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Policies from a Network Approach
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This online appendix explains the detailed procedure to achieve the counter-

factual sweep results presented in the main text.

Methodology

Peer Effect Estimates — Structural Framework

The first step in determining the predicted reduction in crime at the gang
level is to estimate peer effects. To do so, I follow the traditional linear-in-means
model from the social interactions literature (Bramoullé, Djebbari, and Fortin
2009; Lee et al.||2020):

(SA1) Y = ¢GY + By + XB + XBa +In+u

where Y is a vector of the individual arrests, G is a square matrix of interac-
tions where each element g;; indicates whether individuals ¢ and j were arrested
together, GY is a vector of peers’ arrests, X is a vector of observable character-
istics, X is a vector of peers’ average observable characteristics, and 1 are gang
fixed effects. Peer effects are given by ¢.

Identifying peer effects can suffer from several problems, as pointed out by
Bramoullé, Djebbari, and Fortin| (2009) and Bramoullé, Djebbari, and Fortin
(2020). The first is the reflection problem (Manski|/|1993)). Such an issue arises

from the simultaneity in peers’ choices and outcomes, making it impossible to
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cleanly identify peer effects. The second potential issue is that the observed gang
can be endogenous. If that is the case, it is impossible to identify whether the
correlation of behavior among peers stems from the network or from homophily.

Bramoullé, Djebbari, and Fortin| (2020) classify the possible strategies to fol-
low in order to account for correlated effects and network endogeneity in the iden-
tification of network effects. In this paper, I follow the literature that proposes
a structural framework, where network endogeneity is elucidated by modeling
network formation and its connection to the peer effect regression. Concretely,
I follow the Instrumental Variables approach in three stages proposed by |Lee
et al. (2020). First, a predicted interactions matrix G is constructed. A logistic
regression model on link formation is estimated considering matches on available
observable characteristics, and predicted probabilities of link formation are ob-
tained to construct G. Second, peers’ criminal outcomes (GY in equation (SA1))
are predicted by the Instrumental Variables matrix 7 = 1, X, f(, Gl, GX, Gi]
Third, equation is regressed using the predicted values of GY to obtain
peer effect estimates, é If the dyadic characteristics are not informative on link
formation, the Instrumental Variables Z can be weak. To alleviate this potential
issue, I also follow |Lee et al.| (2020) and introduce a quadratic moment condition
for the estimation of equation by GMM. On this matter, (Chandrasekhar
and Lewis| (2016) show that model-based corrections can greatly reduce potential
biases in social effect parameters arising from missing data. Moreover, /Advani
and Malde| (2018) indicate that using a predicted network instead of the observed
network can also alleviate mismeasurement issues in the estimation of the social
effect.

Centrality Measure and Key Player Ranking

Once peer effects are estimated, it is possible to compute the centrality of
each individual in each gang, following|Ballester and Zenou (2014). The approach
requires two assumptions. First, the gang is fixed, meaning it does not vary after
the removal of an individual. Second, criminal ability aE] does not depend on the

gang. For peer effect ¢, ability «, gang r, and individual ¢, Ballester and Zenou

Loy = By 4+ X;iB1 + XiB2 + u;, where X is a vector of observable exogenous characteristics

and X is the average exogenous characteristics of individual i’s connections.



define a contextual intercentrality measure as follows:

(SA2) Doy, (1 @) - 251 M

8i(r, ¢, ) = — + Ba(r,¢) — Ba, (r,¢)

My
where ay = (z;,l=1)’ describes the situation where individual i has not yet been
removed, so she has her attribute z;, and the vector « is computed from the net-
work when individual 7 is removed from the network, namely o=, B, (r, ¢) and
By, (r,¢) measure total Bonacich network centrality under contextual effects o
and o respectively. Bu(r,¢) = Y0 bai(r,¢) = 1TMa. M= (I-¢G)™! =
> oo ®FGF tracks the number of walks in network r starting from ¢ and end-
ing at j, where walks of length k are weighted by ¢*, and mj; and my; are its
corresponding elements.

di(r, ¢, ) considers two effects. The first is a network effect derived from
the centrality measure by Ballester, Calvo-Armengol, and Zenou (2006). This
effect corresponds to the first term in equation (SA2|). It captures the direct
effect on crime from removing individual ¢ and the indirect effect on others’
criminal activity from the removal of that individual from the network while
keeping the vector ay; unchanged. The second and novel effect is the contextual
one. This effect is captured by the last two terms in equation , and stems
from the change in context from « to ay;). For each gang, I then rank individuals
decreasingly in 6;(r, ¢, ) to identify key players.

Predicted Reduction in Criminality and Policy Comparison

Lindquist and Zenou (2014) show that the predicted crime reduction in gang
r after removing an individual ¢, C'R;,, is equal to 100 times the centrality of this

individual divided by the total centrality of the gang:

100.6;(r, ¢, @)

(SA3) CRe= =500

As 0;(r, ¢, «) is highest for the key player in each gang, so is C'R;,.. Still, equation
(SA3) computes the predicted crime reduction when a single individual is removed
from the gang and it is not a good benchmark to compare the outcomes of the

sweeps, as they were of a larger scale. Therefore, it is more useful to perform a



broader comparison (Borgatti|2006} |Ballester, Zenou, and Calvé-Armengol|2010).
I perform a sequential removal exercise to compare the theoretical predictions
with the observed outcomes in an informative way. I compute the predicted
crime reduction conditional on the number of individuals removed, ranked by
di(r, ¢, ). Specifically, T define the predicted cumulative crime reduction in gang

r after removing up to individual n when sorted by centrality (CCR,,) as
(SA4) CCR, = CRy;; +CRy(1-CRy)+ ..+ CR,, (1= CRyy — ... = CR—1y,)

where ¢+ = 1,2, ...,n are individuals ¢ in gang r sorted by the contextual inter-
centrality measure, 6;(r, ¢, ). @ = 1 is the top-ranked individual and ¢ = n the
lowest-ranked one.

This measure first requires computing the predicted crime reduction when re-
moving the key player, C'R;,, as in equation . Second, it requires determin-
ing the additional reduction when removing the second-top-ranked individual.
After removing the first individual, the second step computes this individual’s
centrality over that of the remaining individuals. I perform this second exercise
as often as there are individuals in the gang. As a result, I map the predicted
crime reduction at the gang level as a function of the number of players removed.

I compare such predictions with the actual crime reduction after the sweeps.

Results

The estimation results for peer effects as outlined in equation are reported
in Table The first column presents OLS estimates, the second column
presents IV estimates with IV matrix Z, the third column shows IV estimates
with IV matrix Z, and the last column presents GMM estimates. Regarding
the estimates of the first two columns, they may suffer from endogeneity issues
derived from the reflection problem and the fact that the network itself is not
exogenous. Moreover, the overidentification test for the 2SLS estimation rejects
the null hypothesis. Given these issues, it is necessary to instrument the current
G matrix with a predicted G as in the third column. The results of the link
formation model are presented in Table [SA2l In this case, the validity of the



instruments is not rejected. However, a weak instruments issue is likely to be
present, and therefore modeling the best response function by GMM may help
tackle this issue.

Considering the GMM estimation results, the estimated peer effect in this
setting is of 0.007 E| This implies that having one criminal partner increases the

number of crimes committed by an individual by 0.7% in comparison with when
alone (ib) Moreover, considering that the average number of peers is 13, the

average network social multiplier in this study is 10% ( 1_11 3 (2)).

A valuable exercise in this setup is to compare the above structural estimates

of peer effects with the reduced-form estimates backed out from the gang sweeps
in Section IV.A. On one side, the structural effects indicate an average social
multiplier of 10%. This result implies that, on average, having criminal partners
increases the number of crimes committed by an individual by this magnitude.
On the other side, the reduced-form spillover effects estimates following Dahl,
Loken, and Mogstad| (2014)) indicate an average social multiplier of 16.8%. The
measures from these two exercises seem to be aligned, although not exactly the

salme.

2This result satisfies the condition for the existence of a unique equilibrium (|¢|p(G) < 1).



Table SA1: Peer Effects Estimates: Gangs in the Metropolitan

Area of Barcelona

OLS 2SLS 3SLS GMM
é 0.015 0.006 0.006 0.007
(0.004) (0.004) (0.004) (0.003)
Observations 540 540 540 540
R? 0.110 0.100 0.101 0.093
Own characteristics Y Y Y Y
Peer characteristics Y Y Y Y
First-stage F 389.24 210.18 210.18
OIR p-value 0.00 0.16 0.16

Notes: This table reports peer effects estimates following equation (SA1)).

Each column presents results from a different estimation method. For the

third and fourth columns, G was constructed by using the outcomes of a

logistic model of link formation. In all cases, individual characteristics as

well as those of peers were included as controls. The observational unit is

the individual. The coefficient of interest (that of peer effects) is provided

by é Robust standard errors are shown in parentheses.

Table SA2: Link Formation Estimation

Female match 0.278
(0.046)
Age match 0.267
(0.064)
Age difference -0.091
(0.013)
Age difference? 0.001
(0.000)
Nationality match 0.803
(0.045)
Latin match 0.343
(0.077)
Observations 145,530
Pseudo R? 0.035

Notes: This table reports the results of a logistic regression for a

link formation model. The dependent variable is an indicator of

whether a pair of criminals are linked or not. The observational

unit is a pair of individuals. Robust standard errors are shown in

parentheses.



Using the GMM estimates reported in Table m, the centrality (i-(r, qg, &)
is calculated for each individual following equation , and the key player is
identified for each gang.

A logistic regression indicates a positive and significant correlation between
the individual centrality measure and an indicator variable for being arrested
in a sweep instead of being a first peer after controlling for gang fixed effects.
Regarding the key players in each gang, all are male, half of them were born
in Latin America, 70% were born after 1990, and all of them were arrested in
the sweeps. Moreover, they do not differ significantly from their peers in any
demographic characteristics, nor in the number of peers they have, nor in the
number of arrests.

Finally, I compute the predicted reduction in crime that would have been
achieved by removing the key player, namely C'R;.. In this case, the model
predicts that removing the key player in each gang would lead to a weighted
average crime reduction of 17.7%. On average, targeting the key player would
achieve a crime reduction that would outperform targeting the most active crim-
inal by 2.3ppt, targeting the most central individual considering the measure by
Bonacich| (1987)) by 2.9ppt, and the most connected individual by 0.7ppt. These
values were computed as the difference between the two scenarios. This set of re-
sults is mostly consistent with those of Lindquist and Zenou (2014)) and [Philippe
(2017).

The comparative analysis of the simulated scenarios and the actual sweeps is

presented in the main text of the paper.
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