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A.1. EXAMPLES OF INSTRUMENTAL VARIABLES AND COSTS

Table Al gives some examples of scenarios where designed or natural experiments with imper-
fect compliance may arise, together with examples of what the instrument, treatment, and outcome
might be in each example. Table A2 gives some examples of costs corresponding to the framework
described in Section II.B.

Scenario Instrument (Z;) Treatment (W) Outcome (Y))
Insurance Coverage | Insurance Eligibility Coverage Health/Finance
Outpatient Drug Random doctor assignment Drug use Health Outcome
Inpatient Treatment | Assignment to Treatment Troup | Treatment Delivered | Health Outcome
Health Behavior Nudge Behavior Change Health Outcome

Table A1—: Examples of Local Average Treatment Effect Scenarios

Instrument (Z;): Eligibility | Treatment | Outcome | Cost of Eligibility Cost of
or Encouragement W) Y;) or Encouragement (cy) | Delivery (cz)
Recruit to trial Drug use Health Outreach, advertising, Direct cost
enrollment, incentive of treatment
Eligibility for program Enrollment | Health, Government limits Cost of care
Financial | Advertise/outreach
Behavioral nudge Behavior Health Advertise/outreach Incentive

Table A2—: Instruments, Treatments, Outcomes, and Costs

A.2. UNOBSERVED HETEROGENEITY WHEN TARGETING TREATMENT

This section expands the discussion of unobserved heterogeneity from Section IIA. If we allow
for unobserved heterogeneity conditional on X;, the rule ranking by estimated CLATE r¢;, will no
longer be optimal. The literature has considered a variety of approaches to decision rules when there
is unobserved heterogeneityﬂ In this paper, we take a different approach. In particular, we evaluate
the effectiveness of this policy out of sample, where in the presence of unobserved heterogeneity,

Notably, Manski| (2011), recognizing that the average benefit of delivering the treatment to a subpopulation is only partially
identified, suggests maximin or minimax regret rules.



we need to be careful to interpret the evaluation results carefully in the presence of unobserved het-
erogeneity. For example, if we let #(-; 7cz) be a ranking that ranks according to estimated CLATE
in a “training” dataset, and we select r{;; as in (2), we can use a held-out “test” set to evaluate the
LATE within the set of individuals S¢y, defined as S¢;, = {i: #(Xi;7cr) > rg, }. This subgroup LATE
would tell us the average effect on health for those who were induced to accept the treatment as a
result of being assigned the treatment in the context of the historical data. If there is little unob-
served heterogeneity after adjusting for covariates in the estimation of the LATE for this subgroup,
this estimate would be informative about the benefits of the group receiving treatment. If there is un-
observed heterogeneity, such an estimate would not necessarily be equal to the treatment effect if all
individuals in that group actually received the treatment, an issue that has been extensively discussed
in the literature. In particular, the set assigned to have the treatment will include three (unobserved)
compliance types: the always-takers (W;(0) = W;(1) = 1), the never-takers (W;(0) = W;(1) = 0), and
the compliers (W;(0) = 0,W;(1) = 1). The LATE is the ATE for the compliers.

An initial observation is that the use of a rich set of covariates and flexible estimation methods may
reduce the magnitude of unobserved heterogeneity. As discussed in Supplementary Appendix A.4,
machine learning methods such as Generalized Random Forests (GRF) can be used to estimate this
heterogeneity, although in this paper due to limited sample size we stick to relatively simple models
when evaluating the benefits of policies.

In order to reason about the impact of a policy delivering a treatment to the set S¢y, we need to
consider whether the always-takers would continue to have access to the treatment (as they did in the
historical data) under the counterfactual policy under consideration. That is, does the policy simply
ensure that everyone in Scy, receives the treatment, but not take it away from anyone? Or does the
policy also ensure that no one outside of S¢y, receives the treatment? Consider first the former case,
where the always-takers would receive the treatment anyway in the absence of the intervention, and
so the effect on that group would be zero. If the cost is borne by the decision-maker irrespective
of how the always-takers get the treatment, there is also no incremental cost. But the defiers still
remain, and the effect on that group is not identified. Then, there are various approaches to drawing
conclusions based on the LATE. One approach, taken by Manski| (2011)), is to use minimax bounds.
Another approach is to assume that the defiers benefit from the treatment in a manner similar to the
compliers, conditional on covariates. Now consider the case where the decision-maker can determine
who receives the treatment and who does not entirely, so that the decision about assigning treatment
to a group incorporates the impact of assigning treatment to the always-takers. The approaches
are similar to the defiers, given that the effect on that group is not identified from the historical
data. Approaches include either using bounds approach or making an assumption about the treatment
effect for that group. Sensitivity analysis may also be carried out, where for example the analyst
considers the impact of removing observable covariates that are hypothesized to have effects similar
in magnitude to potential unobservables.

A.3. OPEN CHALLENGES FOR ESTIMATION

A large and growing literature focuses on estimating treatment effect heterogeneity in randomized
experiments and in observational studies under unconfoundedness (see Wager (2025) for a recent
review), but there have been relatively fewer papers that have studied instrumental variables. One
method, based on the GRF method (Athey, Tibshirani and Wager,|2019), applies to the IV setting, and
software is available for IV case. However, several special issues arise with instrumental variables,
leading to open questions that have not been fully resolved in the literature.

Many challenges arise because the CLATE is a ratio, which implies that variability in the denom-
inator (the compliance CATE) can play an outsize role as the compliance CATE gets small. When
selecting a functional form for 7y and Ty, questions arise about how to best regularize those functions
in light of how they will be used. One particular challenge is that it may be that the signal-to-noise
ratio is much stronger for one or the other of the two functions, which might lead to a spurious finding
of heterogeneity in 7¢;, even if in fact 7y (X;) and 7y (X;) are perfectly correlated, so that their ratio is
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constant.

Another question is whether 7y and T should be based on the same covariates X, including non-
linear functions of them. In the case of an algorithm like generalized random forest or kernel regres-
sions, the estimates at a value X; = x are constructed as weighted averages of outcomes for nearby
observations (see Supplementary Appendix A.4 for details). Should the weights on nearby observa-
tions be the same for both of the functions, so that there is an apples-to-apples comparison between
the numerator and denominator, or should the weighting functions be estimated separately? The grf
algorithm uses the same weightings, but alternatives are possible. One advantage of using the same
weightings arises if the signal-to-noise ratio is different for the two terms, but there is in fact a com-
mon underlying structure in how covariates affect both. Then, there can be an increase in efficiency
by imposing the same weighting scheme.

Another issue is the objective function for estimating data-driven weights. In grf, the weights are
selected so that observations with similar CLATEs will be weighted more highly. Two observations
can have similar CLATES, but very different compliance CATES. An open question is whether in
small samples, would it be better for weightings also consider how similar observations are in each
of 7y and Ty separately?

A final open question concerns finding useful approaches to use estimated heterogeneity to provide
insight about the mechanisms underlying heterogeneous treatment effects. Beyond the approaches
that have been developed for the analysis of CATEs. In the case of IV this may entail describing
covariates that drive either positive or negative correlation between Ty (X;) and 7w (X;). Now con-
sider issues that arise in the estimation of optimal policies. So far, we have described prioritization
functions r without placing any restrictions on the complexity of the function. In some settings, the
decision-maker may have a preference for simple policies, such as shallow decision trees (see Sup-
plementary Appendix A.4 for further discussion). In other settings, estimates of 7¢y, Ty or Ty may
be noisy. |Athey and Wager| (2021]) shows that variance of an estimated optimal policy increases in
the complexity of the set of policies considered. Simpler policy classes can be viewed as a form of
regularization.

The PolicyTree software can be used estimate shallow decision trees. The methods proposed in
Athey and Wager| (2021) can be applied directly to the case where the goal is to prioritize those
with the highest ¢y or the highest 7y. The ranking rules defined above can be incorporated with
straightforward extensions of the theory, as outlined in Supplementary Appendix A.4.

A.4. TECHNICAL DETAILS FOR ESTIMATION

This section outlines the technical details for the methods applied in the empirical analysis. The
paper makes use of the grf software package available on CRAN athttps://grf-labs.github.
io/grf/reference/index.html.

The grf software package by default produces out-of-bag, “honest” estimates. That is, for each
i, the estimate is denoted %_;)(X;), where the subscript (—i) indicates that the estimate is does not
make use of the outcome data for unit i.

T W a7 Za(x)
@y L) = o ) Ws— W) (Z — Za ()

Yo (x) = i{oq(x)Y,-, Za(x) = ia,-(x)z,-, Wo(x) = i‘iai(x)W,-

The determination of the weights is described in |Athey, Tibshirani and Wager (2019). A random
forest is a collection of “trees,” where each tree is a partition of the covariate space and is estimated
on a subsample of the data. The divisions in a tree are determined by recursive partitioning designed
to maximize heterogeneity in the treatment effect. The objective function is tailored to the particular
nature of the problem, e.g. estimating an ITT or IV. Roughly, an observation i is weighted more
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highly when predicting at x when it is more likely to be in the same partition of the data in the “trees”
of the forest.

One thing to observe in is that the weights are the same for the numerator and the denominator,
so that is not the same as separately estimating the numerator and denominator with grf. The
latter choice would weight observations so as to maximize heterogeneity in each CATE separately.
As discussed in Supplementary Appendix A.3, it is an open question as to whether there are any
drawbacks to that choice.

When evaluating and estimating policies, we follow the approaches of |Athey and Wager| (2021);
Yadlowsky et al.[|(2024). The first step is to define the individual-level doubly robust “scores” used
in evaluation. We let I'; be the sum of %¢7(x) and an adjustment that depends on (¥;,W;,X;); it is
designed so that, when treatment effects are homogenous, the average of I'; is an estimate of the
LATE (adjusted for covariates).

Formally, following |Athey and Wager (2021), Equation (44):

(D2) £ — 257 (60 4276, 70) (Y= PV (x) — (W= e (x)) 2 (%) )
where:
(D3) o0 () =pr Y [W,- =1]X = x} L 20 = [z,- —1|X= x] ,

1 Z;— 20 (X))
(D4) 8_i (Xi,Z,-) = - C ——
= £ (x) 20 () (1= 200 (x))).

For the case with a purely randomized experiment with equal assignment probabilities, the latter
simplifies to:

4 .
(D3) 89X, Z) = = (Zi =27 (X))
Tw (Xl)

We now turn to define the scores used to evaluate targeting with an ATE evaluation approach, as is
used for the ITT and the compliance ATE with Z; as the treatment indicator. In the special case of the
randomized experiment with equal assignment probabilities, we define (following |Athey and Wager
(2021), Equation (41)):

(D6) P4 = 2070(x,) +4(z— .5) (Yi PN — (Zi— 5) -2 (Xl-)>,
(D7) B =8, )+ 4z - 5) (Wi— W (x) - (Z - 5) -8, ) (%),

The next step is to use the scores in estimating the value of the TOC at a particular point g. Defining
the TOC using an arbitrary treatment effect function 7 to facilitate comparisons across the different
treatment effects we study, we have:

TOC(¢;7,r) = E[7(X;)|r(X;) > 1 —q] — E[t(X;)].

For any given ranking function r, we estimate this value by averaging the doubly robust scores
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associated with the outcome Y, where the first term restricts the average to the relevant subgroup
defined by r. See |Yadlowsky et al|(2024)) for details. We use the doubly robust scores associated
the the LATE or the ATE as appropriate for the relevant question (recalling that under the condi-
tional homogeneity assumption, Zcz (x) is an estimate of E[Y;(1) — ¥;(0)|X; = x]). Specifically, we let
"ﬁ)\C(q; Tcr,r) denote an estimate of the TOC(g; T, r) that is estimated using averages of ['~. For
the ITT and coverage ATE case, the role of the treatment in the TOC is played by the instrument, Z.
We let 1@\C(q; Ty, r) denote an estimate of TOC(qg; Ty, r), estimated using averages of f‘f‘Y We let
T/O\C(q; Tw,r) denote an estimate of the TOC(g; Tw,r), estimated using averages of f‘?w Finally,
we let T/O\C(q; Yep(-;ew),r) be the TOC for the Eligibility Decision Problem outcome. There are
multiple ways to estimate this, for example we could use averages of f‘;“/ — ch‘?’W; but instead, we
create a new outcome Y; — cyW; for each value of cy, and use grf to estimate treatment effects on
this outcome. We then treat this as if it was a distinct outcome and estimate the TOC following the
approach outlined for ¥;.

The area under the TOC curve is an average of the TOC at different values of g. This av-
erage can be weighted in different ways (see [Yadlowsky et al.| (2024)); here, we use equal
weights. Following the discussion in the grf package documentation as outline in this vignette
https://grf-labs.github.io/grf/articles/rate_cv.html, we use all of the data in es-
timating the TOC curve and rely on the honest and out-of-bag estimation approach. The dis-
cussion in the documentation suggests that when we estimate the AUTOC in this way, it is ap-
propriate to use a one-sided hypothesis test of whether the AUTOC is positive when evaluating
AUTOC. We use the rank_average_treatment_effect.fit function with the AUTOC option
for weighting to evaluate the AUTOC. The package uses bootstrapping to produce confidence in-
tervals. See https://grf-labs.github.io/grf/reference/rank_average_treatment_
effect.fit.htmlfor details.

Finally, we observe that the approach of |Athey and Wager| (2021)) can be used to estimate simple,
tree-based policies in settings where complex, nonlinear policies are either ruled out by the decision-
maker, or result in over-fitting due to noise. In the latter case, simpler policies can sometimes perform
better out of sample, as the restriction to simple policies can be viewed as a form of regularization.
In addition, |/Athey and Wager|(2021)) shows that the complexity of the allowed policy class increases
the variance of the estimated policy, so that there is a type of bias-variance tradeoff in restricting the
policy class. The policyTree software (see https://grf-labs.github.io/policytree/)
implements estimation of shallow decision trees for both IV and for ITT analyses. In particular,
estimated policies make use of the relevant scores defined above, solving the following equation
(where m : 2" — {0, 1} and IT is the relevant policy class, such as depth-3 decision trees):

nell | n!

1 .
(D8) # = argmax { =Y (2n(X;) - 1)r,-} .
i=1
A.5. DATA

In the empirical application, we used data from the Oregon Health Insurance Experiment (OHIE).
The OHIE leveraged the random assignment of Medicaid access through a lottery in 2008 to unin-
sured, physically able, low-income adults in Oregon. Individuals who were selected by the lottery
received the opportunity for themselves and any household member to apply for Medicaid. In-person
interviews were conducted 1-2 years after the lottery began, from September 2009 to December 2010.
The questionnaire included healthcare utilization, financial hardship, and physical health status. The
OHIE received approval from several institutional review boards, and all participants provided writ-
ten consent at the interviews. It is registered in the American Economic Association’s registry for
randomized controlled trials (registration number: AEARCTR-0000028). Out of 12,229 respondents
(73% response rate), we excluded those missing data on treatment, age, sex, race, and education, as
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Figure F1. : Targeting Operator Characteristic Curve for Compliance.

Note: The figure plots ”ﬁ)\C(q;rW,r(-;i'W)) as g varies. Outcome: Compliance (W;); Treatment: Eligibility (Z;); Ranking rule:
r(';fw(xi)).

well as transgender individuals, resulting in a final sample size of 12,208 individuals.

To quantify the local average treatment effect of Medicaid coverage on medical debt, we used
whether an individual was randomly selected for access to Medicaid as an instrumental variable (Z;).
Medical debt was defined based on responses to the question during the in-person survey: “Do you
currently owe money to a health care provider, credit card company, or any other entity for medical
expenses?”

We extracted the following pre-treatment variables (X;): age, sex, racial and ethnic background
(Hispanic, non-Hispanic Black, non-Hispanic White, others such as Asians, Native Hawaiian or Pa-
cific Islander, and other races), education levels (less than high school, high school or General Ed-
ucational Development, college or above), medical conditions (hypertension, diabetes, high choles-
terol, asthma, heart attack, congestive heart failure, empyema/chronic obstructive pulmonary disease,
kidney failure, cancer, and depression), total and emergency department healthcare expenditures, fre-
quency of emergency department visits, and emergency department visits for mood disorders prior
to randomization. Additional details about the OHIE study design and covariates ascertainment are
available elsewhere (e.g. |Baicker et al.| (2013); |[Finkelstein et al. (2012)).

Before applying the estimation approaches described below, we applied the R random forest pack-
age missRanger to impute missing baseline data.

A.6. EMPIRICAL ANALYSIS DETAILS, FIGURES AND TABLES

This section presents the TOC curves for various combinations of outcomes and ranking functions.
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Figure F2. : LATE TOC for Outcome=No Debt, Ranked by CLATE.

Note: The figure plots ﬂ)\C(‘I; Ter,r(+;Ter)) as g varies. Outcome: No debt (Y;); Treatment: Enrollment (W;); Instrument: Eligibility
(Z;); Ranking rule: r(-;%cL(X;)).
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Figure F3. : LATE TOC for Outcome=No Debt, Ranked by Compliance CATE.

Note: The figure plots TOC(g; 7c, (- 3w )) as g varies. Outcome: No debt (Y;); Treatment: Enrollment (W;); Instrument: Eligibility
(Z;); Ranking rule: r(-; 3w (X;)).



AUTOC: 0.0068, SE: 0.0091
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Figure F4. : ATE TOC for Outcome=No Debt, Ranked by CATE.

Note: The figure plots ﬁ)\C(q; Ty,r(-;%y)) as ¢ varies. Outcome: No Debt (¥;); Treatment: Eligibility (Z;); Ranking rule: r(-; 2y (X;)).

AUTOC: 0.0196, SE: 0.0092
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Figure F5. : ATE TOC for Outcome=No Debt, Ranked by Compliance CATE.

Note: The figure plots T/O\C(q; Ty, r(-;%w)) as ¢ varies. Outcome: No Debt (¥;); Treatment: Eligibility (Z;); Ranking rule: r(-; Tw (X;)).



AUTOC: 0.0191, SE: 0.0091
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(a) cw =0.0625

AUTOC: 0.0181, SE: 0.0092
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Figure F6. : LATE TOC for Outcome=No Debt, Ranked by Compliance CATE Varying cy .

Note: The figure plots T/O\C(q;Q/ED(-;CW)7 r(-;%w)) for varying values of cy. Outcome: Eligibility Decision Problem Outcome (¥; —

cwW;); Treatment: Eligibility (Z;); Ranking rule: r(-; Ty (X;)).
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