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Appendix

Details regarding the derivation of equation (3). It follows by applying Itô’s
formula for semimartingales to (2) that

(A1) d logC =

(
rf + αµ̂− 1

2
α2σ2 − θ

)
dt+ ασ dZ + log (1− αL) dN.

See, for example, Proposition 8.19 of Cont and Tankov (2004). Heuristically, we
can derive (A1) by writing

d logC =
1

C
dC − 1

2!

1

C2
(dC)2 +

1

3!

2

C3
(dC)3 − 1

4!

6

C4
(dC)4 + · · ·

and using the relationships dt dN = dZ dN = 0 and dNk = dN for all k > 0,
in addition to the standard properties of dZ and the fact that log (1 + x) =
x− x2/2 + x3/3− x4/4 + · · · if |x| < 1, which holds when x = −αL because the
agent will never risk bankruptcy.

Integrating forwards, exponentiating, using C0 = θW0, and raising to the power
1− γ, we have

(A2) C1−γ
t =W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂−

1

2
α2σ2 − θ

)
t+ α(1− γ)σZt

} Nt∏
i=1

(1− αLi)1−γ .

Writing L for a representative of the i.i.d. Li, we have
(A3)

EC1−γ
t = W 1−γ

0 θ1−γ exp

{
(1− γ)

(
rf + αµ̂− 1

2
γα2σ2 − θ

)
t+ ωE

[
(1− αL)1−γ − 1

]
t

}
.

This holds because Nt, Zt, and Li are independent, and using (i) the law of
iterated expectations, (ii) the fact that Nt is a Poisson random variable with
parameter ωt, (iii) the i.i.d. nature of the Li, and (iv) the series definition of the
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exponential function to calculate

E

Nt∏
i=1

(1− αLi)1−γ
(i)
= E

[
E

(
Nt∏
i=1

(1− αLi)1−γ
∣∣∣∣ Nt

)]
(ii)
=

∞∑
n=0

e−ωt
(ωt)n

n!
E

n∏
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(iii)
=
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n=0
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(ωt)n

n!

(
E
[
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])n
(iv)
= exp

{
ωE
[
(1− αL)1−γ − 1

]
t
}
.

Details regarding the derivation of equation (12). As above, equation (12)
follows directly from Itô’s lemma, but we can understand the evolution of the
rescaled variable X = W 1−γ heuristically by writing

dX = (1−γ)W−γ dW +
γ(γ − 1)

2
W−γ−1 dW 2− γ(γ − 1)(γ + 1)

6
W−γ−2 dW 3+ · · ·

Rearranging, we have

dX

X
= (1− γ)

dW

W
+
γ(γ − 1)

2

(
dW

W

)2

− γ(γ − 1)(γ + 1)

6

(
dW

W

)3

+ · · ·

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

+

[
(γ − 1)αL+

γ(γ − 1)

2
α2L2 +

γ(γ − 1)(γ + 1)

6
α3L3 + · · ·

]
dN

= (1− γ)

(
rf + αµ̂− θ − 1

2
γα2σ2

)
dt+ (1− γ)ασdZ +

[
(1− αL)1−γ − 1

]
dN ,

as required, where we use the binomial expansion of (1− αL)1−γ in the last line.

PROOF OF RESULT 3:

Define m(x) = E
[
(1− αL)−x

]
. This is the moment-generating function of the

random variable J = − log(1 − αL), so m(x) is a convex function of x (indeed,
the cumulant-generating function logm(x) is convex). By Result 1 we can write
the maximum sustainable consumption-wealth ratio either as

θcon = rf +
1

2
γα2σ2 + ω

[
m(γ)−m(γ − 1)− m(γ − 1)−m(0)

γ − 1

]
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or as

θcon = rf + αµ− 1

2
γα2σ2 − ω

[
m(γ − 1)−m(0)

γ − 1
− (m(0)−m(−1))

]
.

The upper and lower bounds follow by noting that the expressions in the square
brackets are (collectively) positive in each equation, by virtue of the convexity of
m(x).

Adding the two together and dividing by two, it follows that

θcon =
rf + rf + αµ

2
+
ω

2

[
m(γ)−m(γ − 1)− 2

m(γ − 1)−m(0)

γ − 1
+ (m(0)−m(−1))

]
.

The condition for θcon ≥
rf+rf+αµ

2 is therefore that

(A4) m(γ)−m(γ − 1)− 2
m(γ − 1)−m(0)

γ − 1
+ m(0)−m(−1) ≥ 0.

This may or may not hold for different size distributions L. Suppose, however,
that L is deterministic and L ≥ 0. Then m(x) = eJx where J = − log(1−αL) ≥ 0.
In this case, condition (A4) becomes

eJγ − eJ(γ−1) − 2
eJ(γ−1) − 1

γ − 1
+ 1− e−J ≥ 0.

We fix γ > 1 and view the left-hand side of this inequality as a function of J .
Defining

h(J) = eJγ − eJ(γ−1) − 2
eJ(γ−1) − 1

γ − 1
+ 1− e−J ,

we must show that h(J) ≥ 0 for arbitrary J ≥ 0. As h(0) = 0, it is enough to show
that h′(J) ≥ 0 for J ≥ 0. By direct calculation, h′(J) = γeJγ−(γ+1)eJ(γ−1)+e−J .
As h′(0) = 0, it remains to show that h′′(J) ≥ 0 for J ≥ 0, as this will establish
that h′(J) ≥ 0 for arbitrary J ≥ 0, and hence that h(J) ≥ 0 for arbitrary J ≥ 0.
But this holds:

h′′(J) = γ2
(
eJγ − eJ(γ−1)

)
+ e−J

(
eJγ − 1

)
≥ 0.

If L ≤ 0 and hence J ≤ 0, the same logic applies but the inequality is reversed.

PROOF OF RESULT 4:

As

(A5)
dW

W
=

{
1

2
γα2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1

]}
dt+ ασ dZ − αLdN,
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the drift of wealth is

(A6) E
dW

W
=

(
1

2
γα2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1 + αL(1− γ)

])
dt,

and both terms in the brackets are positive. (To see that the second term is
positive, note that Bernoulli’s inequality states that (1 + x)r ≥ 1 + rx if 1 + x is
positive and r ≤ 0 or r ≥ 1. Under our maintained assumption that γ > 1, it
follows that (1− αL)1−γ ≥ 1 + (γ − 1)αL.)

Similarly,
(A7)

E d logW =

(
1

2
(γ − 1)α2σ2 +

ω

γ − 1
E
[
(1− αL)1−γ − 1− (1− γ) log(1− αL)

])
dt .

Again both terms in the brackets are positive. This is obvious for the first term;
for the second, write

E
[
(1− αL)1−γ − 1− (1− γ) log(1− αL)

]
= E

[
e(γ−1)J − 1− (γ − 1)J

]
,

where J = − log(1− αL), and use the fact that ey ≥ 1 + y for all y ∈ R.
Sustainability with population growth. The analysis in the body of the paper

imposes sustainability on a social welfare function defined over aggregate con-
sumption. This is equivalent to sustainability of individual utility only if the
population is constant. We now show how to modify our analysis to make in-
dividual utility sustainable given constant exogenous population growth at rate
g.

If there is population growth, then wealth at time t is shared between more
people. Normalizing the initial population size to 1, the wealth of an average
individual at time t is Wte

−gt, where g > 0 is the population growth rate. To
ensure that such an average individual’s expected utility is nondecreasing, we
require1 that X̃t has nonpositive drift, where X̃t = eg(γ−1)tXt.

As dX̃/X̃ = g(γ − 1) dt+ dX/X, the sustainability constraint (11) becomes

(A8) θ ≤ rCE − g.

The right-hand side of (A8) subtracts the population growth rate g from the
previous formula for the sustainable consumption-wealth ratio. Sustainability of
individual utility is a more demanding requirement in the presence of population
growth. However, for realistic population growth rates the central message of the

1This condition also ensures nondecreasing expected utility for any class of individuals who have a
constant share of the wealth of society. For example, a Blanchard (1985) model with population growth
implies that a newborn person has lower wealth than the average currently living person, because more
people are born than die at each instant; however, with a constant population growth rate the wealth

share of newborn individuals is constant over time. Thus, the constraint that X̃t has nonpositive drift
ensures that the expected utility of newborn individuals does not decline over time.
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paper remains unchanged: in the presence of risk, the sustainable consumption-
wealth ratio exceeds the riskless interest rate rf and substantially exceeds rf − g,
which would be its value in the riskless economy considered by Arrow et al. (2004).

The case of multiple assets. Our results generalize without modification if there
are multiple assets whose returns are i.i.d. over time (but potentially correlated
across assets), as for any portfolio of asset holdings consumption growth will
continue to satisfy equation (2) for appropriate µ, σ, ω, and L.

The log utility case. With log utility, the investor’s objective function is

U = E

∫ ∞
0

e−ρt logCt dt , where ρ > 0.

It follows from equation (A1) that

logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
t+ ασZt +

Nt∑
i=1

log (1− αLi) ,

and hence

E logCt = logC0 +

(
rf + αµ̂− 1

2
α2σ2 − θ

)
t+ ωE [log (1− αL)] t.

Thus the objective function can be evaluated explicitly as

U =
logW0 + log θ

ρ
+
rf + αµ̂− 1

2α
2σ2 − θ + ωE [log (1− αL)]

ρ2
.

Maximizing with respect to θ and α we find the first-order conditions for an
unconstrained optimum,

θ = ρ and µ̂− ασ2 = ωE
[
L (1− αL)−1

]
.

The objective function at time t is affine in logWt, so the sustainability condi-
tion requires that d logWt, or equivalently d logCt, is driftless, i.e. that

θ ≤ rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .

We define the constrained solution as before, giving

θcon = rf + αµ̂− 1

2
α2σ2 + ωE [log (1− αL)] .
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When the constraint binds, we have

U =
logW0 + log θ

ρ
,

so α is chosen to maximize the constrained consumption-wealth ratio. We end
up with the same first-order condition as in the unconstrained case. Thus the
optimal investment choice is the same in the constrained and unconstrained cases,
as before. Equations (14) and (15) also hold as before.


