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A.1 The PDII Variables

The PDII data collect a representative sample of US workers only once in 2008. Out of the 2,513 US
adults interviewed, 1,333 provided information on wages, demographic characteristics, and occupations.
Importantly, the PDII data currently stands as the sole available U.S. source for worker-level task as-
signments. The PDII data code worker-level task intensity in two ways. The first method involves asking
workers about the frequency of performing certain tasks (e.g., using advanced math such as algebra or
geometry). These variables are coded into five categories: (1) never; (2) less than a month; (3) monthly;
(4) weekly; and (5) daily. The second method involves asking about the proportion of the workday used
to perform tasks (e.g., managing or supervising workers), which is coded into four categories: (1) almost
none; (2) less than half; (3) more than half; and (4) almost all.

Task intensity Tf(i). Following Autor and Handel (2013), I construct worker-level task intensity using
the first component of principal components analysis, then transfer to percentile rankings to obtain TkG(i).
Specifically, I use three variables for cognitive tasks, where the first component accounts for 59% of the
variation. The social task is measured using one variable. Routine task intensity is calculated as the first
component of four variables, where the first component accounts for 55% of the variation. Manual tasks

are measured using one variable. These variables are as follows:

* Cognitive task intensity: (1) the frequency of using advanced mathematics tasks; (2) the frequency
of problem-solving tasks requiring at least 30 minutes to find a good solution; and (3) the length of

the longest document typically read as part of the job.
* Social task intensity: the proportion of workday managing or supervising other workers.

¢ Routine task intensity: (1) proportion of the workday spent performing short, repetitive tasks
and complete absence of face-to-face interactions with (2) customers or clients, (3) suppliers or

contractors, or (4) students or trainees.

¢ Manual task intensity: the proportion of the workday spent performing physical tasks (standing,

operating machinery or vehicles, making or fixing things by hand).

Multiple Tasks. The data reveal that workers often perform multiple tasks in their jobs. For simplicity,
I define a worker as often engaging in cognitive tasks if at least one of the following conditions is true: (1)
spending at least 30 minutes solving problems once a week; (2) using advanced math (algebra, geometry,
trigonometry, probability/statistics, or calculus) to solve problems at least once a week; (3) frequently
reading documents that are more than 6 pages long. A worker is considered to often perform social tasks

if they spend more than half of their workdays managing or supervising other workers. Routine task
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performance is defined as spending more than half of the workdays on repetitive tasks with minimal
face-to-face interactions. A worker is classified as often performing manual tasks if they spend more than
half of their workdays standing, operating machinery or vehicles, or manually making or fixing things. It
appears that 78% of workers often perform at least two tasks, among which 41% often perform two tasks,

29% often perform three, and 8% workers often perform all four.

A.2 O*NET Variables

I follow Deming (2017) to measure cognitive (math) and social task intensities. I follow Acemoglu and
Autor (2011) to measure routine and manual task intensities. As stated in Section 2, because the PDII
does not permit a distinction between routine cognitive and routine manual tasks, I group these two into

a single category, which is named routine tasks. Below provides the details

1. Cognitive (math) task intensity is the average of three variables: (1) mathematical reasoning abil-
ity (the ability to understand and organize a problem and then to select a mathematical method
or formula to solve the problem), (2) mathematics knowledge (knowledge of numbers, their opera-
tions, and interrelationships including arithmetic, algebra, geometry, calculus, statistics, and their

applications), and (3) mathematics skill (using mathematics to solve problems).

2. Social task intensity as the average of four variables: (1) social perceptiveness (being aware of
others’ reactions and understanding why they react the way they do), (2) coordination (adjusting
actions in relation to others’ actions), (3) persuasion (persuading others to approach things differ-

ently), and (4) negotiation (bringing others together and trying to reconcile differences).

3. Routine task intensity as the average of six variables: (1) the importance of repeating the same
tasks (How important is repeating the same physical activities or mental activities over and over,
without stopping, to performing this job?), (2) the importance of being exact or accurate (how im-
portant is being very exact or highly accurate in performing this job?), (3) structured verse unstruc-
tured work (to what extent is this job structured for the worker, rather than allowing the worker
to determine tasks, priorities, and goals?), (4) pace determined by the speed of equipment (how
important is it to this job that the pace is determined by the speed of equipment or machinery?),
(5) controlling machines and processes (using either control mechanisms or direct physical activity

to operate machines or processes), and (6) making repetitive motions.

4. Manual task as the average of four variables: (1) operating vehicles, mechanized devices, or equip-
ment (running, maneuvering, navigating, or driving vehicles or mechanized equipment, such as
forklifts, passenger vehicles, aircraft, or watercraft), (2) using hands to handle, control or feel ob-
jects, tools or controls, (3) manual dexterity (the ability to quickly make coordinated movements of
one hand, a hand together with its arm, or two hands to grasp, manipulate, or assemble objects),
and (4) spatial orientation (the ability to know one’s location in relation to the environment, or to

know where other objects are in relation to one’s self).

For each task, I compute the first principal component using the variables specified. Subsequently, ptl, ;.
is derived by initially computing the percentile rankings of the first principal component across detailed
SOC occupations. Then, I calculate the weighted average for 20 aggregate occupations in the baseline,

weighted by hours, and for 40 occupations as a robustness check.
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A.3 May/ORG CPS

I collect data from the Current Population Survey May and Outgoing Rotation Group samples (May/ORG
CPS), which provide point-in-time measures of usual hourly or weekly earnings. The sample construc-
tion follows the approach outlined by Lemieux (2010) and Acemoglu and Autor (2011), where I limit the
sample to individuals aged 21 to 60, excluding those in the military and self-employed. For hourly work-
ers, their hourly earnings are directly reported in the May/ORG CPS. For other workers reporting weekly
earnings, I compute their hourly earnings by dividing their usual weekly earnings by the hours worked in
the previous week. Additionally, I adjust the top-coded earnings observations by a factor of 1.5. Following
Autor et al. (2008), all earnings are measured in real terms and deflated by the PCE deflator. The dataset
is available from David Autor’s website, resulting in approximately 110,000 to 130,000 observations each
year. To ensure consistency over time, I apply the occupation concordance developed by Autor and Dorn
(2013) to create time-consistent occupation codes.

I start with the 30 broad occupational categories provided in OCC1990 (also referred to as BMV2019).
Subsequently, I merge occupations with small employment sizes to obtain 20 occupations, while breaking
down occupations with large employment sizes into separate groups to form 40 occupations. The baseline
model estimation is conducted using 20 broad occupations, with additional results presented in Appendix

E.2 using 40 occupation categories. Below, I list the occupations included in each classification.

20 Occupations. 1 "Executive Management" 2 "Management Related" 3 "STEM" 4 "Social Service,
Lawyers" 5 "Education, Training, Library, legal support" 6 "Health Occupations" 7 "Technicians and Re-
lated Support” 8 "Financial Sales and Related Occupations" 9 "Retail Sales" 10 "Administrative Support"
11 "Housekeeping, Cleaning, Laundry" 12 "All Protective Service" 13 "Food Preparation and Service"
14 "Farm operators" 15 "Mechanics and Repairers" 16 "Construction" 17 "Precision production” 18 "Ma-
chine Operators, Assemblers, and Inspectors” 19 "Transportation and Material Moving" 20 "Handlers,

Equipment Cleaners, and Helpers".

40 Occupations. 1 "Executive Management" 2 "Management Related" 3 "Architect" 4 "Engineer" 5
"Computer and Mathematics" 6 "Life, Physical, and Social Science" 7 "Health diagnosing occupations"
8 "Health assessment and treating, Therapists" 9 "Teacher postsecondary" 10 "Teacher except postsec-
ondary" 11 "Librarians, Archivists, and Curators"” 12 "Social Scientists and Urban Planners" 13 "Social,
Recreation, and Religious Workers" 14 "Lawyers" 15 "Writers, Artists, Entertainers, and Athletes" 16
"Health Technologists and Technicians" 17 "Engineering and Related Technologists and Technicians"
18 "Sales Representatives, Finance and Business Services" 19 "Sales Representatives" 20 "Administra-
tive Support" 21 "Information Clerks" 22 "Records Processing Occupations"” 23 "Financial Records Pro-
cessing Occupations” 24 "Duplicating, Mail, and Other Office Machine Operators" 25 "Material Record-
ing, Scheduling, and Distributing Clerk" 26 "Adjusters and Investigators" 27 "Housekeeping, Cleaning,
Laundry" 28 "All Protective Service" 29 "Food Preparation and Service" 30 "Health Service" 31 "Build-
ing, Grounds Cleaning and Maintenance" 32 "Personal Appearance” 33 "Child Care Workers" 34 "Farm
operators” 35 "Mechanics and Repairers" 36 "Construction" 37 "Precision production" 38 "Machine Oper-
ators, Assemblers, and Inspectors” 39 "Transportation and Material Moving" 40 "Handlers, Equipment

Cleaners, and Helpers".

A-3



B Additional Facts

B.1 Variance Decomposition

I demonstrate that the majority of both the level and the changes can be attributed to within-occupation

variance, using alternative occupational classifications and composition-adjusted measures.

Table B.1: Log Wage Variance Decomposition Using OCCSOC Codes

Within-Occupation Within-Occupation Within-Occupation
Log Wages Residual Log Wages (w/o states) Residual Log Wages (with states)
1980 2000 Changes 1980 2000 Changes 1980 2000 Changes
2-digit 83.2% 77.0% 53.2% 92.4% 91.2% 85.4% 92.2% 91.2% 86.8%
3-digit 78.0% 73.2% 53.9% 89.5% 89.6% 89.8% 89.4% 89.5% 90.4%
4-digit 77.7% 73.0% 54.2% 89.2% 89.4% 90.4% 89.1% 89.4% 90.9%

Notes: The analysis is based on the May/ORC CPS 1980 and 2000 datasets. Each number represents
the contribution of the within-component to the total log wage variance inequality, both in levels and
changes. The changes are calculated as the changes in the within variance divided by the changes
in the overall log wage variance. The first three columns are for log wages, the next three columns
are for log wage residuals on 240 demographic dummies, and the last three columns are for log wage
residuals on 240 demographic dummies and 51 states fixed effects. The results are derived from the

2, 3, and 4-digit OCCSOC occupation codes.

Table B.1 shows the results obtained using OCCSOC codes at varying levels of aggregation. Through
the utilization of 2, 3, and 4-digit OCCSOC occupation codes, I observe that the within-component signif-
icantly contributes to both the levels and the changes. The first three columns pertain to log wages, the
subsequent three columns relate to log wage residuals on 240 demographic dummies, and the last three
columns correspond to log wage residuals on 240 demographic dummies and 51 states fixed-effects. These
results are similar compared to those presented in Table 1, where within-occupation inequality emerges
as a primary driver of overall inequality growth and exhibits greater importance in residual inequality

growth.38

Composition-adjusted decomposition. I calculate the average and variance of the log wage within
each occupation and demographic group and subsequently aggregate these measures across groups using
constant weights averaged over 1980 and 2000. Specifically, I define the total composition-adjusted log

wage variance as the sum of the between-occupation and within-occupation components:
a 1 \T —a —a\2 a 1 N7
Bl = & ZO]NO(wot —wp)?, W= ZO]N(,tVarot,

where N and N, represent the overall employment and occupational employment averaging over 1980
and 2000. w% and w{ are the composition-adjusted average occupation and gross log wage, respectively,

weighted by the average group-occupation employment between 1980 and 2000. Var,, represents the

38The OCCSOC code is only available after the year 2000. To address this, I assigned the OCCSOC
code to the CPS data in 1980 and 1990 using a crosswalk of OCCSOC to OCC1990.
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composition-adjusted log wage variance in occupation o at time ¢, and it is computed as:

Va/rot = Bot + Wota (Bl)

NG
_ -G —a \2 _ o o G2
Bot f%] 7 (@S —@%)%, Wy f%j 7 EZG(UM @$)?, (B.2)

where w¢, is the average group-occupation level wage. Once again, the changes can be written as:
AT} = AB} + AW (B.3)

Table B.2 displays the ratio of the composition-adjusted within-occupation variance to the overall log
wage variance, both in levels and changes from 1980 to 2000. Across all occupation categories, the within-

occupation components consistently dominate.

Table B.2: The Composition-Adjusted Within-Occupation Log Wage Variance Using
0OCC1990 and OCCSOC Codes.

Within-Occupation Log Wages
1980 2000 Changes

A. OCC1990 Occupation Code
20 Occupations 88.0% 87.1% 81.1%
30 Occupations 81.9% 80.1% 69.6%
40 Occupations 84.2% 82.3% 70.5%
383 Occupations 78.7% 78.5% 78.1%

B. OCCSOC Occupation Code

2-digit 86.2% 84.5% 75.4%
3-digit 85.3% 82.4% 68.7%
4-digit 85.6% 82.9% 68.9%

Notes: The analysis utilizes the May/ORG CPS datasets from 1980 and 2000. Each number denotes the contribution of
(composition-adjusted) within variance to the total log wage variance inequality, both in levels and changes. The changes
are computed as the alterations in the within variance divided by the changes in the overall log wage variance. Panel A
employs different OCC1990 codes, while Panel B utilizes OCCSOC codes.

B.2 Stylized Facts in Details

This section provides an extensive review for Facts 2, 3, and 4 discussed in Section 2.

Fact 2: Within occupations, the job content in routine tasks has declined, while it has in-
creased for cognitive and social tasks. Extending the method developed in Spitz-Oener (2006),
APST2020 search keywords from 7 million newspaper job ads, and uses the changes in the frequency
of word mentions as a measure of the demand changes within occupations. I measure the occupation-
level relative task demand using the O*NET data in 2000, according to Equation (22). Using their data, I
measure the changes in occupation-level relative task demand using the APST2020. Appendix Table B.5
reports the estimated occupation-level relative task demand for both years. It shows, within occupations,

the relative demand declines in routine tasks but increases in cognitive and social tasks.

In the following, I detail facts on worker-level task assignments using PDII data.

Fact 3: Workers engage in multiple tasks, with task assignments varying significantly within

the same occupation. There are multiple ways to show that workers frequently engage in multiple
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tasks. For simplicity, I use the definition provided in Appendix A.1. By that definition, it appears that
78% of workers often perform at least two tasks. Among them, 41% often perform two tasks, 29% often
perform three tasks, and 8% of workers often perform all four tasks.

The task intensity varies systematically among workers with different demographic characteristics.

I use the following regression to examine sorting on observable characteristics

T,f(i) = Z BijG(i) +a, + ', ke {Cognitive, Social, Routine, Manual}, (B.4)
J

where T,f @ is (group G) worker i’s type-k task intensity (standardized to have a zero mean and a unit
variance). XjG(i) is observable characteristics j, including three education dummies, age, age square,
gender, and occupational fixed effects. [(; picks up the task sorting across observable characteristics
within occupations, relative to high school dropout (the omitted group). o, is occupational fixed effects,

and v* is a residual.

Table B.3: Estimated Coefficients for Equation (B.4)

Cognitive Social Routine = Manual
(1) (2) 3) (4)
HS graduate 0.215%* 0.0906 -0.0785 -0.0478
(0.103) (0.126) (0.104) (0.0836)
Some college 0.332%*% 0.123 -0.249%* -0.0744
(0.105) (0.125) (0.105) (0.0854)
College and above 0.506%** 0.227* -0.398%**  _(,405%**
(0.110) (0.131) (0.108) (0.0940)
age 0.0122 0.0408***  _0,0325%* -0,0310%***
(0.0135) (0.0149) (0.0142) (0.0118)
age? -0.000194 -0.000543*** (0.000324* 0.000331**
(0.000157)  (0.000173) (0.000167) (0.000140)
males 0.117*%* 0.121%* -0.197%** -0.0176
(0.0555) (0.0593) (0.0577) (0.0521)
N 1333 1333 1333 1333
R2 0.390 0.172 0.290 0.483

Notes: All reduced-form equations are estimated using PDII data. In Panel A, the regression includes three
education dummies, age, age square, gender, and occupational fixed effects. The omitted group is high school
dropout females who are 41-60 years old. In Panel B, the regression includes four types of task intensity, and
three education dummies, age, age square, gender, and occupational fixed effects. N = 1333 for all models. There

are 21 2-digit and 76 of 3-digit occupations. Standard errors are reported in the parenthesis.

Table B.3 reports the estimates using each task as the dependent variable. I control the 3-digit OCC-
SOC occupational fixed effect for all models. The task intensity varies systematically among workers
with different demographic characteristics. Most notably, college graduates tend to perform more cogni-
tive tasks but fewer routine and manual tasks in the same occupation. Compared to high school dropouts,
they on average perform 0.51 of a standard deviation more cognitive tasks, 0.23 of a standard deviation
more social tasks, and 0.4 of a standard deviation less for routine and manual tasks in the same occupa-
tion. The result for social tasks is statistically significant at 10% level. Task intensities also appear to
vary across age and gender groups.

In all regressions, there are substantial variations unexplained by the observables, with R? ranging
between 0.18 and 0.48. This indicates that task specialization also varies systematically among workers
within the same demographic characteristics, suggesting idiosyncratic comparative advantages might
play a role. To account for this fact, my model incorporates idiosyncratic skills and preferences, resulting

in a closed-form expression for the equilibrium task allocation that varies by demographic characteristics
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and idiosyncratic skills. Consequently, I am able to leverage the empirical distribution of task assign-

ments to estimate the distribution of log comparative advantages.

Fact 4: Wages are determined by multidimensional skills and task assignments. Empirical
research has increasingly demonstrated that the returns to skills are multidimensional. See Heckman
(1995), Heckman and Kautz (2012), and Deming (2017). Task assignments also contribute to disparities

in earnings within occupations and demographic groups. To see this, I estimate the following regression:
lnw® = ZBijG(i) + Z’ykaG(i) + ap + U, (B.5)
j i

where the dependent variable is log hourly wage and u; is the unobserved idiosyncratic ability that affects
earnings. This regression has been run in Autor and Handel (2013) with three task measures (cognitive,

routine, and manual). I re-run their regressions with social task intensities as well.

Table B.4: Estimated Coefficients for of Wage Equation (B.5)

1) (2) 3 (€))

Cognitive 0.104***  (0.0738%*** (.0815*** (.0693%***
(0.0195) (0.0196) (0.0187) (0.0192)
Social 0.0262 0.00962 0.0328%* 0.0162
(0.0180) (0.0182) (0.0172) (0.0177)
Routine -0.0813*** _0.0626%** -0.0484*** -0.0374**
(0.0162) (0.0159) (0.0155) (0.0155)
Manual -0.150%** .0, 143*** .0,0979%** .0,104%**
(0.0178) (0.0185) (0.0174) (0.0183)
N 1333 1333 1333 1333
R? 0.427 0.516 0.494 0.556
2-digit Occup. v v
3-digit Occup. v v
Demographic controls v v

Notes: All reduced-form equations are estimated using PDII data. In Panel A, the regression includes three
education dummies, age, age square, gender, and occupational fixed effects. The omitted group is high school
dropout females who are 41-60 years old. In Panel B, the regression includes four types of task intensity, and
three education dummies, age, age square, gender, and occupational fixed effects. N = 1333 for all models. There

are 21 2-digit and 76 of 3-digit occupations. Standard errors are reported in the parenthesis.

The first two columns of Table B.4 report the estimates using 2-digit and 3-digit different occupational
fixed effects, respectively, without demographic characteristics. Cognitive task intensity is positively as-
sociated with earning variation within occupation, whereas the associations are negative for routine and
manual tasks. Columns (3) and (4) report the estimates while controlling for demographic character-
istics, the coefficients for cognitive, routine, and manual tasks fall but remain statistically significant.
These findings reinforce the mechanism that changes in job content may have unequal effects on workers
within the same occupation due to variations in their task exposure, and also provide suggestive evidence
that earnings are influenced by multiple task sources.

In some specifications, social tasks show a positive and statistically significant coefficient at a 10%
confidence level. Given the recent emphasis on the increasing return to social skills, I also incorporate

social skills and tasks in the model.

B-7



Table B.5: Occupation Relative Task Demand (), ) in 1980 and 2000

Occupation Cognitive Social Routine Manual
. Year 1980
Executive Management 0.211 0.188 0.508 0.093
Management Related 0.178 0.111 0.648 0.063
STEM 0.197 0.107 0.594 0.102
Social Service, Lawyers 0.177 0.299 0.450 0.074
Education, Training, Library, legal support 0.231 0.212 0.474 0.083
Health Occupations 0.145 0.171 0.522 0.162
Technicians and Related Support 0.165 0.131 0.590 0.114
Financial Sales and Related Occupations 0.196 0.160 0.514 0.130
Retail Sales 0.147 0.191 0.535 0.126
Administrative Support 0.128 0.138 0.643 0.091
Housekeeping, Cleaning, Laundry 0.061 0.092 0.549 0.298
All Protective Service 0.124 0.143 0.469 0.264
Food Preparation and Service 0.050 0.137 0.570 0.243
Farm operators 0.064 0.074 0.472 0.391
Mechanics and Repairers 0.081 0.052 0.459 0.407
Construction 0.089 0.058 0.464 0.390
Precision production 0.099 0.072 0.567 0.263
Machine Operators, Assemblers, and Inspectors 0.043 0.020 0.638 0.299
Transportation and Material Moving 0.042 0.073 0.577 0.308
Handlers, Equipment Cleaners, and Helpers 0.023 0.021 0.560 0.396
. Year 2000
Executive Management 0.376 0.408 0.125 0.092
Management Related 0.408 0.308 0.205 0.079
STEM 0.425 0.278 0.176 0.121
Social Service, Lawyers 0.301 0.497 0.107 0.094
Education, Training, Library, legal support 0.407 0.365 0.117 0.110
Health Occupations 0.273 0.328 0.195 0.204
Technicians and Related Support 0.328 0.235 0.272 0.165
Financial Sales and Related Occupations 0.368 0.364 0.133 0.134
Retail Sales 0.275 0.322 0.232 0.171
Administrative Support 0.275 0.266 0.319 0.140
Housekeeping, Cleaning, Laundry 0.128 0.216 0.276 0.380
All Protective Service 0.224 0.287 0.202 0.288
Food Preparation and Service 0.104 0.313 0.280 0.303
Farm operators 0.153 0.205 0.252 0.389
Mechanics and Repairers 0.196 0.147 0.247 0.410
Construction 0.210 0.159 0.246 0.385
Precision production 0.236 0.199 0.303 0.262
Machine Operators, Assemblers, and Inspectors 0.128 0.070 0.428 0.374
Transportation and Material Moving 0.094 0.182 0.307 0.417
Handlers, Equipment Cleaners, and Helpers 0.067 0.073 0.371 0.490
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C Technical Appendix

C.1 Derivation for the Time Allocation

The derivation for the probability of choosing k at time ¢ follows the standard deviation of the discrete

choice model.

0 G _
g o, —Prob(k = {argmaxpod 5 ,j7t}) = J Prob(e, ;. < p‘)kivk; &el = x,Vj)dF(z)
0

Po,jV;
b Po,kVF @
nPro (o < P20 )]dF(x)
J;ﬁk‘ Po.jv;
f 1_[ Prob(e, ;. < Do, kva )]( 0)z= L exp(—z~%)dx
Jj#k 0,7 j
1-0 Py 0
= 0)x exp exp dx
[0 (- 3, i) vl
” 1-0 o PV ” 1 0
= (-0)x exp (—x I I dx = f (—0)x exp IT, )dx
fO ( ;szz) 0 ( H )
0 0
:f (=1 —0)z % exp (- x—aﬂgﬁ))dm = J Iy exp (— y)dy = . (C.1)
0 0

The second equality holds because dF(z) = (—0)(—x~ %" !)exp(—z~?). The final equality holds by y =
21l and dy = (—0)x~ 7' L da.
Since ¢! follows an i.i.d. Fréchet distribution across occupations, the derivation for the occupational

probability in Equation (11) can be obtained analogously.

C.2 Derivation for the CES Utility Aggregator

The utility of worker i who has skill v“ of working at occupation o is given in equation (4). V/(v“) can be

written as

Vi©) = (J[O ; (Eo,k,t]lk}t)%dt)ﬁ - (Zf sﬁtdt)ﬁ, o> 1. (C.2)

E Y&k

Q. = {t € [0,1]|k = argmaxp, xv’cl, , ,} is the collection of ¢ where k task is chosen. Next, let me solve

each integral. Specifically,

( L ) = f wx"T‘l[HPmb(ew < %)]dp(x)
.

0 itk Do,jV;

0
:f R [H Prob(e, ;. < DoV x)]( 0)z= " exp(—2~%)dx

0 J#k pO JUG
” L_g P 0
=| (—0)z" = "exp(— 19 Y exp(—a~")dx
l ( Z Zre
0 1 p o0 1
= f (—0)z==~" exp ( = Z J J J (—0)z=7 % exp (- x*GH;ﬁ))d:ﬁ
0 7 kvk 0
0 a0
:J (—O)xféfeexp(—xfeﬂgli)dx= f yea 9H9|"75+1exp(—y)dy
0 0
HSU 9+1F 1 1 1 C 3
i (1- 77 %). (C.3)
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The second equality holds because dF(z) = (—60)(—2~%"!)exp(—z~?). The final equality holds by y =
*"H Land dy = (—6)z77'II ﬁdm The gamma function is I'(z) = §” y* ' exp(—y)dy. Therefore, one can
obtaln the CES utility aggregator as

; 11 A+l
vo(yc):r(1_§+%)(;nk‘o )- (C.4)

Two limiting cases are worth noting. The first case is when o goes to 1, in which case
Vi(w®) =T(1)( > My,) = 1. (C.5)
%
The second case is when o goes to infinity, then
Viwe) = (1 - +) )3 7 (C6)
o 0 klo * .
Note the gamma function equals 1 when it is evaluated at 1.

C.3 The Existence and Uniqueness of Equilibrium

Below I show the existence and uniqueness, in which the proof relies heavily on Alvarez and Lucas (2007)
and Allen and Arkolakis (2015). Denote P as the vector of task prices and define the excess labor demand
function as

D1 (]P’) Ldemand LSullsply

where the demand is defined in Equations (14) and (15) and the labor supply is defined in Equation
(13). Following Alvarez and Lucas (2007), I verify the following six conditions hold, which ensures the

existence and the uniqueness of a vector P such that D, ,(P) = 0:

1. D, x(PP) is continuous in P, which holds immediately from the functional form of labor supply and
demand.

2. D, 1 (P) is homogeneous of degree zero. For any o > 0,

D, i (aP) = Ldemand (op) — Lj?,fplymp)

)\07 AO(OZP)p 1—
= kapﬁ[Po(ozP)] p[P(ozIP’)]p Y (aP) — JN vEI, (aP,v )HMD(OL]P) v )dFG
Aok Ao(aP)P b e
- 'kap:j S o *[P,()]' "o’ [P(aP)]” ZJNG P, vO) Iy, (P, v¥)dFS
= LiP(E) - LI P)
= D, (P).

The third equality holds because I, . (P, v¢), Iy, (P, v¢), and A,(aP) are homogeneous of degree

zero and Y (P) and P,(P) are homogeneous of degree one in P.
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3. For all P > 0, it is true that

Zpo,kDo r( Zpo Ldemand Zpo Lsupply

_Exokpl PAPPPTLYY — ZpokaN vy, (P, v9) L, (P, %) dFS
o,k o,k

= Z /\o,kY() - ZYo,k =0
= XokYo = D XokYo = 0.

The second equality holds by the definition of aggregate labor supply and demand. The third
equality holds because of perfect competition, i.e., the total output is the sum of the value added
of all tasks by workers. The fourth equality holds because ), ; corresponds to expenditure share
under Cobb-Douglas production function.

4. For all P, there is a uniform lower bound. For a specific pair (o, k),

)

Dok(P)>—ZJNGu,§Hk|O(RV )L, (P, v9)dFS > — ZNG’JV dF¢
G
0.2
= — Y N%exp(uf + ).
= 2

The second inequality holds because II, (P, v“) < 1 and ITy, (P, #“) < 1. The equality holds because
(VGRS = exp(uf + % %), which is the expected value of log normal distribution. The uniform lower
bound can be set as the — Yo N%exp(ué + ) <0.

5. The following limit holds for any pair (o, k):

lim D, (P) = > 0.

Po,k—0

Following Alvarez and Lucas (2007), there exists at least an equilibrium if conditions 1-5 hold. To ensure

the equilibrium is unique, we need the gross substitution property below.

6. Pick an occupation o' and task k' (either o’ # o or k' # k, or both are different), it is straightforward

and 3 supply

to show that aa > 0 and — (;p > 0. Then
7690’]“@) > 0.
OPo! k!

Since D, 1 (P) is homogeneous of degree zero in P, this implies

VD, ,(P) P =0.

)

Combining these two results, it must be the case that

0D, (P)

< 0.
apo,lc

Therefore, the gross substitution property holds.

Conditions 1-6 ensure the equilibrium is unique.
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C.4 The Structural Estimation
I estimate the model structurally using the SMM estimator by the following steps.

Solving for General Equilibrium (Inner Problem). The inner problem consists of three loops. Before
going into each loop, I simulate the following skill distribution and take some initial guesses. First, I draw
R = 300 pseudo individuals (Inz%),1In 2%, In 285, Inv¢,) from a multivariate normal distribution given in
(21) for each group G. The G group has a mass of N“. Here, r refers to the rth pseudo individual. Second,
I take an initial guess of pfh » = [1,..., 1], where the ¢ index represents the number of iterations.

1. Calibrating 77 (0, ). The first loop calibrates 7 (0, ) such that the model and the data agree
in terms of group-occupation employment shares, ITS. The iteration methods apply contract mapping as
used in Berry (1994).

¢ For each pseudo individual, compute the occupational probability using Equation (11), where P, is
given by (3); compute the time allocation to each task & using Equation (8); and compute the wage
profile using Equation (9).

¢ Compute the aggregate group-occupation employment shares as
1 &
model _ G,r
Mg = = ;HO(U ).
* Stop the procedure if maxg , \Hg?;}el — H‘éﬁtﬂ < 1077. Otherwise, update:
In7ht) = In7f , + (InIIEY — InTIE%Y). (C.7

2. Solving p, 1.(0, w). In the second loop, given Y (the set of parameters prior obtained), and a guess
of © and of A,, I apply the contraction mapping algorithm (Alvarez and Lucas, 2007) to solve p, x (O, w)

numerically as follows

¢ Compute the aggregate efficiency units of labor supply according to Equation (13).
¢ Compute the labor demand according to Equation (14), where the occupational output and the total
outputs are computed using Equations (15) and (16), respectively.

¢ Compute the excess labor demand as:
Zo({ph 1)) = Lmand — L3001, (C.8)
Stop the procedure if max, y Zox ({p’, ;}) < 107°. Otherwise, update:

Zo,k’({pz,k})Q

3
max {Logrend, L PPV}

t+1 _ ¢t
po,k - po,k, + aq

a1 € (0,1). (C.9)

3. Calibrating A4,(©, w). In the third loop, given the solved 7¢(0, @) and p, (6, @), I use contrac-

tion mapping to solve A,(©,w) that target the average occupational wages as follows

* Using the solved p, 1 (O, w) and the wages defined in equation (9), I compute the average occupation-

level wages as
S SNC I, (C) - W, () dFE
26§ NG T, (V) dFE

JyModel _ (C.10)
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e Compute the sum of occupation-level wage gap \/ >, (WModel _ J7Data)2 gand stop if the gap smaller
than 1075, Otherwise, update:

\/(Wé\/[odel _ W(Pata ) 2
max {Wé\/{odel’ W(Pata} ’

Af+1 Af + Qi g € (0, 1). (C.11)
SMM Estimation for © (Outer Problem). I then compute WZ°%! and Varm°del I use gradient-based
methods that search for the SMM estimator

© = argmin [xyg’(@;f(@))]ﬂ[\pg’(@;f(@))]/, (C.12)

where \I/G(@ F (9)) = [Wg“ﬂf‘el - Wg‘}fﬁVargf’gel Vardata] is the vector of targeted moments. I denote
= {r5(0,®),por(0,w), A(O,w),w}. Q is the weighting matrix, with diagonal element being the
size of group-occupatlon employment. I compute the model-predicted average and variance of wages, and

the occupational employment as

R
W = % 2 Wo (vf, G;F(@))) I, | vC, 05 F(0)], (C.13)
r=1
mode. 1 & 11/ mode ?
Var®odel — w1 ; <Wo(u§, 0; F(0)) — Wwaed 1) 1T, [uﬁ @;f(@)], (C.14)
9
i Wo(vy, ;. F(€)) V5 (v)757 (©)
Irpedel — % YL (v, 0, F(0)), IL(v", ©; F(0)) = [ ( ) ] 5 (C.15)
3, [Wove, 0 F@)Vitre)rs ()]

The standard gradient-based method (using Fmincon in Matlab) is used to search for parameters ©.

C.5 Estimating Alternative Models in Section 6.2

I detail how I estimate 77 in Section 6.2 when setting 7 = T and F = v§, ¢ = 2,3,4. A similar
procedure applies to other skills. Using the baseline estimated skill parameter {u&, u&, 2% ¢ $G 1

draw the joint skill distribution of social, routine, and manual skills {v§, v{, v§'}.

Solving for General Equilibrium. Given a guess of 77, the same baseline parameter estimates of 6, 9,
ps Ao, Aok, and 7€, T compute aggregate task demand and supply for occupation and apply the contraction
mapping algorithm (Alvarez and Lucas, 2007) to solve the task price p, ; (77) where LSupply Ldemand The

iteration follows the same as step 1 of SMM estimator described in Section C.4.

Update 7. Given p, (Tlo), the second step then computes the log average wage and updates T} until
the predicted log wage and the data agree. Specifically, I compute the average log wages as

20 2 SNG T, (V) - Wo(v©) dFf
2o ZGSNG o (v%) dFS

WModel _ (C 16)

After that, I compute the gap between the data and model as \/ >, (WMeodel _ Jj/Data)2 and stop if the gap

smaller than 10~°. Otherwise, update:

\/(WModel _ WData)Q
max {WModel’ WData} ?

T =T+ az € (0,1). (C.17)
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C.6 The Variance-Covariance of SMM Estimator
According to Wooldridge (2010), the asymptotic variance-covariance matrix can be obtained as

-1

-1
[@’QCI)] [CD’QHQCI)] [(I)’Q@] (C.18)

where @ is the gradient matrix of ¢ (9; Do,k (©), AO(G)) with respect to parameters © defined as

AWES - WES)
d(‘)l(H) d.
= | ASEL)"(5E,,)"
dal@ d:
MGy —IG
90 0

The gradient matrix is evaluated at parameter values ©g, which are the SMM estimator. (2, again, is the
diagonal matrix with each element being the size of group-occupation employment. H is the variance-

covariance of the moment condition (evaluated at the truth).

H= Var[(\IIOG)’ x qff]eo, (C.19)

where U is the shorthand for ¥ (©; 7(0)). The asymptotic variance of the SMM estimators is then the

diagonal elements.
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D The Fitness of Two Alternative Models

This section evaluates the fit of two alternative models: (1) a model with common task assignments across

workers, and (2) the Roy model.

D.1 Model # 1: Common task assignments across workers

First, I study a model that deviates from the baseline by assuming common task assignments across
workers. Once entering an occupation, all workers allocate the same fraction of time to each task. Since
the task assignment is the same across all workers, the scale is thus absorbed by the price. The wage
equation is

WO(VG) = Zpo,k X V]?- (Dl)
k

The production function and occupational choice follow the same as the baseline model. Specifically, the
production functions follow Equations (1) and (2). The log absolute and comparative advantage schedules
follow a joint normal distribution defined in (21). Workers choose one occupation that maximizes their
utility. The share of workers choosing occupation o is, again, given in Equation (11). I re-estimate
parameter © by adopting the two-step SMM procedure and targeting the same sets of moments using
the 2000 CPS. Using the estimated skills, I then solve the equilibrium in 1980. Again, A, is calibrated to

match average occupational wages and & matches group-occupation employment
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Figure D.1: Changes in Occupational Log Wage Percentiles, 1980-2000: Model and Data

In Equation (D.1), wage still has multiple sources and A In p, ;, can generate unequal responses within
occupations. Figure D.1 shows the model predicts nearly linear wage changes for most occupations. For
occupations such as management, STEM, Sales, and Construction, the predicted wage changes replicate
the top end but fail to match the smooth changes at the middle to bottom end. For the overall distribution,
the model fits less well for the middle-to-bottom end (see Figure D.3).
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Table D.1: The SMM Estimates of Structural Parameters, A Model with Common Task Assignments

Education and Age Groups /‘?1 uZGZ ,uZG; ui Cov(lnzf Inv§) Cov(lnzf Inv{) Cov(lnz{ Inv{) Var(lnvf)
Females
HS dropouts 21-41 years Old -.34 (.016) -.06(.211) .101(.269) -.06 (.824) -.13 (.036) -.06 (.053) -.12 (.023) .156 (.094)
HS dropouts 41-60 years Old 0 (0) 0(0) 0(0) 0 (0) -.21 (.055) -.13 (.033) -.18 (.042) .244 (.005)
HS grad 21-41 years Old .048 (.012) .003 (.073) .548(.134) -.11(.230) -.05 (.013) -.07 (.028) -.16 (.011) .197 (.041)
HS grad 41-60 years Old 292 (.005) -.09 (.028) .557(.068) -.04(.039) -.10 (.011) -.08 (.027) -.10 (.017) .158 (.116)
Some college 21-41 years Old .332(.238) -.73(.004) -.00(.143) .238(.454) -.12 (.046) -.06 (.042) -.20 (.069) .250 (.105)
Some college 41-60 years Old .356 (.010) -.45(.003) -.04(.087) .309 (.089) -.20 (.164) -.11 (.110) -.31(.273) .406 (.366)
College and above 21-41 years Old .358 (.307) -.03 (.141) -.81(.002) .494 (.374) -.22 (.351) -.22 (.482) -.31 (.569) 471 (.107)
College and above 41-60 years Old .493 (.038) .234 (.024) -.86(.013) .523(.017) -.20 (.201) -.13 (.423) -.32 (.538) 423 (.394)
Males
HS dropouts 21-41 years Old -.48 (.006) -.34(.060) -.13(.070) .230(.438) .020 (.003) -.01 (.007) -.01 (.004) .069 (.060)
HS dropouts 41-60 years Old -47(003) -45(.016) .217(.102) .293(.230) -.04 (.006) .008 (.020) -.04 (.008) .083 (.008)
HS grad 21-41 years Old 190 (L195) -.75(.016) .273(.310) .301(.768) .046 (.147) .046 (.093) -.15 (.062) 191 (.097)
HS grad 41-60 years Old .301(.032) -.73(.009) .356(.165) .380 (.239) -.02 (.045) .034 (.100) -.04 (.038) .108 (.141)
Some college 21-41 years Old 345 (.189) -.74 (.022) .041(.070) .420 (.380) -.04 (.075) .043 (.163) -.09 (.031) .154 (.158)
Some college 41-60 years Old 455 (.286) -.63 (.026) .253(.239) .505 (.620) -.07 (.115) -.00 (.253) -.12 (.045) .182 (.263)
College and above 21-41 years Old .511 (.005) 1.05(.561) .385(.051) .013 (.606) -.17 (.273) -.11 (.664) -.15 (.168) .327 (.781)
College and above 41-60 years Old .477 (.039) .867 (.131) -.07 (.003) .382(.140) -.21 (.190) -.18 (.561) -.21(.186) 371 (.657)

Notes: Standard errors are reported in parenthesis. Appendix C.6 details how I construct the standard errors of the parameter estimates.



In the baseline model, heterogenous task sorting introduces wage convexity in comparative advan-
tage. When the task assignment is common, the model needs to load a higher skill dispersion in order to
fit the steep wage growth at the upper tail, worsening the model’s fit at the bottom end. Appendix Table
D.1 reports the SMM estimates for skill parameters. It shows the estimated parameters of ;& and %¢
are generally larger than the baseline estimates. Thus, wage convexity results from heterogeneous task

sorting in generating steep occupational wage growth at the top end.

D.2 Model # 2: The Roy Model

I structurally estimate a Roy model where there is one skill price for each occupation. I assume the
production function follows Equation (1). In contrast to the baseline model, all skills are paid at the same
price, p, . = P,, Vk. Workers choose one occupation that maximizes their utility given in Equation (4). &}
and 7 are the same as before. The probability of choosing occupation o follows Equation (11). Workers’

earning has only one source and equals W (v%) = p, x v©.
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Figure D.2: Changes in Occupational Log Wage Percentiles, 1980-2000: Data and the
Roy Model

Every worker draws a single-dimensional skill, where the log skill, In %, follows a normal distri-
bution N(u“,0%).3% While the literature commonly uses Roy models with Fréchet skills (Lagakos and
Waugh, 2013, Hsieh et al., 2019), I assume normally-distributed skill to draw direct comparisons with the
baseline model. Irrespective of the skill distribution, these models all imply that demand shocks equally
affect workers within-occupation in partial equilibrium.

I adopt the two-step SMM procedure to estimate 1 and ¢“, and assign the same values to p and
9 as in the baseline model. I target the same sets of moments using the May/ORG CPS 2000: group-

occupation employment shares and the mean and variance of log wages. I then solve the equilibrium

39 Although I assume the idiosyncratic skill is invariant across occupations, it is equivalent to a Roy
model of occupation-specific draws, where In v follows a normal distribution NV (1,uS, 120%). These two
setups are equivalent as i, is absorbed in A,.
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for 1980. Note that demand changes only involve the changes in A,. I calibrate A, to match average
occupational wages for each year. Figure D.2 shows that the model predicts limited inequality responses
both within-occupation. On the aggregate, the predicted wage changes are more flat than the observed

wage changes, See Figures D.3.

Changes in Log Wages

Percentile

Model 1 — — — Model 2 |

Figure D.3: Changes in the Log Wage By Percentiles: Alternative Models.
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E Additional Quantitative Results

Section 6 indicates that changes in ), are the primary drivers of the observed increase in within-
occupation inequality, with skill heterogeneity playing crucial roles in shaping the unequal responses.
This section conducts sensitivity analysis across various model specifications and parameter values to
assess the robustness of the results.

Appendix E.1 presents quantitative results under different demand elasticities, while Appendix E.2
presents results under alternative occupation aggregation. Appendix E.3 explores scenarios where there
is perfect substitution in task-utility over time, with o approaching infinity. Appendix E.4 uses an alter-
native measure for ), ;; based on the frequency of words mentioned. Appendix E.5 presents quantitative
results under different values of . Appendix E.6 summarizes the findings.

To conserve space, I only report the between and within-occupation decomposition results. Results

on the percentile wage gap and between and within-group inequalities are available upon request.

E.1 The Demand Elasticities

I provide results under different demand elasticity values: the elasticity of substitution across occupa-
tions (p) and the elasticity of substitution across tasks within occupations. The value of demand elasticity
affects the calibrated value A,. For this analysis, I keep A, i, occupation choice parameters (1J, 0), and the
covariance ¢ the same as in the baseline. I structurally re-estimate the model parameters O, A,, 7¢,
and p, i, through a two-step Simulated Method of Moments (SMM) procedure. This involves targeting the
same sets of moments using the 2000 Current Population Survey (CPS) data and solving the equilibrium
for the year 2000. Using the estimated skills, I subsequently solve the equilibrium for 1980. Once more,
A, is calibrated to align with average occupational wages, while 7 is adjusted to match group-occupation

employment.

E.1.1 The Elasticity of Substitution Across Occupations

I consider two scenarios: p = 1.8 as the lower bound based on BMV2019, and p = 4 as the upper bound.
Table E.1 presents the decomposition results for the two scenarios. The findings are threefold. First,
for all shocks, the between-occupation variances vary with p, but the within-occupation variances are
insensitive to different values. This is because p affects the equilibrium through Equation (15) and has
no impact on the relative task prices. Second, the calibrated A, depends on the value of p. A higher
value of p leads to more evenly distributed changes in A, across occupations, resulting in a smaller
between-occupation response. The effects of changes in A, increase between-occupation variance by 0.036
when p = 1.8, but by only 0.006 when p = 4. Third, the other two shocks, namely the changes in X,
and labor composition, are measured independently of p. Changes in ), affect the occupation price
P,, which acts as occupation-specific demand shifts in Equation (15). A higher value of p corresponds
to a larger magnitude of shock, leading to a more significant between-occupation response. For labor
composition changes, a higher value of p results in less pronounced responses in occupation prices P,,

thereby generating smaller between-occupation responses.
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Table E.1: The Between and Within Occupation Inequality with Different Values of p

Data A, Aok NG  Residual
(1) (2) (3) (4) (5)
p=18

Between 0.025 0.036 0.016 -0.009 0.017

Within 0.029 0.001 0.023 0.003 -0.002

Total 0.054 0.037 0.039 -0.007 0.015
p=4

Between 0.025 0.006 0.028 -0.007 0.003

Within 0.029 0.002 0.024 0.003 -0.001

Total 0.054 0.008 0.053 -0.004 0.002

Notes: The impacts in Columns (2)-(5) are derived by assessing what would have occurred in

1980 if each shock was adjusted to its respective level in 2000.

E.1.2 The Elasticity of Task Substitution Within Occupation.

Recalling the baseline Cobb-Douglas technology, which implies a unit elasticity of substitution across
tasks, I extend the model by introducing a CES task aggregator within-occupation that allows this elas-
ticity to deviate from one. In replacing Equation (2), I assume the occupational output is produced using

the following CES technology:

no1 it

- [Z Ao Ly ] : (E.1)
i

where )\, , measures the k-task intensity in occupation o. 7 measures the elasticity of substitution across

tasks within-occupation. Firms’ profit maximization implies that the price per unit of occupational output

is given by:

1

[ZAO a| (E.2)

The supply side remains unchanged from the baseline model. In equilibrium, the task demand at occu-
pation o becomes:
1 1
Ldemand _ N Py, = Ao bl TP ALY. (E.3)

o,k 0,k
where Y, follows Equation (15) and Y follows Equation (16), respectively. Under the CES production
function, A, ; does not precisely capture the expenditure share but is positively associated with it. Specif-

ically, for occupation o, the expenditure share on the k-task is given by Zﬂ# As n approaches 1, A, j
/4

converges to the expenditure share. e

To the best of my knowledge, the value of 1 has not been estimated in the literature. Therefore,
Table E.2 presents the results obtained using a wide range of values. Specifically, when n = 2, changes
in A, account for 72% (0.021/0.029) of the observed increase in within-variance. This proportion declines
to 62% (0.018/0.029) when n = 4. In the most conservative scenario with n = 10, changes in )\, still
account for 52% (0.015/0.029) of the observed increase. The intuition behind these results is as follows:
when 7 is larger, changes in )\, ; lead to greater adjustments within occupations but fewer changes in
occupational employment. As a result, the response in relative task prices (p, ) is smaller, while the

response in occupational prices (P,) is larger. This leads to a smaller increase in within-variance but a
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larger increase in between-variance.

Table E.2: The Between and Within Occupation Inequality with Different Values of n

Data A, Mok NE  Residual
(1) (2) (3) (4) (5)
p=3andn=2
Between 0.025 0.006 0.033 -0.007 0.007
Within 0.029 0.003 0.021 0.003 -0.001
Total 0.054 0.009 0.054 -0.004 0.006
p=3andn =4
Between 0.025 0.001 0.040 -0.007 0.009
Within 0.029 0.005 0.018 0.003 -0.003
Total 0.054 0.007 0.058 -0.005 0.006
p=3andn =10
Between 0.025 -0.001 0.047 -0.007 0.014
Within 0.029 0.007 0.015 0.002 -0.006
Total 0.054 0.006 0.062 -0.005 0.008

Notes: The impacts in Columns (2)-(5) are derived by assessing what would have occurred in

1980 if each shock was adjusted to its respective level in 2000.

E.2 Alternative Occupation Aggregation

The baseline decomposition results are derived from 20 occupational categories. Here, I present quantita-
tive results under an alternative 40 occupation classification. Appendix A.3 provides lists of occupations

included in each classification.*?

For each model, I maintain )\, , 9, o, and the covariance ¥¢ the same as in the baseline. I then
structurally re-estimate the model parameters 6, 4,, 7¢, and Do,i through a two-step Simulated Method
of Moments (SMM) procedure, targeting the same sets of moments using the 2000 Current Population
Survey (CPS) data and solving the equilibrium for the year 2000. Using the estimated skills, I subse-
quently solve the equilibrium for 1980. As before, A, is calibrated to align with average occupational
wages, while 7¢ is adjusted to match group-occupation employment.

Table E.3 presents the results. Having more disaggregated occupational groups predicts a broader
between-occupation inequality of changes in A,. The changes in A, ;, still emerge as the primary contrib-

utor to the growth of within-occupation variance.

40T base on 30 broad occupational categories provided in OCC1990, which have been employed in
BMV2019, and then break down occupations with large employment sizes into separate groups.
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Table E.3: The Between and Within Occupation Inequality Under 40 Occupations

Data A, Aok NG  Residual
(1) (2) (3) (4) (5)
Between 0.028 0.020 0.016 -0.008 0.000
Within 0.026 0.001 0.024 0.000 -0.000
Total 0.054 0.021 0.040 -0.008 0.000

Notes: The impacts in Columns (2)-(5) are derived by assessing what would have occurred in

1980 if each shock was adjusted to its respective level in 2000.

E.3 Alternative Values of o

I present results for an alternative model wherein the task utilities are perfect substitutes over time—o
approaches infinity. The only difference from the baseline model lies in the expression for occupational
choice (11), where (recall V/(v“) = 1 in the baseline model)

0—1
0

Vi) =1(1 - %) DL (E.4)
k

Again, I maintain )\, x, 9, and the covariance >¢ the same as in the baseline. I structurally re-estimate
the model parameters ©, A4,, ¢, and p, ; through a two-step Simulated Method of Moments (SMM)
procedure, targeting the same sets of moments using the 2000 Current Population Survey (CPS) data
and solving the equilibrium for the year 2000. Using the estimated skills, I subsequently solve the
equilibrium for 1980. As before, A, is calibrated to align with average occupational wages, while 7& is
adjusted to match group-occupation employment.

Table E.4 reports the results. The results are very much the same as the baseline, suggesting that
the values of o have a small impact on the results. The reason is that the value of o only affects the
equilibrium results through V(v“) and the occupational choice in equation (11). As much of the variation

in occupational choice is captured by 7, the results are insensitive to the value of o.

Table E.4: The Between and Within Occupation Inequality When o Goes to Infinity

Data A, Mok NE  Residual
(1) (2) (3) (4) (5)
Between 0.025 0.014 0.026 -0.008 0.007
Within 0.029 0.001 0.025 0.002 -0.001
Total 0.054 0.015 0.050 -0.006 0.006

Notes: The impacts in Columns (2)-(5) are derived by assessing what would have occurred in

1980 if each shock was adjusted to its respective level in 2000.

E.4 Alternative Measures of )\,

The baseline model quantifies \2%°, the relative task demand within an occupation, using the ratio of

task percentile rankings, following Autor, Levy and Murnane (2003). This section presents quantitative

results using an alternative approach for A\2°°, utilizing the ratio in the frequency of task-related words

o,k
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collected by APST2020. Specifically,

172290

2000 o,

)‘o,k = Zk, Fi?,?;o . (E5)
Compared to the baseline measure using the O*NET, this alternative measure tends to assign signifi-
cantly higher weights to cognitive and social-related tasks, which are more likely to be mentioned in job
ads (Also see APST2020). Same as the baseline model, I measure changes in task demand by utilizing

changes in the frequency of task-related words and compute task shares in 1980 as:
NI < (E3 [ EI5)

)
2000 2000 1980
Zk’ )\o,k’ X (Fo,k’ /Fo,k’ )

1980 _

o,k (E6)

where 290 is measured according to equation (E.5). Indeed, task-related words that are mentioned more
frequently in job advertisements suggest an increase in demand for those tasks.

Again, I maintain )\, , 9, and the covariance ~¢ the same as in the baseline. I structurally re-
estimate the model parameters ©, A,, 7¢, and p, ) through a two-step Simulated Method of Moments
(SMM) procedure, targeting the same sets of moments using the 2000 Current Population Survey (CPS)
data and solving the equilibrium for the year 2000. Using the estimated skills, I subsequently solve the
equilibrium for 1980. As before, A, is calibrated to align with average occupational wages, while 7¢ is

adjusted to match group-occupation employment.

Table E.5: The Between and Within Occupation Inequality with Alternative \,

Data A, Mok NS  Residual
(1) (2) (3) (4) (5)
Between 0.025 0.042 -0.005 -0.008 0.004
Within 0.029 -0.007 0.025 -0.005 -0.016
Total 0.054 0.035 0.020 -0.013 -0.012

Notes: The impacts in Columns (2)-(5) are derived by assessing what would have occurred in

1980 if each shock was adjusted to its respective level in 2000.

Compared to the baseline result, Table E.5 shows that this alternative measure tends to find a larger
between-occupation response to the changes in A,. In short, while the alternative measure tends to
have a different interpretation of what drives the between-occupation inequality changes, both measures

indicate that the changes in )\, ;. are the primary driver of rising inequality within occupations.*!

E.5 Within-Occupation Task Adjustments

The extent to which workers can adjust across tasks would impact the price response. The intuition is as
follows: when task supply is elastic, changes in relative task demand result in significant adjustments in
task assignment, leading to small changes in relative task prices. Consequently, the effect on inequality
is small. On the other hand, with inelastic supply, the response of relative task prices is more pronounced,

which in turn amplifies the inequality response.

41The differences in the prediction for between-occupation inequality is driven by the systematic difference between the alter-
native and the baseline O*NET measure, as the former assigns significantly greater weights to cognitive and social tasks. For
this reason, I prefer the baseline measure which uses job ads and word frequency only to measure changes in task demand within
occupations, aligning with the emphasis of APST2020.
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To quantify the effects of task adjustments, I examine two alternative scenarios: one with elastic
supply (¢ = 10) and another with inelastic supply (# = 1.1). Unlike the exercises in Appendices E.1-
E.4, the objective here is to isolate the effect of within-occupation task adjustments. This exercise is
comparative statics by nature, involving a change in a specific model parameter while keeping the rest
of the parameters exactly the same as the baseline. Specifically, I maintain the demand parameters (A,,
Xo,k» p) and occupation choice parameters (o, 7¢, 1) the same as the baseline estimates, while setting 6 at
a different value. However, it should be noted that this would result in a model-predicted wage that does
not align with the data in 2000. To maintain consistency, I set the skills as u:é = Cv{, where v follows
the skill distribution estimated in the baseline. C' is a constant estimated such that the predicted average
log wage matches the data while solving the general equilibrium in 2000. Importantly, the inclusion of C'
does not alter the relative skill distribution, and thus it has no impact on the inequality results. Using

the estimated skill u:é , I then solve for the equilibrium in 1980.

Table E.6: The Between and Within Occupation Inequality Responses with Different
Values of ¢

Data A, Mok N&  Residual
(1) (2) (3) (4) (5)
Elastic supply, 6 = 10
Between 0.025 0.015 0.024 -0.007 0.006
Within 0.029 0.002 0.023 0.003 -0.001
Total 0.054 0.017 0.047 -0.004 0.005
Inelastic supply, 6 = 1.1
Between 0.025 0.014 0.026 -0.009 0.006
Within 0.029 0.001 0.027 0.000 -0.001
Total 0.054 0.015 0.053 -0.009 0.004

Notes: The impacts in Columns (2)-(5) are derived by assessing what would have occurred in

1980 if each shock was adjusted to its respective level in 2000.

Table E.6 shows that the effects of changes in A, and labor composition are insensitive to the values
of 6, but the effects of changes in A, , do. When the supply of tasks is elastic, the effects of changes in
Ao, on all three variance terms become smaller. Conversely, when the supply of tasks is inelastic, the
effects become more pronounced. Notably, in the case of elastic supply, changes in )\, ; account for 79%
(0.023/0.029) of the within-occupation inequality, which rises to 90% (0.026,/0.029) when the supply of tasks

is inelastic.

E.6 Summary

This section conducts sensitivity analysis across various model specifications and parameter values.
Through these exercises, I assess the robustness of my findings to different values of demand elastici-
ties, task supply elasticity ¢, varying o, and alternative measures of ), ;. I focus on the decomposition
of between- and within-occupation inequality. While the quantitative results vary across cases, the main
message remains consistent: across all scenarios, I find that changes in A, ; are the primary driver of
rising inequality, accounting for at least 52% (0.015/0.029) of the rising inequality within-occupation. See
Appendix Table E.2 for the least value.
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F The Targeted Moments

The wage distribution in 2000. Table F.1 compares the observed and predicted average log wages by
four education groups (Columns 1 and 2), as well as the log wage variance (Columns 3 and 4). The model
fits the data closely in most cases, which is expected since the skill distribution is estimated by targeting
the group-occupation wages. Additionally, Figure F.2 shows that the model closely replicates the overall
log wage distribution, and Figure F.3 demonstrates that the model fits the wage distribution well for

disaggregated education and age groups in 2000.
Table F.1: The Average and Variance of Log Wages in 2000: Model vs. Data

Average Log Wage Variance Log Wage
Data Model Data Model
(1) (2) 3) (4)
HS dropouts 2.349 2.418 0.148 0.156
HS grad 2.627 2.654 0.193 0.187
Some college 2.756 2.777 0.220 0.210
College and above 3.134 3.155 0.289 0.247

Notes: The wages are in real terms, for which I deflate the hourly wages by the PCE price
deflator.

Group-level occupational employment. Figure F.1 plots the observed group-level occupational shares
on the x-axis against the predicted shares on the y-axis for 1980 and 2000, respectively. As 7¢ is cali-
brated to fit exactly the group-occupation employment shares in general equilibrium, the model fits the

data perfectly for both years.

1980

45 45

2000

The Occupational Shares by Groups, Model
>

The Occupational Shares by Groups, Model
N

04 o4
0 RE 3 a5
The Occupational Shares by Groups, Data

T T T T
15 . A5

0 . 3
The Occupational Shares by Groups, Data

Figure F.1: The Fit of Occupational Shares: Data vs. Model

r refers to the rth pseudo-individual, and II,(-) is the function of probability choice defined in Equa-

tion (11). The predicted group-level occupational shares are estimated as follows:
&
G _ G\ G _ G,r
Iy = fl’[o(u YAF, = 7 T§:1HO(V ).
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Figure F.2: The Percentile Values of Log Wage in 2000 (Targeted Moments)

Notes: This figure plots the percentile on the horizontal axis and the value of log wage on the

vertical axis.
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Figure F.3: The Kernel Density of the Empirical and Predicted Log Wages by Groups in 2000 (Targeted Moments)

Notes: I use the Epanechnikov kernel. To obtain a clear visualization in the log wage support, I set the bandwidth to be

the default optimal bandwidth choice under normal density.
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Figure G.1: The Skills and Comparative Advantages Along the Wage Distribution

Notes: The left panel plots a polynomial best-fit line of absolute advantage for each skill (y-axis)
against the log wage percentile (x-axis). It shows that while there is a monotonic increasing
relationship between each type of skill and the log wages, the slopes are generally steeper
for cognitive and social skills than for routine and manual skills. The right panel plots the
polynomial best-fit line of comparative advantage for cognitive, social, and routine, against the

log wage percentile. Manual skill is used as the normalization.
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Figure G.2: Task Price Residuals and the Occupational Task Intensity, A,

Notes: The y-axis is the residual of estimated equilibrium task prices p, ; on 4 task dummies.
The residual is used to ensure that each type of skill (as well as the prices) has the same
average. The x-axis is the relative task demand in 2000, reported in Table B.5. The data are

cross-sectional relations in 2000.
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Figure G.3: The Variance of Task Shares (x100) for Other 12 Occupations: Data vs. Model (Continued)
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Table G.1: The Variance-Covariance Matrix of In HkG|(oi) —In Hf'ii) by Groups

Variance Covariance

Cognitive Social Routine Cog-Soc Cog-Rou Soc-Rou

(A5

High School or Less, 41-60 years Old, Females 2.00 2.99 1.35 497 .320 .325
High School or Less, 41-60 years Old, Males 1.34 2.26 1.20 451 314 197
High School or Less, 21-41 years Old, Females 2.38 2.27 1.21 .306 .368 .345
High School or Less, 21-41 years Old, Males 1.59 2.04 1.22 219 .253 .074
Some College or Above, 41-60 years Old, Females 1.73 2.86 2.48 .560 .484 .390
Some College or Above, 41-60 years Old, Males 1.52 2.73 1.70 .648 .500 418
Some College or Above, 21-41 years Old, Females 1.53 2.62 1.77 .586 497 415
Some College or Above, 21-41 years Old, Males 1.73 2.31 1.47 .459 452 .260
Notes: The first three columns report the variance of In ﬁ? —In ﬁ? The last three columns display the

correlation coefficient for cognitive-social, cognitive-routine, and social-routine. Manual skills are used as

the normalization for constructing comparative advantages.



Table G.2: Breusch Pagan Test Statistic.

High School or Less Some College or Above
41-60 Years Old 21-40 Years Old 41-60 Years Old 21-40 Years Old

Females Males Females Males Females Males Females Males

A. Cognitive tasks

P-value 12 .885 .08 .384 29 .078 .358 .92
F-stat 1.344 .698 1.69 1.097 1.103 1.299 1.08 .699
Degree of Freedom 40 39 22 37 61 63 49 52
B. Social tasks
P-value .924 134 0 .593 .393 279 .628 .033
F-stat .666 1.357 4.27 .924 1.044 1.11 916 1.54
Degree of Freedom 40 39 22 37 61 63 49 52
C. Routine tasks
P-value 91 .003 763 .661 .071 .136 .36 0
F-stat .684 2.101 745 .872 1.308 1.224 1.078 2.32
Degree of Freedom 40 39 22 37 61 63 49 52

Notes: Panels A, B, and C display the Breusch-Pagan test statistic for cognitive, social, and

routine tasks, respectively. Each column is a specific education-age-gender group. The tests are

GG HGQ)
Ko — InII

performed by 3 tasks x 8 groups. The null hypothesis is that variance of InII so 18

constant across occupations.
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Table G.3: The SMM Estimates of Structural Parameters, Baseline Model

Education and Age Groups /‘?1 uZGZ ,uZG; ui Cov(lnz2f Inv{) Cov(lnzf Invf) Cov(lnz{ Inv{) Var(nvf)
Females
HS dropouts 21-41 years Old -.34 (.009) -.05(.085) .035(.060) -.03(.270) -.16 (.012) -.14 (.035) -.15 (.016) .131 (.023)
HS dropouts 41-60 years Old 0 (0) 0(0) 0(0) 0 (0) -.24 (.004) -.29 (.012) -.20 (.002) .209 (.000)
HS grad 21-41 years Old -12 (.005) .065(.019) .462(.010) -.03(.022) -.00 (.045) -.12 (.053) -.20 (.016) .221 (.033)
HS grad 41-60 years Old .107 (.001) -.00(.025) .510(.007) -.00 (.040) -.17 (.028) -.17 (.078) -.17 (.011) .193 (.071)
Some college 21-41 years Old .384 (.010) -.78 (.000) .040 (.004) .315(.023) -.15 (.008) -.07 (.020) -.22 (.013) .241 (.025)
Some college 41-60 years Old .367 (.004) -.44(.006) -.02(.007) .320(.016) -.15 (.018) -.15 (.033) -.24 (.020) .205 (.064)
College and above 21-41 years Old .538 (.058) -.25(.012) -.79 (.000) .475 (.075) -.22 (.010) -.21 (.025) -.29 (.036) .305 (.026)
College and above 41-60 years Old .571(.048) -.10(.023) -.62(.000) .537 (.071) -.31 (.022) -.25 (.035) -.35 (.020) .406 (.006)
Males
HS dropouts 21-41 years Old -42 (.000) -.20(.028) -.23(.016) .263(.126) -.01 (.003) -.09 (.006) -.01 (.005) .091 (.035)
HS dropouts 41-60 years Old -41(.000) -.39(.022) .121(.066) .316 (.200) -.07 (.012) -.02 (.040) -.07 (.011) .109 (.017)
HS grad 21-41 years Old .002 (.046) -.53 (.035) .183(.123) .357(.381) .005 (.056) -.00 (.022) -12 (.011) 145 (\114)
HS grad 41-60 years Old -.18 (.001) -.64(.019) .437(.075) .419(.139) .032 (.098) .076 (.215) -.09 (.052) .129 (.105)
Some college 21-41 years Old .364 (.056) -.80(.007) .060 (.007) .439 (.121) -.05 (.074) .066 (.176) -.09 (.017) .133 (.085)
Some college 41-60 years Old 1401 (.009) -.54(.009) .310(.010) .481(.017) -.09 (.077) .028 (.218) -.17 (.029) .180 (.076)
College and above 21-41 years Old .875 (.009) .895 (.022) .466 (.010) -.11 (.005) -.20 (.019) -.23 (.096) -.20 (.024) .344 (.086)
College and above 41-60 years Old .807 (.001) .622(.045) -.06(.006) .316 (.048) -.25 (.033) -.30 (.115) -.29 (.041) .372 (.095)

Notes: Standard errors are reported in parenthesis. Appendix C.6 details how I construct the standard errors of the parameter estimates.



Table G.4: (%) Percentage Changes in Task Prices by Occupations Between 1980 and
2000

Occupation Cognitive Social Routine Manual
Executive Management 35.3 52.1 -37.6 114
Management Related 44 .4 59.5 -28.7 20.7
STEM 38.6 55.3 -34.6 14.4
Social Service, Lawyers 42.5 48.8 -29.5 29.3
Education, Training, Library, legal support 39.7 47.8 -32.4 25.9
Health Occupations 47.3 58.0 -10.8 31.6
Technicians and Related Support 39.3 45.1 -15.7 26.0
Financial Sales and Related Occupations 15.1 31.4 -55.9 9.1
Retail Sales 334 40.4 -20.3 19.8
Administrative Support 35.9 41.6 -20.0 21.9
Housekeeping, Cleaning, Laundry 24.2 37.1 -31.5 8.2
All Protective Service 33.9 47.1 -19.9 16.8
Food Preparation and Service 29.9 44.5 -24.2 13.5
Farm operators 31.9 46.5 -25.5 4.7
Mechanics and Repairers 34.1 49.9 -23.3 7.0
Construction 24.0 39.2 -32.9 -3.4
Precision production 27.5 42.6 -29.4 -1.8
Machine Operators, Assemblers, and Inspectors 40.3 56.8 -17.4 12.5
Transportation and Material Moving 22.6 37.2 -32.8 7.3
Handlers, Equipment Cleaners, and Helpers 27.2 45.0 -29.8 1.0
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Table G.5: Comparison Between PDII and O*NET

Occupation

Executive Management

Management Related

STEM

Social Service, Lawyers

Education, Training, Library, legal support
Health Occupations

Technicians and Related Support
Financial Sales and Related Occupations
Retail Sales

Administrative Support

Housekeeping, Cleaning, Laundry

All Protective Service

Food Preparation and Service

Farm operators

Mechanics and Repairers

Construction

Precision production

Machine Operators, Assemblers, and Inspectors

Transportation and Material Moving

Handlers, Equipment Cleaners, and Helpers

Cognitive Social Routine Manual
PDII O*Net PDII O*Net PDII O*Net PDII O%*Net
0.375 0.376 0.390 0.408 0.126 0.125 0.109 0.092
0.411 0.408 0.265 0.308 0.208 0.205 0.116 0.079
0.494 0.425 0.214 0.278 0.226 0.176 0.066 0.121
0.472 0.301 0.242 0.497 0.183 0.107 0.104 0.094
0.375 0.407 0.142 0.365 0.208 0.117 0.276 0.110
0.267 0.273 0.183 0.328 0.259 0.195 0.291 0.204
0.376 0.328 0.200 0.235 0.260 0.272 0.164 0.165
0.366 0.368 0.256 0.364 0.215 0.133 0.163 0.134
0.123 0.275 0.183 0.322 0.328 0.232 0.366 0.171
0.241 0.275 0.126 0.266 0.425 0.319 0.209 0.140
0.124 0.128 0.101 0.216 0.364 0.276 0412 0.380
0.237 0.224 0.185 0.287 0.263 0.202 0.315 0.288
0.144 0.104 0.183 0.313 0.343 0.280 0.330 0.303
0.211 0.153 0.242 0.205 0.248 0.252 0.299 0.389
0.324 0.196 0.153 0.147 0.210 0.247 0.313 0.410
0.254 0.210 0.206 0.159 0.217 0.246 0.322 0.385
0.207 0.236 0.149 0.199 0.324 0.303 0.320 0.262
0.121 0.128 0.082 0.070 0.439 0.428 0.358 0.374
0.189 0.094 0.100 0.182 0.363 0.307 0.349 0417
0.274 0.067 0.267 0.073 0.176 0.371 0.283 0.490

Notes: This table compares the average task shares in each occupation as obtained from the
PDII data with those estimated using the O*NET.
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