1.

G.3 Across Subgroups, Adjusting for Multiple Hypothesis Testing

We systematically explore for heterogeneous effects for each of the baseline characteristics in Table 1. We report Romano-Wolf adjusted p-values to account for multiple hypothesis testing and control the family-wise error rate (FWER). While simple p-values from standard difference-in-difference estimates indicate the significance of individual tests, they do not account for the increased risk of Type I errors when conducting multiple comparisons. By applying the Romano-Wolf adjustment, we reduce the probability of false positives across the set of hypotheses, providing more robust and reliable statistical inferences in the presence of multiple treatments or interactions.

Table G.3: Treatment effects Across Subgroups

Heterogeneity Variable	Days	Living	with Fam	ily/Qtr		Crir	mes /Qtr			Att	endance	
	ITT	p	GRWp	ARWp	ITT	p	GRWp	ARWp	ITT	p	GRWp	ARWp
Female	-4.28	0.30	0.30	0.96	0.06	0.06	0.06	0.42	-0.03	0.28	0.28	0.99
Age Younger than 12	2.49	0.58	0.58	0.99	0.04	0.03	0.03	0.73	-0.02	0.50	0.50	0.99
Region 5 Valparaíso	4.37	0.48	0.79	0.99	-0.00	0.88	0.88	0.99	-0.05	0.23	0.62	0.99
Region 7 Maule	-4.29	0.62	0.79	0.99	-0.06	0.45	0.56	0.88	-0.02	0.63	0.62	1.00
Region 8 BioBío	11.80	0.17	0.43	0.90	-0.06	0.21	0.56	0.88	0.05	0.39	0.62	0.99
Number of Siblings	-1.64	0.70	0.76	0.99	0.02	0.53	0.79	0.96	-0.00	1.00	1.00	1.00
Delay in Schooling	-6.07	0.16	0.59	0.90	0.00	0.90	0.90	0.99	-0.02	0.42	0.88	0.99
Time in Residence	-4.55	0.22	0.62	0.92	0.05	0.04	0.16	0.42	0.01	0.59	0.93	1.00
Age When First in Residence	2.59	0.53	0.76	0.99	-0.07	0.01	0.04	0.17	-0.01	0.79	0.96	1.00
Larger Residences	4.41	0.28	0.63	0.96	-0.02	0.39	0.73	0.93	0.03	0.31	0.84	0.99
Allegation Sex Abuse	-1.23	0.81	0.97	0.99	0.02	0.35	0.73	0.96	0.02	0.62	0.84	1.00
Allegation Physical Abuse	8.83	0.04	0.15	0.50	-0.02	0.54	0.73	0.96	0.01	0.65	0.84	1.00
Allegation Neglect	0.51	0.94	0.97	0.99	0.03	0.27	0.73	0.94	-0.03	0.41	0.78	0.99
High Predicted Crime	2.86	0.48	0.72	0.99	-0.06	0.02	0.04	0.30	-0.02	0.37	0.61	0.99
High Predicted Permanency	-1.25	0.77	0.78	0.99	0.01	0.81	0.81	0.99	-0.02	0.58	0.61	1.00

Note: This table presents linear regression results for days living with family, crimes, and attendance using difference-in-difference models. All models include strata indicators. Standard errors are clustered at the child level and are used to calculate the p-values. Each row presents results for a model using a fully saturated triple interaction, represented as treatment*post*subgroup-indicator, where the indicators are dummy variables related to the specific category. For "Number of Siblings," "Delay in School," "Time in Residence," and "Age When First in Residence," we construct a dummy variable that indicates whether the value for the child is above the median. The third and fourth columns of each outcome variable present the Romano-Wolf adjusted p-values described above. Two are reported: GRWp presents the adjustment for grouped variables (GRWp), where the groups are defined by closely related measures and indicated by the horizontal lines in the table; the second one presented is for all variables together (ARWp).

G.4 Construction of Predicted-Outcome Indexes

Table 7 reports heterogeneous treatment effects across children that vary in their predicted permanency and crime-report outcomes. This table reports the models used in calculating those predictions based on the child's baseline characteristics. Specifically, we regressed each outcome on the demographic and allegation characteristics. For the treatment group, we estimated the relationship between these characteristics and the outcomes using the control group. Within the control group, the predicted outcome is calculated using a leave-out regression to avoid a child's outcome from informing his or her prediction Abadie, Chingos and West (2018).

Table G.4: Models to Calculate Predicted Outcomes

Dependent Variable:	(1) Living with Family One Year After Randomization	(2) Number of Crimes First Year After Randomization
Female	0.075 (0.025)	-0.527 (0.073)
Region=5	-0.009 (0.029)	-0.030 (0.086)
Region=7	0.141 (0.070)	0.079 (0.204)
Region=8	-0.044 (0.030)	0.257 (0.089)
Low Age Stratum	0.058 (0.051)	-0.117 (0.149)
Number of Siblings	-0.005 (0.006)	-0.025 (0.018)
Delay in Schooling	0.011 (0.009)	0.041 (0.027)
Allegation: Sex Abuse	-0.067 (0.033)	-0.184 (0.097)
Allegation: Physical Abuse	-0.053 (0.028)	0.047 (0.083)
Allegation: Neglect	-0.195 (0.034)	0.156 (0.100)
Time in Residence	-0.009 (0.017)	-0.176 (0.051)
Age When First in Residence	0.015 (0.006)	0.041 (0.018)
Age at Randomization	-0.000 (0.009)	0.050 (0.027)
Constant	0.246 (0.138)	0.073 (0.403)
$\frac{N}{R^2}$	1,188 0.070	1,188 0.137

Note: This table shows models predicting living with family and number of crime reports. The models for the two outcomes are estimated using only the control group. For Living with Family we use the living with family status exactly one year after randomization. For Crimes we use the number of crimes within the first year after randomization.

H Robustness Checks

H.1 Balanced-panel DD models absorb time-invariant controls, child fixed effects, and quarterly fixed effects

The event study estimates compare the difference between treatment and control compared to the omitted time period (event time = -1). Similarly, the difference-in-differences estimates in the results tables compare the difference in the treatment group compared to the control group in the post-randomization period to the pre-randomization period. Given that the sample is balanced, these differences absorb child fixed characteristics, such as time-invariant controls.

Intuition can be gained from considering a standard DD model and de-meaning the data at the child level to absorb any fixed effects. The main explanatory variable post*treat increases from 0 to 1 for the treatment group in the post period. When it is de-meaned, it goes from -0.5 to +0.5: the variation is identical to the non-de-meaned variable.

Table H.1 demonstrates that the results do not change when including child fixed effects or time-invariant controls. Standard errors can vary slightly depending on how degrees of freedom are accounted; a model that estimates differences does not reduce the degrees of freedom compared to a model in levels that includes controls or child fixed effects. Similarly, calendar quarter fixed effects also yield the same results because there is no variation across treatment and control given the single event date.

Table H.1: Robustness to individual and time fixed effects

Specification	Days Livir	ng w Family	Crimes	s /Qtr	Attendance		
	ITT	SE	ITT	SE	ITT	SE	
Main Estimate	6.456754	2.054193	-0.037504	0.013418	0.029285	0.013088	
Main Estimate with Strata	6.456754	2.054346	-0.037504	0.013418	0.029285	0.013089	
Adding Controls	6.456754	2.054437	-0.037504	0.013418	0.029285	0.013089	
Adding Individual FE	6.456754	2.113688	-0.037504	0.013655	0.029285	0.013312	
Adding Quarter FE	6.456754	2.054681	-0.037504	0.013421	0.029285	0.013092	
Adding Season FE	6.456754	2.054285	-0.037504	0.013418	0.029285	0.013088	

Note: This table reports results for the living-with-family, crime, and attendance estimates with different specifications. The first row presents our main estimates. Strata indicators are included in the no controls and controls specifications, and they are not included in the fixed effects specifications because they are constant over time. The additional controls include: number of siblings, delay in schooling, age at randomization, indicators for type of allegation: sexual abuse, physical abuse and/or neglect, days in residence prior to randomization, and age when first in residence. The fifth row adds quarter fixed effects. The sixth row adds season fixed effects. Seasons are defined as Summer from January to March, Fall from April to June and Winter from July to September. Standard errors are clustered at the child level.

H.2 Additional robustness checks

Combining Regional Effects. The share randomized to treatment varies across the regional strata because the randomized evaluation is part of the roll-out of the program and capacity varied across these regions. Linear regression places more weight on the areas with more variance in treatment. Table H.2 shows that results are similar if we weight the regression to undo this weighting (Gibbons, Suárez Serrato and Urbancic 2019). Results are also similar if we estimate the effects separately by region and then compute the weighted average, where the weights reflect the precision of the region-specific estimates, as described in (Athey and Imbens 2017).

Second Randomization (Replacements) Recall from the text that a group of 51 children who were initially not drawn into the treated group on the randomization date were randomized into treatment; they were referred to as "replacements" in May 2019 as the program expanded. For all other results shown in the paper, these newly-randomized subjects are treated as part of the treatment group and contribute to the non-compliance at the beginning of the post-randomization period. Table H.2 shows that the main results are similar regardless of whether these children are included in the control group instead, or not included in the analysis.

Table H.2: Robustness Checks (Diff-Diff Estimates)

Specification	Days Living w Family		Crimes	s /Qtr	Attendance	
	ITT	SE	ITT	SE	ITT	SE
Main Estimate	6.457	2.054	-0.038	0.013	0.029	0.013
Inverse Weighting	6.916	2.100	-0.044	0.013	0.030	0.013
Athey-Imbens	7.225	3.157	-0.052	0.024	0.024	0.020
Replacements as Controls	6.331	2.094	-0.038	0.013	0.028	0.013
Replacements as Missings	6.550	2.108	-0.039	0.014	0.030	0.013
COVID Period	7.322	2.632	-0.044	0.023		

Note: This table reports results for the living-with-family, crime, and attendance results with different specifications. The first row presents our main diff-in-diff estimates. The second row weights our estimates by the inverse of the variance of the treatment variable, as suggested by Gibbons, Suárez Serrato and Urbancic (2019). The third row aggregates the regional treatment effects as suggested in Athey and Imbens (2017). The rows referring to replacements treat the 51 children randomized to treatment in May 2019 either as controls or dropped from the analysis. The last row drops the observations after the onset of the COVID pandemic; this is not applicable for the Attendance result as that outcome did not extend to the COVID period in our main analysis. Standard errors are clustered at the child level.

The paper describes results presented by McKenzie (2012) who suggested an AN-COVA model that is very similar to the cross-sectional model we report. To verify that the models produce the same results, we produce them in Table H.3.

Table H.3: Robustness Checks (Cross-Section Estimates)

Specification	Days Living w Family		Crimes /Qtr		Attendance	
	ITT	SE	ITT	SE	ITT	SE
Cross-Section	3.609	2.136	-0.038	0.020	0.026	0.017
ANCOVA	3.609	2.209	-0.038	0.020	0.026	0.018

Note: This table reports the results of living with family, delinquency, and attendance with different specifications. The first row presents cross-sectional estimates. The second row shows estimates from an ANCOVA model suggested by McKenzie (2012). This model controls for period dummies and uses standard errors clustered at the child level.

I Exploring Mechanisms

I.1 Heterogeneity by Predicted Usage of Services from Different Mi Abogado Team Members

The Mi Abogado program is a bundle of services, beginning with legal advice and services from the lawyer, as well as services provided by the psychologist and social worker. As noted in the text, administrators believe the interdisciplinary nature of the program is an important ingredient for the program's success. Using the program processes data, we categorized the processes according to whether they are interdisciplinary (more than one member of the team participates on them), judicial (only the lawyer participates), or psychosocial (the psychologist or the social worker are the only ones participating in the process). We construct, for each individual, the share of each of those three types of processes. Then, we predict those shares using the base-line characteristics. Finally, we explore heterogeneity by whether the child is above or below the median of the predicted shares of each type.

The tables below present the estimates that predict the different mix of services, followed by the heterogeneity results.

Table I.1: Models to Predict Share of Processes by Mi Abogado Team Member

	Total Processes	Share: Interdisciplinary	Share: Judicial	Share: Psychosocial
Female	6.811 (2.747)	-0.014 (0.008)	0.021 (0.007)	-0.007 (0.005)
Region=5	-45.780 (3.890)	0.008 (0.011)	0.079 (0.010)	-0.087 (0.008)
Region=7	20.191 (3.485)	0.091 (0.010)	0.052 (0.009)	-0.143 (0.007)
Region=8	-10.981 (3.793)	0.090 (0.011)	-0.006 (0.010)	-0.084 (0.007)
Low Age Stratum	-25.166 (5.532)	0.051 (0.016)	-0.046 (0.015)	-0.005 (0.011)
Number of Siblings	0.148 (0.652)	0.002 (0.002)	-0.003 (0.002)	0.001 (0.001)
Delay in Schooling	0.276 (0.982)	-0.002 (0.003)	-0.001 (0.003)	0.003 (0.002)
Allegation: Sex Abuse	-1.762 (3.514)	-0.010 (0.010)	0.017 (0.009)	-0.007 (0.007)
Allegation: Physical Abuse	5.417 (2.875)	-0.009 (0.008)	-0.002 (0.008)	0.011 (0.006)
Allegation: Neglect	11.640 (4.661)	-0.030 (0.013)	0.012 (0.013)	0.018 (0.009)
Time in Residence	1.780 (2.066)	0.021 (0.006)	-0.013 (0.006)	-0.008 (0.004)
Age When First in Residence	0.455 (0.721)	0.003 (0.002)	-0.001 (0.002)	-0.002 (0.001)
Date of Birth	0.019 (0.003)	-0.000 (0.000)	0.000 (0.000)	0.000 (0.000)
Constant	-249.663 (58.125)	0.870 (0.168)	-0.057 (0.157)	0.187 (0.113)
N Number/Share R^2	1,271 84.420 0.224	1,271 0.594 0.141	1,271 0.268 0.095	1,271 0.138 0.289

Note: This table shows our predictive models for the total number and shares of Mi Abogado processes by team-member participation.

Table I.2: Heterogeneity by Share of Predicted Processes by Mi Abogado Team Member, Living with Family

Dependent Variable:	(1) Days Living w/Family/Qtr.	(2) Days Living w/Family/Qtr.	(3) Days Living w/Family/Qtr.	(4) Days Living w/Family/Qtr.
Heterogeneity Variable:	Predicted Processes Total Processes	Processes Processes Processes		Predicted Processes Share: Psychosocial
Treatment x Post	12.284 (3.643)	4.990 (3.250)	8.352 (3.148)	-0.427 (2.744)
Treatment Group	-4.336 (2.719)	-0.467 (2.480)	-1.338 (2.184)	-0.079 (2.903)
Post Randomization	-3.206 (1.490)	-9.520 (1.565)	0.649 (1.546)	3.865 (1.867)
Above Median in Prediction	-1.899 (2.235)	-11.952 (2.232)	19.381 (2.586)	8.562 (2.117)
Above Median x Post x Treatment	-5.242 (4.627)	-2.439 (4.272)	1.328 (4.223)	9.514 (4.278)
Above Median x Post	-3.928 (2.606)	12.209 (2.471)	-12.367 (2.479)	-14.075 (2.447)
Above Median x Treatment	0.168 (3.595)	-2.877 (3.360)	-5.570 (3.245)	-3.294 (3.801)
NMean if Share Above MedianMean if Share Below Median	33,678 22.370 24.488	33,678 25.673 21.184	33,678 24.047 22.811	33,678 19.833 27.029

Note: This table reports results for living-with-family estimates based on the predicted share of processes by the team member(s). The prediction is summarized by a binary variable indicating whether the observation is above or below the median of the prediction. We use those binary indicators as controls and as heterogeneity variables. All models include strata indicators.

Table I.3: Heterogeneity by Share of Predicted Processes by Mi Abogado Team Member, Crime Reports

Dependent Variable:	(1) Crimes /Qtr.	(2) Crimes /Qtr.	(3) Crimes /Qtr.	(4) Crimes /Qtr.
Heterogeneity Variable:	Predicted Processes Total Processes	Predicted Processes Share: Interdisciplinary	Predicted Processes Share: Judicial	Predicted Processes Share: Psychosocial
Treatment x Post	-0.040 (0.022)	-0.021 (0.020)	-0.029 (0.024)	-0.064 (0.019)
Treatment Group	0.010 (0.024)	$0.010 \\ (0.013)$	0.023 (0.018)	0.020 (0.023)
Post Randomization	0.108 (0.012)	0.078 (0.014)	0.102 (0.015)	0.119 (0.016)
Above Median in Prediction	-0.049 (0.012)	-0.019 (0.017)	0.003 (0.012)	-0.018 (0.010)
Above Median x Post x Treatment	0.029 (0.031)	-0.040 (0.027)	-0.006 (0.029)	0.046 (0.028)
Above Median x Post	-0.045 (0.023)	0.037 (0.020)	-0.021 (0.020)	-0.043 (0.021)
Above Median x Treatment	-0.011 (0.024)	-0.002 (0.024)	-0.039 (0.020)	-0.016 (0.027)
N Mean if Share Above Median Mean if Share Below Median	54,259 0.071 0.151	54,259 0.125 0.097	54,259 0.081 0.141	54,259 0.097 0.125

Note: This table reports results for crime reports based on the predicted share of processes by the team member(s). The prediction is summarized by a binary variable indicating whether the observation is above or below the median of the prediction. We use those binary indicators as controls and as heterogeneity variables. All models include strata indicators.

Table I.4: Heterogeneity by Share of Predicted Processes by Mi Abogado Team Member, School Attendance

Dependent Variable:	(1) Attendance $/\mathrm{Qtr.}$	$\begin{array}{c} (2) \\ \text{Attendance} \\ / \text{Qtr.} \end{array}$	(3) Attendance $/Qtr.$	$\begin{array}{c} (4) \\ \text{Attendance} \\ / \text{Qtr.} \end{array}$
Heterogeneity Variable:	Predicted Processes Total Processes	Predicted Processes Share: Interdisciplinary	Predicted Processes Share: Judicial	Predicted Processes Share: Psychosocia
Treatment x Post	0.008 (0.025)	0.031 (0.022)	0.037 (0.022)	0.037 (0.017)
Treatment Group	0.021 (0.026)	-0.014 (0.020)	-0.024 (0.022)	-0.019 (0.032)
Post Randomization	-0.093 (0.010)	-0.074 (0.011)	-0.093 (0.011)	-0.095 (0.013)
Above Median in Prediction	0.075 (0.021)	0.012 (0.024)	-0.054 (0.023)	0.041 (0.020)
Above Median x Post x Treatment	0.014 (0.031)	0.008 (0.028)	-0.019 (0.028)	-0.010 (0.028)
Above Median x Post	0.023 (0.017)	-0.027 (0.017)	0.019 (0.017)	0.017 (0.017)
Above Median x Treatment	-0.037 (0.034)	0.020 (0.033)	0.045 (0.030)	0.018 (0.038)
N Mean if Share Above Median Mean if Share Below Median	56,130 0.655 0.553	56,130 0.606 0.602	56,130 0.638 0.570	56,130 0.602 0.607

Note: This table reports results for school attendance based on the predicted share of processes by the team member(s). The prediction is summarized by a binary variable indicating whether the observation is above or below the median of the prediction. We use those binary indicators as controls and as heterogeneity variables. All models include strata indicators.

I.2 Mediation Analysis

We next explore whether the improvement in the crime-report and schooling-attendance outcomes are related to the reduction in the time in care. We do this first via a mediation analysis by controlling for the number of days in residence. This is speculative as the days in residence is endogenous. When we control for the number of days in residence, we continue to find a similar reduction in crime reports for the treatment group. (Table I.5. This suggests that the improvement in crimes and attendance are related to the family rehabilitation and other services facilitated by the legal team rather than simply duration in foster care.

Table I.5: Days in Residence as a Mediator

Dependent Variable:	(1) Crime Reports/Qtr. Usual Estimate	(2) Crime Reports/Qtr. Control for Residences	(1) School Attendance/Qtr. Usual Estimate	(2) School Attendance/Qtr. Control for Residences
Treatment x Post	-0.0375 (0.0134)	-0.0407 (0.0148)	0.0291 (0.0127)	0.0339 (0.0128)
Treatment Group	0.0104 (0.0125)	0.0197 (0.0229)	-0.0030 (0.0165)	-0.0053 (0.0158)
Post Randomization	0.0932 (0.0102)	0.0634 (0.0100)	-0.1031 (0.0081)	-0.1148 (0.0080)
In Residence		-0.0003 (0.0001)		0.0013 (0.0001)
N N of children N Control Group	54,259 1,871 1,188	33,678 1,871 1,188	$22,452 \\ 1,871 \\ 1,188$	22,452 1,871 1,188
Control Group Mean	0.125	0.125	0.580	0.580

Note: This table reports models with and without controlling for the number of days spent in residence each quarter. Note that attendance is measured at the same frequency as number of days in residence: quarterly, as opposed to the main attendance results, which are presented at the monthly level. Control Group Mean indicates the mean in the post-period. Standard errors are clustered at the child level. All models include strata indicators.

I.3 Crime Reports Around Entry and Exit from Foster Care

One mechanism that would explain the drop in crime reports found for the treatment group would be a reduction in delinquency while in residence due to altercations or greater surveillance. Below are event studies that trace the rate of crime reports before and after entry or exit from the facility. These time series are suggestive as they do not include a control group. Rather, we wish to examine whether there is a sharp change in crime reports upon entry or exit. Figure I.1 shows that crime reports begin to rise just prior to entering the facility and remain at an elevated level. This suggests that entry is correlated with problematic behavior on the part of the child. Figure I.2 shows that crime reports do not fall once children exit residences, which suggests that a change in surveillance does not account for the main results.

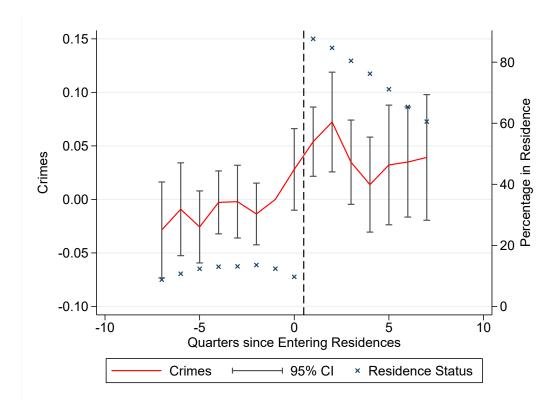


Figure I.1: Event Study on Entering Residences

Note: This chart shows an event study for crime reports before and after entry into a residence. The omitted period is two quarters before entering residence, to test whether crime reports precipitate entry. The vertical line is the moment of entering residences. The estimates are obtained from a regression of crime reports on indicators of the number of quarters since the child entered a residence, age indicators (to control for the increase in crime that comes with age), and child fixed effects. Confidence intervals are calculated using standard errors clustered at the child level.

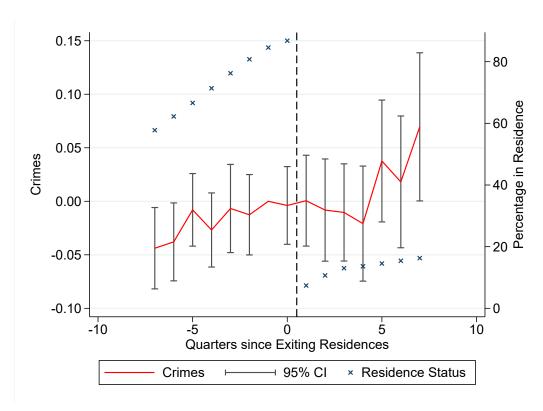


Figure I.2: Event Study on Exiting Residences

Note: This chart shows an event study for crime reports before and after entry into a residence. The omitted period is two quarters before exiting residence, to test whether crime reports are changing just prior to exit. The vertical line is the moment of entering residences. The estimates are obtained from a regression of crime reports on indicators of the number of quarters since the child entered a residence, age indicators (to control for the increase in crime that comes with age), and child fixed effects. Confidence intervals are calculated using standard errors clustered at the child level.

J Dynamics: Complier Characteristics Over Time

To explore non-compliance over time, it is useful to describe the complier characteristics and how they may evolve over time. Consider the effect of being assigned to the treatment group on the number of days since first exposure to the Mi Abogado program over the first year after randomization. This is a "first stage" estimate that describes how the treatment group received greater access to the program. The relative likelihood of a complier characteristic is simply the ratio of the first stage for that group divided by the overall first stage (Angrist and Pischke 2008).

Table J.1 reports the estimates when the first stage for days of exposure is estimated through Q1 2020; the next table shows the analogous estimates when the first stage is estimated through Q1 2021. We find that compliers are more likely to have larger sibling groups, more time in residence, are younger, and are female. As a summary, when predicted permanency is above median, and predicted crime is below median, the child is more likely to be a complier (i.e. cases more prone to having positive outcomes). The same pattern is found when we analyze the first stage across the first two years rather than the first.

Table J.1: Complier Characteristics Q1 2020

X	Above-Median First Stage (1)	(1)/Overall First Stage	Mean X Below Median	Mean X Above Median	N
Number of Siblings	83.628 (15.012)	1.11	0.18	3.49	1,871
Delay in Schooling	$72.958 \ (14.613)$	0.97	0.26	2.64	1,871
Time in Residence	$ \begin{array}{c} 86.204 \\ (11.732) \end{array} $	1.15	2.96	4.45	1,871
Age When First in Residence	57.983 (11.975)	0.77	7.53	13.79	1,871
Age at Randomization	68.336 (11.368)	0.91	10.82	16.23	1,871
Gender(Girl)	$87.905 \\ (11.106)$	1.17	0.00	1.00	1,871
Predicted Permanency	$76.694 \ (11.256)$	1.02	0.06	0.09	1,871
Predicted Crimes	$ 67.642 \\ (11.173) $	0.90	0.19	1.09	1,871
Full Sample	Overall First Stage 75.226 (8.571)	Compliers 929			

Note: This table reports the first-stage coefficient for days of Mi Abogado exposure (days since first participating) by the end of Q1 2020 when the characteristic, X, is greater than the median for the sample at baseline. It then reports the ratio of this first stage to the overall first stage, along with the mean of the characteristic when it is below its median and when it is above its median.

Table J.2: Complier Characteristics Q1 2021

X	Above-Median First Stage (1)	(1)/Overall First Stage	Mean X Below Median	Mean X Above Median	N
Number of Siblings	125.669 (31.105)	1.08	0.18	3.49	1,871
Delay in Schooling	$122.634 \ (31.528)$	1.05	0.26	2.64	1,871
Time in Residence	$ \begin{array}{c} 136.349 \\ (24.627) \end{array} $	1.17	2.96	4.45	1,871
Age When First in Residence	$91.276 \ (26.504)$	0.78	7.53	13.79	1,871
Age at Randomization	$113.730 \\ (25.368)$	0.98	10.82	16.23	1,871
Gender(Girl)	$147.395 \\ (23.775)$	1.27	0.00	1.00	1,871
Predicted Permanency	$ \begin{array}{c} 134.709 \\ (24.460) \end{array} $	1.16	0.06	0.09	1,871
Predicted Crimes	$ \begin{array}{c} 106.272 \\ (24.522) \end{array} $	0.91	0.19	1.09	1,871
Full Sample	Overall First Stage 116.371 (18.094)	Compliers 1100			

Note: This table reports the first-stage coefficient for days of Mi Abogado exposure (days since first participating) by the end of Q1 2021 when the characteristic, X, is greater than the median for the sample at baseline. It then reports the ratio of this first stage to the overall first stage, along with the mean of the characteristic when it is below its median and when it is above its median.

K Cost-Benefit Analysis with Crime Outcomes

To obtain the cost of crime estimates, we assigned each type of crime a cost. Thus, the total social savings from the program are the estimated treatment effects on the different types of crimes summed up over the post-randomization period (641 days) multiplied by the total average costs of each type of crime. The average cost for each type of crime is calculated based on estimates in Miller et al. (2021). We apply a deflation factor equal to the ratio of Chile's per capita GDP to the United States' (0.20) to place the estimates in US dollar terms.

Table K.1: Cost Benefit Analysis with Crime Outcomes

	Mean T	Mean C	Dif	P-Value	Costs	Dif*Costs
A. Legal-aid Costs						
Days of Legal Aid in MA Program	296.51	205.95	90.57	0.00	4.99	451.87
Days of Legal Aid outside MA	76.76	175.74	-98.98	0.00	2.73	-270.09
B. Residence Costs						
Days in residence (public)	111.07	115.85	-4.78	0.48	67.27	-321.47
Days in residence (nonprofit)	281.17	307.54	-26.37	0.07	28.35	-747.58
C. Family Foster Care Costs						
Days in care (nonprofit)	11.88	6.88	5.00	0.26	13.94	69.69
Net SENAME Costs						-817.58
D. Crime						
Property	0.35	0.43	-0.08	0.08	1,698.43	-129.09
Violent	0.35	0.48	-0.13	0.00	24,507.68	-3,202.08
Substance	0.03	0.03	-0.00	0.82	$2,\!196.56$	-3.87
Net Criminal Justice Costs						-3,335.04
Total						-4,152.61

Note: Estimates are on a per-child basis, and the observation period is 641 days. Costs are calculated in 2022 US dollars based on estimates in Miller et al., 2021.