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Spatial Externalities in Complex Models

- Local spatial externalities widespread in spatial, urban, and transportation settings
- Positive: firm agglomeration, positive amenities
- Negative: EV charging queues, traffic congestion delays, local air pollution

- Increasingly studied with quantitative models and rich data

- Key questions: how much inefficiency is there?

- Intuition challenging with complex, multi-location models
- Are results driven by functional form or empirical moments?
- What can we learn with objects estimated around an unpriced equilibrium?
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This paper

- Sufficient statistics in model with spatial externalities
- Show large externalities, large own- elasticity, and small deadweight loss can coexist
- Derive appropriate version of “Harberger triangle”
- Highlight flexible substitution patterns essential for modeling and empirical work

- Two applications

Related Literature:

- Builds on classic Harberger (1964) The Measurement of Waste
- “Sufficient statistics” approach in public finance (Chetty, 2009; Kleven, 2021)

- Non-parametric impact of shocks in macro, trade, spatial (Baqaee & Farhi, 2020;
Donald et al., 2024; Hulten, 1978)
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Equilibrium Model of Location Choice with Spatial Externalities

- Unit mass of agents. Agent ω picks location k ∈ {1, . . . ,M} with indirect utility

vk (ω) = uk + ϵk (ω)

- Choice probabilities

πk = Fk (u) = Pr(k = argmax
j
{uj + ϵj(ω)})

- Assumptions: F continuously differentiable and ∑k πk = 1

- Allow for flexible substitution patterns across locations (not only logit)
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Equilibrium Model of Location Choice with Spatial Externalities

- Deterministic utility uk sum of three components

uk = u0
k + ek (π) + ck

1. exogenous amenities: u0
k

2. externalities ek (π)

- spatial externalities: incidence on users of specific locations
- depends on vector π of location market shares (e continuously differentiable)
- positive or negative or mix

3. transfers: ck , location-specific, redistributed lump sum
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Equilibrium and Welfare

- Equilibrium (u,π) given transfers c and amenities u0 (vector notation, e.g. u = (uk )k )

u = u0 + e(π) + c

π = F (u)

- Welfare: utilitarian with transfers redistributed lump-sum

W (c) = Emax
k

[uk + ϵk (ω)]− c′π
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Model Applications and Limitations

- Applications: settings with multi-dimensional and spatial externalities:
- road traffic congestion, peak-hour traffic congestion (departure time)
- queuing (local externality): EV charging stations, port choice.
- neighborhood choice with local externalities (amenities, air pollution, traffic)

- Restrictions: (can be relaxed)
- single unit demand

- additive idiosyncratic shocks
- does not nest quant economic geography models (Allen & Arkolakis, 2024)

- local prices change economics of lump-sum redistribution (Donald et al., 2024; Fajgelbaum &
Gaubert, 2020)

- no supply side market prices for locations/ goods (such as housing prices)
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Two Key Matrices Help Describe Local Changes Around Eqm

1. Slutsky demand substitution matrix

D ≡ dπ

du
=

(dπi

duj

)
ij

- How much does location i share change from increase in transfer at j?
- D positive semi-definite, positive diagonal, non-positive off-diagonal, zero rows sum

2. Marginal externalities
E ′ ≡ de(π)

dπ
=

(dei(π)

dπj

)
ij

- Eji = marginal externality of an agent at j on any agent at i
- no restrictions on sign of Eji
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Equilibrium Impact of Transfers

D ≡ dπ/du E ′ ≡ de(π)/dπ

- Assumption 1. All eigenvalues of E ′D are less than 1 in absolute value.
- Note: can be verified empirically

- Proposition 1. Additional charges dc induce unique new equilibrium with:

dπ = Kdc and du = (I + E ′K )dc,

with equilibrium elasticity matrix:

K ≡ D(I − E ′D)−1

The change in welfare is:
dW = (Eπ − c)′︸ ︷︷ ︸

net externality

dπ

⇒⃝ Intuition
8 / 18
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Equilibrium Impact of Transfers

dπ = Kdc and du = (I + E ′K )dc,

K ≡ D(I − E ′D)−1

dW = (Eπ − c)′dπ

- General result well-known (Baqaee & Farhi, 2020; Donald et al., 2024, and others)

Key implications:

- For empirics: estimate matrices E and D (or K ) with variation around current
equilibrium

- For modeling: allow flexible D,E matrices (logit: D = diag(π)− ππ′)

⇒⃝ Optimal Small Charges
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Approximating Deadweight Loss
- Move further away from current eqm with 2nd order Taylor approx at c = 0

- Assumption 2: All eigenvalues of ED + E ′D less than 1 in absolute value.
- Assumption 3: There exists a unique equilibrium for any charges c ≤ cso

- Assumption 4: E(c) and K (c) are approximately constant around c = 0

- Proposition 2: Optimal charges are

cso = Eπso ≈ (I − EK )−1Eπ(0)

and deadweight loss is approximately

DWL ≡ W (cso)− W (0) ≈ −1
2
(cso)′ (EK − I)′K︸ ︷︷ ︸

R

cso

⇒⃝ More general statement
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Relation to Harberger (1964)

- Harberger (1964) studies DWL in an efficient economy with taxes and finds

DWL ≈ 1
2 ∑

ij
τi τjKij =

1
2

τ′ K τ︸︷︷︸
∆π

- We start from inefficient equilibrium + corrective taxes and find

DWL ≈ −1
2

τ′Rτ

where R is negative semi-definite and reduces to −K if E = 0

- We offer two intuitive ways to interpret our result (and Harberger’s)
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Intuition for the Magnitude of Deadweight Loss 1/2

- R is negative-semidefinite with row sum 0. We can rewrite

DWL ≈ −1
2

τ′Rτ =
1
4 ∑

i,j
(cso

i − cso
j )2Rij

- High DWL if
(A) there exist locations with very different externalities, AND
(B) equilibrium high elasticity between them

- Just one condition not enough!

- Still “DWL ≈ 1
2elasticity × externality” but with appropriate definition of these terms
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Intuition for the Magnitude of Deadweight Loss 2/2

- With ∆π = πso − π0

DWL ≈ 1
2
(cso)′∆π − 1

2
(∆π)′E∆π

1. first term is Harberger: taxes = lack of externality pricing

2. with externality, moving away from social optimum, externalities also have “ripple”
effects ⇒ second correction term

- E.g. for local congestion (negative diagonal E ) the inefficiency is higher
- In general, correction term can be positive/negative
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Example 1: Local Congestion and Capacity Expansions
- Local congestion: ej(π) = e(πj /κj) where κj is capacity at site j , e′ < 0

- Examples: queues to access port services, EV chargers

- Partial-equilibrium impact of proportional change in capacity: Ed ln κ

- Equilibrium impact:

du = −(I − ED)−1Ed ln κ,

dπ = Ddu,

dW = π′(du),

where E = diag((e′(πj /κj)/κj)j).
- Equilibrium utility changes smaller than partial-eqm (in L2 norm)
- Highlights importance of demand substitution matrix D.
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Example 2: Peak-Hour Road Traffic Congestion
- Kreindler (2024) studies peak-hour road traffic congestion
- Locations k ⇔ departure time h

Departure rates π(h) → travel times T (h) → utilities u(h) → π

- Complication: unobserved individual heterogeneity from (scalar) ideal arrival time ζA

- Externality e(π, ζA). Longer travel time effect depends on already arriving early vs late

- Equilibrium conditions depend on ideal arrival time ζA

u(ζ) = u0(ζ) + e(π, ζ) + c, ∀ζ

π =
∫

F (u(ζ), ζ)dG(ζ)

⇒⃝ Utility function
15 / 18
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u(ζ) = u0(ζ) + e(π, ζ) + c, ∀ζ

π =
∫

F (u(ζ), ζ)dG(ζ)

⇒⃝ Utility function
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Example 2: Peak-Hour Road Traffic Congestion
- Similar method to approximate deadweight loss: integrate over ζA

DWL ≈ (cso)′(I − MED − MEDE ′K )′Kcso

where

cso = (I − MED − MEDE ′K )−1MEπ0

K = (I − M ′
ED)

−1MD

MD =
∫

D(ζA)dG(ζA)

MEπ0 =
∫

E(ζA)π0(ζA)dG(ζA)

MED =
∫

E(ζA)D(ζA)dG(ζA)

MEDE ′ =
∫

E(ζA)D(ζA)E(ζA)′dG(ζA)
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Example 2: Peak-Hour Road Traffic Congestion

- Full model estimated using demand side
experiment and externality calibration

- Compare full structural model to 2nd
order approximation (holding D,E

matrices fixed)

- Small DWL with both approaches

- We slightly overestimate DWL

⇒⃝ Optimal charges
⇒⃝ Local demand substitution patterns

(1) (2) (3)
Welfare DWL DWL

(INR) (INR) (%)

Nash -405
Social Optimum -399 5.8 1.4%
(Full Model)
Social Optimum -412 7.7 1.9%
(2nd Order)
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Discussion

- What can we learn about externalities with variation around unpriced eqm?

- Sufficient statistics for small charges, optimum, and deadweight loss

- Expressions highlight importance of allowing for flexible substitution patterns

- Future work: use these expressions to evaluate robustness of model and variation
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Impact of Local Charges — Intuition ⇒⃝ Back

- What is the local effect of imposing charges?

- Imagine that agents observe current charges and externalities at discrete intervals,
and modify preferences

- at time t = 0, locations get additional charges c = (ck )k

- In period 1, agents move across locations by ∆π1 = Dc
- In period 2, they observe additional externalities E ′∆π1 and further move by by

∆π2 = DE ′∆π1 = DE ′Dc
- So on... In period n, agents move by ∆πn = D(E ′D)n−1c
- Overall change in preferences is ∆π = ∆π1 + ∆π2 + ∆π3 + ...

- For convergence, we require ∆πn → 0 or equivalently (E ′D)n → 0



Small Optimal Charges ⇒⃝ Back

- Can use Prop. 1 to identify optimal “small” charges

- Under restriction that the induced “migration” dπ = Kdc is small (||dπ||2 ≤ η),
optimal charges that maximally increase welfare satisfy dπ = Kdc ∝ Eπ − c

- Can also solve for bounded ||c||2



Kreindler (2024) Utility Function ⇒⃝ Back

u(h,T , ζA) = −αT − βE |h + T − ζA|− − βL|h + T − ζA|+
u(h, ζA) = ET∼T (h)u(h,T , ζA)− p(h) + ε(h)

- departure time h, ideal arrival time ζA

- travel time T drawn from distribution T (h)

- T lognormal, ET∼T (h)T depends on full traffic profile π, variance depends on mean.

- p(h) are departure-time charges

- ε(h) are Gumbel(σ) iid shocks



Optimal Congestion Charges in Full vs Approximation Models ⇒⃝ Back



Example of Local Demand Substitution ⇒⃝ Back
“Experiment:” pay bonus of 50 INR (≈ 0.75 USD) for leaving at 8am



Deadweight loss - full expression ⇒⃝ Back
Proposition: Adding charges c to an unpriced initial equilibrium modifies welfare
according to (up to second order in charges)1

W (c)− W (0) = (E0π0)′K 0c +
1
2

c′Ac + o(c3)

A = (E0π0)′
dK 0

dc
+ (

dE0

dπ
π0K 0 + E0K 0 − 1)′K 0

All terms in A are evaluated at the unpriced equilibrium. When A is positive semi-definite,
welfare is maximized by socially optimal charges cso satisfying (K 0)′E0π0 + Acso ≈ 0. The
deadweight loss up to the second order in cso is

DWL ≡ W (cso)− W (0) ≈ −1
2
(cso)′

(E0π0)′
dK 0

dc︸︷︷︸
tensor

+[
dE0

dπ︸︷︷︸
tensor

π0K 0 + (E0K 0 − I)′]K 0

 cso

1 dK 0

dc and dE0

dπ are tensors such that [ dK 0

dc e]ij = ∑k
dK 0

ik
dcj

ek



Deadweight loss - approximation ⇒⃝ Back

Assumption 2: All eigenvalues of ED + E D less than 1 in absolute value.
Assumption 3: There exists a unique equilibrium for any charges c.
Assumption 4: E and D are approximately constant around c = 0. Precisely, there exists a
ball Br of radius r such that for any c1, c2 ∈ Br , dEc1

dπ πc1 << E0 and dK c1
dc c2 << K 0

Proposition: Let assumptions 1,2,3,4 hold for E ,D evaluated at unpriced equilibrium.
Additionally, assume that Eπ0, (1 − EK )−1Eπ0 ∈ Br . Then, the socially optimal charges
that maximize welfare are given by

cso ≈ (1 − EK )−1Eπ0

and the deadweight loss is

DWL ≈ −1
2
(cso)′(EK 0 − 1)′K 0cso
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