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This online appendix explains the detailed procedure to achieve the counter-

factual sweep results presented in the main text.

Methodology

Peer Effect Estimates – Structural Framework

The first step in determining the predicted reduction in crime at the gang

level is to estimate peer effects. To do so, I follow the traditional linear-in-means

model from the social interactions literature (Bramoullé, Djebbari, and Fortin

2009; Lee et al. 2020):

(SA1) Y = ϕGY + β0 +Xβ1 + X̄β2 + Iη + u

where Y is a vector of the individual arrests, G is a square matrix of interac-

tions where each element gij indicates whether individuals i and j were arrested

together, GY is a vector of peers’ arrests, X is a vector of observable character-

istics, X̄ is a vector of peers’ average observable characteristics, and η are gang

fixed effects. Peer effects are given by ϕ.

Identifying peer effects can suffer from several problems, as pointed out by

Bramoullé, Djebbari, and Fortin (2009) and Bramoullé, Djebbari, and Fortin

(2020). The first is the reflection problem (Manski 1993). Such an issue arises

from the simultaneity in peers’ choices and outcomes, making it impossible to
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cleanly identify peer effects. The second potential issue is that the observed gang

can be endogenous. If that is the case, it is impossible to identify whether the

correlation of behavior among peers stems from the network or from homophily.

Bramoullé, Djebbari, and Fortin (2020) classify the possible strategies to fol-

low in order to account for correlated effects and network endogeneity in the iden-

tification of network effects. In this paper, I follow the literature that proposes

a structural framework, where network endogeneity is elucidated by modeling

network formation and its connection to the peer effect regression. Concretely,

I follow the Instrumental Variables approach in three stages proposed by Lee

et al. (2020). First, a predicted interactions matrix Ĝ is constructed. A logistic

regression model on link formation is estimated considering matches on available

observable characteristics, and predicted probabilities of link formation are ob-

tained to construct Ĝ. Second, peers’ criminal outcomes (GY in equation (SA1))

are predicted by the Instrumental Variables matrix Ẑ = [1,X, ˆ̄X, Ĝ1, ĜX, Ĝ ˆ̄X].

Third, equation (SA1) is regressed using the predicted values of GY to obtain

peer effect estimates, ϕ̂. If the dyadic characteristics are not informative on link

formation, the Instrumental Variables Ẑ can be weak. To alleviate this potential

issue, I also follow Lee et al. (2020) and introduce a quadratic moment condition

for the estimation of equation (SA1) by GMM. On this matter, Chandrasekhar

and Lewis (2016) show that model-based corrections can greatly reduce potential

biases in social effect parameters arising from missing data. Moreover, Advani

and Malde (2018) indicate that using a predicted network instead of the observed

network can also alleviate mismeasurement issues in the estimation of the social

effect.

Centrality Measure and Key Player Ranking

Once peer effects are estimated, it is possible to compute the centrality of

each individual in each gang, following Ballester and Zenou (2014). The approach

requires two assumptions. First, the gang is fixed, meaning it does not vary after

the removal of an individual. Second, criminal ability α1 does not depend on the

gang. For peer effect ϕ, ability α, gang r, and individual i, Ballester and Zenou

1αi = β0 +Xiβ1 + X̄iβ2 + ui, where X is a vector of observable exogenous characteristics
and X̄ is the average exogenous characteristics of individual i’s connections.
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define a contextual intercentrality measure as follows:

δi(r, ϕ, α) =
bα⟨i⟩,i(r, ϕ) ·

∑n
j=1mji

mii

+Bα(r, ϕ)−Bα⟨i⟩(r, ϕ)(SA2)

where α⟨i⟩ = (xi, α
[−i])′ describes the situation where individual i has not yet been

removed, so she has her attribute xi, and the vector α is computed from the net-

work when individual i is removed from the network, namely α[−i]. Bα(r, ϕ) and

Bα⟨i⟩(r, ϕ) measure total Bonacich network centrality under contextual effects α

and α⟨i⟩ respectively. Bα(r, ϕ) =
∑n

i=1 bα,i(r, ϕ) = 1TMα. M = (I− ϕG)−1 =∑∞
k=0 ϕ

kGk tracks the number of walks in network r starting from i and end-

ing at j, where walks of length k are weighted by ϕk, and mji and mii are its

corresponding elements.

δi(r, ϕ, α) considers two effects. The first is a network effect derived from

the centrality measure by Ballester, Calvó-Armengol, and Zenou (2006). This

effect corresponds to the first term in equation (SA2). It captures the direct

effect on crime from removing individual i and the indirect effect on others’

criminal activity from the removal of that individual from the network while

keeping the vector α⟨i⟩ unchanged. The second and novel effect is the contextual

one. This effect is captured by the last two terms in equation (SA2), and stems

from the change in context from α to α⟨i⟩. For each gang, I then rank individuals

decreasingly in δi(r, ϕ, α) to identify key players.

Predicted Reduction in Criminality and Policy Comparison

Lindquist and Zenou (2014) show that the predicted crime reduction in gang

r after removing an individual i, CRir, is equal to 100 times the centrality of this

individual divided by the total centrality of the gang:

(SA3) CRir =
100.δi(r, ϕ, α)

Bα(r, ϕ)

As δi(r, ϕ, α) is highest for the key player in each gang, so is CRir. Still, equation

(SA3) computes the predicted crime reduction when a single individual is removed

from the gang and it is not a good benchmark to compare the outcomes of the

sweeps, as they were of a larger scale. Therefore, it is more useful to perform a
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broader comparison (Borgatti 2006; Ballester, Zenou, and Calvó-Armengol 2010).

I perform a sequential removal exercise to compare the theoretical predictions

with the observed outcomes in an informative way. I compute the predicted

crime reduction conditional on the number of individuals removed, ranked by

δi(r, ϕ, α). Specifically, I define the predicted cumulative crime reduction in gang

r after removing up to individual n when sorted by centrality (CCRnr) as

(SA4) CCRnr = CR1r+CR2r(1−CR1r)+ ...+CRnr(1−CR1r− ...−CR(n−1)r)

where i = 1, 2, ..., n are individuals i in gang r sorted by the contextual inter-

centrality measure, δi(r, ϕ, α). i = 1 is the top-ranked individual and i = n the

lowest-ranked one.

This measure first requires computing the predicted crime reduction when re-

moving the key player, CR1r, as in equation (SA3). Second, it requires determin-

ing the additional reduction when removing the second-top-ranked individual.

After removing the first individual, the second step computes this individual’s

centrality over that of the remaining individuals. I perform this second exercise

as often as there are individuals in the gang. As a result, I map the predicted

crime reduction at the gang level as a function of the number of players removed.

I compare such predictions with the actual crime reduction after the sweeps.

Results

The estimation results for peer effects as outlined in equation (SA1) are reported

in Table SA1. The first column presents OLS estimates, the second column

presents IV estimates with IV matrix Z, the third column shows IV estimates

with IV matrix Ẑ, and the last column presents GMM estimates. Regarding

the estimates of the first two columns, they may suffer from endogeneity issues

derived from the reflection problem and the fact that the network itself is not

exogenous. Moreover, the overidentification test for the 2SLS estimation rejects

the null hypothesis. Given these issues, it is necessary to instrument the current

G matrix with a predicted Ĝ as in the third column. The results of the link

formation model are presented in Table SA2. In this case, the validity of the
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instruments is not rejected. However, a weak instruments issue is likely to be

present, and therefore modeling the best response function by GMM may help

tackle this issue.

Considering the GMM estimation results, the estimated peer effect in this

setting is of 0.007.2 This implies that having one criminal partner increases the

number of crimes committed by an individual by 0.7% in comparison with when

alone ( 1

1−ϕ̂
). Moreover, considering that the average number of peers is 13, the

average network social multiplier in this study is 10% ( 1

1−13ϕ̂
).

A valuable exercise in this setup is to compare the above structural estimates

of peer effects with the reduced-form estimates backed out from the gang sweeps

in Section IV.A. On one side, the structural effects indicate an average social

multiplier of 10%. This result implies that, on average, having criminal partners

increases the number of crimes committed by an individual by this magnitude.

On the other side, the reduced-form spillover effects estimates following Dahl,

Løken, and Mogstad (2014) indicate an average social multiplier of 16.8%. The

measures from these two exercises seem to be aligned, although not exactly the

same.

2This result satisfies the condition for the existence of a unique equilibrium (|ϕ̂|ρ(G) < 1).
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Table SA1: Peer Effects Estimates: Gangs in the Metropolitan
Area of Barcelona

OLS 2SLS 3SLS GMM

ϕ̂ 0.015 0.006 0.006 0.007

(0.004) (0.004) (0.004) (0.003)

Observations 540 540 540 540

R2 0.110 0.100 0.101 0.093

Own characteristics Y Y Y Y

Peer characteristics Y Y Y Y

First-stage F 389.24 210.18 210.18

OIR p-value 0.00 0.16 0.16

Notes: This table reports peer effects estimates following equation (SA1).

Each column presents results from a different estimation method. For the

third and fourth columns, Ĝ was constructed by using the outcomes of a

logistic model of link formation. In all cases, individual characteristics as

well as those of peers were included as controls. The observational unit is

the individual. The coefficient of interest (that of peer effects) is provided

by ϕ̂. Robust standard errors are shown in parentheses.

Table SA2: Link Formation Estimation

Female match 0.278

(0.046)

Age match 0.267

(0.064)

Age difference -0.091

(0.013)

Age difference2 0.001

(0.000)

Nationality match 0.803

(0.045)

Latin match 0.343

(0.077)

Observations 145,530

Pseudo R2 0.035

Notes: This table reports the results of a logistic regression for a

link formation model. The dependent variable is an indicator of

whether a pair of criminals are linked or not. The observational

unit is a pair of individuals. Robust standard errors are shown in

parentheses.
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Using the GMM estimates reported in Table SA1, the centrality δ̂i(r, ϕ̂, α̂)

is calculated for each individual following equation (SA2), and the key player is

identified for each gang.

A logistic regression indicates a positive and significant correlation between

the individual centrality measure and an indicator variable for being arrested

in a sweep instead of being a first peer after controlling for gang fixed effects.

Regarding the key players in each gang, all are male, half of them were born

in Latin America, 70% were born after 1990, and all of them were arrested in

the sweeps. Moreover, they do not differ significantly from their peers in any

demographic characteristics, nor in the number of peers they have, nor in the

number of arrests.

Finally, I compute the predicted reduction in crime that would have been

achieved by removing the key player, namely CRir. In this case, the model

predicts that removing the key player in each gang would lead to a weighted

average crime reduction of 17.7%. On average, targeting the key player would

achieve a crime reduction that would outperform targeting the most active crim-

inal by 2.3ppt, targeting the most central individual considering the measure by

Bonacich (1987) by 2.9ppt, and the most connected individual by 0.7ppt. These

values were computed as the difference between the two scenarios. This set of re-

sults is mostly consistent with those of Lindquist and Zenou (2014) and Philippe

(2017).

The comparative analysis of the simulated scenarios and the actual sweeps is

presented in the main text of the paper.
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