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A Partial Equilibrium New Keynesian Pricing Problem

A.1 Model

Firms face nominal rigidities a la Calvo: they cannot reset the price with probability α ∈ (0, 1)

each period. Every firm seeks to maximize the present discounted value of real profits, i.e.,

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt,t+h

(
P ∗
jt

Pt+h

yj,t+h −mct+hyj,t+h

)
(A.1)

where Qt is a generic stochastic discount factor; P ∗
jt is the optimal price set by the jth firm; Pt

is the aggregate price level; yjt is the demand for the jth firm’s good; mct is the marginal cost;

β ∈ (0, 1) is a deterministic discount factor. The demand each firm faces and the aggregate price

level are given by

yjt =

(
P ∗
jt

Pt

)−ζ

yt Pt =

[∫ 1

j=0

P 1−ζ
jt

] 1
ζ−1

(A.2)

where ζ > 1 is the elasticity of substitution among the differentiated goods. Substituting for yj,t+h

into (A.1), we have

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt,t+h

((
P ∗
jt

Pt+h

)1−ζ

−
(
P ∗
jt

Pt+h

)−ζ

mct+h

)
yt+h (A.3)

The first-order condition with respect to P ∗
jt is

P ∗
jt

Pt

=
ζ

ζ − 1

Ẽjt

∑∞
h=0(αβ)

hQt,t+hyt+hmct+hπ
ζ
t,t+h

Ẽjt

∑∞
h=0(αβ)

hQt,t+hyt+hπ
ζ−1
t,t+h

(A.4)

∗The views expressed herein are those of the author and do not necessarily represent the views of the Federal
Reserve Bank of Cleveland or the Federal Reserve System.
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where πt,t+h = Pt+h

Pt
=
∏h

l=0 πt+l. Due to Calvo pricing, the aggregate price level in (A.2) can be

rewritten as

Pt =
[
αP 1−ζ

t−1 + (1− α)(P ∗
t )

1−ζ
] 1

ζ−1 (A.5)

Assume that the steady state for inflation is π̄ = 1. From (A.5), we have that in the steady

state, P ∗/P = 1. Then, from the optimality condition in (A.4) it follows that in the steady-state

equilibrium m̄c = ζ−1
ζ

. Log-linearizing the first-order condition around steady-state values and

dropping the subscript j, since every firm has the same optimality condition, we have

p̂∗t = Ẽt

∞∑
h=0

(αβ)h ((1− αβ)m̂ct+h + αβπ̂t+h+1) (A.6)

where p̂∗t = log(P ∗
t /Pt) and π̂t+1 = log(Pt+1/Pt) is inflation in period (t+ 1).

A.2 Convergence

Following Hommes and Zhu (2014), stability under SAC learning is determined by the associated

Ordinary Differential Equations:

dδ

dτ
= δ

(
βn(1− α)/(1− αβn)− b

1− b
− 1

)
dγ

dτ
= F (γ)− γ =

b+ ρ

1 + bρ
− γ

(A.7)

For convergence, we need ∂ dδ
dτ

∂δ
|γ∗< 0 and ∂ dγ

dτ

∂γ
|γ∗< 0. The first inequality holds true if and only

if βn(1 − α)/(1 − αβn) < 1, which is true for any parameterization of the model. The second

inequality is true if and only if F ′(γ)|γ∗< 1. We know that F is increasing in γ, that it intersects

the 45° line once for γ ∈ (0, 1), and that F (0) = ρ ≥ 0 and F (1) < 1. From the proof of Proposition

1 in Section D.1, we know that F is convex when it crosses 45° line, implying that F ′(γ)|γ∗< 1.

As a result, the second inequality is also true for any parameterization.

A.3 Relaxing Consistent Expectations Equilibrium

In this section, I relax the assumption of CE equilibrium and re-evaluate the parametric space

for which the three facts of forecast errors are matched. The structure of the ALM remains

as it is in the main text, with the difference that now 0 ≤ γ < 1 is a free parameter. The

delayed over-shooting condition of Proposition 2 does not depend on whether the CE equilibrium

concept is imposed, therefore, for late over-shooting to occur nhγh+1 > max(bh+1, ρh+1) has to

hold. The CE equilibrium constrains γ∗, therefore, assuming instead that γ is a free parameter

would widen the range of myopia for which delayed over-shooting occurs. Clearly, in the case of no
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myopia, imposing the CE equilibrium implies that one should have γ > max(b, ρ). Along the CE

equilibrium, γ∗ > max(ρ, b) always holds. Thus, in the case of no myopia, whether one imposes

or not a CE equilibrium is not relevant for the occurrence of delayed over-shooting.

Figure 1: Regions of delayed over-shooting, under-reaction to ex-ante forecast revisions, and over-reaction to current realizations in the
(n, γ) parametric space. The dashed blue curve plots γ = γ∗, whereas the red dashed curve plots γ = n−h/h+1 max(b, ρ). Forecasting
horizon: h = 4. The area for which n < 0.6 is truncated for better visibility, but it is a region of no late over-shooting and characterized
by K4 > 0, M4 > 0. Parameterization: α = 0.5, β = 0.99, σε = 1.

The results of Proposition 3 remain similar, with the difference that γ∗ would be substituted

with γ in the expressions for K+
h , K−

h , M+
h , and M−

h . The condition for Kh > 0 and Mh < 0

absent of myopia in Corollary 2 becomes

γ < γh+1 < γ̄ (A.8)

with γ is as defined in Corollary 2 and γ̄ changes to γ̄ = bh+1 + ρ(1− b2)(1− ργ) ρh+1−bh+1

(ρ−b)(1+ρb−γ(b+ρ))
.

Since an equilibrium condition is not imposed on γ, the parametric space that would be consistent

with Kh > 0 and Mh < 0 would generally widen, all else equal.

Figure 1 here plots the parametric space of the free behavioral parameters (n, γ) for which

different facts are matched, for ρ = 0.6. The blue dashed curve plots γ = γ∗ whereas the red

dashed curve plots a threshold below which there is no delayed over-shooting. Now, imagine

slicing Figure 1 in the main text at ρ = 0.6: one would get K4,M4 > 0 for some degree of myopia
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Figure 2: Panels (a) and (b): regions of delayed over-shooting, under-reaction to ex-ante forecast revisions, and over-reaction to current
realizations in the (ρ, γ) parametric space with α = 0.5 and h = 4. Panels (c) and (d): regions of delayed over-shooting, under-reaction
to ex-ante forecast revisions, and over-reaction to current realizations in the (α, γ) parametric space with n = 1 and ρ = 0.6. The
dashed blue curve plots γ = γ∗, whereas the red dashed curve plots γ = max(b, ρ). The rest of parameters are set as in Figure 1.

and as myopia vanishes, that is, as n approaches 1, K4 > 0,M4 < 0. This is consistent with what

Figure 1 visualizes along the blue curve. What is important to note, however, is that for sufficiently

low myopia, one can match all three empirical facts about forecast errors if γ is sufficiently close

to γ∗, but it does not have to be exactly equal to γ∗.

Similarly, Figure 2 visualizes the results in the parametric space of (ρ, γ) for n = 1 in panel

(a) and n = 0.95 in panel (b); whereas panels (c) and (d) visualize the results in the parametric

space of (α, γ) absent of myopia for different forecast horizons. The blue and red dashed curves

plot γ = γ∗ and γ = max(b, ρ), respectively. Panel (a) shows that, absent of myopia, the three

facts can be matched for almost any value of ρ as long as γ is high enough. Panel (a) shows that a

CE equilibrium can constrain the parametric space for which under-reaction to forecast revisions

and over-reaction to current realizations occur. For example, for ρ < 0.5, γ∗ is much lower than

the values of unconstrained γ that are necessary to match the empirical facts. On the other hand,

as myopia increases (panel (b)), the limitations of the parametric space that would match the
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empirical facts are less severe. Finally, panels (c) and (d) similarly show that not imposing a

CE equilibrium would widen the range of price stickiness for which the three empirical facts are

matched. In general, panels (a) and (d) highlight that both CE equilibrium and myopia can shrink

the parametric space for which the three empirical facts are matched. However, it is important to

emphasize that even when γ is considered a “free” parameter, it has to be somewhat close to values

implied by the CE equilibrium for the expectations formation process to match the evidence on

forecast errors.

A.4 Infinite Horizon Optimal Rules

In this section, I analyze whether the infinite horizon (IH) structure of the optimal decision rules

matters for the forecasting error results and how. Recall that the ALM for inflation is currently

given by π̂t = am̂ct + bπ̂t−1, where a = κ
1−αβρn

and b = βn(1−α)
1−αβnγ∗ (γ

∗)2. Without IH, the structure of

the ALM remains intact but parameters a and b change to ā and b̄, respectively, that is,

π̂t = ām̂ct + b̄π̂t−1 (A.9)

where ā = κ and b̄ = βn(γ∗)2. Following the proof of Proposition 1, one can easily show that when

IH is relaxed, an equilibrium γ∗ always exists and it is unique. Moreover, I note that b̄ > b, which

in turn implies that the equilibrium persistence of inflation would be higher when IH optimal rules

are relaxed. When IH is relaxed, however, it is not possible to study the effects that a change in

the price stickiness would have on the equilibrium persistence of inflation. The effects of myopia

on γ∗ would be the same as in the case of IH (see Corollary 1).

The implications of relaxing IH would be similar to the ones arising from decreasing price

stickiness examined in Figure 2 in the main text. Specifically, with higher γ∗ the region (in the

(n, ρ) parametric space) where K4 > 0 and M4 < 0 would shift downwards.

Figure 3 compares the regions of delayed over-shooting, over-reaction to current realizations,

and under-reaction to forecast revisions when IH is imposed versus not. First, relative to IH, the

area of delayed over-shooting expands to accommodate more myopia. Second, compared with IH,

the region of parameters for which there is under-reaction to forecast revisions and over-reaction

to current realizations shifts downward.

A.5 Information Set Timing

The assumption is that firms do not observe inflation at the time of forecast, therefore, forecasts

about inflation are based on inflation in period t − 1. In this section, I discuss the implications
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Figure 3: Regions of delayed over-shooting, under-reaction to ex-ante forecast revisions, and over-reaction to current realizations.
Infinite horizon: delayed over-shooting holds to the right of the red curve; under-reaction to ex-ante forecast revisions and over-reaction
to current realizations hold in the white and medium dark gray regions. No infinite horizon: delayed over-shooting occurs to the right
of the blue curve; under-reaction to ex-ante forecast revisions and over-reaction to current realizations occur in the white and light gray
regions. Parameterization is as in Figure 1.

that lifting this timing assumption has for Propositions 1-3. To keep things simple, I abstract

from myopia.

In the particular New Keynesian pricing model considered in Section 2 in the main text, t− 1

timing matters for Propositions 1-3. In absence of other shocks or lags of inflation in the optimal

pricing rule, having inflation expectations depending on inflation in t implies that the actual law of

motion for inflation would depend only on the marginal cost. Along the CE equilibrium, γ∗ = ρ,

and therefore, the CE equilibrium coincides with the RE one. However, that is only due to not

accounting for other frictions, such as indexation to past inflation.

To see this, let’s consider the optimal pricing rule when there is indexation to past inflation as

assumed in the general equilibrium model:

p̂∗jt = Ẽjt

∞∑
h=0

(αβ)h [(1− αβ)m̂cj,t+h + αβ(π̂t+h+1 − ρππ̂t+h−1)] (A.10)

where p̂∗jt = α
1−α

(π̂t − ρππ̂t−1).1 Assuming that the marginal cost is exogenously given, that

expectations are formed based on inflation in period t, and abstracting from myopia for simplicity,

the actual law of motion can be written as

π̂t = am̂ct + bπ̂t−1 (A.11)

where a = κ(1−αβγ)
(1−αβρ)((1−αβγ)−β(1−α)(γ−ρπαβ))

and b = βρπ(1−αβγ)
(1−αβγ)−β(1−α)(γ−ρπαβ)

. A CE equilibrium occurs

when γ = F (γ) = b+ρ
1+bρ

and, following the result of Proposition 2 in Hommes and Zhu (2014), the

equilibrium is unique.
1See derivations in Section C.

6



Along the CE equilibrium, γ∗ = (b+ ρ)/(1+ bρ). Then, it is relatively straightforward to show

that the following conditions need to be satisfied for delayed over-shooting and simultaneous over-

and under-reaction in forecast errors:

• Late over-shooting: max(ρh, bh) < γh < (bh+1 − ρh+1)/(b− ρ)

• Under-reaction to revisions and over-reaction to current inflation: C(h)
C(0)

< γh < C(h)−γC(h+1)
C(0)−γC(1)

where C(h) = E(π̂t+hπ̂t). Figure 4 visualizes the parametric space (ρ, γ) for which the three

empirical facts are matched, together with the γ along the CE equilibrium. The figure clearly

shows that forming forecasts based on information in period t can match the three empirical facts.

Figure 4: Regions of delayed over-shooting, under-reaction to ex-ante forecast revisions, and over-reaction to current realizations.
Region within the red borders: delayed over-shooting; white region: K4 > 0 and M4 < 0; dark gray region: K4 > 0 and M4 > 0. The
dashed blue curve indicates γ = γ∗. I set ρπ = 0.5 and n = 1. The rest of parameters are set as in Figure 1.

B AR(1) Forecasting Rules and Delayed Over-shooting

This section discusses the conditions that need to be satisfied in order for AR(1) forecasting rules

to generate delayed over-shooting. While delayed over-shooting can occur with more sophisticated

PLMs as well, AR(1) processes are relatively easier to work with and deliver the desired outcome

in terms of late over-shooting. To fix ideas, consider a general actual law of motion for the vector

of endogenous variables St:

St = C +ASt−1 +BEt (B.1)
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where A is a matrix with eigenvalues within the unit circle with at least one positive eigenvalue.

Further, let the PLM about variable Sit ∈ St be described by

Sit = δ + γ(Si,t−1 − δ) + ψt, ψt ∼ WN (B.2)

where γ ∈ [0, 1). Provided that the response of Si,t+k to some innovation εjt in Et does not switch

sign for any k, Proposition 1 shows that γ exceeding the largest eigenvalue of A is a sufficient

condition for forecasters to over-react with a delay.

Proposition 1 Consider the actual law of motion in (B.1) and the PLM for some variable Sit

in St in (B.2). Suppose that the sign of the response of Si,t+k to some innovation εjt in Et is

preserved for any k ≥ 1. Then, γ being higher than the largest eigenvalue of A guarantees delayed

over-shooting in the response of the h-period ahead forecast errors of Si.

Proof. See Section D.7.

For example, suppose that the actual law of motion is an AR(2) process with parameters

0 < ρ1, ρ2 < 1, A =

[
ρ1 ρ2
1 0

]
. The largest eigenvalue of A is ρ1+

√
ρ21+4ρ2

2
. It follows from

Proposition 1 that γ > ρ1+
√

ρ21+4ρ2

2
is sufficient to have delayed over-shooting.

C DSGE Model

C.1 Non-linear Model

Households. There is a continuum of identical households, i ∈ [0, 1], that consume from a set of

differentiated goods, supply labor, and invest in riskless one-period bonds. First, households solve

for the optimal allocation of consumption across differentiated goods, produced by monopolistically

competitive firms j ∈ [0, 1], i.e.,

min
cit(j)

∫ 1

j=0

Pjtcit(j)dj

s.t.

cit =

[∫ 1

j=0

cit(j)
ζ−1
ζ dj

] ζ
ζ−1

(C.1)

and

Pt =

[∫ 1

j=0

P 1−ζ
jt

] 1
1−ζ

(C.2)

where ζ is the elasticity of substitution among the differentiated goods. The corresponding La-

grangian is

Lit = min
cit(j)

∫ 1

j=0

Pjtcit(j)dj + χit

cit − [∫ 1

j=0

(cit(j))
ζ−1
ζ dj

] ζ
ζ−1


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where χit is the Lagrangian multiplier for the Dixit-Stiglitz consumption aggregator in (C.1). The

first-order condition is

cit(j) =

(
χit

Pjt

)ζ

cit (C.3)

Plugging the expression for cit(j) above into (C.1) and rearranging terms,

χit =

[∫ 1

j=0

P 1−ζ
jt dj

] 1
1−ζ

This implies further that

cit(j) =

(
Pjt

Pt

)−ζ

cit (C.4)

Equation (C.4) defines the optimal demand of the ith household for the jth good. The intertemporal

problem for the household is to

max
cit,Hit,Bit

Ẽit

∞∑
h=0

βh

(
ln(ci,t+h − ηci,t+h−1)− ψ

H1+φ
i,t+h

1 + φ

)

with budget constraint satisfying

ξt−1Rt−1Bi,t−1 = Bit −WtHit −
∫ 1

j=0

Dit(j)dj +

∫ 1

j=0

Pjtcit(j)dj

where Hit is labor supply; Rt−1 gross return on nominal bond choice, Bi,t−1; Wt nominal wage;

Dit(j) nominal dividends from the jth firm; and ξt−1 is a shock to the return on bonds. House-

holds internalize their optimal demand for good j into their intertemporal maximization problem,

therefore ∫ 1

j=0

Pjtcit(j)dj = Ptcit

The budget constraint can be rewritten in real terms as

ξt−1Rt−1
bi,t−1

πt
= bit − wtHit − dit + cit (C.5)

where wt = Wt/Pt is the real wage; bit = Bit/Pt denotes real bond holdings; and dit = Dit/Pt with∫ 1

j=0
Dit(j)dj = Dit denotes and real dividends. The first-order conditions (FOC) with respect to

consumption, bonds, and hours, respectively, are

(cit − ηci,t−1)
−1 − βηẼit(ci,t+1 − ηcit)

−1 = λit (C.6)

λit = βẼitRt
λi,t+1

πt+1

ξt (C.7)

ψHφ
it = λitwt (C.8)

where wt =
Wt

Pt
is the real wage.
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Firms. There is a continuum of household-owned monopolistically competitive firms, j ∈ [0, 1],

that optimize with respect to price and labor demand. The production technology of each firm is

yjt = Zth
ah
jt (C.9)

where Zt and hjt are a technology shock and labor demand, respectively, and 0 < ah ≤ 1. The

technology shock, Zt, has a deterministic growth rate Υ > 1 and can be written as Zt = ztΥ
t,

where zt follows a stationary process.

The price optimization problem is subject to Calvo price stickiness as in Section A.1. Differently

from Section A.1, if firms cannot optimize the price they can still adjust prices according to

Pj,t+h = Pj,t+h−1(πt+h−1)
ρπ = Pjt

(
Pt+h−1

Pt−1

)ρπ

(C.10)

where 0 ≤ ρπ < 1. Given the price aggregator in (C.2) and the nominal rigidities firms face, we

have

Pt =

[
α

(
Pt−1

(
Pt−1

Pt−2

)ρπ)1−ζ

+ (1− α)(P ∗
t )

1−ζ

] 1
1−ζ

(C.11)

Each firm chooses the optimal price that will maximize the present discounted value of real profits

such that the demand for its good is satisfied, and then hire the optimal amount of labor hours

that will minimize production costs. Using backward induction, I solve the cost minimization

problem first,

Ljt = min
hjt

wthjt +mcjt(yjt − Zth
ah
jt ) (C.12)

where mcjt is the real marginal cost of production. The FOC with respect to labor reads

mcjt =
wt

ahZth
ah−1
jt

(C.13)

The intermediate firms’ problem is

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt,t+h

(
P ∗
jt

Pt+h

(
Pt+h−1

Pt−1

)ρπ

yj,t+h − wt+hhj,t+h

)
(C.14)

where Qt,t+h = λt+h

λt
denotes the stochastic discount factor. Aggregating cit(j) across households

in (C.3), we have that the demand faced by the jth firm in period (t+ h) is

yj,t+h =

(
P ∗
jt

Pt+h

)−ζ

yt+h (C.15)

Substituting for yj,t+h and wt+h, the pricing problem becomes

max
P ∗
jt

Ẽjt

∞∑
h=0

(αβ)hQt,t+hyt+h

((
P ∗
jt

Pt+h

)1−ζ (
Pt+h−1

Pt−1

)ρπ(1−ζ)

− ahmcj,t+h

(
P ∗
jt

Pt+h

)−ζ (
Pt+h−1

Pt−1

)−ρπζ
)

(C.16)
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The first-order condition with respect to P ∗
jt reads

Ẽjt

∞∑
h=0

(αβ)hQt,t+hπ
−ρπζ
t−1,t+h−1P

ζ−1
t+h yt+h

(
ahζmcj,t+hPt+h − (ζ − 1)P ∗

jtπ
ρπ
t−1,t+h−1

)
= 0 (C.17)

Monetary Policy. The central bank controls nominal interest rates through a Taylor rule that

reacts to inflation and output gap deviations from their steady-state values, with some interest

rate smoothing, i.e.,

Rt

R̄
=

(
Rt−1

R̄

)ρr (πt
π̄

)(1−ρr)ϕπ
(
yt/yt−1

Υ

)(1−ρr)ϕy

eσvεvt , εvt ∼ N (0, 1) (C.18)

where π̄ denotes the inflation target and ρr ∈ [0, 1).

Rescaling. In order to induce stationarity, output, consumption, wages, and bond holdings

are detrended using Υt, that is, ỹjt = yjt/Υ
t, ỹt = yt/Υ

t, c̃it = cit/Υ
t, w̃t = wt/Υ

t, b̃it = bit/Υ
t.

The Lagrange multipliers are rescaled as λ̃it = λitΥ
t and λ̃t = λtΥ

t. The stochastic discount factor

is re-written as Qt,t+h =
Q̃t,t+h

Υh where Q̃t,t+h = λ̃t+h

λ̃t
. The new system of equations is given by(

c̃it −
η

Υ
c̃i,t−1

)−1

− βη

Υ
Ẽit

(
c̃i,t+1 −

η

Υ
c̃it

)−1

= λ̃it (C.19)

λ̃it =
β

Υ
ẼitRt

λ̃i,t+1

πt+1

ξt (C.20)

ψHφ
it = λ̃itw̃t (C.21)

Rt−1b̃i,t−1

Υπt
= b̃it − w̃tHit − d̃it + c̃it (C.22)

mcjt =
w̃t

ahzth
ah−1
jt

(C.23)

ỹjt =

(
P ∗
jt

Pt

)−ζ

ỹt (C.24)

ỹjt = zth
ah
jt (C.25)

Ẽjt

∞∑
h=0

(αβ)hQ̃t,t+hπ
−ρπζ
t−1,t+h−1P

ζ−1
t+h ỹt+h

(
ahζmcj,t+hPt+h − (ζ − 1)P ∗

jtπ
ρπ
t−1,t+h−1

)
= 0 (C.26)

Rt

R̄
=

(
Rt−1

R̄

)ρr (πt
π̄

)(1−ρr)ϕπ
(

ỹt
ỹt−1

)(1−ρr)ϕy

eσvεvt , εvt ∼ N (0, 1) (C.27)

Steady-state Equilibrium. I calculate steady-state values, given ξ̄ = 1, z̄ = 1, v̄ = 1, and

π̄ = 1.

βR̄ = Υ (C.28)

λ̄ =
1− βη/Υ

c̄(1− η/Υ)
(C.29)
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w̄ =
ψ(1− η/Υ)

1− βη/Υ
H̄φc̄ (C.30)

d̄ = c̄− 1− β

β
b̄− w̄H̄ (C.31)

ȳ = h̄ah (C.32)

m̄c =
ζ − 1

ahζ
(C.33)

where b̄ = B̄
P̄

and d̄ = D̄
P̄

denote steady-state bond holdings and dividends in real terms.

C.2 Log-linearized Model

I now log-linearize the rescaled model around steady-state values, and denote log-linearized vari-

ables with a hat on top.

Households. Log-linearizing (C.19) and (C.20) around steady states generates

ĉcit = Ẽitĉci,t+1 −
(
1− βη

Υ

)
Ẽit(R̂t − π̂t+1 + ξ̂t) (C.34)

where ĉcit = ĉit − η
Υ
ĉi,t−1 − βη

Υ
Ẽit

(
ĉi,t+1 − η

Υ
ĉit
)
. One can make inferences about Ẽitĉci,t+1 by

iterating the Euler equation above, i.e.,

ĉci,t+1 = Ẽi,t+1ĉci,t+2 −
(
1− βη

Υ

)
Ẽi,t+1(R̂t+1 − π̂t+2 + ξ̂t+1)

So,

Ẽitĉci,t+1 = ẼitẼi,t+1ĉci,t+2 −
(
1− βη

Υ

)
ẼitẼi,t+1(R̂t+1 − π̂t+2 + ξ̂t+1)

= Ẽitĉci,t+2 −
(
1− βη

Υ

)
Ẽit(R̂t+1 − π̂t+2 + ξ̂t+1)

where the second equality is an application of the law of iterative expectations. Plugging expec-

tations into the log-linear individual Euler equation, we get

ĉcit = Ẽitĉci,t+2 −
(
1− βη

Υ

)
Ẽit

1∑
h=0

(R̂t+h − π̂t+h+1 + ξ̂t+h)

Similarly, the h-periods-ahead forwardly iterated Euler equation reads

ĉcit = Ẽitĉci,t+h −
(
1− βη

Υ

)
Ẽit

h−1∑
l=0

(R̂t+l − π̂t+l+1 + ξ̂t+l) (C.35)

It is worth noting that if households knew that everyone is subject to the same preference shocks,

and that they all have the same preferences over consumption and labor, then they would know

that in the infinite future, consumption is expected to be at its steady state, implying that
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limh→∞ Ẽitĉci,t+h = 0. This would further imply that households would use the one-step-ahead

Euler equation, as under RE. However, households have imperfect knowledge about the rest of

the population, and one needs to combine (C.35) with the infinitely forward iterated household’s

budget constraint in (C.22):

b̃i,t−1 =
Υπt
Rt−1

(̃bit − w̃tHit − w̃tHit + c̃it)

= Υ2Ẽit

[
πt,t+1

Rt−1,t

(
b̃i,t+1 −

1∑
h=0

(w̃t+hHi,t+h + d̃i,t+h − c̃i,t+h)

)]
= ...

= lim
h→∞

Ẽit

(
Υh+1πt,t+h+1

Rt−1,t+h

b̃i,t+h+1

)
− Ẽit

∞∑
h=0

Υh+1πt,t+h+1

Rt−1,t+h

(w̃t+hHi,t+h + d̃i,t+h − c̃i,t+h)

= Ẽit

∞∑
h=0

Υh+1πt,t+h+1

Rt−1,t+h

(c̃i,t+h − w̃t+hHi,t+h − d̃i,t+h)

where Rt−1,t+h =
∏t+h

l=t−1Rl and πt,t+h+1 =
∏t+h+1

l=t πl. To get the last equality I impose the

appropriate no-Ponzi constraint, i.e., limh→∞ Ẽit

(
Υh+1πt,t+h+1

Rt−1,t+h
b̃i,t+h+1

)
= 0. The log-linearized

version of the iterated budget constraint is:

b̄b̂i,t−1 = Ẽit

∞∑
h=0

Υh+1 π̄t,t+h+1

R̄t−1,t+h

c̄(π̂t,t+h+1 − R̂t−1,t+h + ĉi,t+h)

− Ẽit

∞∑
h=0

Υh+1 π̄t,t+h+1

R̄t−1,t+h

w̄H̄(π̂t,t+h+1 − R̂t−1,t+h + ŵt+h + Ĥi,t+h)

− Ẽit

∞∑
h=0

Υh+1 π̄t,t+h+1

R̄t−1,t+h

d̄(π̂t,t+h+1 − R̂t−1,t+h + d̂i,t+h)

Using (C.29), π̄t,t+h+1

R̄t−1,t+h
= π̄h+1

R̄h+1 =
(
β
Υ

)h+1
. Substituting for π̄t,t+h+1

R̄t−1,t+h
, one gets

b̄b̂i,t−1 = c̄Ẽit

∞∑
h=0

βh+1ĉi,t+h − Ẽit

∞∑
h=0

βh+1
[
w̄H̄(ŵt+h + Ĥi,t+h) + d̄d̂i,t+h

]
+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(π̂t,t+h+1 − R̂t−1,t+h)

(C.36)

Next, recall that ĉcit = ĉit − η
Υ
ĉi,t−1 − βη

Υ
Ẽit(ĉi,t+1 − η

Υ
ĉit), from which it follows that ĉit = ĉcit +

η
Υ
ĉi,t−1+

βη
Υ
Ẽit(ĉi,t+1− η

Υ
ĉit). Substituting for ĉi,t+h into (C.36), I rewrite the intertermporal budget

13



constraint as

b̄b̂i,t−1 = c̄Ẽit

∞∑
h=0

βh+1

(
ĉci,t+h +

η

Υ
ĉi,t+h−1 +

βη

Υ

(
ĉi,t+h+1 −

η

Υ
ĉi,t+h

))
− Ẽit

∞∑
h=0

βh+1
[
w̄H̄(ŵt+h + Ĥi,t+h) + d̄d̂i,t+h

]
+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(π̂t,t+h+1 − R̂t−1,t+h)

(C.37)

From (C.35), one can isolate Ẽitĉci,t+h and substitute for it into (C.36):

b̄b̂i,t−1 = c̄β

(
1

1− β
ĉcit + Ẽit

∞∑
h=0

βh

(
η

Υ
ĉi,t+h−1 +

βη

Υ

(
ĉi,t+h+1 −

η

Υ
ĉi,t+h

)))

+ βc̄

(
1− βη

Υ

)
Ẽit

∞∑
h=0

βh+1(R̂t+h − π̂t+h+1 + ξ̂t+h)

− Ẽit

∞∑
h=0

βh+1
[
w̄H̄(ŵt+h + Ĥi,t+h) + d̄d̂i,t+h

]
+ (c̄− w̄H̄ − d̄)Ẽit

∞∑
h=0

βh+1(π̂t,t+h+1 − R̂t−1,t+h)

Isolating ĉcit, one retrieves the individual demand in terms of ĉcit,

ĉcit =
b̄(1− β)

βc̄
b̂i,t−1 − (1− β)Ẽit

∞∑
h=0

βh

(
η

Υ
ĉi,t+h−1 +

βη

Υ

(
ĉi,t+h+1 −

η

Υ
ĉi,t+h

))
+

1− β

c̄
Ẽit

∞∑
h=0

βh
[
w̄H̄(ŵt+h + Ĥi,t+h) + d̄d̂i,t+h

]
− β

(
1− βη

Υ

)
Ẽit

∞∑
h=0

βh(R̂t+h − π̂t+h+1 + ξ̂t+h)

− (1− β)(c̄− w̄H̄ − d̄)

c̄
Ẽit

∞∑
h=0

βh(π̂t,t+h+1 − R̂Rt−1,t+h)

(C.38)

Define x̂t = ŷt − η
Υ
ŷt−1. Then, aggregating equation (C.38), imposing market clearing conditions

such that c̄ĉt = ȳŷt = w̄H̄(ŵt+Ĥt)+ d̄d̂t, ĉct = ŷyt, (c̄− w̄H̄− d̄) = 0, and b̂t = 0 (since households

are homogeneous) one gets

x̂t =

(
1− β +

βη

Υ

)
Ẽtx̂t+1+Ẽt

∞∑
h=0

βh

[
β(1− β)

(
1− η

Υ

)
x̂t+h+2 −

(
1− βη

Υ

)
(R̂t+h − π̂t+h+1) + êt+h

]
(C.39)

where êt = −
(
1− βη

Υ

)
ξ̂t is such that

êt = ρeêt−1 + σeε
e
t , ε

e
t ∼ N (0, 1) (C.40)
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Applying the myopic adjustment to (C.39), the aggregate demand is rewritten as

x̂t = n

(
1− β +

βη

Υ

)
Ẽ⋆

t x̂t+1+Ẽ⋆
t

∞∑
h=0

(βn)h
[
n2β(1− β)

(
1− η

Υ

)
x̂t+h+2 −

(
1− βη

Υ

)
(R̂t+h − π̂t+h+1) + êt+h

]
(C.41)

Finally, substituting x̂t = ŷt − η
Υ
ŷt−1 delivers

ŷt =
η

Υ+ nηυ
ŷt−1 + n

υΥ− nβη(1− β)(1− η
Υ
)

Υ + nηυ
Ẽ⋆

t ŷt+1 +
βn2(1− β)(1− η

Υ
)(Υ− nβη)

Υ + nηυ
Ẽ⋆

t

∞∑
h=0

(βn)hŷt+h+2

− Υ− βη

Υ+ nηυ
Ẽ⋆
t

∞∑
h=0

(βn)h
(
R̂t+h − π̂t+h+1

)
+

1

(1− βnρe)(Υ + nηυ)
êt

(C.42)

where υ = 1− β + βη
Υ

.

Firms. Log-linearizing firms’ optimal price condition, we get,

P̂ ∗
jt − P̂t = Ẽjt

∞∑
h=0

(αβ)h [(1− αβ)m̂cj,t+h + αβ(π̂t+h+1 − ρππ̂t+h−1)] (C.43)

Define p̂∗jt = P̂ ∗
jt − P̂t. The marginal cost of the jth firm is given by

m̂cj,t+h = ŵt+h − ẑt+h + (1− ah)ĥj,t+h

= ŵt+h − ẑt+h +
1− ah
ah

ĥj,t+h

= ŵt+h −
1

ah
ẑt+h +

1− ah
ah

yt+h − ζ
1− ah
ah

(P̂j,t+h − P̂t+h)

= ŵt+h −
1

ah
ẑt+h +

1− ah
ah

yt+h − ζ
1− ah
ah

(
p̂∗j − (π̂t,t+h − ρππ̂t−1,t+h−1)

)
(C.44)

Therefore,

(1− αβ)Ẽjt

∞∑
h=0

(αβ)hm̂cj,t+h = (1− αβ)Ẽjt

∞∑
h=0

(αβ)h
[
ŵt+h +

1

ah
ẑt+h +

1− ah
ah

ŷt+h

]
− ζ

1− ah
ah

p̂∗j

+ αβζ
1− ah
ah

Ẽjt

∞∑
h=0

(αβ)h (π̂t+h+1 − ρππ̂t+h))

On the other hand, making use of the labor supply equation and the log-linearized expression for

λ̂t, we have

ŵt+h +
1

ah
ẑt+h +

1− ah
ah

ŷt+h = φĥt+h − λ̂t+h +
1

ah
ẑt+h +

1− ah
ah

ŷt+h

=
1− φ

ah
ẑt+h +

1− ah + φ

ah
ŷt+h −

(
x̂t+h −

βη

Υ
x̂t+h+1

)
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(
1 + ζ

1− ah
ah

)
p̂∗jt = (1− αβ)Ẽjt

∞∑
h=0

(αβ)h
(
1− φ

ah
ẑt+h +

1− ah + φ

ah
ŷt+h −

(
x̂t+h −

βη

Υ
x̂t+h+1

))
+

(
1 + ζ

1− ah
ah

)
αβẼjt

∞∑
h=0

(αβ)h(π̂t+h+1 − ρππ̂t+h−1)

(C.45)

From (C.10), p̂∗jt = P̂ ∗
jt − P̂t =

α
1−α

(π̂t − ρππ̂t−1) =
α

1−α
ˆ̃πt. Since all firms face the same optimal

pricing condition above, I drop the subscript j.

ˆ̃πt = Ẽjt

∞∑
h=0

(αβ)h
[
κ

(
(1− φ)ẑt+h + ωŷt+h −

(
x̂t+h −

βη

Υ
x̂t+h+1

))
+ αβ ˆ̃πt+h+1

]
(C.46)

where κ = ah(1−α)(1−αβ)
α(ah+ζ(1−ah))

, and ω = 1+φ−ah
ah

is the elasticity of the marginal disutility of producing

output with respect to output. Substituting for x̂t = ŷt − η
Υ
ŷt−1, the aggregated optimal pricing

rule can be written as

ˆ̃πt = κ

(
ωx̂t +

Υ

Υ− ηβ
ŷt

)
+Ẽt

∞∑
h=0

(αβ)h
(
καβ

(
ωŷt+h+1 +

β(αΥ− η)

α(Υ− ηβ)
ŷt+h+1

)
+ β(1− α)ˆ̃πt+h+1 + ût+h

)
(C.47)

where ût = κ(1−φ)
ah

ẑt is a supply shock assumed to follow an AR(1) process

ût = ρuût−1 + σuε
u
t , ε

u
t ∼ N (0, 1) (C.48)

Applying the myopic adjustment yields

ˆ̃πt = κ

(
ωŷt +

Υ

Υ− ηβ
x̂t

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωŷt+h+1 +

(αΥ− η)

α(Υ− ηβ)
x̂t+h+1

))
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+1 + ût+h

) (C.49)

Substituting for ˆ̃πt = π̂t − ρππ̂t−1,

π̂t =
1

1 + nβρπ(1− α)

(
ρππ̂t−1 −

κτη

Υ
ŷt−1

)
+
κ
(
ω + τ

(
1− nβη

Υ

(
α− η

Υ

)))
1 + nβρπ(1− α)

ŷt

+
nβ(1− α)(1− αβnρπ)

1 + nβρπ(1− α)
Ẽ⋆

t

∞∑
h=0

(αβn)hπ̂t+h+1 +
1

(1− αβnρu)(1 + nβρπ(1− α))
ût

+
nβκ

1 + nβρπ(1− α)

(
αω + τ

(
α− η

Υ

)(
1− αβnη

Υ

))
Ẽ⋆

t

∞∑
h=0

(αβn)h
∞∑
h=0

ŷt+h+1

(C.50)

where τ = Υ
Υ−βη

.

Monetary policy. The log-linearized version of the policy rule is

R̂t = ρrR̂t−1 + (1− ρr)ϕππ̂t + (1− ρr)ϕy(ŷt − ŷt−1) + σvεt (C.51)
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Model in matrix form. The aggregate economy model in matrix form is described by

A0(Θ)St = A−1(Θ)St−1 + A1(Θ)Ẽ⋆
tSt+1 + Ẽ⋆

t

∞∑
h=0

F hA2(Θ)St+h+2 +B(Θ)Et (C.52)

where St =
[
ŷt π̂t R̂t (ŷt − ŷt−1) êt ût

]′
; Et =

[
εet εut εvt

]′; F is a zero matrix, with only the

first two diagonal entries equal to βn and αβn, respectively; and Θ = {α, β, n, κ, η, ρπ, ω,Υ, ϕπ, ϕy, ρr, ρe, ρu, σe, σu, σv}.
SAC learning. The perceived law of motion (PLM) in matrix form can be written as

St = ∆t−1 + Γt−1(St−1 −∆t−1)︸ ︷︷ ︸
PLM for aggregate endo var’s

+ HSt−1︸ ︷︷ ︸
PLM for the shocks

+ϵt (C.53)

where ∆t =
[
δ′t 01x2

]′; Γt =

[
γt 04x2

02x4 02x2

]
; H is a diagonal matrix with diagonal equal to[

01x4 ρe ρu
]′; ϵt =

[
ψ′

t σeε
e
t σuε

u
t

]′. The forecast of the state vector h ≥ 1 periods ahead

is described by

Ẽ⋆
tSt+h = ∆t−1 + Γh+1

t−1 (St−1 −∆t−1)︸ ︷︷ ︸
forecast of endo variables

+ HhSt︸ ︷︷ ︸
forecast of shocks

(C.54)

Plugging (C.54) into (C.52), one can re-write the model as:

Ã0(Θ)St = Ã1(Θ,Γt−1)∆t−1 + Ã2(Θ,Γt−1)St−1 +BEt (C.55)

where

Ã0 = A0 − A1H −

(
∞∑
h=0

F hA2H
h

)
H2

Ã1 = A1(I − Γ2
t−1)∆t−1 +

(
∞∑
h=0

F hA2(I − Γh+3
t−1 )

)
∆t−1

Ã2 = A−1 + A1Γ
2
t−1 +

(
∞∑
h=0

F hA2Γ
h
t−1

)
Γ3

t−1

The infinite sums are defined as follows
∞∑
h=0

F h = (I − F )−1

vec

(
∞∑
h=0

F hA2H
h

)
= (I −H ⊗ F )−1A2(:)

vec

(
∞∑
h=0

F hA2Γ
h
t−1

)
= vec(A2 + FA2Γt−1 + F 2A2Γ

2
t−1 + ...)

= (I ⊗ I + Γ′
t−1 ⊗ F + (Γ′

t−1)
2 ⊗ F 2 + ...)A2(:)

= (I − Γ′
t−1 ⊗ F )−1A2(:)
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The last equality uses the Kronecker product property that (Γ′
t−1 ⊗F )(Γ′

t−1 ⊗F ) = (Γ′
t−1)

2 ⊗F 2.

Finally, the actual law of motion is given by

St = C∆t−1 +ASt−1 +BEt (C.56)

where A = Ã−1
0 Ã2; B = Ã−1

0 B; and C = Ã−1
0 Ã1.

CE equilibrium. The actual law of motion is derived as above after substituting δt−1 with

04×1 and γt−1 with γ∗, implying that the actual law of motion is given by St = ASt−1+BEt. The

variance-covariance matrix of St in vec form is given by V0(:) = (I −A⊗A)−1 (B ⊗B) I(:), and

the first-order autocovariance of St is given by V1 = AV0. For a given set of parameters Θ, the

first-order autocorrelation function of S1:4,t is described by

F (γ,Θ) = diag(diag(V1(1 : 4, 1 : 4))/diag(V0(1 : 4, 1 : 4))) (C.57)

To find γ∗ for a given set of parameters Θ, one solves the non-linear fixed-point equation γ =

F (γ,Θ). Solving this equation asks for numerical methods and I follow the algorithm proposed

in Hommes et al. (2022), so that for a given set of model parameters Θ,

1. Set initial γ0.

2. At each iteration k ≥ 2000, set γk = F (γk−1,Θ).

3. Stop if the Euclidean norm ||γk − γk−1||< ϵ, for ϵ = 0.00001, or if k = 2000, otherwise go

back to step 2.

C.3 Aggregate Demand and Supply under Well-specified Forecasting
Rules

In this subsection, I derive the equilibrium conditions when Ẽ⋆
t is associated with well-specified

forecasting rules. Consider the aggregate demand

x̂t = n

(
1− β +

βη

Υ

)
Ẽ⋆
t x̂t+1+Ẽ⋆

t

∞∑
h=0

(βn)h
[
n2β(1− β)

(
1− η

Υ

)
x̂t+h+2 −

(
1− βη

Υ

)
(R̂t+h − π̂t+h+1) + êt+h

]
(C.58)

Then,

Ẽ⋆
t x̂t+1 = n

(
1− β +

βη

Υ

)
Ẽ⋆
t x̂t+2

+ Ẽ⋆
t

∞∑
h=0

(βn)h
[
n2β(1− β)

(
1− η

Υ

)
x̂t+h+3 −

(
1− βη

Υ

)
(R̂t+h+1 − π̂t+h+2) + êt+h+1

] (C.59)

from where

Ẽ⋆
t

∞∑
h=0

(βn)h
[
n2β(1− β)

(
1− η

Υ

)
x̂t+h+3 −

(
1− βη

Υ

)
(R̂t+h+1 − π̂t+h+2) + êt+h+1

]
= Ẽ⋆

t x̂t+1−n

(
1− β +

βη

Υ

)
Ẽ⋆
t x̂t+2

(C.60)
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Substituting for the expression in the left-hand side in the equation above into the original

aggregate demand in (C.58) and setting Ẽ⋆
t ≡ Et, we have

x̂t = nEt

(
(1 + βη)x̂t+1 −

nβη

Υ
x̂t+2

)
−
(
1− βη

Υ

)
(R̂t − Etπ̂t+1) + êt (C.61)

If n = 1, then the equation above coincides with the standard Euler equation derived under FIRE.

Similarly, consider the aggregate supply,

ˆ̃πt = κ

(
ωŷt +

Υ

Υ− ηβ
x̂t

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωŷt+h+1 +

(αΥ− η)

α(Υ− ηβ)
x̂t+h+1

))
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+1 + ût+h

) (C.62)

Hence,

Ẽ⋆
t
ˆ̃πt+1 = κẼ⋆

t

(
ωŷt+1 +

Υ

Υ− ηβ
x̂t+1

)
+ Ẽ⋆

t

∞∑
h=0

(αβn)h
(
καβn

(
ωŷt+h+2 +

(αΥ− η)

α(Υ− ηβ)
x̂t+h+2

))

+ Ẽ⋆
t

∞∑
h=0

(αβn)h
(
nβ(1− α)ˆ̃πt+h+2 + ût+h+1

)
(C.63)

Isolating κωẼ⋆
t

∑∞
h=0(αβn)

hŷt+h+1 from (C.63), substituting for it into (C.62), and setting Ẽ⋆
t ≡ Et,

we have
ˆ̃πt = κωŷt +

κ

1− ηβ
Υ

Et

(
x̂t −

βnη

Υ
x̂t+1

)
+ nβEt

ˆ̃πt+1 + ût (C.64)

If n = 1, then the equation above coincides with the standard Phillips curve derived under FIRE.

C.4 Data

I use quarterly data from 1966:Q2 to 2018:Q4. All data are extracted from FRED and described

as follows

yt = 100ln

(
GDPC1t
POPindex,t

)
∆yobst = yt − yt−1

πobs
t = 100ln

(
GDPDEFt

GDPDEFt−1

)
Robs

t =
Fundst

4

where

• GDPC1 – Real GDP, Billions of Chained 2012 Dollars, Seasonally Adjusted Annual Rate

(see U.S. Bureau of Economic Analysis (1966 - 2018c)).
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• POPindex = CNP16OV
CNP16OV1992Q3

.

• CNP16OV – Civilian non-institutional population, thousands, 16 years and above (see U.S.

Bureau of Economic Analysis (1966 - 2018b)).

• GDPDEF – GDP-Implicit Price Deflator, 2012 = 100, Seasonally Adjusted (see U.S. Bureau

of Economic Analysis (1966 - 2018a)).

• Funds – Federal funds rate, daily figure averages in percentages (see Board of Governors of

the Federal Reserve System (US) (1966 - 2018)).

The model is estimated using output growth data, however, within the model, households

and firms need to form expectations about de-trended output. This implies that beliefs about

de-trended output need to be initiated when there is SAC learning. Using pre-sample data, as

explained in the main text, I compute de-trended output as follows. I compute the mean output

growth in pre-sample data, that is, Ῡpresample = 0.70, implying Υpresample = Ῡpresample/100 + 1 =

1.007 and ydetrendt = yt−100ln
(
Υt

presample

)
. Last, I compute first and second moments of demeaned

ydetrendt to initiate beliefs about de-trended output in the model. In Section C.6, I consider the case

when all beliefs are initiated from the CE equilibrium and show that the results remain largely

unchanged.

As commonly done in the literature, I fix the discount factor β = 0.99. Following Milani (2006),

I also fix κ = (1−α)(1−αβ)
α(ah+ζ(1−ah))

to 0.0015, which is the value estimated in Giannoni and Woodford (2004)

for the flexible wages case. I note that since I estimate both ω and α, the posterior of κ will likely

not be well-identified and it will be driven by its prior distribution or its starting values. To show

that setting κ = 0.0015 is reasonable, I estimate κ along other parameters for the model with

SAC learning for both the mean and first-order autocorrelation and find that its posterior mode is

equal to 0.0015 (see column (4) in Table 1). In this exercise, the prior distribution for κ is gamma

with mean 0.015 and standard deviation 0.011 as in Milani (2007).

C.5 Additional Details on Bayesian Estimation

As mentioned in the main text, I use the Metropolis-Hastings algorithm to generate two blocks

with 1,200,000 draws each and discard the first 200,000 draws from the posterior distribution. In

terms of the initiation of beliefs under SAC learning, I evaluate moments of the pre-sample data

from 1960 to 1965 and use them as the initial learning parameters, δ0 and/or γ0, for the Kalman

filter procedure.
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For specifications that involve a CE equilibrium, I follow a penalty strategy to ensure that the

estimation is performed along the CE equilibrium. For each parameter draw, I compute the CE

equilibrium, following the iterative e-stability algorithm of Hommes et al. (2022), which discards all

unstable equilibria. For instance, fewer than 0.1% of draws cannot generate an equilibrium during

the estimation procedure in the presence of myopia. This share is quite minimal especially when

compared with the objective of the Metropolis-Hastings algorithm that about 75% of all draws

should be discarded. If a stable equilibrium exists, then I compute the value of the likelihood

function. If a stable equilibrium does not exist, I penalize the likelihood to be extremely low

so that the draw is discarded. Posterior distributions are generally well-behaved. I rely on the

method proposed by Brooks and Gelman (1998) to analyze convergence statistics, shown below.

Figure 5 and 6 plot the evolution of posterior draws as well as the posterior distribution when

myopia is combined with AR(1) forecasting rules under SAC learning for both the mean and first-

order autocorrelation. The posterior distribution is generally smooth for all estimated parameters.

Additionally, Figure 7 shows the evolution of a crucial convergence statistic. Convergence is

assessed based on the Brooks and Gelman (1998) methodology. I first estimate the evolution of

the mean across draws for each parameter for each one of the two chains of the Metropolis-Hastings

and compute the variance of the two means over time, B̂. Then, I estimate the evolution of the

draws variance for each parameter for each one of the two chains of the Metropolis-Hastings and

define Ŵ to be the mean of the two computed variance values. Convergence is achieved when the

evolution of (Ŵ + B̂)/Ŵ converges to 1. Figure 7 shows that the convergence statistic remains

below 1.1, which is the benchmark for convergence, and it approaches 1 as the number of draws

increases.

C.6 Robustness Checks

C.6.1 Estimation

I consider several robustness checks for the estimated posterior mode. First, I re-estimate the

preferred specification with AR(1) forecasts and myopia under SAC learning when the initial

beliefs are initiated at the CE equilibrium as reported in column (4) of Table 3 in the main text.

Second, I estimate a number of model specifications when the degree of myopia is assumed to

have a uniform prior distribution with mean 0.5 and standard deviation 1/
√
12. Third, I estimate

κ along other parameters for the model with SAC learning for both the mean and first-order

autocorrelation. The prior distribution for κ in this exercise is gamma with mean 0.015 and

standard deviation 0.011 as in Milani (2007). Table 1 reports the posterior mode and the Laplace

marginal likelihood. The estimated posterior mode and marginal likelihood for all three additional
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Figure 5: Evolution of posterior draws, when the expectations formation process is characterized by a combination of AR(1) mis-
specified forecasts and myopia under SAC learning for both the mean and first-order autocorrelation.

specifications remain pretty much unchanged relative to their respective benchmarks.

C.6.2 Generalized Impulse Response Functions

In this section, I present generalized IRFs (GIRFs) that are computed using the methodology

proposed in Koop, Pesaran, and Potter (1996). Specifically, for a given shock, I draw N = 1000

innovations ε ∼ N (0, 1). For each innovation draw, I compute the response of output growth,

output, inflation, and nominal interest rate for each model specification of interest. Clearly, for

the models with SAC learning, beliefs evolve over time as well (the initial beliefs are set equal to

the CE equilibrium values). Finally, I average across the N paths of responses for each model.

Figure 8 exhibits the GIRFs for different model specifications. The implications are similar to the

ones in Figure 7 in the main text.
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Figure 6: Posterior distribution of draws when the expectations formation process is characterized by a combination of AR(1) mis-
specified forecasts and myopia under SAC learning for both the mean and first-order autocorrelation.

C.7 Other Model Specifications

In this section, I show estimation results for three additional model specifications. First, to in-

vestigate the model’s performance when agents learn to use more sophisticated, yet mis-specified,

forecasting rules, I estimate the model with VAR(1) forecasting rules with and without myopia

under SAC learning (for both the mean and first-order autocorrelation) with constant gain pa-

rameter. Second, to understand whether imposing some discipline on the AR(1) mis-specified

forecasting rules is important, I consider a specification where the mean of the AR(1) processes

is set equal to the CE equilibrium, whereas the first-order autocorrelation coefficients are fixed

over time and estimated along other parameters without imposing an equilibrium restriction on

them. Third, I re-estimate the posterior mode of the model specifications with mis-specified and

well-specified forecasting rules when the demand and supply shocks follow an ARMA process with

moving average parameters µe and µu, respectively. The characteristics of the posterior distribu-
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Figure 7: Evolution of the convergence statistic, (B̂+Ŵ )/Ŵ , when the expectations formation process is characterized by a combination
of AR(1) mis-specified forecasts and myopia under SAC learning for both the mean and first-order autocorrelation.

tion of parameters for the first two specifications are exhibited in Table 2, whereas the posterior

mode for the third specification is reported in Table 3.

Starting with Table 2, to judge model fit, I set the expectations formation process with well-

specified forecasts and myopia, reported in column (2) of Table 3, to be the benchmark specification

and compare the other two models relative to that benchmark. The values in parenthesis in the

last row of Table 2 report the Bayes factor for the model specification relative to the benchmark.

The model with VAR(1) forecasting rules and myopia performs very similarly to models with mis-

specified forecasts under SAC learning reported in Table 4 in the main text. That is, in the presence

of myopia VAR(1) forecasts perform better then the benchmark, but absent myopia they perform

worse than the benchmark. Figure 9 plots the evolution of the estimated agents’ beliefs when

they engage in constant-gain learning of a VAR(1) forecasting process in the specification with

myopia. The perceived first-order correlation between any two distinct aggregate variables seems

to fluctuate around 0. Therefore, using more elaborate forecasting rules, such as VAR(1), will not

add, on average, any significant information to households and firms in terms of forecasting, and

it will not strongly enhance the model’s fit of the data. I discuss the performance of VAR(1) rules

for inflation forecasts in Section C.8.
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SAC: mean & autocorr. SAC: mean CEE

bench. beliefs U κ bench. U bench. U

Parameters (1) (2) (3) (4) (5) (6) (7) (8)

Calvo parameter, α 0.44 0.46 0.45 0.44 0.40 0.42 0.52 0.51
Func. of price stick., κ - - - 0.0015 - - - -
Degree of myopia, n 0.56 0.56 0.60 0.56 0.71 0.75 0.68 0.73
Habit in consumption, η 0.89 0.89 0.89 0.89 0.88 0.89 0.89 0.88
Inflation indexation, ρπ 0.87 0.86 0.87 0.87 0.76 0.76 0.86 0.85
Elasticity mc, ω 0.88 0.87 0.88 0.88 0.87 0.88 0.82 0.81
Deterministic growth, Ῡ 0.37 0.37 0.37 0.37 0.36 0.36 0.37 0.36
Feedback to growth, ϕy 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
Feedback to inflation, ϕπ 1.59 1.59 1.59 1.59 1.60 1.61 1.59 1.59
Interest rate smooth., ρr 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89
Demand autocorr., ρe 0.47 0.44 0.48 0.47 0.37 0.36 0.36 0.35
Supply autocorr., ρu 0.05 0.05 0.05 0.05 0.04 0.05 0.04 0.04
Demand std., σe 0.80 0.82 0.80 0.80 0.86 0.86 0.86 0.87
Supply std., σu 0.33 0.33 0.33 0.33 0.34 0.34 0.33 0.34
Monetary std., σv 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21
Learning gain, ῑ 0.04 0.04 0.05 0.04 0.05 0.05 - -

Log marg. data dens.
Laplace -266.33 -267.53 -267.32 -269.06 -265.4 -265.85 -268.73 -268.46
Bayes factor (e0.00) (e−1.2) (e−0.99) (e−2.73) (e0.00) (e−0.45) (e0.00) (e0.27)

Table 1: Robustness checks at the posterior mode for various assumptions on the expectations formation process with myopia. The
prior for myopia is uniform with mean 0.5 and standard deviation 1/

√
12. Columns (1), (5), and (7) report the posterior mode of the

same model specifications reported in columns (2) and (4) in Table 4 and column (4) in Table 3 in the main text, respectively. I refer to
these model specifications as benchmarks. Column (2) sets initial beliefs equal to the CE equilibrium reported in column (4) of Table
3 in the main text. Column (4) estimates κ along other parameters; the prior is a gamma distribution with mean 0.015 and standard
deviation 0.011. Columns (3), (6), and (8) report the posterior mode when the prior distribution for the degree of myopia is assumed
to be uniform with mean 0.5 and standard deviation 1/

√
12. Values in parentheses denote the Bayes factor of the model relative to the

benchmark specification.

On the other hand, the model with unrestricted AR(1) forecasts and myopia or absent it fits

macroeconomic data similarly to the benchmark, hence worse than the models with mis-specified

forecasts under SAC learning and myopia. However, it is interesting that the presence of myopia

does not improve model fit. Moreover, there are some stark differences in terms of estimation.

For instance, the perceived first-order autocorrelation of inflation is significantly smaller than its

equilibrium counterpart reported in columns (3) and (4) of Tables 3 and 4 in the main text. The

estimated degree of myopia is smaller than what is found in the other model specifications. I

discuss the performance of such unrestricted AR(1) rules for inflation forecasts in Section C.8.
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Figure 8: Average generalized impulse response functions to a one standard deviation positive demand, cost-push and monetary shock.
SAC denotes the specification with SAC learning for both the mean and first-order autocorrelation (solid blue); SAC + CEE denotes
the specification with SAC learning for the mean and with the first-order autocorrelation set at the CE equilibrium (dashed blue);
CEE denotes the specification where both the mean and first-order autocorrelation are set at their CE equilibrium (dot dashed blue);
Well-specified denotes the model with well-specified forecasts (solid red). Parameters are set at their estimated posterior mean as shown
in Tables 3 and 4 in the main text.

Figure 9: Evolution of the VAR(1) forecast coefficients in the model with SAC learning and myopia. The black and dotted curves plot
implied beliefs for structural parameters set at their estimated posterior mean and 90 percent highest posterior density, respectively.
Gray areas indicate recessionary periods as reported by the National Bureau of Economic Research. The dashed red lines indicate the
x axis.
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VAR(1) Rules, SAC learning Unrestricted AR(1) Rules

(1) (2) (3) (4)

no myopia, n = 1 myopia, n ∈ (0,1) no myopia, n = 1 myopia, n ∈ (0,1)

Parameters mean 5% 95% mean 5% 95% mean 5% 95% mean 5% 95%

Calvo parameter, α 0.34 0.11 0.64 0.28 0.09 0.52 0.64 0.28 0.9 0.69 0.35 0.92
Degree of myopia, n - - - 0.65 0.44 0.82 - - - 0.39 0.1 0.78
Habit in consumption, η 0.97 0.94 0.98 0.43 0.27 0.87 0.76 0.64 0.88 0.42 0.29 0.57
Inflation indexation, ρπ 0.57 0.17 0.86 0.77 0.54 0.92 0.06 0.01 0.12 0.91 0.84 0.97
Elasticity mc, ω 0.88 0.28 1.54 0.91 0.28 1.54 0.87 0.26 1.5 0.87 0.24 1.51
Deterministic growth, Υ 0.38 0.29 0.46 0.4 0.36 0.44 0.35 0.31 0.38 0.38 0.34 0.42
Feedback to output growth, ϕy 0.82 0.57 1.09 0.98 0.71 1.24 0.85 0.59 1.13 0.98 0.73 1.25
Feedback to inflation, ϕπ 1.61 1.34 1.9 1.61 1.33 1.88 1.59 1.31 1.88 1.6 1.33 1.88
Interest rate smoothing, ρr 0.89 0.87 0.92 0.88 0.86 0.91 0.89 0.87 0.92 0.89 0.86 0.91
Demand shock autocorr., ρe 0.88 0.8 0.95 0.9 0.65 0.97 0.38 0.25 0.52 0.94 0.89 0.98
Supply shock autocorr., ρu 0.21 0.06 0.46 0.12 0.03 0.27 0.86 0.81 0.91 0.06 0.02 0.13
Demand shock std., σe 0.19 0.09 0.32 0.38 0.22 0.66 0.74 0.55 0.94 0.54 0.24 0.74
Supply shock std., σu 0.33 0.22 0.42 0.34 0.29 0.39 0.13 0.06 0.22 0.29 0.26 0.32
Monetary shock std., σv 0.21 0.2 0.23 0.21 0.2 0.23 0.21 0.2 0.23 0.21 0.2 0.23
Learning gain, ι 0.12 0.09 0.15 0.09 0.06 0.12 - - - - - -
γ∆y - - - - - - 0.5 0.18 0.83 0.5 0.17 0.83
γπ - - - - - - 0.2 0.06 0.37 0.4 0.14 0.67
γR - - - - - - 0.5 0.19 0.75 0.47 0.16 0.79
γy - - - - - - 0.96 0.93 0.99 0.46 0.15 0.8

Log marg. data dens.
Modified Harmonic Mean -277.45 -263.04 -269.27 -271.86
Bayes factor (e−7.21) (e7.20) (e0.97) (e−1.62)

Table 2: Posterior distribution of the model with VAR(1) mis-specified forecasting rules under SAC learning and AR(1) backward-looking rules with estimated parameters. Values in
parentheses denote the Bayes factor of the model relative to the model in column (2) of Table 3 in the main text. The first-order autocorrelation coefficients for the specification with
backward-looking AR(1) forecasts are assumed to have a beta prior distribution with mean 0.5 and standard deviation 0.2, whereas the mean is set to 0.
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Finally, Table 3 shows that the models with well-specified forecasts make use of the additional

persistence that the ARMA(1,1) processes for the shocks induce. Specifically, the estimate of µe

at the posterior mode is about 2 to 3 times larger for the models with well-specified forecasts

compared to the ones with mis-specified rules. Furthermore, the estimate of µu for the model

with well-specified forecasts and myopia is twice as large as the model with mis-specified rules

and myopia. Last, the model specifications with myopia continue to outperform the ones absent

of it and the model with mis-specified rules and myopia fits data better than the model with

well-specified rules without myopia.

Well-specified rules AR(1), SAC: mean & autocorr.

(1) (2) (3) (4)

no myopia myopia no myopia myopia

Parameters

Calvo parameter, α - - 0.88 0.40
Degree of myopia, n - 0.74 - 0.59
Habit in consumption, η 0.99 0.94 0.98 0.89
Inflation indexation, ρπ 0.92 0.03 0.92 0.85
Elasticity mc, ω 0.42 0.76 0.67 0.87
Deterministic growth, Ῡ 0.40 0.33 0.39 0.37
Feedback to output growth, ϕy 0.80 0.92 0.79 0.82
Feedback to inflation, ϕπ 1.68 1.65 1.59 1.59
Interest rate smoothing, ρr 0.86 0.88 0.89 0.89
Demand shock autocorr., ρe 0.51 0.34 0.43 0.43
Supply shock autocorr., ρu 0.04 0.86 0.04 0.05
Demand shock std., σe 0.16 0.37 0.81 0.80
Supply shock std., σu 0.27 0.09 0.29 0.34
Monetary shock std., σv 0.21 0.21 0.21 0.21
Demand shock moving average, µe 0.26 0.15 0.08 0.07
Supply shock moving average, µu 0.04 0.10 0.03 0.04
Learning gain, ῑ - - 0.01 0.05

Log marg. data dens.
Laplace -294.30 -275.78 -301.61 -277.45
Bayes factor (e−18.52) (e0.00) (e−25.83) (e−1.67)

Table 3: Posterior mode when the demand and supply shocks follow an ARMA(1,1) process. Values in parentheses denote the Bayes
factor of the model relative to the specification in column (2).
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C.8 Additional Results on Forecast Behavior

This section repeats the analysis of Section 5 in the main text for various model specifications.

External validation. Figure 10 plots the mean-squared distance between model-implied

annual forecast about inflation and a series of actual annual inflation forecasts. The top two panels

plot the mean-squared distance of annual forecasts implied by models with myopia, whereas the

bottom two panels plot the mean-squared distance of annual forecasts implied by models without

myopia. The figure shows that in terms of matching both SPF and MSC annual inflation forecasts,

mis-specified forecasts generally outperform well-specified forecasting rules, regardless of whether

there is myopia or not. The model specification with unrestricted AR(1) rules performs much

poorer than the other specifications in terms of matching SPF and MSC forecasting data: the

estimates of K4 and M4 are both estimated to be positive and can be orders of magnitude larger

than what is

Figure 10: Mean-squared distance between model-implied and survey-based inflation forecasts. The top two panels plot the mean-
squared distance of annual forecasts implied by of mis-specified forecasts and myopia specification. The bottom two panels plot the
mean-squared distance of annual forecasts implied by the model with mis-specified forecasts and no myopia. The models denoted
SAC, SAC + CEE, and CEE are the same as explained in Figure 8. Unrestricted is the specification where the mean is set at the
CE equilibrium and the first-order autocorrelation is estimated along other parameters in the model; Well-specified is the model with
well-specified forecasts. Circles denote non-myopic forecasts; crosses denote myopic forecasts. Model parameters are set at the posterior
5th percentile (smallest circle/cross mark), mean (medium-sized circle/cross mark), and the 95th percentile (largest circle/cross mark)
of the estimated posterior distribution as documented in columns (3)-(4) of Table 3 in the main text, columns (1)-(4) in Table 4 in the
main text, and columns (3)-(4) in Table 1 here.

Delayed over-shooting. Figure 11 plots average pseudo and generalized impulse response

functions of annual inflation forecasting errors to demand, cost-push, and monetary shocks. I
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(a) Average pseudo IRFs

(b) Average generalized IRFs

Figure 11: Average pseudo and generalized impulse response functions of annual inflation forecasting errors to a one standard deviation
positive demand, cost-push, and monetary shock in models with mis-specified forecasts and myopia. I consider the same four models
with mis-specified forecasts as in Figure 10; in addition, panel (b) plots the generalized impulse responses of forecast errors implied by
the model with VAR(1) forecast rules and myopia. Model parameters are set equal to the estimated posterior mean as shown in Tables
3 and 4 in the main text, and Tables 1 and 2 here.
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consider four model specifications with AR(1) mis-specified forecasts and myopia, and for each

model specifications I consider myopic and non-myopic forecasts. The top three panels exhibit

the response of non-myopic forecast errors, and the bottom three panels show the responses in

the case of myopic forecasts. As Figure 11 shows, delayed over-shooting of forecast errors is quite

robust across all specifications in the case of cost-push shocks, but some learning of the first-

order autocorrelation coefficient is necessary to grant late over-shooting in the case of demand and

monetary shocks. Importantly, as panel (b) shows, myopic VAR(1) forecasts are not always able

to generate delayed over-shooting to shocks.

Figure 12: Estimates of regressions in (14) and (15) in the main text on model-based forecasting data for the same five models with
mis-specified forecasts as in Figure 11. Model parameters are set at the posterior 5th percentile (smallest circle), mean (medium-sized
circle), and the 95th percentile (largest circle) of the estimated posterior distribution as documented in column (4) of Table 3 in the
main text, column (2) and (4) in Table 4 in the main text, column (4) in Table 1 here, and column (2) in Table 2 here. The transparent
circles visualize the estimated K̂4 and M̂4 when forecasts are non-myopic. All regressions include a constant term.

Under-reaction to ex-ante forecast revisions, over-reaction to current inflation. I

estimate the regressions in (14) and (15) with inflation forecasting data implied by the model

with AR(1) mis-specified forecasting rules and myopia, as well as VAR(1) forecasts and myopia,

over the 1968:Q3 through 2018:Q4 period. For each model specification, I consider myopic and

non-myopic forecasts. Figure 12 summarizes the estimates of coefficients K4 for the full sample

and M4 for the sample starting from 1982:Q3 through 2018:Q4. All specifications can generally

produce under-reaction to ex-ante forecasting revisions, but only the models with some learning can

generate over-reaction to current inflation simultaneously with under-reaction to forecast revisions.
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Moreover, non-myopic forecasts outperform myopic forecasts in terms of matching over-reaction

to current inflation. Finally, the AR(1) specification with unrestricted coefficients always yields

positive values for K4 and M4 that can be orders of magnitude higher than the SPF evidence.

D Proofs

D.1 Proposition 1

Let the data-generating process for inflation be given by π̂t = am̂ct+ bπ̂t−1, where a = κ
1−αβρn

and

b = βn(1−α)
1−αβnγ∗ (γ

∗)2. Then, one can show that

F (γ) =
E(π̂tπ̂t−1)

E(π̂2
t )

=
b+ ρ

1 + ρb
(D.1)

For a CE equilibrium to exist, we must have that F (γ) = γ for at least one value of γ ∈ (0, 1).

Moreover, F (γ) is an increasing function of γ, with F (0) = ρ > 0 and F (1) = βn(1−α)+ρ(1−αβn)
1−αβn+ρβn(1−α)

,

where ρ ≤ F (1) < 1. Therefore, F (γ) crosses the 45◦ line at least once; that is, a CE equilibrium

is guaranteed to exist. Since F (γ) ≥ ρ, it follows that γ∗ ∈ [ρ, 1).

To show that the CE equilibrium is unique, I show that F (γ) is convex whenever it intersects

with the 45◦ line, i.e., whenever (D.1) holds. Note that F (γ) is an increasing function of γ, such

that F (0) = ρ and F (1) < 1. Therefore, if multiple fixed points existed for γ ∈ [0, 1), it must be

that at least one fixed point, F (γ), is concave.

F ′′(γ) |γ=γ∗ = (1− ργ∗)
b′′(1 + ρb)− ρ(b′)2

(1 + ρb)2
(D.2)

where b′ = ∂b/∂γ and b′′ denotes the second-order partial derivative of b w.r.t. γ. Therefore,

F ′′(γ = γ∗) > 0 ⇐⇒ b′′ > ρ(b′)2

1+ρb
. One can show that

b′′ =
2βn(1− α)

(1− αβnγ∗)3
(D.3)

Then,

b′′ − ρ(b′)2

1 + ρb
=

2βn(1− α)

(1− αβnγ∗)3
− ρ(βnγ∗(1− α))2(2− αβnγ∗)2

(1− αβnγ∗)3(1− αβnγ∗ + βnρ(1− α)(γ∗)2)

=
βnγ∗(1− α)

(1− αβnγ∗)3(1− αβnγ∗ + βnρ(1− α)(γ∗)2)︸ ︷︷ ︸
(+)

×
(
2(1− αβnγ∗) + 2(βnρ(1− α)(γ∗)2)− ρβn(γ∗)2(1− α)(2− αβnγ∗)2

)︸ ︷︷ ︸
G(γ)

(D.4)
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Hence, the sign of F ′′(γ = γ∗) is determined by the sign of G(γ), which is always positive.

G(γ) = 2(1− αβnγ∗) + βnρ(1− α)(γ∗)2(2− 4 + 4αβnγ∗ − (αβnγ∗))

= 2(1− αβnγ∗)(1− βnρ(1− α)(γ∗)2) + αβ2n2ρ(1− α)(γ∗)3)(2− αβnγ∗) ≥ 0
(D.5)

D.2 Corollary 1

Consider F (γ), with F (γ) as defined in (D.1). Since the CE equilibrium is unique, γ∗, following

a change in price stickiness or myopia, will change in the same direction as F (γ). Taking the

first-order partial derivative with respect to α of F (γ) yields

∂F (γ)

∂α
=

1− ρ2

(1 + ρb)2
∂b

∂α︸︷︷︸
(−)

< 0 (D.6)

Similarly, taking the first-order partial derivative with respect to n of F (γ) yields

∂F (γ)

∂n
=

1− ρ2

(1 + ρb)2
∂b

∂n︸︷︷︸
(+)

> 0 (D.7)

D.3 Proposition 2

The actual law of motion for inflation along the CE equilibrium is π̂t = am̂ct + bπ̂t−1, and the

forecast about next period’s inflation along the equilibrium path is Ẽtπ̂t+1 = n(γ∗)2π̂t−1. Hence,

the h-period-ahead forecasting error about inflation in period (t + k), following a one-time shock

εt in period t, is

π̂t+k − Ẽt+k−hπ̂t+k = am̂ct+k + bπ̂t+k−1 − nh(γ∗)h+1π̂t+k−h−1

= aρkεt + ab(ρk−1 + bρk−2 + ...+ bk−1)εt − anh(γ∗)h+1(ρk−h−1 + ...+ bk−h−1)εt

= aρk−h−1

(
ρh+1 + bρh

(
1 + ...+

(
b

ρ

)h

+ ...+

(
b

ρ

)k−1
))

− aρk−h−1

(
nh(γ∗)h+1

(
1 + ...+

(
b

ρ

)k−h−1
))

εt

= aρk−h−1

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
εt

(D.8)

The effect of εt > 0 on the forecasting error for k = 0 is positive; hence, forecasters under-react

on impact. Moreover, limk→∞ ρk−h−1 = 0, and therefore the forecasting error will eventually

dissipate at some point in the future. The question remains whether, as k → ∞, we approach the
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0 forecasting errors from below (delayed over-shooting) or above. Given that a > 0 and ρ > 0,

delayed over-shooting is guaranteed to occur if

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
< 0 (D.9)

One can easily show that (bh+1 − nh(γ∗)h+1) < 0. Then, if b > ρ, we have that

lim
k→∞

(
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

= −∞

so

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
= −∞ (D.10)

On the other hand, if b < ρ, we have that limk→∞
(
bh+1 − nh(γ∗)h+1

)∑k−h−1
j=0

(
b
ρ

)j
= ρ(bh+1−nh(γ∗)h+1)

ρ−b
,

so

lim
k→∞

((
bh+1 − nh(γ∗)h+1

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ

(
ρh + bρ

ρh − bh

ρ− b

))
=
ρ(ρh+1 − nh(γ∗)h+1)

ρ− b
(D.11)

Hence, when b < ρ, delayed over-shooting is guaranteed to exist if ρh+1 < nh(γ∗)h+1. Mis-specified,

to show that the two conditions stated above are sufficient for late over-response, we have to show

that if the forecast error response turns negative, it will never become positive. Showing this

proves that if the forecast error impulse response approaches 0 from above in the limit as k → ∞,

it has never been negative before. Suppose there exists k∗ ≥ 1, such that for k ≥ k∗,

Ik,h =
∂(π̂t+k − Ẽt+k−hπ̂t+k)

∂εt
= aρk−2

((
b2 − n(γ∗)2

) k−h−1∑
j=0

(
b

ρ

)j

+ ρ(b+ ρ)

)
< 0 (D.12)

Since (bh+1 − nh(γ∗)h+1) < 0, as k increases the impulse response of forecast errors becomes more

negative, and the sign of Ik,h can never flip as k increases.

D.4 Proposition 3

I first derive a number of important moments. Consider first the covariance between π̂t+h and π̂t

for any h > 0:

Cov(h) = E(π̂t+hπ̂t) = a2
(

ρ(ρh − bh)

(ρ− b)(1− ρb)
+

bh(1 + ρb)

(1− b2)(1− ρb)

)
E(m̂c2t )
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Next, I derive the covariance between the ex-post forecast errors, FEt,t+h and ex-ante forecast

revisions, FRt,t+h:

E(FEt,t+hFRt,t+h) = nh(γ∗)h+1
[
aρh+1(1− nργ∗)E(m̂ctπ̂t) + b(Cov(h)− nγ∗Cov(h+ 1))

]
− nh(γ∗)h+1

[
nh(γ∗)h+1(E(π̂2

t )− nγ∗Cov(1))
]

=
a2nh(γ∗)h+1ρh+1(1− nργ∗)

1− ρb
E(m̂c2t )

+
a2nh(γ∗)h+1

1− ρb

bh+1(1 + ρb)(1− nbγ∗)− nh(γ∗)h+1(1 + ρb− nγ∗(ρ+ b))

1− b2
E(m̂c2t )

+
a2nh(γ∗)h+1

1− ρb

[
bρh(1− nργ∗)

h−1∑
j=0

(
b

ρ

)j

− nργ∗bh+1

]
E(m̂c2t )

(D.13)

On the other hand, one can show that the variance of forecast errors is given by

E(FR2
t,t+h) = a2n2h(γ∗)2(h+1) (1 + n2(γ∗)2 − 2n(γ∗)2)(1 + ρb)

(1− ρb)(1− b2)
E(m̂c2t )

Finally, Kh is given by the covariance between forecast errors and forecast revisions and divided

by the variance of forecast revisions, that is,

Kh =

ρh(1− b2)(1− nργ∗)

(
ρ+ b

∑h−1
j=0

(
b
ρ

)j)
+ bh+1(ρ(b− nγ∗) + 1− nbγ∗)

nh(γ∗)h+1(1 + n2(γ∗)2 − 2n(γ∗)2)(1 + ρb)︸ ︷︷ ︸
(+)

− ρ(b− nγ∗) + 1− nbγ∗

(1 + n2(γ∗)2 − 2n(γ∗)2)(1 + ρb)︸ ︷︷ ︸
(−)

(D.14)

Now, I compute the covariance between forecast errors and inflation realized in period t,

E(FEt,t+hπ̂t) =
a2ρh

1− ρb
E(m̂c2t ) + bCov(h− 1)− nh(γ∗)h+1Cov(1)

= a2
[

ρ(ρh − bh)

(ρ− b)(1− ρb)
+

bh(1 + ρb)

(1− ρb)(1− b2)
− nh(γ∗)h+1(b+ ρ)

(1− ρb)(1− b2)

]
E(m̂c2t )

(D.15)

Dividing the expression above by the variance of inflation, I derive Mh:

Mh =
ρh

1 + ρb

[
h∑

j=0

(
b

ρ

)j

− b2
h−2∑
j=0

(
b

ρ

)j
]

︸ ︷︷ ︸
(+)

−n
h(γ∗)h+1(b+ ρ)

1 + ρb︸ ︷︷ ︸
(−)

(D.16)

D.5 Corollary 2

First, from Proposition 2, it is trivial to see that delayed over-shooting is guaranteed to occur for

any parameterization of the model.
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Second, I re-write the condition for which Kh > 0 as follows

Kh = ρ(1− b2)(1− ργ∗)
ρh+1 − bh+1

ρ− b
+ (bh+1 − (γ∗)h+1)(1 + ρb− γ∗(b+ ρ)) > 0

Simple re-arrangement gives rise to the following inequality,

(γ∗)h+1 < bh+1 + ρ(1− b2)(1− ργ∗)
ρh+1 − bh+1

(ρ− b)(1 + ρb− γ∗(b+ ρ))

= bh+1 + ρ(1− b2)(1− ρ2)
ρh+1 − bh+1

(ρ− b)(1− ρ2)(1− b2)

= ρh+1 + ρhb+ ...+ ρbh + bh+1 = γ̄

(D.17)

where for the second equality, I rely on the fact that along the CE equilibrium, γ∗ = b+ρ
1+ρb

, as

shown in Proposition 1.

Third, I re-write the condition for which Mh < 0 as follows

Mh =
ρh

1 + ρb

[
h∑

j=0

(
b

ρ

)j

− b2
h−2∑
j=0

(
b

ρ

)j
]
− (γ∗)h+1(b+ ρ)

1 + ρb
< 0

from which it follows that

(γ∗)h+1 >
ρh+1 − bh+1 − ρ2b2(ρh−1 − bh−1)

ρ2 − b2
= γ

D.6 Proposition 4

As shown in the main text, when myopia is combined with well-specified forecasting rules, the

aggregated optimal pricing rule can be written as π̂t = κm̂ct+βnEtπ̂t+1. The solution for inflation

then is given by π̂t = a0m̂ct, where a0 = κ
1−βnρ

.

1. I show that Ik,h ≥ 0:

Ik,h = a0m̂ct+k − a0ρ
hm̂ct+k−h = a0(ρ

k − nρk)εt ≥ 0 (D.18)

for any k ≥ 0. From here, it follows that if n = 1, i.e., if we impose well-specified forecasts

absent myopia (FIRE), Ik,h = 0 for any k ≥ 0.

2. Next, I compute the covariance between forecast errors and forecast revisions:

E
(
(π̂t+h − nhEtπ̂t+h)(Etπ̂t+h − Et−1π̂t+h)

)
= nhρ2h(1− nρ2)(1− nh)E(π̂2

t )

Dividing the expression above by the variance of forecast revisions delivers

Kh =
(1− nh)(1− nρ2)

nh(1 + n2ρ2 − 2nρ2)
≥ 0
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3. Finally, I compute the covariance between forecast errors and current inflation:

E
(
(π̂t+h − nhEtπ̂t+h)π̂t

)
= ρh(1− nh)E(π̂2

t )

Dividing the expression above by the variance of current inflation gives rise to

Mh = ρh(1− nh) ≥ 0

D.7 Proposition 6

Suppose there is a one-time shock in period t. The h-period ahead forecast error in period t + h

is given by

Si,t+h − Ẽ⋆
tSi,t+h = 1i

[(
h∑

j=0

Aj

)
C +AhBEt

]
− δ(1− γh+1) (D.19)

where 1i is a row vector of the same length as St, with 1 in the ith position and 0 anywhere else.

Similarly, the forecast errors for any period t+ k where k > h are described by

Si,t+k − Ẽ⋆
t+k−hSi,t+k = 1i

[
k∑

j=0

AjC +AkBEt − γh+1

(
k−h−1∑
j=0

AjC +Ak−h−1BEt

)]
− δ(1− γh+1)

(D.20)

Suppose that the response of forecast errors in period t+1 to a particular shock εjt in Et is positive,

i.e.,

I1,h =
∂
(
Si,t+h − Ẽ⋆

tSi,t+h

)
∂εjt

= 1iA
hB1′

j = 1iQΛ
hQ−1B1′

j > 0 (D.21)

where 1j is a row vector of the same length as Et, with 1 in the jth position and 0 anywhere else,

and A is decomposed as A = QΛQ−1, where Λ is a diagonal matrix containing the eigenvalues of

A and the column of Q contain the respective eigenvectors of A.

Ik,h =
∂
(
Si,t+k − Ẽ⋆

t+k−hSi,t+k

)
∂εjt

= 1i(A
k − γh+1Ak−h−1)B1′

j

= 1iQΛ
kQ−1B1′

j − γh+1QΛk−h−1Q−1B1′
j

(D.22)

I assume that the response of Sit+k to εjt preserves the sign for any k ≥ h. Then, one has to find

conditions for which limk→∞ Ik,h < 0:

lim
k→∞

Ik,h = lim
k→∞

(QΛk−h−1Q−1B1′
j

)︸ ︷︷ ︸
+

(
1iQΛ

kQ−1Bhj
QΛk−h−1Q−1Bhj

− γh+1

) < 0 (D.23)

37



Let M be the length of St; qm be the product between the element of Q located in row i and column

m and the element in Q−1 located in row m and column j; and λ1 be the largest eigenvalue of A.

Then, limk→∞ Ik,h < 0 if and only if the following limit is negative:

lim
k→∞

(
1iQΛ

kQ−1B1′
j

QΛk−h−1Q−1B1′
j

− γh+1

)
= lim

k→∞

( ∑M
m=1 qmλ

k
m∑M

m=1 qmλ
k−h−1
m

− γh+1

)

= λh+1
1 lim

k→∞

(
q1 +

∑M
m=2 qm(λm/λ1)

k

q1 +
∑M

m=2 qm(λm/λ1)
k−h−1

)
− γh+1

= λh+1
1 − γh+1 < 0

(D.24)

If γ exceeds the highest eigenvalue of A, then limk→∞ Ik,h < 0 is guaranteed.
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