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A.1 Sample construction

Table A.1 describes the construction of our sample.

Table A.1: Sample construction

Total number of generic drugs approved prior to 2008: 3722

Teva does not participate in the market just prior to hiring of NP (i.e., in 2013q1). -2966
First generic launches during sample period. -138
Complaint indicates KG and/or DR may have affected prior to NP joining Teva. -62
Injectible, dental, shampoo, suppository, or aerosol. -60
Exceptionally high price due to ongoing/potential litigation. -28
Complaint is ambiguous with respect to alleged conduct. -28
Complaint alleges two price increases. -23
Particular strength not sold in any meaningful quantity. -1

Total number of generic drug markets in the sample: = 416

The drugs with "exceptionally high price due to ongoing/potential litigation" include (a)
tretinoin/isotretinoin, which are Vitamin A derivatives including Accutane that were facing lit-
igation due to certain birth defects, (b) methotrexate, and (c) immune system suppressants such as
cyclosporine.)

Table A.2 lists cartel members and their "quality," as assigned by NP.
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Table A.2: Firm quality and cartel membership.

Original quality Updated quality Is a cartel member
Firm (as of 2013q2) (as of 2014q2) (as of 2014q2)?

Actavis/Watson 3 3 Yes
Amneal 1 2 Yes
Apotex -3 2 Yes
Breckenridge 1 2 Yes
Glenmark 3 2 Yes
Greenstone 0 1 Yes
Heritage 0 3 Yes
Lupin 2 3 Yes
Mylan 3 3 Yes
Par 1 2 Yes
Rising 1 2 No
Sandoz 3 3 Yes
Taro 3 3 Yes
Upsher Smith 2 2 Yes
Versapharm -2 -2 No
Zydus -3 2 Yes

The table is restricted to firms explicitly assigned a score greater than -3 by NP. The other
firms include Accord, Acella, Aci Healthcare, Afaxys, Ajanta, Akorn, Akron, Alembic, Alkem,
Almus, Alvogen, American Antibiotics, Amici, Ani, Apace Ky, Apnar, Arbor, Ascend,
Aurobindo, Avpak, Banner, Bausch, Bayshore, Belcher, Biocon, Biomes, Bionpharma, Blu,
Bristol, Burel, Cadista, Camber, Cambridge Therapeutic Tech, Cameron, Carlsbad Tech,
Cipla, Citron, Clay Park Lab, Corepharma, Cosette, Daiichi, Dash, Dava, Edenbridge, Endo,
Epic, Ethex, Excellium, Exelan, Eywa, Gavis, Gen Source Rx, Genbiopro, Glaxosmithkline,
Granules, Granules India, Gw, Hi Tech, Hikma, Impax, Ingenus, Int Medication Systems,
Invagen, Inwood Lab, Ipca Lab, Johnson Johnson, Jsj, Kremers Urban, Kvk Tech, Lannet,
Lannett, Larken, Laurus Lab, Leading, Lineage Therapeutic, Macleods, Major, Mallinckrodt,
Marathon, Mayne, Medimetriks, Medstone, Megalith, Metcure, Method, Micro Lab, New
Horizon Rx Group, Nivagen, Nostrum, Novitium, Orchid, Osmotica, Pack, Patriot, Pernix
Therapeutic, Perrigo, Pharm Assoc, Pharmacist, Polygen, Prasco, Precision Dose, Prinston,
Puracap, Puracap Lab, Purdue, Quagen, Quinn, Reddy, Roxane, Sagent, Sanofi, Sciegen,
Sigmapharm Lab, Silarx, Sky Packaging, Solco, Sti, Strides, Sun, Sunrise, Tagi, Time Cap Lab,
Torrent, Tris, Trupharma, Unichem, Valeant, Vensun, Vertical, Vertical Trigen, Viona, Virtus,
Vista, Warner Chilcott, Westminster, Wilshire, Winthrop, Wockhardt, Woodward Services, X
Gen, Xiromed, and Yiling.

Figure A.1 presents a histogram of assigned qualities.
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Figure A.1: Histogram of average quality. The unit of observation is a drug market. (For
instance, a "3" means NP was friends with all other rivals.)

Table A.3 summarizes the differences between cartelized and uncartelized markets.

Table A.3: Balance Table

Cartelized Uncartelized Difference

Price 27.38 33.86 -6.49 1.00
(1.15) (0.91) (0.74)

Quantity (in thousands) 627.54 1572.71 -945.17 1.00
(37.73) (73.26) (55.11)

Expenditure (in millions) 12.05 26.96 -14.91 1.00
(0.81) (1.36) (1.02)

Number of ANDA filings 0.18 0.29 -0.11 1.00
(0.02) (0.02) (0.01)

Number of firms 3.76 4.36 -0.60 1.00
(0.07) (0.06) (0.05)

The unit of observation is drug-year across all observations between 2008 and 2012,
inclusive. There are 113x5 observations for the cartelized drugs and 303x5 observations
for the uncartelized drugs. Standard errors of the means are given in parentheses.
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The set of cartelized drugs include Amoxicillin Clavulanate Potassium tablet chewable oral in 2 strengths,
Azithromycin for suspension oral in 2 strengths, Baclofen tablet oral in 2 strengths, Bethanechol Chloride
tablet oral in 4 strengths, Bumetanide tablet oral in 3 strengths, Carbamazepine tablet chewable oral in
one strength, Carbamazepine tablet oral in one strength, Cefdinir capsule oral in one strength, Cefdinir
for suspension oral in 2 strengths, Cefprozil tablet oral in 2 strengths, Cephalexin for suspension oral in
2 strengths, Ciprofloxacin Hydrochloride tablet oral in 3 strengths, Clarithromycin ER tablet oral in one
strength, Clotrimazole solution topical in one strength, Cyproheptadine Hydrochloride tablet oral in one
strength, Desmopressin Acetate tablet oral in 2 strengths, Dicloxacillin Sodium capsule oral in 2 strengths,
Diflunisal tablet oral in one strength, Disopyramide Phosphate capsule oral in 2 strengths, Doxazosin
Mesylate tablet oral in 4 strengths, Estazolam tablet oral in 2 strengths, Estradiol tablet oral in 3 strengths,
Ethosuximide capsule oral in one strength, Ethosuximide syrup oral in one strength, Etodolac tablet oral
in 2 strengths, Etodolac ER tablet oral in 3 strengths, Fluconazole tablet oral in 4 strengths, Fluoxetine
Hydrochloride tablet oral in one strength, Flurbiprofen tablet oral in one strength, Flutamide capsule
oral in one strength, Glimepiride tablet oral in 3 strengths, Griseofulvin Microsize suspension oral in one
strength, Hydroxyurea capsule oral in one strength, Hydroxyzine Pamoate capsule oral in 2 strengths,
Isoniazid tablet oral in 2 strengths, Ketoconazole cream topical in one strength, Ketoconazole tablet oral
in one strength, Loperamide Hydrochloride capsule oral in one strength, Medroxyprogesterone Acetate
tablet oral in 3 strengths, Moexipril Hydrochloride tablet oral in 2 strengths, Nabumetone tablet oral in
2 strengths, Nadolol tablet oral in 3 strengths, Nortriptyline Hydrochloride capsule oral in 4 strengths,
Nystatin tablet oral in one strength, Oxybutynin Chloride tablet oral in one strength, Penicillin V Potassium
tablet oral in 2 strengths, Pentoxifylline ER tablet oral in one strength, Pravastatin Sodium tablet oral in
4 strengths, Prochlorperazine Maleate tablet oral in 2 strengths, Propranolol Hydrochloride tablet oral
in 2 strengths, Ranitidine Hydrochloride tablet oral in 2 strengths, Sotalol Hydrochloride tablet oral in 3
strengths, Tamoxifen Citrate tablet oral in one strength, Theophylline ER tablet oral in one strength, and
Warfarin Sodium tablet oral in 9 strengths .

The set of uncartelized drugs include Acetaminophen Codeine Phosphate tablet oral in 3 strengths,
Acyclovir capsule oral in one strength, Acyclovir tablet oral in 2 strengths, Albuterol Sulfate syrup oral in
one strength, Alendronate Sodium tablet oral in 4 strengths, Amiodarone Hydrochloride tablet oral in one
strength, Amlodipine Besylate tablet oral in 3 strengths, Amoxicillin capsule oral in 2 strengths, Amoxicillin
for suspension oral in 4 strengths, Amoxicillin tablet chewable oral in 2 strengths, Amoxicillin tablet
oral in 2 strengths, Amoxicillin Clavulanate Potassium for suspension oral in one strength, Amoxicillin
Clavulanate Potassium tablet oral in 2 strengths, Mixed Amphetamine Salt (long name) tablet oral in
7 strengths, Anagrelide Hydrochloride capsule oral in 2 strengths, Atenolol tablet oral in 3 strengths,
Azithromycin tablet oral in 3 strengths, Benazepril Hydrochloride tablet oral in 4 strengths, Benzonatate
capsule oral in one strength, Benztropine Mesylate tablet oral in 3 strengths, Bisoprolol Fumarate tablet
oral in 2 strengths, Bupropion Hydrochloride ER tablet oral in one strength, Cabergoline tablet oral in one
strength, Calcitriol capsule oral in 2 strengths, Carbidopa Levodopa tablet oral in 3 strengths, Carvedilol
tablet oral in 4 strengths, Cefadroxil Cefadroxil Hemihydrate capsule oral in one strength, Cefadroxil
Cefadroxil Hemihydrate tablet oral in one strength, Cephalexin capsule oral in 2 strengths, Cephalexin
tablet oral in 2 strengths, Chlordiazepoxide Hydrochloride capsule oral in 3 strengths, Chlorzoxazone
tablet oral in one strength, Ciclopirox solution topical in one strength, Cilostazol tablet oral in 2 strengths,
Citalopram Hydrobromide tablet oral in 3 strengths, Clarithromycin tablet oral in 2 strengths, Clindamycin
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Hydrochloride capsule oral in 2 strengths, Clomiphene Citrate tablet oral in one strength, Clonazepam
tablet oral in 3 strengths, Clonazepam tablet orally disintegrating oral in 5 strengths, Clozapine tablet oral
in 4 strengths, Cromolyn Sodium solution drops ophthalmic in one strength, Cromolyn Sodium solution
inhalation in one strength, Cyclobenzaprine Hydrochloride tablet oral in one strength, Danazol capsule
oral in 2 strengths, Dexmethylphenidate Hydrochloride tablet oral in 3 strengths, Dextroamphetamine
Sulfate ER capsule oral in 3 strengths, Dextroamphetamine Sulfate tablet oral in 2 strengths, Diazepam
tablet oral in 3 strengths, Diclofenac Sodium ER tablet oral in one strength, Dipyridamole tablet oral in 3
strengths, Disulfiram tablet oral in 2 strengths, Doxepin Hydrochloride concentrate oral in one strength,
Doxycycline Hyclate tablet oral in one strength, Enalapril Maleate Hydrochlorothiazide tablet oral in 2
strengths, Ergocalciferol capsule oral in one strength, Estradiol Norgestimate tablet oral in one strength,
Ethambutol Hydrochloride tablet oral in one strength, Ethinyl Estradiol Levonorgestrel tablet oral in 3
strengths, Ethinyl Estradiol Norgestimate tablet oral in 2 strengths, Etodolac capsule oral in one strength,
Famotidine tablet oral in 2 strengths, Finasteride tablet oral in one strength, Fluconazole for suspension oral
in one strength, Fludrocortisone Acetate tablet oral in one strength, Fluoxetine Hydrochloride capsule oral
in 3 strengths, Fluoxetine Hydrochloride solution oral in one strength, Fluvoxamine Maleate tablet oral in 2
strengths, Fosinopril Sodium tablet oral in 3 strengths, Gabapentin tablet oral in 2 strengths, Gemfibrozil
tablet oral in one strength, Glipizide tablet oral in 2 strengths, Glipizide Metformin Hydrochloride tablet
oral in 3 strengths, Glyburide tablet oral in 6 strengths, Glyburide Metformin Hydrochloride tablet oral in 3
strengths, Haloperidol Lactate concentrate oral in one strength, Hydralazine Hydrochloride tablet oral in 4
strengths, Hydrochlorothiazide tablet oral in 2 strengths, Hydrochlorothiazide Lisinopril tablet oral in 3
strengths, Hydrocodone Bitartrate Ibuprofen tablet oral in one strength, Hydroxyzine Hydrochloride tablet
oral in 3 strengths, Indomethacin capsule oral in 2 strengths, Lamotrigine tablet chewable oral in 2 strengths,
Leflunomide tablet oral in 2 strengths, Lidocaine Hydrochloride jelly topical in one strength, Lisinopril
tablet oral in 6 strengths, Lovastatin tablet oral in 3 strengths, Mefloquine Hydrochloride tablet oral in
one strength, Megestrol Acetate tablet oral in 2 strengths, Meloxicam tablet oral in 2 strengths, Metformin
Hydrochloride tablet oral in 3 strengths, Metformin Hydrochloride ER tablet oral in 2 strengths, Methyldopa
tablet oral in 2 strengths, Metoclopramide Hydrochloride tablet oral in 2 strengths, Metoprolol Tartrate
tablet oral in 2 strengths, Metronidazole capsule oral in one strength, Metronidazole cream topical in one
strength, Metronidazole tablet oral in 2 strengths, Mexiletine Hydrochloride capsule oral in 3 strengths,
Minocycline Hydrochloride capsule oral in 3 strengths, Mirtazapine tablet oral in 3 strengths, Mirtazapine
tablet orally disintegrating oral in 3 strengths, Misoprostol tablet oral in one strength, Mometasone Furoate
cream topical in one strength, Mometasone Furoate lotion topical in one strength, Mometasone Furoate oint-
ment topical in one strength, Mupirocin ointment topical in one strength, Naltrexone Hydrochloride tablet
oral in one strength, Naproxen tablet oral in 3 strengths, Naproxen DR tablet oral in 2 strengths, Naproxen
Sodium tablet oral in one strength, Nefazodone Hydrochloride tablet oral in 5 strengths, Neomycin Sulfate
tablet oral in one strength, Nifedipine ER tablet oral in 3 strengths, Oxaprozin tablet oral in one strength,
Oxazepam capsule oral in 3 strengths, Oxybutynin Chloride ER tablet oral in 3 strengths, Pantoprazole
Sodium DR tablet oral in 2 strengths, Paroxetine Hydrochloride tablet oral in 4 strengths, Penicillin V
Potassium for solution oral in 2 strengths, Piroxicam capsule oral in 2 strengths, Prednisolone syrup oral in
one strength, Protriptyline Hydrochloride tablet oral in one strength, Ramipril capsule oral in 3 strengths,
Simvastatin tablet oral in 5 strengths, Sucralfate tablet oral in one strength, Terazosin Hydrochloride capsule
oral in 4 strengths, Terbinafine Hydrochloride tablet oral in one strength, Tetracycline Hydrochloride
capsule oral in one strength, Torsemide tablet oral in 4 strengths, Tramadol Hydrochloride tablet oral in
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one strength, Trandolapril tablet oral in 3 strengths, Trazodone Hydrochloride tablet oral in 4 strengths,
Ursodiol capsule oral in one strength, Valproic Acid capsule oral in one strength, Venlafaxine Hydrochloride
tablet oral in 5 strengths, Verapamil Hydrochloride ER tablet oral in 2 strengths, and Zolpidem Tartrate
tablet oral in 2 strengths .

A.2 Comparing data sources

The dataset we obtained from IQVIA (2022) reports the number of dispensed prescriptions nationally at
the drug-month-year level but is subject to two minor limitations. First, it covers the first quarter of 2011
through the fourth quarter of 2017, inclusive. In other words, it does not span the period studied in the
main text (i.e., 2008-2019 inclusive). We were limited by cost as well as historical availability, so we focused
on acquiring data around cartel formation. Second, IQIVA aggregates tablets and capsules, which affects a
small number of substance-release-strength combinations that are offered contemporaneously in both forms.
When we compare the evolution of unit sales in IQVIA and Centers for Medicare & Medicaid (2022) (see
Figure A.2, below), we require precise measurements, so we drop these drugs. Observing these distinctions
would require more granular data, which was much more expensive, and since the omissions reflect random
features of the sample, they will not affect the comparisons we derive from them. When all we require from
IQVIA is market size (i.e., one number for each drug that scales up our Medicaid data), we compute total
unit sales in IQVIA at the substance-release-strength level and then split sales up according to proportions
implied by our Medicaid data. Related to this limitation, in an equally small number of cases, IQVIA
does not distinguish between immediate and extended release forms of a substance-delivery-strength
combination. Etodolac tablets are one example. We handle ambiguity arising from the drug’s release the
same way we handle ambiguity arising from drugs offered in both tablet and capsule form.

In terms of model predictions, the most influential feature of the quantity data is the mean change
around cartel formation in cartelized markets relative to uncartelized ones. As a result, we compare the
Medicaid and IQVIA datasets along this dimension. Specifically, we denote the log of the number of
prescriptions of drug d consumed in quarter t as ydt. We then estimate

ydt =
13

∑
τ=−13

βτxτ
dt + ad + bt + edt, (1)

where ad and bt denote drug and quarter fixed effects, respectively, and xτ
dt denotes an indicator variable

that equals one if and only if d is a cartelized drug and t is τ periods from cartel formation. We β−1 = 0 to
facilitate comparisons to the period just prior to cartel formation.

Figure A.2 plots βτ estimated on each dataset. Despite how differently the underlying observations are
collected, the sources present very similar graphs. We observe (a) a very slightly positive pre-event trend
one to three years prior to cartel formation, (b) no appreciable pre-event trend just prior to cartel formation,
and (c) a clear decline in quantity thereafter, (d) culminating in a statistically significant decrease of about
15%. By way of this comparison to the "gold standard" represented by IQVIA, we conclude that Medicaid
utilization data accurately measures changes in prescription drug quantities and is well-suited for demand
estimation.
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Figure A.2: The quantity responses reported in IQVIA and Medicaid are very similar.

This figure plots coefficients obtained by estimating equation 2 on the y-axis against event
time on the x-axis. Log prescriptions are the outcome of interest, and the unit of observation
is a drug-year. The vertical red line at event time -1 corresponds to the year just prior
to cartel formation. Vertical bars around the point estimates show 95 percent confidence
intervals, based upon standard errors that are clustered by drug. Notice that while the
quantity decline in the Medicaid data following cartel formation lags the one evidenced by
IQVIA data, the delayed response does not have a meaningful effect on our results; when
we estimate demand, we omit observations from the year in which each cartel is formed.

A.3 Inferring filing dates

Figure A.3 shows that while there is no comprehensive correspondence between ANDA numbers and filing
dates, the latter can be inferred without meaningful error.

To obtain filing dates, we downloaded all available approval letters from US Food & Drug Administration
(2022) and parsed filing dates from the PDFs. We then supplemented the parsed dates with information
from Feldman et al. (2016). Since 2000, the agency has issued three "waves" of ANDA numbers. Within
each wave, numbers are assigned in chronological order. Specifically, the agency issued numbers in the
70,000s from 2000 to 2008, in the 90,000s from 2008 to 2010, and in the 200,000s thereafter.

In Panel A, we plot filing dates on the x-axis against ANDA numbers on the y-axis. The graph reflects
8,185 ANDAs for which we were able to obtain filing dates from parsed PDFs. The three waves are clearly
visible. Putting aside a small number of very early ANDAs, which are filed years before our sample starts,
there are only two obvious parsing errors.
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Figure A.3: Filing dates are inferred without meaningful error.

Panel A plots parsed ANDA filing dates on the x-axis and ANDA numbers on the y-axis. Panels
B and C plot ANDA numbers on the x-axis and parsed filing dates on the y-axis for the relevant
"waves" of ANDAs. Panel D plots the difference between the actual and predicted filing months.
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Panel A shows that the sample period corresponds to the second and third wave of ANDA numbers.
Thus, in Panels B and C, we isolate the waves separately. Panel B depicts ANDA numbers in the 90,000s,
while Panel C depicts them in the 200,000s. In each panel, we plot ANDA numbers on the x-axis and filing
dates on the y-axis. Both graphs illustrate the linearity of this relationship.

Given the aforementioned linearity, we regress ANDA numbers on filing dates within each wave and
then predict filing dates for the remaining ANDA numbers. To assess overall fit, we compute the difference
between actual and predicted dates measured in months and plot the density in Panel D. Substantially all
of the parsed dates fall within 3 months of the predicted dates. Especially given that we aggregate ANDAs
to the annual level, we conclude that ANDAs filing dates are measured accurately.

B Tables/figures related to descriptive results

B.1 Tables and figures related to Section 4.1

We compare the price of cartelized drugs before and after cartel formation, using uncartelized drug prices
to control for any time-varying factors affecting all generic markets. The unit of analysis is a drug-quarter,
and the estimating equation is given by

ydt =
24

∑
τ=−21

βτxτ
dt + ad + bt + edt. (2)

ydt represents the log of average price of drug d in calendar-quarter t. ad and bt represent drug- and
quarter-specific fixed effects, while xτ

dt is an indicator variable that equals one if and only if d is a cartelized
drug and t is τ periods from cartel formation. Given the timing of the price increases and the time period
covered by our data, τ can take a value between -21 and 24. We set β−1 = 0, so the coefficients on xτ terms
represent differences in prices relative to the period immediately preceding cartel formation. Figure B.1
reports estimates of βτ .

Figure B.1 replicates Figure 1 in the body of the main text with an exception: instead of employing two-
way fixed effects, we follow Sun and Abraham (2020), whose approach accounts for potential contamination
of leading and lagging coefficients. (See their paper for details.) We obtain similar coefficients.

Figure B.3 replicates Figure 1 in the body of the main text with an exception: rather than distinguish
between cartelized and uncartelized markets, we distinguish between markets we predict are cartelized and
uncartelized. Our predictions are based on scores assigned by NP, which reflect the strength of her personal
relationships.

Figure B.4 replicates Figure 1 in the body of the main text with an exception. We add a third price series,
which tracks the average log price of markets in which Teva is a monopolist (as of the first quarter of 2013).
Figure B.4 reports this result.
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Figure B.1: Prices in event time (two-way fixed effects)

This figure plots βτ , which is obtained by estimating equation 2, on the y-axis against
event time on the x-axis. The unit of observation is a drug-year. The outcome variable is
log average price. The vertical red line at event time -1 corresponds to the year the cartel is
formed. Vertical bars around the point estimates show 95 percent confidence intervals for
those coefficients. Standard errors are clustered by substance-delivery-release.
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Figure B.2: Prices in event time (Sun and Abraham (2020) approach)

This figure plots βτ , which is obtained by estimating equation 2, on the y-axis against
event time on the x-axis. The unit of observation is a drug-quarter. Vertical bars around
the point estimates show 95 percent confidence intervals for those coefficients. Standard
errors are clustered by drug.
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Figure B.3: Prices in markets where NP does/does not have strong personal relationships

This figure replicates Figure 1 in the body of the main text with one exception: rather
than compare cartelized and uncartelized markets, we compare markets where NP does
and does not have especially strong relationships. To do so, we obtain the "quality" of each
Teva competitor from the Complaint (i.e., a score assigned by NP to reflect the strength
of her personal relationships with the key sales and marketing persons at each firm). To
approximate the process that NP actually used to determine what markets to cartelize,
we compute each drug’s weighted average competitor quality. We define "high quality"
markets as ones in which the average competitor quality is greater than or equal to two,
and we call the remaining markets "low quality."
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Figure B.4: Prices in markets where Teva has a monopoly

Unlike cartelized drugs, prices in markets where Teva was a monopolist did not rise
discontinuously when NP joined; although there is a slight jump late in 2014, the fact is
that they were increasing and continued increasing at roughly the same pace.

B.2 Tables and figures related to Section 4.2

Firms with dormant ANDAs—ones that were once associated with positive production but no longer
are—might re-enter the market when cartels form. To study this possibility, we plot re-entry in calendar
time for cartelized and uncartelized drugs. Figure B.5 reports the result. (The format of the graph is
identical to the format of Figure 2 in the body of the main text except that the y-axis measures the average
number of (re-)entrants per drug and year rather than per substance-delivery-release combination and year.
Cartel formation clearly induces re-entry.
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Figure B.5: Reentry in calendar time

This figure plots average number of re-entrants per drug on the y-axis against calendar
year on the x-axis. The vertical red line corresponds to the first quarter of 2013—the period
in which NP joined Teva. The number of entrants are normalized to zero in that quarter.

We also compare entry into cartelized markets before and after cartel formation, using uncartelized
drug prices to control for any time-varying factors affecting all generic markets. We denote the number of
ANDA filings for a substance-delivery-release combination j in year t by yjt, and we estimate

yjt =
5

∑
τ=−5

βτxτ
jt + aj + bt + ejt. (3)

aj and bt represent drug- and year-specific fixed effects, respectively, while xτ
jt is an indicator variable that

equals one if and only if j is a cartelized substance-delivery-release combination and t is τ periods from
cartel formation. We set β−1 = 0, so the coefficients on xτ terms represent differences in prices relative
to the period immediately preceding cartel formation. We plot estimates of βτ in event-time. Panel A of
Figure B.6 reports this result. We then replicate this procedure but replace ANDA filings with ANDA
approvals, again, plot estimates of βτ in event time. Panel B of Figure B.6 reports this result. We also
replicate this procedure but replace ANDA filings or approvals with re-entry, and we plot estimates of βτ

in event time. Figure B.6 reports this result.
Figure B.8 plots the distribution of total and regulatory-specific delays.
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Figure B.6: Entry in event time

This figure plots βτ , which is obtained by estimating equation 2, on the y-axis against event
time on the x-axis. The unit of observation is a substance-delivery-release-year. In Panel A,
ANDA filings are the outcome of interest. In Panel B, ANDA launches are the outcome of
interest. The vertical red line at event time -1 corresponds to the year immediately prior to
cartel formation, as described in the Complaint. Vertical bars around the point estimates
show 95 percent confidence intervals for those coefficients. Standard errors are clustered by
drug.
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Figure B.7: Reentry in event time

In the body of the main text, we find that cartel formation attracts new entrants (i.e.,
ANDA filings). However, re-entry is also possible. Firms with dormant ANDAs—ones
that were once associated with positive production but no longer are—might re-enter the
market when cartels form. To study this possibility, we plot re-entry in event time for
cartelized and uncartelized drugs. There is an economically and statistically increase in
entry, and that re-entry occurs very soon after collusion begins. The stark contrast of this
figure and the one that reports ANDA launches highlights the effect of approval delays.
This figure plots coefficients obtained by estimating equation 2 on the y-axis against event
time on the x-axis. The unit of observation is a drug-year, and the outcome of interest is
a ANDA re-entry. Re-entering ANDAs are those where the ANDA was associated with
some output, then went at least one year without being associated with output, and then
re-entered (i.e., was once again associated with output). The vertical red line at event
time zero corresponds to the year in which Teva hired NP. Vertical bars around the point
estimates show 95 percent confidence intervals for those coefficients, based upon standard
errors that are clustered by drug.
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Figure B.8: Distributions of delays

This figure plots the distribution of delays. The unit of observation is an ANDA. Panel
A reports the distribution of regulatory delays (i.e., the time between ANDA filing and
approval), whereas Panel B reports the distribution of total delays (i.e., the time between
cartel formation and sales). In the underlying data, there are a very, very small number
of ANDAs with a total delay of just under three years. So that certain figures, such as
those reporting slack in the ICCs, more accurately represent reality, we set the mass of total
delays at two years exactly equal to zero.
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B.3 Tables and figures related to Section 4.3

Figure B.9 examines the relationship between market size and entry in cartelized markets. For the purposes
of this figure, we proxy for market size using each drug’s total revenue in the quarter just prior to NP
joining Teva. In Panel A, we measure entry as the probability that each cartelized market experiences entry
following cartel formation. In Panel B, we measure entry as the average number of firms entering each
cartelized market following cartel formation. The graph shows that regardless of how we measure it, entry
is closely related to market size. Only about 8% of drugs with around $1 million in revenue attract any
entry at all. However, drugs with over $1 billion in revenue almost always attract entry, with an average of
three firms filing ANDAs following cartel formation.

As we state in the body of the main text, comparing the paths of prices in large and small markets is
complicated in this setting by antitrust risk. Large markets may be more "visible" than small ones, and the
earliest entry events roughly coincide with the government’s investigation, so cartel members may have
reduced prices in large markets in an effort to reduce scrutiny of their behavior. In other words, prices in
large cartelized might have fallen regardless of entry. To investigate this issue, we trace the investigation
back to its origin, obtain the list of drugs whose price changes triggered the inquiry, and plot the size
distribution of these drugs to the size distribution of the full sample in Figure B.10. The array of lawsuits
faced by the firms all trace back to the Connecticut AG’s office, which launched its initial inquiry based on
July 8, 2014, New York Times article, which in turn described price changes first reported by Adam Fein of
Pembrooke Consulting and the Drug Channels Institute. Fein’s report, which appears as a November 19,
2013 article titled "Retail Generic Drug Costs Go Up, Up, and Away," simply orders the drugs in terms of
year-over-year percentage increases in NADAC prices. The report cites increases in the price of doxycycline,
clomapramine, albuterol sulfate, captopril, tetracycline, digoxin, and benazepril. Figure B.10 shows that the
distribution of market size for the drugs that prompted the government’s investigation is very similar to
the distribution of market size for the full sample.

One-third of entrants into cartelized markets are cartel members. Of the remaining entrants, which are
nonmembers, the vast majority (68%) were in existence prior to cartel formation. Figure B.11 plots entry
into cartelized and uncartelized drug markets over time separately for members and nonmembers, and we
observe similar patterns across the two groups. The distribution of member and nonmember entrants into
cartelized markets does not change around the time NP is hired by Teva.
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Figure B.9: Larger markets attract more entry

This figure plots log market size on the x-axis against the number of entrants in the
post-collusion period. The unit of observation is a drug. Market size is measured in
total revenue in 2012, the year immediately prior to NP joining Teva. Data are binned
according to x-axis values, so averages within the bin are plotted (i.e., the graph represents
a "binscatter").
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Figure B.10: Size distribution of drugs that triggered the government’s investigation

This figure reports the distribution of (logged) size, measured by 2012 revenue. The drugs
identified by Fein are marked with a blue "x."
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Figure B.11: Entry in calendar time by cartel membership

In the body of the main text, we find that cartel formation attracts new entrants (i.e.,
ANDA filings). Here, we plot the relationship separately for cartel nonmembers (left panel)
and cartel members (right panel).

C Tables/figures rel. to structural estimation

C.1 Price elasticity of demand

To better understand heterogeneity in the price elasticity of demand, we plot inverse price coefficients
(i.e., 1/α) against corresponding drug classes. Figure C.1 reports the result. Buyers of two classes of
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drugs—other antiepileptics and β-blockers—are especially inelastic.

Vitamin K Antagonists
Benzodiazepine Derivatives

Drugs for the treatment of TB
Antibiotics

Biguanides
Natural and Semisynthetic Estrogens

Anilides
Imidazole and Triazole Derivat

Penicillins With Extended Spec...
Antiinfectives

Nucleosides and Nucleotides Ex...
Corticosteroids

Hmg Coa Reductase Inhibitors
Antiinflammatory Preparations

Hydrazinophthalazine Derivativ
ACE Inhibitors
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Other Antiepileptics
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Figure C.1: Patients consuming antiepileptics and β-blockers are inelastic.

This figure plots inverse price coefficients (i.e., 1/α) on the x-axis against corresponding
drug classes on the y-axis. Buyers of two classes of drugs—other antiepileptics and
β-blockers—are especially inelastic, so we incorporate this heterogeneity in the demand
system. See Section V for more details.

C.2 Marginal cost

In Appendix Figure C.2, we report the distribution of marginal costs. Appendix Figure C.3 shows that the
model fits well out of sample. The estimates imply markups that very closely align with figures reported by
Teva Teva Pharmaceuticals Industries (2011-2016, 2012, 2013, 2014, 2015, 2016) in their financial statements.
To obtain values implied by our model, we set the first order condition of the profit function with respect
to price equal to zero, solve for pd f t−mcd f t, divide the resulting markups by prices, and average over drugs
manufactured by Teva, weighting by revenue. To obtain analogous figures from Teva’s annual reports, we
extract segment-specific income statements and compute the ratio of operating profits to total revenue for
their generic division.1 Our model assumes competitive pricing and implies that profit margins average
19.7%, while Teva’s financial statements imply 20.0% in the two years prior to NP joining Teva. In the two
years after NP joins Teva, our model assumes NP has cartelized many drug markets and implies that profit
margins average 39.6%, while Teva’s financial statements imply 39.9%. In other words, forecasts from the
model not only match profit rates in levels but also changes around cartel formation.2

1Operating margin is the right choice, given how Teva reports its income. Operating profit reduces total revenue by cost of
goods sold and selling/marketing expenses, which are mostly variable, but not general/administrative expenses, (e.g., executive
compensation, headquarters operations, etc.), which are mostly fixed/sunk.

2Although careful demand estimation contributed to this result, we believe that such a close correspondence between the model’s
predictions and the financial statement analysis is, at least in part, coincidental. The goal of this exercise was to see if the model was
in the neighborhood of the annual reports—not whether it was a close match.
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Figure C.2: Distribution of average predicted log marginal cost

This figure plots the density of predicted log marginal costs, γ̂d + γ̂t, separately for cartelized
and uncartelized drugs. It comprises all drug-year observations. However, to avoid taking
a stand on conduct prior to formalizing testing it, we estimate the parameters using
unambiguously competitive drug-year observations (i.e., using (a) drugs whose prices were
never fixed and (b) periods prior to cartelization for drugs whose prices were fixed).
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Figure C.3: Out-of-sample evaluation of log marginal cost predictions

This figure is constructed as follows. We restrict attention to 2008-2012 and "back out"
marginal cost estimates assuming firms set Bertrand-Nash prices. Then, we estimate a
regression using uncartelized drugs from 2008-2012 and cartelized drugs from 2008-2010.
Next, we predict marginal costs for our "leave-out" sample, which comprises cartelized
drugs from 2011-2012. Last, we plot ("binscatter") predicted marginal costs for the
leave-out sample against our marginal cost estimates from those drugs and periods.

Appendix Figure C.4 plots the distribution of ω̂ separately for cartel members and nonmembers.
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Figure C.4: Distribution of predicted marginal cost shocks

Left-hand side panels plot the distribution of marginal cost shocks for nonmembers, while right-hand side panels produce
analogous graphs for members. The top four panels are based on the full distribution, while the bottom four are based on
winsorized (at 1%) values. "Uncartelized" panels cover drugs whose prices were not cartelized. "Competitive" panels
additionally cover, for drugs whose prices were cartelized, years prior to cartel formation.
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C.3 Damage assessment

Using our model and demand estimates, we can compute damages to consumers. For each product in a
cartelized drug market, we compute equilibrium prices under competition and collusion, and we multiply
the difference by the number of observed prescriptions. The median price differences are $6.1, $6.4, and
$5.5 per prescription for 2013, 2014, and 2015, respectively. Mean price differences are slightly higher at
$10.0, $7.3, and $7.7, respectively. Damages total $787 million, $1.4 billion, and $1.5 billion, respectively.
That is, damages total $3.8 billion over the three-year period, which averages out to $18.2 million per drug
per year.

Our figures are very similar to those reported in two other recent studies. Cuddy (2020) finds that
collusion induced nationwide annual damages of $49.5 million per substance-delivery-release combination.3

Even though our data and models differ, we arrive at a similar figure, $40.5 million. Clark et al. (2021)
study six substance-delivery-release combinations that were affected by price fixing, estimating damages
using a carefully constructed difference-in-difference research design. Again, we reach similar estimates.4

Since the source of our quantity data is the same as theirs, we predict nearly identical damages for the
substance-delivery-release combinations for which we overlap.

D Cartel rollout

As Section 2 in the body of the main text describes, the first price increase occurred on July 3, 2013.
After the first round, opportunities for subsequent increases emerged. The Complaint suggests that these
opportunities arose for two main reasons.

One source were leadership changes. If an employee with close ties to NP moved from Firm A to Firm
B, then the likelihood of Firm B complying with the cartel agreement increased. For example, when Zydus,
which was initially rated -3, hired NP’s colleague, KG, the firm’s score increased to 2. Subsequent phone
and text records indicate that the two communicated extensively (Complaint, page 272-273).

Another source of opportunities involved supply disruptions. If a firm without close ties to NP lost
access to the active pharmaceutical ingredient and left the market, then the likelihood of cartel formation
increased. Suppose, for example, that a particular drug was manufactured by Teva, Mylan, and Orchid at
the time that NP joined Teva. Mylan is rated 3 throughout the sample. However, Orchid is rated -3, so its
presence discouraged cartel formation. Now, suppose Orchid suffers the unexpected shutdown of one of
its production facilities and cannot produce this drug for the foreseeable future. This even leaves just Teva
and Mylan, which drastically increases the likelihood that a cartel is formed.

For more details, please see Cuddy et al. (2024). The authors provide the exact timing of events, such
as NP’s maternity leave, which paused cartel formation for around six months. They also study the
relationship between cartel formation, the number of firms in the market, and the score that NP assigned
each of them.

3To arrive at $49.5 million, we start with average annual damages for the insurer she studies ($1.3755 billion, per her Table 8),
scale up to nationwide damages (by a factor of 5.8, per her Section 6.4), and divide by the number of substance-delivery-release
combinations in her sample (161, per her Appendix Table B.1.

4Whereas they estimate 44.2% and 13.5% price increases for nystatin and theophylline, respectively, our structural model predicts
41.4% and 20.8% changes. To arrive at these figures, we divide the estimated damages per defined daily dose by pre-collusion prices,
both of which are reported by the authors in their Table 7. Specifically, we define $0.21 by $1.561 and $0.155 by $0.350.
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E Technical appendix

E.1 Sunk cost estimation procedure

We require construct consistent upper and lower bounds on the parameters that determine sunk costs. The
basis for the bounds are conditions that are necessary conditions for Nash equilibrium in first stage play.
However, due to disturbances that are known by the firms but unobserved by us, we cannot naively take
inequalities derived from these conditions to the data and compute simple averages. To see this, suppose
we ignore selection induced by η, replace expected sunk costs with θ0 + θ1rj + θ2ℓj, and take inequalities
12-15 directly to the data. Since entry is especially common in markets where sunk cost shocks are small,
this approach over-samples negative η when we compute lower bounds, resulting in upward bias. By the
same logic, it over-samples positive η when we compute upper bounds, resulting in downward bias.

For lower bounds, the solution to the selection problem introduced by the structural errors lies in the
fact that although the conditional expectation of η varies with observed entry, its unconditional expectation
is nonetheless mean zero (Ishii, 2005; Ho, 2009; Pakes et al., 2015). To see this conceptually, suppose for
the sake of illustration that at least one cartel member enters each substance-delivery-release combination.
Further, suppose that we construct precisely one instance of inequality 12 for each substance-delivery-
release combination, substitute measured objects for true values, ignore the error terms, pool the instances
together, and calculate their mean. This process collects one ηj from each j, yielding an unselected set of
disturbances whose expected value is zero.5

As stated in the main text, we compute

1
J ∑

j

1
µj

∑
d∈Dj

1
2 ∑

k∈{M,N}

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N}) − θ0 − θ1rj − θ2ℓj

]
hι

j < 0. (4)

Moments indexed by ι are formed by interacting the bracketed term with a weight function, denoted by hι
j.

The weight function includes a constant, an indicator for standard delivery method drugs, an indicator for
nonstandard delivery method drugs, and indicators for substance-delivery-release combinations available
in one, two, and more than two strengths. J denotes the number of unique substance-delivery-release
combinations, and µj denotes the number of drugs associated with each substance-delivery-release com-

bination. V̂E
M
d (·) denotes VEM

d (·) evaluated at our estimates of π(·), Fξ , Fω, and FD rather than the true

values. V̂E
N
d (·) is defined analogously.

For upper bounds, we take a slightly different approach, since not every substance-delivery-release
combination experiences entry. To solve the selection problem, we exploit the symmetry of the distribution
of η (Powell, 1986; Pakes et al., 2015). This approach requires additional notation. Let L be the set of j with
at least one entrant, JL be the size of that set, and wi be a positive valued function of rj and ℓj. Also, define

VE+
j =

1
2 ∑

d∈Dj

∑
k∈{M,N}

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N})

]
, (5)

which represents the average of the cartel members’ and nonmembers’ entry values in j. Finally, for each

5This approach exploits the "ordered choice" nature of the problem. Ishii (2005) illustrates the approach most clearly. We differ from
her approach by having two types of entrants—cartel members and nonmembers—and permitting expectational error to reconcile
differences in the sunk costs implied by their decisions. See Section III.C of Wollmann (2018) for a general discussion of ways to relax
this assumption. To name one, the econometrician could specify the shape of the structural error and take the "probability inequality"
approach, proposed by Tamer (2003), though this approach is computationally infeasible in our setting.
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moment i, order j by their values of wi
jVE+

j , and let ΨwVE denote the set of j that corresponds to the J−JL

smallest values. As stated in the text, the second set of moments is then given by

1
J ∑

j∈L

1
µj

∑
d∈Dj

∑
k∈{M,N}

wi
j

[1{χk ≥ 1}V̂E
k
d(χM + 1{k = M}, χN + 1{k = N})

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θ0 − θ1rj − θ2ℓj

]

− 1
J ∑

j∈ΨwVE

1
µj

∑
d∈Dj

∑
k∈{M,N}

wi
j

[ V̂E
k
d(χM+1{k=M}, χN+1{k=N})

2
− θ0 − θ1rj − θ2ℓj

]
< 0. (6)

In Online Appendix E, we prove that inequalities 4 and 6 produce consistent bounds.
Computing V̂E

M
d and V̂E

N
d under the de facto policy and eight alternative (counterfactual) policies is

computationally burdensome. The most straightforward way to reduce the burden involves reducing the
number of draws of (ξ, ω), but reducing the number can result in noisy estimates of the value of entry. To
gain traction on the problem (and make it feasible for interested readers to exactly replicate our results), we
cut the variance of the distributions from which we draw ξ and ω by a factor of five, and we calculated
V̂E

M
d and V̂E

N
d based on 125 draws of those variables (for all periods, all hypothetical market structures

arising, and all policies that we considered, including the de facto policy). To ensure that this did not affect
our sunk cost estimates, we replicated the process (a) using 200 draws and a scaling factor of 2.5 rather
than five and (b) using 50 draws and a scaling factor of 10. Either way, we arrived at very similar results.

E.2 Counterfactual simulations

Since we have two types of entrants (i.e., members and nonmembers), multiple equilibria may exist in
Stage 1 play. For example, in a particular market, equilibrium entry may involve one member entrant and
two nonmember entrants and also involve two member entrants and one nonmember entrant. As a result,
when we simulate the effect of counterfactual policies, we may need to select a particular equilibrium in
Stage 1. Since equilibrium selection boils down to choosing the composition of entrants, we choose ones
whose ratio of member to nonmember entrants is as close as possible to the average ratio we observe in the
data following cartel formation.

To assess whether our equilibrium selection rule matters to the results we report in Section 8, we
simulated outcomes based on two separate rules. One rule selected equilibria with comparatively high
proportions of member entrants, while the other selected ones with comparatively low proportions of
member entrants. Empirically, consumer welfare does not vary much across the choices. Why? In the first
stage, nonmembers drive down profit much more than members do. In other words, informally speaking,
nonmember entry "clears" the market in that point in the game. As a result, we typically do not find more
than two equilibria, which almost which differ only by whether they have one more or less nonmember
entrant. Thus, there is not much scope for the selection rule to affect consumer welfare.6

One other consequence of multiplicity is that θ0, θ1, and θ2 are set- rather than point-identified. In

6There is another, more practical reason why equilibrium selection is unlikely to impact consumer welfare in the markets we study.
In our data, cartel formation attracts a large number of entrants. For this group in particular, there is no reason to think that the
mix of member and nonmember entrants varies based on the policy we evaluate. In other words, if the equilibria we select differ
from the ones that would actually be played, then the differences are probably confined to changes in the composition of additional
entrants—ones that enter only because entry costs and delays are reduced under the counterfactual policies we evaluate. However, the
simulations indicate that marginal entrants have small effects on consumer welfare. (Notice that this is the same conclusion we reach
when we compare Figure V and Table V. Figure V shows that entry plays a major role in disciplining prices in cartelized markets. Yet,
columns 1-4 of Table V show that additional entry, which occurs only as a result of reduced entry costs, plays a comparatively minor
role.)
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other words, we only obtain bounds on the parameters that determine sunk cost. When we simulate
counterfactual equilibrium outcomes, we chose values equal to the midpoints of the bounds of the 95%
confidence intervals. As we revised our analysis (e.g., by changing the number of draws used to compute
the value of entry), the bounds differed slightly. Given the comparatively small changes in the midpoint
values, the trivial effect this has on our counterfactual policy analysis, and our desire to maintain as much
continuity across the drafts as possible, we fixed our choices at θ0 = 1.61, θ1 = 1.22, and θ0 = 3.10—values
we reported in our first submission to the journal. Simulating counterfactual outcomes using large numbers
of draws is approximately as burdensome as computing V̂E

M
d and V̂E

N
d . Hence, to speed the process

up, we reduced the variance of ξ and ω by a factor of 5 and averaged outcomes over 100 draws of each
disturbance. Again, to ensure that this did not affect our results, we cut the number of draws and the
variance of the disturbances further, and we checked that we arrive at very similar results.

E.3 Moment Inequalities

THEOREM I. Moments indexed by i and given by

1
J ∑

j

1
µj

∑
d∈Dj

1
2 ∑

k∈{M,N}
hi

j

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N}) − θ0 − θ1rj − θ2ℓj

]
< 0 (7)

produce consistent upper bounds.

PROOF.
For each moment indexed by i, we have

1
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j

1
µj

∑
d∈Dj

1
2 ∑

k∈{M,N}
hi

j

[
V̂E

k
d(χM + 1{k = M}, χN + 1{k = N}) − θ0 − θ1rj − θ2ℓj

]
=

1
J ∑

j

1
µj

∑
d∈Dj

1
2 ∑

k∈{M,N}
hi

j

[
VEk

d(χM + 1{k = M}, χN + 1{k = N}) − θ0 − θ1rj − θ2ℓj

]
=

1
J ∑

j

1
µj

∑
d∈Dj

1
2 ∑

k∈{M,N}
hi

j

[
VEk

d(χM + 1{k = M}, χN + 1{k = N}) − θjk + ηj

]
=

1
J ∑

j

1
µj

∑
d∈Dj

1
2 ∑

k∈{M,N}
hi

j

[
VEk

d(χM + 1{k = M}, χN + 1{k = N}) − E (θjk|Ijk) − νjN + ηj

]
<

1
J ∑

j

[
hi

jηj

]
− 1

J ∑
j

[
hi

jνjN

] p−→E[hiη] − E[hiνjN] = E[hi]E[η] − E[hi]E[νjN] = 0. (8)

The first equality results from replacing V̂E
k
d(·) with VEk

d(·). V̂E
k
d(·) is a function of π̂k

d,t(·), F̂ξ , F̂ω, and F̂D,
and VEk

d(·) is a function of πk
d,t(·), Fξ , Fω, and FD. Since πk

d,t(M, N, ξdt, ωdt), Fξ , Fω, and FD are measured
without error, and since the value entry depends on only those objects, entry values are measured without
error. The second equality results from replacing θ0 + θ1rj + θ2ℓj with θjk − ηj, which follows directly from
equation 16. The third equality results from replacing θjk with E [θjk|Ijk] + νjN , which follows directly
from the definition of an expectational error. The inequality follows from the necessary conditions of a
simultaneous move Nash equilibrium, which require VEk

d(χM + 1{k = M}, χN + 1{k = N}) − E (θjk|Ijk) < 0.
(If this condition were false, then another firm would have expected to profitably enter.) The next step
follows from the law of large numbers. Since hi depends on r and ℓ, η is independent of r and ℓ, ν is
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independent of r and ℓ, the fourth inequality holds. To arrive at the final inequality, notice that η and ν are
both unconditionally mean zero (i.e., E[η] = 0 and E[ν] = 0). ■

THEOREM II. Moments indexed by i and given by

1
J ∑

j∈L

1
µj

∑
d∈Dj

∑
k∈{M,N}

wi
j

[1{χk ≥ 1}V̂E
k
d(χM + 1{k = M}, χN + 1{k = N})

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θ0 − θ1rj − θ2ℓj

]

− 1
J ∑
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1
µj

∑
d∈Dj
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k∈{M,N}

wi
j

[ V̂E
k
d(χM+1{k=M}, χN+1{k=N})

2
− θ0 − θ1rj − θ2ℓj

]
≥ 0 (9)

produce consistent lower bounds.

PROOF.
For each moment i, order j by their value of wi

jηj, let Lwη denote the set of j that correspond to the smallest
J values, and let Ψwη correspond to the smallest J−JL values. For each moment indexed by i, we have
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1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θ0 − θ1rj − θ2ℓj

]

− 1
J ∑

j∈Ψwη

1
µj

∑
d∈Dj

∑
k∈{M,N}

wi
j

[ V̂E
k
d(χM+1{k=M}, χN+1{k=N})

2
− θ0 − θ1rj − θ2ℓj

]

≥ 1
J ∑

j∈L

1
µj

∑
d∈Dj

∑
k∈{M,N}
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j

[1{χk ≥ 1}V̂E
k
d(χM + 1{k = M}, χN + 1{k = N})

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θ0 − θ1rj − θ2ℓj

]

− 1
J ∑

j∈Ψwη

1
µj

∑
d∈Dj

∑
k∈{M,N}
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[ V̂E
k
d(χM+1{k=M}, χN+1{k=N})
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− θ0 − θ1rj − θ2ℓj

]
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1
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1
µj

∑
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k∈{M,N}
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j

[1{χk ≥ 1}VEk
d(χM + 1{k = M}, χN + 1{k = N})

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θ0 − θ1rj − θ2ℓj

]

− 1
J ∑

j∈Ψwη

1
µj

∑
d∈Dj

∑
k∈{M,N}
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j

[VEk
d(χM+1{k=M}, χN+1{k=N})

2
− θ0 − θ1rj − θ2ℓj

]

=
1
J ∑

j∈L

1
µj

∑
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k∈{M,N}
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[1{χk ≥ 1}VEk
d(χM + 1{k = M}, χN + 1{k = N})

1{χM≥1} + 1{χN≥1} + 1{χM=0, χN=0} − θjk + ηj

]

− 1
J ∑

j∈Ψwη

1
µj

∑
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∑
k∈{M,N}
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[VEk
d(χM+1{k=M}, χN+1{k=N})
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− E(θjk|Ijk) + ηj

]
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]
. (10)

30



The first inequality follows from the construction of set ΨwVE. The first equality results from replacing

V̂E
k
d(·) with VEk

d(·). V̂E
k
d(·) is a function of π̂k

d,t(·), F̂ξ , F̂ω, and F̂D, and VEk
d(·) is a function of πk

d,t(·), Fξ ,
Fω, and FD. Since πk

d,t(M, N, ξdt, ωdt), Fξ , Fω, and FD are measured without error, and since the value
entry depends on only those objects, entry values are measured without error. The second equality
results from replacing θ0 + θ1rj + θ2ℓj with θjk − ηj, which follows directly from equation 16. The third
equality results from replacing θjk with E [θjk|Ijk] + νjN , which follows directly from the definition of an
expectational error. The second inequality follows from the necessary conditions of a simultaneous move
Nash equilibrium. That is, for k ∈ {M, N}, these conditions require VEk

d(χM , χN) − E (θjk|Ijk) ≥ 0 as well
as VEk

d(χM + 1{k = M}, χN + 1{k = N}) − E (θjk|Ijk) < 0.

Assume that JL/J
p−→q by the law of large numbers. We then have

1
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j∈L

1
µj

∑
d∈Dj

∑
k∈{M,N}

wi
j

[
ηj − νjN

]
− 1

J ∑
j∈Ψwη

1
µj

∑
d∈Dj

∑
k∈{M,N}

wi
j

[
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]

=
1
J ∑

j∈L

[
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jηj

]
−
(
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J ∑
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[
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jνjN

]
− 1

J ∑
j∈Ψwη

[
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≥ 1
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[
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jηj

]
− 1

J ∑
j∈Ψwη

[
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jηj

]
−
(

1
J ∑

j∈L

[
wi

jνjN

]
− 1

J ∑
j∈Ψwη

[
wi

jνjN

])
p−→E[η|η<F−1(q), wi=1] − E[η|η<F−1(1 − q), wi=1] − (E[ν|η<F−1(q), wi=1] − E[ν|η<F−1(1 − q), wi=1])

= E[η|η<F−1(q)] − E[η|η<F−1(1 − q)] − (E[ν] − E[ν]) = 0. (11)

The first equality follows from the fact that wi and ηj, and νjN do not depend on d or k. The first inequality
follows from the construction of Lwη . The third step follows from the law of large numbers. The second
equality follows from the fact that η and ν are independent of r and ℓ, on which wi depends. Thus, for
example, E[η|η<F−1(q), wi=1] = E[η|η<F−1(q)]. To arrive at the final step, notice that E[η|η<F−1(q)] and
E[η|η<F−1(1 − q)] are values that are equidistant from zero, so their difference is zero. Also, notice that ν

is independent of η and is unconditionally mean zero. ■

E.4 Procurement scoring auctions vs. nested logit demand

E.4.1 Purchase probabilities and market shares

Consider the procurement scoring auction described in the body of the main text, and omit drug and time
subscripts to simplify notation. Let F denote the set of firms with products in this market, P(·) denote the
probability that the event in the parentheses occurs, and Pi f denote the probability that i buys the drug
from f . Pi f can be written as

P(λ + ξ f + ζi + (1 − σ)ϵi f + αpi f ≥ λ + ξ f ′ + ζi + (1 − σ)ϵi f ′ + αpi f ′ ∀ f ′ ∈ F )

×P(λ + ξ f + ζi + (1 − σ)ϵi f + αpi f ≥ ϵi0). (12)
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Since ϵ and ζ are not known by the firms when they submit proposals and are i.i.d. with respect to i (and
other indices), f sets the same price to all i. Thus, Pi f can be rewritten as

P(λ + ξ f + ζi + (1 − σ)ϵi f + αp f ≥ λ + ξ f ′ + ζi + (1 − σ)ϵi f ′ + αp f ′ ∀ f ′ ∈ F )

×P(λ + ξ f + ζi + (1 − σ)ϵi f + αp f ≥ ϵi0). (13)

Since ϵ and [ζ + (1 − σ)ϵ] are distributed Type 1 extreme value, Pi f can further be rewritten as

eλ+αp f +ξ f

Λσ(1 + Λ)1−σ
, (14)

where Λ = ∑ f ′∈F eλ+αp f ′+ξ f ′ .
Let wi denote the size of buyer i and s f denote the market share of f . s f equals the weighted average

probability of winning the procurement scoring auctions, which is given by ∑i wiPi f
∑i wi

. If the buyers are

approximately symmetric, then ∑i wiPi f
∑i wi

≈ ∑i wPi f
∑i w = 1

ni
∑i Pi f , where ni denotes the number of buyers. If

the number of buyers is very large, then 1
ni

∑i Pi f ≈ E[Pi f ], which is the same as the individual probability

that i purchases the drug from f , since Pi f does not depend on i. Hence, s f = e
λ+αp f +ξ f

Λσ(1+Λ)1−σ .
Thus, under the collection of procurement scoring auctions described in the body of the main text, each

firm’s market share is approximately equal to the market share obtained under a nested logit demand
system.

E.4.2 Bids and prices

Consider the procurement scoring auction described in the body of the main text, and omit drug and time
subscripts to simplify notation. Let P(·) denote the probability that the event in the parentheses occurs.
Each firm f wishes to maximizes its profit, so it solves

max
p

{
P(λ + ξ f + ζi + (1 − σ)ϵi f + αp ≥ λ + ξ f ′ + ζi + (1 − σ)ϵi f ′ + αpi f ′ ) ∀ f ′ ∈ F )

×P(λ + ξ f + ζi + (1 − σ)ϵi f + αpi f ≥ ϵi0)(p − mc f )
}

. (15)

As in the explanation above, since ϵi f and ζi are not known by the firms when they submit proposals and
are i.i.d. with respect to i (and other indices), each f ′ sets the same price to all buyer (i.e., pi f ′ ≡ p f ′ ). Thus,
the preceding optimization problem can be rewritten as

max
p

{
P(λ + ξ f + ζi + (1 − σ)ϵi f + αp ≥ λ + ξ f ′ + ζi + (1 − σ)ϵi f ′ + αp f ′ ∀ f ′ ∈ F )

×P(λ + ξ f + ζi + (1 − σ)ϵi f + αp ≥ ϵi0)(p − mc f )
}

. (16)

Since ϵi f and [ζi + (1 − σ)ϵ]i f are distributed Type 1 extreme value, the preceding optimization problem can
further be rewritten as

max
p

{
eλ+αp+ξ f

Λσ(1 + Λ)1−σ
(p − mc f )

}
, (17)

32



where Λ = ∑ f ′∈F eλ+αp f ′+ξ f ′ .
Separately, consider a nested logit demand model. Let the buyer’s "utility" takes the same form as its

"payoff" in the procurement auction, so that ui f = λ + ξ f + ζi + (1 − σ)ϵi f + αp, and let ξ f , ζi, and ϵi f have
the same distributional assumptions as in the procurement auction case. Firm f multiplies the product of
market share and per-unit profit margin, i.e., it solves

max
p

{
eλ+αp+ξ f

Λσ(1 + Λ)1−σ
(p − mc f )

}
. (18)

where Λ = ∑ f ′∈F eλ+αp f ′+ξ f ′ .
Thus, bid setting under the procurement scoring auction described in the body of the main text is

isomorphic to price setting in a nested logit demand system.

33



References

Centers for Medicare & Medicaid. State drug utilization data [online data file], 2022.
https://www.medicaid.gov/medicaid/prescription-drugs/state-drug-utilization-data/index.html.

R. Clark, C. A. Fabiilli, L. Lasio, et al. Collusion in the US generic drug industry. Technical report, 2021.

E. Cuddy. Competition and collusion in the generic drug market. Technical report, 2020.

E. Cuddy, R. Porter, A. Starc, and T. G. Wollmann. Entry Barriers, Personal Relationships, and Cartel
Formation: Generic Drugs in the United States. Cambridge University Press, 2024.

R. Feldman, E. Frondorf, A. Cordova, and C. Wang. Database from Empirical Evidence of Drug Pricing
Games - A Citizen’s Pathway Gone Astray [Online data file]. https://ssrn.com/abstract=2924673, 2016.

K. Ho. Insurer-provider networks in the medical care market. American Economic Review, 99(1):393–430,
2009.

IQVIA. National Prescription Audit and IQVIA Institute Services [Data file], 2022.
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.

J. Ishii. Compatibility, competition, and investment in network industries: ATM networks in the banking
industry. Unpublished working paper, 2005.

A. Pakes, J. Porter, K. Ho, and J. Ishii. Moment inequalities and their application. Econometrica, 83(1):
315–334, 2015.

J. L. Powell. Symmetrically trimmed least squares estimation for tobit models. Econometrica, 54(6):
1435–1460, 1986.

L. Sun and S. Abraham. Estimating dynamic treatment effects in event studies with heterogeneous treatment
effects. Journal of Econometrics, 2020.

E. Tamer. Incomplete simultaneous discrete response model with multiple equilibria. The Review of
Economic Studies, 70(1):147–165, 2003.

Teva Pharmaceuticals Industries. Report 20-F. https://ir.tevapharm.com/financials/sec-filings/default.aspx,
February 2011-2016.

Teva Pharmaceuticals Industries. Report 20-F. https://ir.tevapharm.com/financials/sec-filings/default.aspx,
February 2012.

Teva Pharmaceuticals Industries. Report 20-F. https://ir.tevapharm.com/financials/sec-filings/default.aspx,
February 2013.

Teva Pharmaceuticals Industries. Report 20-F. https://ir.tevapharm.com/financials/sec-filings/default.aspx,
February 2014.

Teva Pharmaceuticals Industries. Report 20-F. https://ir.tevapharm.com/financials/sec-filings/default.aspx,
February 2015.

34



Teva Pharmaceuticals Industries. Report 20-F. https://ir.tevapharm.com/financials/sec-filings/default.aspx,
February 2016.

US Food & Drug Administration. Drugs @ FDA [Online data file], 2022.
https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.

T. G. Wollmann. Trucks without bailouts: Equilibrium product characteristics for commercial vehicles.
American Economic Review, 108(6):1364–1406, 2018.

35


	 Data appendix
	Sample construction
	Comparing data sources
	Inferring filing dates

	 Tables/figures related to descriptive results
	Tables and figures related to Section 4.1
	Tables and figures related to Section 4.2
	Tables and figures related to Section 4.3

	 Tables/figures rel. to structural estimation
	Price elasticity of demand
	Marginal cost
	Damage assessment 

	 Cartel rollout
	 Technical appendix
	Sunk cost estimation procedure
	Counterfactual simulations
	Moment Inequalities
	Procurement scoring auctions vs. nested logit demand
	Purchase probabilities and market shares
	Bids and prices



