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- Negative: EV charging queues, traffic congestion delays, local air pollution

- Increasingly studied with quantitative models and rich data

- Key questions: how much inefficiency is there?

- Intuition challenging with complex, multi-location models
- Are results driven by functional form or empirical moments?
- What can we learn with objects estimated around an unpriced equilibrium?
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This paper

- Sufficient statistics in model with spatial externalities

- Show large externalities, large own- elasticity, and small deadweight loss can coexist
- Derive appropriate version of “Harberger triangle”
- Highlight flexible substitution patterns essential for modeling and empirical work

- Two applications

Related Literature:
- Builds on classic Harberger (1964) The Measurement of Waste
- “Sufficient statistics” approach in public finance (Chetty, 2009; Kleven, 2021)

- Non-parametric impact of shocks in macro, trade, spatial (Bagaee & Farhi, 2020;
Donald et al., 2024; Hulten, 1978)
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Equilibrium Model of Location Choice with Spatial Externalities

- Unit mass of agents. Agent w picks location k € {1, ..., M} with indirect utility

Vk(w) = Uk + ex(w)

Choice probabilities

e = Fx(u) = Pr(k = arg mjax{uj +€j(w)})

Assumptions: F continuously differentiable and ), 7t = 1

Allow for flexible substitution patterns across locations (not only logit)
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Equilibrium Model of Location Choice with Spatial Externalities

- Deterministic utility ux sum of three components
Uy = U,(() + ek(n) + Cx

1. exogenous amenities: u2

2. externalities ey ()

- spatial externalities: incidence on users of specific locations
- depends on vector 7t of location market shares (e continuously differentiable)
- positive or negative or mix

3. transfers: ¢y, location-specific, redistributed lump sum
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Equilibrium and Welfare
- Equilibrium (u, 7t) given transfers ¢ and amenities u° (vector notation, e.g. u = (Uk) k)

u=ul+e(n)+c
= F(u)
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Equilibrium and Welfare

- Equilibrium (u, 7t) given transfers ¢ and amenities u° (vector notation, e.g. u = (Uk) k)

u=ul+e(n)+c
= F(u)

- Welfare: utilitarian with transfers redistributed lump-sum

W(c)=E mkax[uk +ex(w)]—cn
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- road traffic congestion, peak-hour traffic congestion (departure time)
- queuing (local externality): EV charging stations, port choice.
- neighborhood choice with local externalities (amenities, air pollution, traffic)

- Restrictions: (can be relaxed)

- single unit demand
- additive idiosyncratic shocks
- does not nest quant economic geography models (Allen & Arkolakis, 2024)

- local prices change economics of lump-sum redistribution (Donald et al., 2024; Fajgelbaum &
Gaubert, 2020)

- no supply side market prices for locations/ goods (such as housing prices)
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Two Key Matrices Help Describe Local Changes Around Egm

1. Slutsky demand substitution matrix
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- How much does location i share change from increase in transfer at j?
- D positive semi-definite, positive diagonal, non-positive off-diagonal, zero rows sum
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Two Key Matrices Help Describe Local Changes Around Egm

1. Slutsky demand substitution matrix

0= = (%),

- How much does location i share change from increase in transfer at j?
- D positive semi-definite, positive diagonal, non-positive off-diagonal, zero rows sum

2. Marginal externalities

! a di
e =G = (),

- Eji = marginal externality of an agent at j on any agent at /
- no restrictions on sign of Ej;
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Equilibrium Impact of Transfers

D =dn/du E' = de(n)/dn
- Assumption 1. All eigenvalues of E’D are less than 1 in absolute value.
- Note: can be verified empirically
- Proposition 1. Additional charges dc induce unique new equilibrium with:
dn=Kdc and du=(I+E'K)dc,
with equilibrium elasticity matrix:
K=D(l-ED)™’
The change in welfare is:

dW = (Enr—c) dn
——
net externality

& Intuition
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Equilibrium Impact of Transfers

dr=Kdc and du= (I+E'K)dc,
K=D(I-ED)’
dW = (En —c)'dn
- General result well-known (Bagaee & Farhi, 2020; Donald et al., 2024, and others)

Key implications:

- For empirics: estimate matrices E and D (or K) with variation around current
equilibrium

- For modeling: allow flexible D, E matrices (logit: D = diag(7r) — 77’
© Optimal Small Charges
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Approximating Deadweight Loss

Move further away from current eqgm with 2nd order Taylor approxat ¢ =0

Assumption 2: All eigenvalues of ED + E’D less than 1 in absolute value.

Assumption 3: There exists a unique equilibrium for any charges ¢ < ¢*°

Assumption 4: E(c) and K(c) are approximately constant around ¢ = 0

Proposition 2: Optimal charges are

¢ = En® ~ (I — EK)'En(0)

and deadweight loss is approximately

DWL = W(c*) — W(0) ~ _%(cw)' (EK — IY'K c*0
———
R

© More general statement
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Relation to Harberger (1964)

- Harberger (1964) studies DWL in an efficient economy with taxes and finds

1 1
DWL ~ 5 ;T,-TjK,-j = ET/ iA(T
7T

- We start from inefficient equilibrium + corrective taxes and find
1,
DWL ~ ——1'Rt
2
where R is negative semi-definite and reduces to —K if E = 0

- We offer two intuitive ways to interpret our result (and Harberger's)
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- R is negative-semidefinite with row sum 0. We can rewrite

1 1 2
DWL ~ —ET,RT =1 IZj:(CfO — C¢°)°Ry

- High DWL if
(A) there exist locations with very different externalities, AND
(B) equilibrium high elasticity between them

- Just one condition not enough!

- Still “DWL =~ %elasticity x externality” but with appropriate definition of these terms
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Intuition for the Magnitude of Deadweight Loss 2/2

- With At = 775° — 70 1 1
DWL =~ E(CS")’An — é(AT[)/EAT(

1. first term is Harberger: taxes = lack of externality pricing

2. with externality, moving away from social optimum, externalities also have “ripple”
effects = second correction term

- E.g. for local congestion (negative diagonal E) the inefficiency is higher
- In general, correction term can be positive/negative
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Example 1: Local Congestion and Capacity Expansions
- Local congestion: e;(71) = e(71;/x;) where «; is capacity at site j, & < 0

- Examples: queues to access port services, EV chargers

Partial-equilibrium impact of proportional change in capacity: Ed In«k

Equilibrium impact:

du= —(I— ED) 'EdInx,
dr = Dadu,
dW = 7/ (du),

where E = diag((€'(mt;/x;)/x});)-
- Equilibrium utility changes smaller than partial-eqm (in L2 norm)

- Highlights importance of demand substitution matrix D.
14/18



Example 2: Peak-Hour Road Traffic Congestion
- Kreindler (2024) studies peak-hour road traffic congestion

- Locations k < departure time h

Departure rates 7t(h) — travel times T (h) — utilities u(h) — 7
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Example 2: Peak-Hour Road Traffic Congestion

Kreindler (2024) studies peak-hour road traffic congestion

Locations k < departure time h

Departure rates 7t(h) — travel times T (h) — utilities u(h) — 7

Complication: unobserved individual heterogeneity from (scalar) ideal arrival time CA

- Externality e(r, CA). Longer travel time effect depends on already arriving early vs late

Equilibrium conditions depend on ideal arrival time A

u(g) = u’(Q) +e(m.g) +c.v¢
m= [ F(u().£)da()

© Utility function

15/18



Example 2: Peak-Hour Road Traffic Congestion

- Similar method to approximate deadweight loss: integrate over 74
DWL =~ (¢*°)'(I — Mep — Mepe K)' Kc*°
where
¢*® = (I— Mep — MeperK) ™' Mg o
K = (I - Mgp)~"Mp

Mo = [ D(Eh)dG(")

Mo = [ E@)n(#)aG(E")
Meo = [ E(&%)D(Z)dG(E")
Meoe: = [ E(Z")D(E*)E(")'dG(c")
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Example 2: Peak-Hour Road Traffic Congestion

- Full model estimated using demand side

experiment and externality calibration

(1) (VAR )

- Compare full structural model to 2nd Welfare DWL DWL
order approximation (holding D, E (INR)  (INR) (%)
matrices fixed) Nash 405

- Small DWL with both approaches Social Optimum ~ -399 58 1.4%

(Full Model)

Social Optimum -412 77 19%

2nd Order
© Optimal charges ( )

© Local demand substitution patterns
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Example 2: Peak-Hour Road Traffic Congestion

Full model estimated using demand side

experiment and externality calibration
(1) (2) (3)

Compare full structural model to 2nd Welfare DWL DWL

(INR)  (INR) (%)

order approximation (holding D, E

matrices fixed) Nash 405

- Small DWL with both approaches Social Optimum  -399 5.8 14%
(Full Model)

- We Sllghtly overestimate DWL Social Optlmum 412 7.7 1.9%

(2nd Order)

© Optimal charges

© Local demand substitution patterns
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Discussion

What can we learn about externalities with variation around unpriced eqm?

Sufficient statistics for small charges, optimum, and deadweight loss

- Expressions highlight importance of allowing for flexible substitution patterns

Future work: use these expressions to evaluate robustness of model and variation
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Impact of Local Charges — Intuition © Back

- What is the local effect of imposing charges?

- Imagine that agents observe current charges and externalities at discrete intervals,
and modify preferences
- attime t = O, locations get additional charges ¢ = (ci )«
- In period 1, agents move across locations by Arr! = Dc
- In period 2, they observe additional externalities E’A7r! and further move by by
Am® = DE'Ant" = DE'Dc
- So on... In period n, agents move by At = D(E'D)" "¢
- Overall change in preferences is At = Ar! + A2 + A3 + ...

- For convergence, we require Azt — 0 or equivalently (E'D)" — 0



Small Optimal Charges © Back

- Can use Prop. 1 to identify optimal “small” charges

- Under restriction that the induced “migration” d7r = Kdc is small (||d7t||2 < ),
optimal charges that maximally increase welfare satisfy dm = Kdc <« Emr — ¢

- Can also solve for bounded ||c||2



Kreindler (2024) Utility Function & Back

u(h, T.0%) = —aT — Belh+ T =7 = BLlh+ T -4,
u(h,*) = Erpmu(h, T,0%) — p(h) +e(h)

departure time h, ideal arrival time ¢4

travel time T drawn from distribution 7 (h)

- 7T lognormal, Er 7(n) T depends on full traffic profile 7t, variance depends on mean.
- p(h) are departure-time charges

- ¢(h) are Gumbel(c) iid shocks



Optimal Congestion Charges in Full vs Approximation Models © Back

Optimal Congestion Charges

0 L
—-100
o
5 =200+
@
o
£ 300t
_400 | \i / — partial eqm
\ / === 2nd order
RS = full model
—500 | | h | 1 |
6 8 10 12 14

Departure Time (hour of day)



Example of Local Demand Substitution © Back
“Experiment:” pay bonus of 50 INR (=~ 0.75 USD) for leaving at 8am

Probabilities m x 100

351

3.0

251

201

15¢r

1.0

05F

0.0

Local Demand Substitution Patterns

@ initial egm
[ +50 INR at 8am

7:30 7:45 8:00 8:15 8:30
Departure Time (hour of day)



Deadweight loss - full expression © Back

Proposition: Adding charges ¢ to an unpriced initial equilibrium modifies welfare
according to (up to second order in charges)?

W(c) — W(0) = (E°=°) K% + %C/AC—F o(c®)
,dK?O L (dE
dc dr

All terms in A are evaluated at the unpriced equilibrium. When A is positive semi-definite,
welfare is maximized by socially optimal charges ¢ satisfying (K°)'E97® + Ac®® ~ 0. The
deadweight loss up to the second order in ¢%° is

A= (E°n0) mOK® + EOK® — 1)K

0 0
DWL = W(c*°) — W(0) ~ —%(Cso)/ (E°70) OZ(C +[OC’5T KO + (EOK® — 1)|K®| c%°
~~ =

tensor tensor

0
160 and 9E7 are tensors such that [9 e]; = ¥ & kg
‘|



Deadweight loss - approximation © Back

Assumption 2: All eigenvalues of ED + E D less than 1 in absolute value.

Assumption 3: There exists a unique equilibrium for any charges c.

Assumption 4: E and D are approximately constant around ¢ = 0. Precisely, there exists a
ball B, of radius r such that for any ¢y, ¢, € By, £ 7% << E®and ¥ ¢, << KO
Proposition: Let assumptions 1,2,3,4 hold for E, D evaluated at unprlced equilibrium.

Additionally, assume that E7t°, (1 — EK)~"En® € B,. Then, the socially optimal charges
that maximize welfare are given by

~(1—EK) En°
and the deadweight loss is

DWL ~ —%(cso)’(EKo —1)'K%c*°
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